电力系统稳定器(PSS)简单介绍
电力系统稳定器培训教材
电力系统稳定器培训教材(PSS)电力系统稳定器(PSS)是一种自动控制装置,是为改善同步电机稳定性而设计的,与励磁控制配合使用。
PSS有许多不同的实现方式。
自并励励磁系统具有高的增益和快速响应时间,这大大地提高了暂态稳定。
但与此同时,却趋向于降低对小信号的稳定(阻尼力矩)。
PSS控制的目的是提供一个正阻尼系数,以阻尼发电机转子角度的摇摆。
PSS的实现由于PSS的主要功能是对电力系统振荡增加阻尼,基本的控制理论可以指出,任何在电力系统振荡中可以测量到的信号,都可以作为很好的待选输入信号。
容易得到的信号是直接的转子转速测量值,频率和功率。
从系统设计的观点来看,在选择适当的输入信号时,有很多因素要考虑。
例如,直接的转子转速测量容易受到汽轮机发电机扭振作用的影响。
在发电机励磁控制系统中,引入发电机机端电压,发电机的功率、转速和频率等信号或上述信号的组合,经过一定的相位处理后,再通过励磁调节器去控制发电机的励磁,可以增加机组的阻尼力矩,有效地平息系统的低频振荡,提高电力系统的稳定性。
电力系统稳定器(PSS-Power System Stabilizer)就是提供增加系统阻尼力矩的附加励磁控制部件。
电力系统稳定器是以发电机功率为信号的电力系统稳定器。
它由模拟电路组成。
输入发电机电压和电流,利用模拟乘法器测得发电机的电功率,经信号复归电路滤去稳态量,再由两级超前-滞后电路和增益控制电路进行相位和增益调整,输出信号送入励磁调节器中,与发电机端电压、给定电压相加共同控制发电机的励磁。
相位补偿角的选择:PSS的相位补偿电路主要用来补偿励磁调节器和发电机回路中的相位滞后,所以,PSS的相位补偿与调节器的参数以及励磁系统的形式有关。
进行相位补偿应在AVR参数确定并证明其特性良好的情况下进行,对于以功率为信号的PSS,一般要求0.2至2Hz的频率范围内,PSS 的相移角φp加励磁系统的滞后角φe为-60°~-120°。
励磁PSS
电力系统稳定器(PSS)投入、退出:1、电力系统稳定器可以阻尼发电机的磁极,和电网系统的低频振荡。
平时不影响励磁调节,对AVR来说是一个附加通道。
2、发电机的有功功率达到200MW(额定负荷为600MW的机组)以上就可以手动投入电力系统稳定器PSS,并且发电机的电压限制在设置的范围之内(90%-100%U0).电力系统稳定器投入不需任何设定。
3、PSS可以在任意时间手动切除,同时,如果发电机有功功率及电压超出设定值或者与电网解裂,PSS自动切除。
PSS因故退出后要向调度汇报退出原因,如因工作需要应向调度申请同意后方可进行。
4、按照(电网电力系统稳定器PSS运行暂定规定)的要求确定PSS的投切,原则上PSS退出相应机组应当解裂备用。
PPS在励磁控制系统中引入一个附加控制信号,以增加发电机的阻尼,也就是提高整个电力系统的阻尼能力,消除电力系统发生低频增幅震荡的可能性。
一般定值设定为有功的30%至40%,当有功负荷降到该定指标时候自动停用。
励磁变装不装差动也有争论,不过一般不设差动保护,因为励磁变低压侧的电流由于受到可控硅整流的影响不再是标准的正弦波形,有时会造成差动保护误动!励磁变的保护配置一般是电流速断,过流,过负荷,再加上与励磁系统配合的非电量保护而已。
转子包括转子绕组和转子铁心,两者是相互绝缘的,发电机的汽端大轴处,通过接地碳刷把大轴感应交流电导入大地。
而转子绕组投转子一点、两点接地保护,励磁回路中。
一期两台无刷永磁副励磁机机头上的2个碳刷,主要是用来检测励磁机回路是否接地的。
在励磁调节器柜内,有发电机、励磁机励磁回路接地检测试验回路,每24小时一次。
当需要碳刷接触时,举刷电源供电(在励磁接地检测保护柜内有专门的举刷交流电源开关),将碳刷和大轴相接触。
一期发电机三机励磁原理副励磁机(永磁机)经A VR整流,事给励磁机励磁的小机,励磁机输出的其实是交流电,经旋转二极管整流后输出给发电机转子绕组,这种励磁方式叫三机励磁。
PSS装置在电力系统中的作用
浅谈电力系统振荡及PSS装置的作用樊绍华PSS是电力系统稳定器(Power system stabilizer)的简称。
一、电力系统的振荡类型:电力系统在动态过程中可能出现多种类型的振荡,如电磁振荡:表现为系统电感和电容元件之间的能量交换振荡。
振荡频率一般较高,例如高压线路电感的线路分布电容之间在一定条件下可能产生谐振,这种谐振可能引起危险的高电压。
以如高压串联补偿线路的电感和串联补偿电容,这种振荡频率较低,一般低于同步频率,称为“次同步振荡”。
另一类常见的电磁振荡是由系统中调节装置特性不恰当引起,它的振荡频率可能在很大范围内变化。
电磁振荡一般衰减较快,但如果它的振荡频率与系统机电自然振荡频率相同,或与机组轴系自然振荡频率互补则可能引起严重后果。
机电振荡:表现为机械元件之间的动态运动(振动)和扭转振荡。
对于电力系统安全影响较大的有汽轮机叶片谐振和大机组轴系的扭振,其自然振荡频率可以低于或高于同步频率。
如果存在一个频率与其机械自然振荡频率相同的外部扰动,则将出现危险的谐振,可能损坏设备。
在系统出现大的扰动后,轴系也将引起扭振,如果这个扭振还未来得及衰减,以来一次扰动,则两次扰动的效果可能重合而引起更大幅值的扭振。
电力系统故障时,可能接连出现短路、切除、重合闸于故障、再切除等多次大扰动,这些扰动如果多次叠加,则可能出现严重后果。
机电振荡:常见的是发电机组间功率动态振荡。
振荡时的能量是通过电气联系传递的,故称为机电振荡,表现为发电机电功率和功角的变化。
当振荡较严重时,系统不能维持同步运行,即稳定破坏。
机电振荡的频率较低,一般在0.2――2.5Hz范围内,通常称为低频振荡。
机电扭振互作用:表现为电磁振荡和机械扭振的相互作用。
如电力系统中出现频率为fe(fe低于同步频率fn)的电磁振荡,发电机定子电流中频率为fe的电流分量将在以fn速度旋转的转子直流绕组中产生频率为(fn-fe)的交变力矩,如果轴系的自然振荡频率fm=fn-fe,则将引起轴系的扭转谐。
6电力系统稳定器PSS简介及现场试验
校核相位补偿特性
有补偿频率特性由无补偿频率特性与 PSS单元相频特性相加得到,其应有较宽的 频带,在该电力系统低频振荡区内使PSS输 出的力矩向量对应Δω轴在超前10o~滞后45o 以内,并使本机振荡频率力矩对应Δω 轴在 0o~滞后30o之间。
校核相位补偿特性
根据PSS模型中传递函数(图1)和上述PSS 参数,通过计算校核被试机组励磁系统 有补偿的相频特性。校核结果必须基本 满足要求。
整定临界增益
• 测得临界增益值为
p.u.
• 实际整定值为
p.u.
• 注:根据DL/T 650-1998,PSS增益实际 整定值一般为临界增益的1/3~1/5。
PSS的投、切试验
• 投入PSS和切除PSS,观察被试机组有关各量应 无扰动。
• 注意:当试机组出现不正常情况时快速将该机 组的励磁调节器切换至另一通道(未投入PSS) 运行。
在噪声通道加噪声电压,并调整电压幅值,观察B 套信息窗中的噪声给定(noise-value)应有所变 化。(注意:第一次送入时可能有静电,所以要 先相互短接,再对地短接放电。 )
调整噪声
• 可通过调整噪声系数或加入的噪声大小 来调整噪声给定值。
• 噪声给定值应该读取噪声信号显示的最 大值,一般达到1-2即可,不要大于2.5V。
电力系统稳定器PSS简介 及现场试验
2008.12
PSS的必要性
随着电力系统的不断扩大、快速励磁 系统的广泛采用,系统的阻尼变弱,致 使不少系统的联络线出现了低频功率振 荡。
PSS与系统低频震荡
电力系统低频震荡是一种发生在弱 联系的互联电网之间或者发电机(群) 与电网之间或者发电机(群)与发电机 (群)之间的有功震荡,频率一般为0.22.0Hz。这种低频功率震荡的发生可能会 导致联络线过流跳闸,或者造成系统与 系统、发电机组(群)与系统之间的失 步而解裂,扩大电网事故。
电力系统稳定器PSS简介及现场试验
励磁系统的PID参数:
KP=
H KI=
H KD=
H
试验保证
励磁调节器运行状况完好 功率柜运行状况完好 其他励磁设备运行状况完好 做PSS试验用的励磁调节软件准备完毕 被试机组调速系统性能正常 有关保护退出,防止误动
过欠励限制退出
试验所需的仪器仪表准备
• 波形记录仪 • 频谱分析仪或动态信号分析仪一台 • 较精确的指针型有效值电压表 • 低延迟时间交流电压变送器 • 其他试验过程中需要的设备、仪器仪表 • 以上试验器材一般又实验单位提供
调整噪声
• 噪声信号输入后可以在控制参数31看到
试加信号
• 待确定频谱输入信号后,观察参数31 参数,此时参数的波动有很显著的增 大,然后“试验”投入。将白噪声信 号叠加电压给定。观察发电机无功。 转子电压波动情况。有波动但是应该 在可控制范围内。
• 要是出现波动加大或者是不明显,可 以适当的调整下白噪声的大小。
投PSS情况下的电压阶跃试验
• 先投入主套PSS,从套暂不投入。 • 在投入PSS情况下,做±1%UFN机端电压阶跃
响应试验。 • 在做PSS的电压阶跃试验的时候若发现有任何问
题,即可迅速切至从套,避免发生严重问题。在 试验过程中注意无功波动范围。 • 若无问题,可根据情况做±2%UFN机端电压阶 跃响应试验。
检查PSS效果
• 录波分析有功的振荡情况。 • 并根据中试所实验人员的意见调整PSS环
节有关参数,重复上述试验。 • 录波分析无功、有功振荡情况,重点检验
有功振荡情况,检验PSS抑制振荡的效果 。
投入PSS的参考波形
确定PSS参数
• 最后确定PSS环节整定参数。 • 观察投入PSS后对增加机组阻尼,抑
PSS-电力系统稳定装置试验
PSS——电力系统稳定装置电气2008-05-04 13:49:35 阅读898 评论0 字号:大中小订阅电力系统稳定器(简称PSS)是励磁系统的一个附加功能,用于提高电力系统阻尼,解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。
它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。
PSS稳定装置的输入是发电机的有功信号,经过隔直环节和补偿环节,最后输出到励磁调节器,作为励磁调节器综合环节的一个负的输入。
在稳态运行时,由于隔直环节的作用,输出信号为零。
当系统受到扰动时,系统的低频振荡分量将使PSS产生输出信号,如果PSS相位补偿适当,将产生阻尼低频振荡的转矩,整个PSS装置的增益和相位决定了它对系统的阻尼效果。
有效平息系统的低频振荡,提高电力系统的稳定性。
PSS投入的一个条件是机组的输出有功,当有功大于一定的值时,PSS才起作用。
通过试验测量励磁系统滞后频率特性、PSS临界放大倍数等试验,确定机组PSS参数,并按调令投入PSS运行。
低频振荡分析发电机电磁力矩可分为同步力矩和阻尼力矩,同步力矩(PE)与Δδ同相位,阻尼力矩与Δω同相位。
如果同步力矩不足,将发生滑行失步;阻尼力矩不足,将发生振荡失步。
低频振荡是发生在弱联系的互联电网之间或发电机群与电网之间,或发电机群与发电机群之间的一种有功振荡,其振荡频率在0.2-2Hz之间,低频振荡发生的有四种可能的原因:1、系统弱阻尼时,在受到扰动后,其功率发生振荡且长时间才能平息。
2、系统负阻尼时,系统发生扰动而振荡或系统发生自激而引起自激振荡。
这种振荡,振荡幅度逐渐增大,直至达到某平衡点后,成为等幅振荡,长时间不能平息。
3、第三种是系统振荡模与某种功率波动的频率相同,引起特殊的强迫振荡,这种振荡随功率波动的原因消除而消除。
4、由发电机转速变化引起的电磁力矩变化和电气回路耦合产生的机电振荡,其频率约为0.2-2Hz。
系统稳定器(PSS)原理及其试验方法
系统稳定器(PSS)原理及其试验方法[摘要]本文通过电力系统稳定器(PSS)在珠江电厂的应用详细介绍了PSS 的原理和试验方法。
【关键词】励磁;电力系统稳定器;PSS一、PSS的基本原理电力系统稳定器(PSS)是励磁系统的一种附加功能,它抽取与低频振荡有关的信号并对其加以处理,产生的附加信号叠加到励磁调节器中,使发电机产生阻尼低频振荡的附加转矩,用于提高电力系统的阻尼。
PSS一般是以励磁调节器电压控制环的附加控制的形式出现。
PSS借助于励磁调节器控制励磁的输出,来阻尼同步电机的功率振荡,输入变量可以是转速、频率或功率(或多个变量的综合)。
PSS输出的附加控制信号加到励磁系统上,经过励磁调节器滞后产生附加力矩。
该滞后特性称为励磁系统无补偿特性。
附加力矩方向与发电机Eq’一致,但是无法实际测量Eq’,而用测量发电机电压Vt代替。
试验时要求调整发电机无功在零附近,有功在满负荷附近。
根据测得的励磁系统无补偿特性,按照预先设计的PSS环节相位补偿特性,初选PSS参数。
目标是在低频振荡的频率范围内,PSS产生的附加力矩向量Te对应Δω(转速)轴在超前10°~滞后45°以内,并使本机振荡频率力矩向量对应Δω(转速)轴在0°~滞后30°以内。
PSS输入信号(转速ω,电气功率Pe或机械功率Pm)与Δω的相位关系如下:转速ω和频率f与Δω轴同相,电气功率Pe滞后Δω轴90°,机械功率Pm领先Δω轴90°。
根据不同的输入信号,PSS环节相位补偿特性的相位Фpss加上励磁系统无补偿特性的相位,可以获得所需的PSS附加力矩与Δω轴的关系,如图1所示。
珠江电厂四台机组使用励磁系统都是南瑞电气有限公司生产的SA VR-2000自并励静止励磁系统,其传递函数如图2所示,其值由调节器厂家给出。
其PSS 采用的模型如图3所示,PSS环节的各参数将在本次试验中整定。
PID模型中TR=0.02为发电机电压测量时间常数,参照厂家试验值给出;其余可整定参数见各调节器整定值。
电力系统稳定器(PSS)
XXXX发电有限责任公司电力系统稳定器(PSS)动态投运试验方案中国电力科学院xxx电力试验研究所xxxx年xx月xx日批准:审定:审核:编写:1. 试验目的XX电厂两台发电机使用东方电机厂生产的300MW发电机,励磁调节器为英国罗罗公司生产的TMR-A VR型微机励磁调节器,励磁系统采用自并励静止可控硅励磁方式,属快速励磁系统,由于联网运行时对系统动态稳定影响较大,应尽快将励磁系统中电力系统稳定器(PSS)投入运行,以抑制可能出现的电力系统低频振荡,提高电力系统稳定性。
2.编制依据本方案按照中华人民共和国电力行业标准DL/T650-1998《大型汽轮机自并励静止励磁系统技术条件》有关要求编制。
3. 组织措施为保证试验顺利进行,成立领导小组和试验小组。
人员组成如下:3.1 现场试验领导小组组长:副组长:成员:3.2 现场试验专业组组长:成员:4.发电机励磁系统简介XX电厂2台发电机的励磁系统为机端自并励方式,励磁调节器和整流装置由英国Rools- Royce 公司制造,是三模冗余静态励磁系统。
自动调节方式为PID+PSS。
PSS输入信号为△P有功信号。
4.1主要设备参数4.1 .1发电机参数制造厂:东方电机厂型号:QFSN-300-2-20额定功率: 300MW额定电压: 20kV额定电流: 10190A额定功率因数:0.85额定励磁电压:463V 实测值额定励磁电流:2203 A 实测值空载励磁电压: 169V 实测值空载励磁电流: 815A 实测值最大励磁电压: 489V 实测值励磁绕组电阻 ( 15°c): 0.1561Ω纵轴同步电抗Xd(非饱和值)199.7%纵轴瞬变(暂态)电抗Xd’(非饱和值/饱和值)26.61%/29.57%纵轴超瞬变(次暂态)电抗Xd”(非饱和值/饱和值)16.18%/17.59%横轴电抗Xq(非饱和值) 193%横轴瞬变(暂态)步电抗Xq’(非饱和值/饱和值)37%/41.77%横轴超瞬变(次暂态)电抗Xq”(非饱和值/饱和值)17.5%/20.73%负序电抗X2(非饱和值/饱和值) 19.74%/21.46%4.1.2励磁变压器一次额定电压:20 kV二次额定电压:0.94 kV漏抗(短路电压): 6 %4.1.3互感器变比发电机定子电流CT变比:15000A/5A发电机定子电压PT变比:20000V/100V4.2 PSS投运频率响应试验的AVR、PSS、频谱分析仪关系框图频谱分析仪白噪声信号Kp = 40/50(满载/空载) ,Ki = 0.08 , K D = 0.04, Ti = 0.08s, Td = 0.04s5.试验前准备工作5.1 试验使用仪器5.2 将励磁调节器监视用计算机通过RS-232串口与被试调节器联接,以便试验时修改定值,并实时监视试验过程中调节器各参数的变化情况。
PSS原理及其作用
电力系统稳定器(PSS)PSS原理及其作用为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。
对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。
PSS 作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。
它不仅可以补偿励磁调节器的负阻尼,而且可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。
2 低频振荡产生原因分析及危害性电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。
随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。
但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。
低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。
解决低频振荡问题成为电网安全稳定运行的重要课题之一。
PSS的构成和传递函数早期的PSS由分立元件构成,在微机式励磁调节器中PSS由软件构成,我厂3#、4#机组均是哈尔滨电机厂生产的三机无刷励磁发电机组,型号为QFSN-600-2YH,励磁调节器采用英国ROLLS-ROYCE(简称R-R)公司的数字式励磁调节器,PSS完全由软件构成,其PSS输入信号采用发电机电功率即△P,其结构如图1:。
励磁系统PSS简介
电力系统稳定器PSS模型简介按照标准技术语言:电力系统稳定器Power System Stabilizer 简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。
按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2∼2.5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。
显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个。
按照PSS输入的不同可以划分出不同的PSS模型。
按照其他方式划分,又有其他模型。
无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多。
幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B (双输入Dual-input PSS)、PSS4B(多频段Multi-band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。
PSS1A,单输入PSS,两级超前滞后环节。
最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的。
PSS1A主要适用于火电厂,因为火电机组调负荷很慢,其有功变化频率不在PSS1A的频率范围,不会产生机组无功反调。
PSS1A,简单可靠。
所谓反调,就是发电机无功随有功增减而减增,显然不利于电力系统稳定,需要避免。
电力系统稳定器PSS简介
电力系统稳定器PSS简介高级工程师许刚一.低频振荡由于电力系统规模扩大,大型发电机普遍采用了集成电路和可控硅组成的励磁调节器,使自动励磁调节器(AER)的时间常数从过去的几秒钟缩短到几十毫秒。
快速励磁系统(晶闸管直接励磁或高起始响应励磁系统)的广泛采用,更使得励磁系统时间常数大为减少,从而降低了电力系统的阻尼。
对联系较弱的电网系统影响较大,使系统中经常出现弱阻尼,甚至是负阻尼。
因此,许多电力系统出现了每分钟几个至几十个周波的频率很低的自发性系统振荡。
在这种情况下,当振荡严重时会破坏互联系统之间的并列运行,造成大面积停电,这种现象称为低频振荡。
从稳定性来看,电力系统振荡频率发生在0.2-2.5H Z范围内,它主要反映在各发电机的转子之间在输电线路交换功率过程中有相对运动形成振荡模。
另外,某台发电机经过弱联系的辐射式输电线路连接到一个相对大的电力系统时所出现的振荡,被称为地区型振荡,其频率在0.8-1.8H Z范围内。
当联络线一端的机组对另一端的机组产生相对摇摆,这种振荡型式被称为联络线型或区间振荡,其振荡频率在0.2-0.5H Z。
如果在同一发电厂内的机组间发生振荡,这种振荡被称为内部振荡,其振荡频率在1.5-2.5H Z范围内。
川渝电网和华中电网实现联网的要求和联网稳定计算表明,联网后,系统中存在0.2Hz左右甚至更低频率的低频振荡。
因此,为保证电网的安全,川渝电网和华中电网的主要发电机的励磁调节器应投入电力系统稳定器(PSS)。
这些PSS除能抑制本机型低频振荡外,还应能有效地抑制区域型低频振荡,即PSS对于在0.1Hz-2.0Hz之内的振荡都有抑制作用。
黄桷庄电厂有两台200MW汽轮发电机组(#21、#22机),均采用南京南自科技发展公司生产的WKKL-1型励磁调节器。
自带的PSS采用发电机电功率作为输入信号,均采用三机有刷励磁方式。
由于联网运行时此两台机组对系统动态稳定影响较大,将PSS投入运行,以抑制可能出现的电力系统低频振荡,提高电力系统稳定性。
PSS作用及原理
先说说低频振荡和阻尼的概念:低频振荡:在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统如果缺乏必要的阻尼就会失去动态稳定。
由于电力系统的非线性特性,动态失稳表现为发电机转子之间的持续的振荡,同时输电线路上功率也发生相应的振荡,影响了功率的正常输送。
由于这种持续振荡的频率很低,一般在0.2~2.5HZ之间,故称为低频振荡。
所谓阻尼:就是阻止扰动,平息振荡,而负阻尼恰恰相反。
励磁装置的负阻尼:是指励磁装置对于系统功角摆动所作出的调节作用,会加大这种摆动,不利于系统的稳定。
低频振荡:在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统如果缺乏必要的阻尼就会失去动态稳定。
由于电力系统的非线性特性,动态失稳表现为发电机转子之间的持续的振荡,同时输电线路上功率也发生相应的振荡,影响了功率的正常输送。
由于这种持续振荡的频率很低,一般在0.2~2.5HZ之间,故称为低频振荡。
所谓阻尼:就是阻止扰动,平息振荡,而负阻尼恰恰相反。
励磁装置的负阻尼:是指励磁装置对于系统功角摆动所作出的调节作用,会加大这种摆动,不利于系统的稳定。
PSS 的作用主要有三个方面:第一就是抑制低频振荡,一般在系统发生低频振荡,PSS经过1~2 个周波振荡就完全平息了;第二是提高静稳定的功率极限,具有PSS 附加功能的调节器,可采用较大电压放大倍数,提高电压调节精度,维持发电机端电压不变,使单机-无穷大系统的静稳极限接近线路的功率极限;第三是有利于暂态稳定,能够在一定频率范围内提供正阻尼,抑制大扰动第一摇摆之后的后续振荡,缩短后续摇摆过程。
PSS 基本原理:电力系统稳定器就是为抑制低频振荡而研究的一种附加励磁控制技术。
它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。
PSS(电力系统稳定器)模型
按照标准技术语言:电力系统稳定器Power System Stabilizer简称PSS,是励磁调节器通过一种附加控制功能,借助于AVR控制励磁输出,阻尼同步电机的低频功率振荡,用以改善电力系统稳定性能的一个或一组单元。
按照陈小明理解的技术语言:PSS是励磁调节器自动通道(自动电压调节器AVR)的附加环节或者附加装置,以低频0.2∼2。
5Hz的有功功率摆动作为输入,经过放大和调整相位后叠加在AVR输出上,产生同发电机阻尼绕组一样效果的正阻尼,抵消单纯电压偏差调节的AVR所产生的负阻尼,防止电力系统出现低频振荡,提高电力系统动态稳定性。
显然,PSS只有一个叠加到AVR的输出量,至于输入量最少一个.按照PSS输入的不同可以划分出不同的PSS模型。
按照其他方式划分,又有其他模型。
无论什么理论,只要一说到分类,张三李四王麻子各有各的爱好,分类也就越来越多.幸好PSS源于美国,且数学模型研究不是中国人的特长,因此,PSS模型的划分还是比较简单的,美国电气和电子工程师协会(IEEE)1992年将PSS划分PSS1A型(单输入)和PSS2A型(双输入),2005年版的IEEE为将PSS划分PSS1A(单输入Single-input PSS)、PSS2B(双输入Dual-input PSS)、PSS3B(双输入Dual-inputPSS)、PSS4B(多频段Multi—band PSS),这是目前PSS模型最权威的分类,也是学习和交流PSS技术的重要依据。
PSS1A,单输入PSS,两级超前滞后环节。
最早的输入量是频率,现在普遍采用功率P,利用隔直环节得到ΔP,再对ΔP进行超前滞后处理,以达到抑制低频振荡之目的.PSS1A主要适用于火电厂,因为火电机组调负荷很慢,其有功变化频率不在PSS1A的频率范围,不会产生机组无功反调。
PSS1A,简单可靠.所谓反调,就是发电机无功随有功增减而减增,显然不利于电力系统稳定,需要避免.ﻫPSS2B,双输入PSS,一个输入量是ω,一个是P,三级超前滞后环节。
电力系统稳定器PSS介绍
计算PSS补偿 Ф (°) -49.5288 -53.609 -48.5281 -41.5368 -34.1925 -27.0168 -20.2097 -13.8424 -7.92854 -2.45527 2.601757 7.270938 11.58114 15.55999 19.23325 22.62456 25.7555 28.64576 31.31329 33.77449
有补偿Ф (°)
-60.6 -77.8 -88.6 -84.9 -79.9 -83 -82.7 -76 -76.8 -73.5 -65.7 -62.3 -60.8 -69.8 -79.8 -81.7 -81.9 -83 -77.3 -85.3
计算PSS补偿 Ф (°) -44.6535 -48.4348 -42.9527 -36.0707 -29.3532 -23.1889 -17.633 -12.6384 -8.13336 -4.04778 -0.32103 3.096905 6.24651 9.160416 11.865 14.38177 16.72839 18.91961 20.96788 22.88384
5
0.5
6
0.6
7
0.7
8
0.8
9
0.9
10
1.0
11
1.1
12
1.2
13
1.3
14
1.4
15
1.5
16
1.6
17
1.7
18
1.8
19
1.9
20
2.0
无补偿Ф (°)
-21.1 -32.6 -42.5 -49.7 -55.0 -59.1 -64.3 67.0 -69.6 -71.1 -70.9 -66.5 -67.3 -81.8 -92.6 -96.3 -100 -103 -106 -106
电力系统稳定器简介
PSS 是什么? PSS 试验要求的发电机组状况。 PSS 试验主要过程。
1. PSS 原理
图1
⎧ dδ
⎪ ⎪
dt
= ω −ω0
⎪⎨M ⎪
dω dt
=
Tm
− Te
⎪ ⎪⎩Td' 0
dE
' q
dt
= Ef
− Eq
M
dω dt
= Pm − Pe
图 2 单机无穷大系统
图 3 电磁力矩分析
+
xq ⋅ IC
其中,VAB 为 AB 相的线电压, IC 为 C 相的相电流。
则
δ
=
cos
−1
⎜⎛ ⎜⎝
Eq2
+ Vt2 − (xq ⋅ It )2 2EqVt
⎟⎞ ⎟⎠
图 发电机功角计算向量图二
还可以根据上图计算发电机的功角,因为
tgδ = It xq cosθv =
V tI t cosθv
,
对于硬件产生内电势的方法简单易行,但由于其中的交轴电抗事实上为一个 变值,所以很难获得,而且硬件模拟的交轴电抗容易改变,这是采用该方法的最 大缺点,因而在实际的应用中很少有人通过这种方法来获得转速ω 信号。相对来 说,用软件的方法来获得ω 信号简单可靠,灵活方便,所以得到了广泛的采用。 以下我们主要介绍上述两种软件实现方法。
= E E qβn qα (n−1) − Eqβ (n−1) Eqαn E E qa(n−1) qαn + E E qβn qβ (n−1)
(φ n
− φn−1 )
=
tg −1⎜⎜⎝⎛
E E qβn qα (n−1) E E qa(n−1) qαn
电力系统稳定器PSS参数测试及选择
1电力系统稳定器(PSS)的作用电力系统稳定器(简称PSS)是励磁系统的一个附加功能,用于提高电力系统阻尼,解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。
它抽取与低频振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。
即在自动励磁调节器输入端引入附加反馈Δpe(Δf或Δω)以提高发电机对功率(或转速)中的低频振荡分量的阻尼力矩,迅速抑制低频振荡。
PSS设备简单,效果显著,已为国内、外广泛采用。
PSS控制结构如图1。
2十三陵蓄能电厂励磁系统简介十三陵蓄能电厂4台200 MW机组的励磁系统均为自并激励磁系统,励磁电源由机端供给,励磁变压器为3台干式变压器接成Y/Δ-5,经可控硅整流桥整流后供发电机励磁。
励磁调节器为数字式微机型励磁调节器,它是一个可自由编程的微处理机系统,该系统包括一个主处理器(MBR),3个子处理器(pr.A,B,C),另外还有数字输入、输出接口和模拟输入、输出接口,以及一个信号处理器SAB。
励磁系统的所有功能都是通过主处理器或子处理器上的程序(软件包)来实现的。
该调节器具有双自动电压调节通道和双励磁电流调节的手动调节通道。
其主要功能为将发电机电压调差、过流限制、低励限制、V/F限制、PSS等的输出信号相加后与设定电压比较,其差值经第一级电压放大,然后经PID串联校正电路。
对于快速励磁系统,当比例增益较大时一般不需要有微分单元以增加高频时的增益,因此自并励励磁系统通常只采用PI调节。
十三陵蓄能电厂励磁系统调节器设有微分单元,调试时将微分系数K D=0,即微分单元退出。
因此自动通道单元具有积分反馈的PI(D)调节特性,手动调节通道具有P(I)调节特性。
3十三陵蓄能电厂PSSPSS提供一个用于衰减转子振荡的附加信号。
这种转子振荡可能会在有不稳定条件线路和传输线很长时发生。
十三陵蓄能电厂PSS的功能是在励磁调节器子处理器C中来完成的。
电力系统稳定器PSS简介
电力系统稳定器PSS英文:power system stabilization电力系统稳定器(pps)就是为抑制低频振荡而研究的一种附加励磁控制技术。
它在励磁电压调节器中,引入领先于轴速度的附加信号,产生一个正阻尼转矩,去克服原励磁电压调节器中产生的负阻尼转矩作用。
用于提高电力系统阻尼、解决低频振荡问题,是提高电力系统动态稳定性的重要措施之一。
它抽取与此振荡有关的信号,如发电机有功功率、转速或频率,加以处理,产生的附加信号加到励磁调节器中,使发电机产生阻尼低频振荡的附加力矩。
由试验可见:(1)励磁控制系统滞后特性基本分为两种:自并励系统(约-40°~90°):励磁机励磁系统(约-40°~-150°)。
(2)同一频率角度范围,表示同一发电机励磁系统在不同的系统工况和发电机工况下有不同的滞后角度,从几度到十几度,其中也包含了测量误差。
(3)温州电厂与台州电厂虽采用同一励磁控制系统,因转子电压反馈和调节器放大倍数不同,励磁系统滞后特性发生明显变化。
(4)励磁调节器的PSS迭加点位置不同,励磁控制系统滞后特性也不同。
2.有补偿频率特性的测量有补偿频率特性,由无补偿频率特性与PSS单元相频特性相加得到,用来反映经PSS相位补偿后的附加力矩相位。
DL/T650-1998《大型汽轮发电机自并励静止励磁系统技术条件》提山,有补偿频率特性在该电力系统低频振荡区内要满足-80°~-135°的要求,此角度以机械功率方向为零度。
根据试验的方便情况,可采用两种方法:(1)断开PSS信号输入端,在PSS 输入端加噪声信号,测量机端电压相对PSS输入信号的相角:(2)PSS环节的相角加上励磁控制系统滞后相角。
由试验可见:(1)通过调整PSS参数,可以使有补偿频率特性在较宽的频率范围内满足要求。
(2)ALSTHOM机组PSS低频段相位补偿特性未能满足要求。
(3)北仑电厂1号机PSS在小于0.4Hz范围增大隔直环节时间常数,使之低频段有良好的相位补偿特性,而且提升放大倍数(0.2Hz处提高1.76倍)。
pss名词解释
pss名词解释好嘞,咱们来聊聊“pss”这个名词哈。
你要是听到“pss”这个词儿,可能第一反应是啥呢?是那种一头雾水的感觉吧。
就像你走在路上,突然听到有人喊了一个你完全陌生的名字,你肯定满脑子问号。
其实啊,“pss”在不同的领域有不同的含义呢。
在一些技术领域里呀,“pss”可能是某个系统或者软件里特定的术语。
这就好比在一个大的机器里面,每个小零件都有自己的名字,“pss”就是其中一个零件的名字。
比如说在电力系统里,它可能是一种功率稳定装置(这只是一种可能的解释哦)。
你看那电力系统,就像一个超级复杂的大蜘蛛网,电在里面跑来跑去的,要是没有像“pss”这样的东西来稳定功率,那这电就像调皮的小娃娃,到处乱窜,指不定就把这个“蜘蛛网”给搞乱套了呢。
再说到商业领域啊,“pss”也可能是某个公司特定的项目缩写,或者是一种服务模式的简称。
这就像一家餐馆,它有一道特别的招牌菜,为了方便大家记住,就给这道菜取了个特别的简称。
这“pss”在商业里就有点这个意思。
比如说某个公司推出了一个名为“Product Service System(产品服务系统)”的项目,他们内部的人就简称“pss”。
这样一来,大家一说“pss”就知道是在说这个项目啦,就像餐馆里的人一说那个菜名简称,大家就知道是哪道菜一样。
在学术圈里呢,“pss”也可能是某种理论或者研究方法的缩写。
这就好比在学术的大花园里,每一朵花都有自己的名字,“pss”就是其中一朵花的名字。
学者们在讨论相关的话题时,就像园丁们在谈论花园里的花一样,直接说“pss”,大家就心领神会了。
不过对于我们这些不太了解这个学术领域的人来说,就感觉像是在听外星语一样。
就像你听那些生物学家在讨论什么基因序列,一堆字母和数字,听着就懵。
还有啊,在游戏界,“pss”说不定是某个游戏里的特殊技能、道具或者是游戏角色的名字。
你想啊,游戏就像一个小小的世界,里面有各种各样稀奇古怪的东西。
“pss”就像是这个小世界里的一个神秘宝藏或者是一个厉害的大侠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统稳定器(PSS)
1、电力系统稳定器简称PSS,其作用:
a.提高电力系统静态稳定能力;
b.提高电力系统动态稳定能力;
c.阻尼电力系统低频振荡。
2、电力系统稳定器(PSS)的原理:
在励磁系统中采用ΔP、Δω、Δf等一个或两个信号作为附加反馈控制,增加正阻尼,它不降低励磁系统电压环的增益,不影响励磁控制系统的暂态性能。
3、电力系统稳定器(PSS)是EXC9000励磁调节器的一个标准软件功能。
我们开发的PSS,采用加速功率作反馈信号(即双变量ΔP、Δω),有效克服了采用单电功率反馈信号时的无功“反调”问题。
PSS的数学模型如下图所示,属于PSS2A 模型。
图 1 PSS传递函数模型
说明:
PSS输出控制信号PSS_uk,通过附加控制端引入AVR相加点,与反馈电压Ug的相加方式一致。
通过调节器人机界面,可选择投入或退出PSS。
当选择投入PSS时,只有在发电机有功大于PSS投入功率后,PSS输出才有效。
当选择退出PSS时,则PSS输出无效,恒等于0。