6、二次根式的混合运算2

合集下载

二次根式的混合运算

二次根式的混合运算

二次根式的混合运算
本文介绍了二次根式的混合运算,其中重点剖析了有理化因式和分母有理化的方法,以及二次根式混合运算的注意事项。

在计算中,需要注意运算顺序和最简二次根式的表示。

文章提供了典型例题,通过运用相关知识点进行计算。

二次根式的混合运算包括加、减、乘、除和整式的加、减、乘。

在实数范围内,过去学过的运算律仍然适用。

分母有理化的一般方法是用分母的有理化因式同时乘以分子和分母。

二次根式混合运算顺序与实数运算类似,先乘方、再乘除,最后加减,整式与分式的运算法则在根式中仍然适用。

每一个根式可看作是一个“单项式”,多个不是同类二次根式之和可以看成一个多项式,因此多项式乘法法则及乘法公式在根式运算中,仍然适用,以简便计算。

在二次根式的综合运算中,除按运算顺序进行以外,还要注意分式性质的灵活运用。

有理化因式不是唯一的,它可以相差一个常数。

例如,3
的有理化因式可以是3,23,33……但在一般情况下,我们所找
的有理化因式应是最简单的。

一般常见的互为有理化的两个代
数式有如下几种情形:a和a,a+b和a-b,a-b和a+b,ma+nb
和ma-nb。

二次根式的除法一般是先写成分式的形式,然后通
过分母有理化来进行。

典型例题中,例1的计算包括四个部分,分别是(1)、(2)、(3)和(4)。

在计算中,需要注意运用a-b=(a+b)(a-b)、分母有理化、最简二次根式的表示和整式除法法则等知识点。

通过对例题的计算,可以更好地理解二次根式的混合运算。

(完整版)二次根式混合运算经典

(完整版)二次根式混合运算经典

( 4 )( 5 + 3 2 )2 .
答案: 3 答案:5 3 - 3 答案:1 答案:43+30 2
1、计算:
(1)、3 2 1 33
(2)、7 2 1 5
(3)、7 ( 7)2
(4)(7 2 2 6)(2 6 7 2)
(5)、( 7 7 3)2
(6)、( 2 3 6)2 ( 2 3 6)2
(3)已知 10 的整数部分为a,小数部分为b,求a2-b2的值.
6 解:(1) 2-
18-120=3
2-3
2-1=-1
(2)(-3)2- 4+12-1=9-2+2=9
(3)∵3< 10<4 ∴ 10的整数部分 a=3,小数部分 b= 10-3
∴a2-b2=32-( 10-3)2=9-(10-6 10+9)=-10+6 10
例3 计算:
( 2 )( 2 + 3 2 )( 1 - 2 ).
从例3的第(2)小题看到,二次根式的和相乘, 与多项式的乘法相类似.
我们可以利用多项式的乘法公式,进行某些二 次根式的和相乘的运算.
例4 计算:
( 1 )( 2 + 1 )( 2 - 1 ) ; ( 2 )( 2 - 3 )2 .
动脑筋
解:(1)∵x=2- 3,y=2+ 3 ∴x+y=(2- 3)+(2+ 3)=4,xy=(2- 3)×(2+ 3)=1 ∴x2+xy+y2=(x+y)2-xy=42-1=15
(7)、(7 54 3 21) 3
(8)、18 ( 3 2)
注意:
1、运算顺序 。 2、运用运算律和乘法公式,简化运算。 3、结果为最简二次根式。
二、巧用“分母有理化”进行二次根式混合运算

二次根式的混合运算法则

二次根式的混合运算法则

二次根式的混合运算法则二次根式是数学中的一个重要概念,也是数学中常见的运算形式。

在二次根式的混合运算中,我们需要遵循一定的法则和步骤,以确保运算结果的准确性。

本文将介绍二次根式的混合运算法则,并通过实例进行说明。

一、二次根式的定义二次根式是指形如√a的数,其中a为非负实数。

在二次根式中,根号内的数称为被开方数,根号外的数称为系数。

二次根式可以进行加、减、乘、除等运算,但需要遵循一定的法则和步骤。

二、二次根式的混合运算法则1. 加法运算当二次根式相加时,要求被开方数相同,系数相加即可。

例如,√2 + √2 = 2√2。

2. 减法运算当二次根式相减时,同样要求被开方数相同,系数相减即可。

例如,√3 - √2 = √3 - √2。

3. 乘法运算当二次根式相乘时,可以将系数相乘,被开方数相乘并合并为一个二次根式。

例如,2√3 * 3√2 = 6√6。

4. 除法运算当二次根式相除时,可以将系数相除,被开方数相除并合并为一个二次根式。

例如,6√6 / 3√2 = 2√3。

5. 混合运算在二次根式的混合运算中,可以按照运算法则依次进行加、减、乘、除等运算。

需要注意的是,乘法和除法运算的优先级高于加法和减法运算。

三、实例分析为了更好地理解二次根式的混合运算法则,我们来看几个实例。

1. 实例一:计算√5 + √3 - √2的值。

根据加法运算法则,√5 + √3 = √5 + √3,再根据减法运算法则,√5 + √3 - √2 = √5 + √3 - √2。

2. 实例二:计算(2√6 - √2) * √3的值。

根据减法运算法则,2√6 - √2 = 2√6 - √2,再根据乘法运算法则,(2√6 - √2) * √3 = 2√18 - √6。

3. 实例三:计算(3√10 + 2√5) / √2的值。

根据加法运算法则,3√10 + 2√5 = 3√10 + 2√5,再根据除法运算法则,(3√10 + 2√5) / √2 = (3√10 + 2√5) / √2。

初二数学二次根式混合运算

初二数学二次根式混合运算

初二数学二次根式混合运算一、二次根式的概念回顾形如√(a)(a≥0)的式子叫做二次根式。

其中,被开方数a必须是非负数,这是二次根式有意义的条件。

例如,√(4),√(x + 1)(其中x≥ - 1)都是二次根式。

二、二次根式的性质1. (√(a))^2=a(a≥0),例如(√(5))^2 = 5。

2. √(a^2)=| a|=cases(a, & a≥0 -a, & a<0),例如√(3^2)=3,而√((-2)^2)=2。

三、二次根式的乘除法法则1. 乘法法则- √(a)·√(b)=√(ab)(a≥0,b≥0)。

例如:√(2)×√(3)=√(2×3)=√(6)。

2. 除法法则- (√(a))/(√(b))=√(frac{a){b}}(a≥0,b > 0)。

例如:(√(8))/(√(2))=√(frac{8){2}}=√(4) = 2。

四、二次根式的加减法1. 先将二次根式化为最简二次根式。

最简二次根式需要满足两个条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式。

例如,√(12)不是最简二次根式,因为12 = 4×3,所以√(12)=√(4×3)=2√(3),2√(3)是最简二次根式。

2. 然后合并同类二次根式。

同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

例如,3√(2)和5√(2)是同类二次根式,可以合并,3√(2)+5√(2)=(3 + 5)√(2)=8√(2)。

五、二次根式混合运算的顺序1. 先算乘方(开方)。

例如计算(√(3))^2+√(8)div√(2),先算(√(3))^2 = 3。

2. 再算乘除,后算加减。

接着上面的式子,再算√(8)div√(2)=√(4)=2。

3. 有括号的先算括号里面的。

例如计算(2+√(3))(2-√(3)),这里先利用平方差公式(a + b)(a - b)=a^2 - b^2,得到2^2-(√(3))^2=4 - 3 = 1。

《二次根式的乘除混合运算》 说课稿

《二次根式的乘除混合运算》 说课稿

《二次根式的乘除混合运算》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次根式的乘除混合运算》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析本节课是人教版八年级下册第十六章《二次根式》中的重要内容。

二次根式的乘除混合运算既是对二次根式乘法和除法法则的综合运用,也是后续学习二次根式的加减运算以及解二次根式方程的基础。

通过本节课的学习,学生将进一步提高对二次根式运算的理解和掌握,为解决更复杂的数学问题打下坚实的基础。

在教材的编排上,先介绍了二次根式的乘法和除法法则,然后通过实例引入二次根式的乘除混合运算,让学生在实际运算中体会法则的应用,逐步掌握运算方法和技巧。

二、学情分析八年级的学生已经掌握了实数的基本运算和整式的乘除运算,具备了一定的运算能力和逻辑思维能力。

但对于二次根式的运算,尤其是乘除混合运算,可能会在运算顺序、化简过程中出现错误。

部分学生可能对法则的理解不够深入,在应用时容易出现混淆。

因此,在教学过程中,要注重引导学生理解法则的本质,加强练习,及时纠正错误。

三、教学目标1、知识与技能目标(1)学生能够熟练掌握二次根式的乘除混合运算的法则和方法。

(2)能够正确进行二次根式的乘除混合运算,并化简结果。

2、过程与方法目标(1)通过观察、类比、归纳等活动,培养学生的运算能力和逻辑思维能力。

(2)在运算过程中,提高学生的分析问题和解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。

(2)培养学生严谨的学习态度和良好的运算习惯。

四、教学重难点1、教学重点(1)二次根式的乘除混合运算的法则和顺序。

(2)正确化简二次根式的乘除混合运算结果。

2、教学难点(1)运算过程中符号的确定和根式的化简。

(2)灵活运用二次根式的乘除法则进行混合运算。

五、教法与学法1、教法(1)讲授法:讲解二次根式的乘除混合运算的法则和方法,使学生形成系统的知识体系。

2023学年沪教版上海八年级数学上学期同步考点精讲精练16-3-2二次根式的加减及混合运算带讲解

2023学年沪教版上海八年级数学上学期同步考点精讲精练16-3-2二次根式的加减及混合运算带讲解

16.3.2二次根式的加减及混合运算考点一、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用. (2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.考点二、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.题型1:二次根式的加减法1-数字型182)A.5 B10C.32D.42C【分析】根据二次根式的运算法则即可求解.82822232==故选C.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.2273______.23先进行化简,然后作差求解即可.解:原式333==【点睛】本题考查了二次根式的化简与减法运算.解题的关键在于正确的计算.3______.首先化简二次根式,进而合并求出即可.解:原式==故答案为:【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.题型2:二次根式的加减法2-字母型4.计算:(1________;(2)=_________.根据合并同类二次根式的法则计算即可;解:(1=,(2)-=故答案为:【点睛】本题考查了二次根式的加减法,熟练掌握合并同类二次根式的法则是解题的关键5.计算;(1(=________;(2)5-________.-【分析】(1)先化简二次根式,然后根据合并同类二次根式的法则计算即可;(2)讨论x和a同时大于0和同时小于0,利用二次根式的性质化简即可.解:(1(=(2)ax≥∴0当0x >,0a ≥时55x ---当0x <,0a ≤时55x -+=故答案为:-【点睛】本题考查了二次根式的加减法,熟练掌握合并同类二次根式的法则是解题的关键.6.计算二次根式________.合并同类二次根式得:故答案:7.1642 ) A .正数B .非正数C .非负数D .负数B【分析】先化为最简二次根式,然后合并同类项,再根据二次根式有意义确定0x ≥0≥,最后确定值的符号即可.解:1642=1642x x ⋅24==-∴0x ≥0≥,∴0-≤,故选:B .【点睛】本题考查了二次根式的化简,及二次根式的加减运算,二次根式有意义条件,熟知此知识点是解题的关键.题型3:二次根式的混合运算1-数字型8=_____________. 2【分析】 先把分子中的二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.2=. 故答案为:2.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再合并同类二次根式,然后进行二次根式的乘除运算.9.计算:=( )A .4B .5C .6D .8C【分析】先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可.原式6=÷==.故选C .【点睛】本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键.1002019)-=________. 1【分析】根据二次根式的运算法则和零指数的性质进行计算即可.解:原式1= 4211=--=故答案为1.【点睛】本题考查了二次根式的运算法则和零指数,解题关键是熟练运用相关法则,准确进行计算.11-+⨯ )A .+B .32C .D .A【分析】先化简各个二次根式再合并即可.=故选A.【点睛】 本题考查了二次根式的混合运算,熟练掌握二次根式的化简与同类二次根式的合并是解题的关键.12=______.44 【分析】利用二次根式的混合运算法则计算即可.=4==4故答案为:4【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13 )A .-B C .36-D .6-D【分析】根据二次根式的混合运算法则进行计算即可原6==-故选D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.=______.14先分母有理化,再根据二次根式的加减运算法则求解即可.==11【点睛】本题考查分母有理化、二次根式的加减运算,熟练掌握分母有理化的方法是解答的关键.15-分别根据分母有理化、二次根式的乘法和二次根式的性质化简与计算,再合并同类二次根式即可.-=-262【点睛】本题考查了二次根式的混合运算,属于基础题型,熟练掌握运算法则是解题的关键.题型4:二次根式的大小比较16.请用“>,=,<”符号比较大小:>【分析】求出=解:==∵18>12,∴故答案为:>.【点睛】本题考查了二次根式的大小比较,能选择适当的方法比较两个数的大小是解此题的关键.17910=______.> 2##2【分析】根据45<<可推出101711210510,从而可比较两数大小;利用平方差公式分母有理化即可.解:∵45<<,∴516<<, ∴51716555即101711210510,910>;2==故答案为:>; 2. 【点睛】本题考查实数的大小比较,和二次根式的化简.能正确得出45<<和利用平方差公式分母有理化是解题关键.18.比较大小:(1)(2)4_________2+(3;(4> , < , > , <【分析】(1)先将 ,有4532>,即可比较大小;(2)利用作差法,即可比较大小;(3)利用作商法,即可比较大小;(4>解:(1)∵==4532>,>∴>(2)∵(4(24222(1-+=--=-,又1,∴2(10<,即(4(20-+<,∴42+(3)1 ===>,>;(4)><故答案为:(1)>;(2)<;(3)>;(4)<.【点睛】本题主要考查了二次根式比较大小,二次根式的运算,熟练掌握二次根式的性质是解题的关键.题型5:二次根式的混合运算2-字母型及复合型19.若m,n+mn=_____.1【分析】利用二次根式的运算法则将已知等式化简,求出m、n的值,代入mn即可求解.1414∴4m=1, 4n=16,∴m=14, n=4,mn=414⨯= 1. 故答案为1.【点睛】本题考查二次根式的化简求值.20.若a 、b a +=a ________,b =________. 0 214 【分析】先把等式的左边化简,再合并同类二次根式,再利用实数的无理数性质可得答案.解: a =+,∴a =+a =+ ∴a =0,b =214. 故答案为:0;214. 【点睛】本题考查的是二次根式的加减运算,实数中无理数的性质,掌握合并同类二次根式与实数中无理数的性质是解题的关键.21.已知22a b ==,则( )A .a b =B .1ab =C .1ab =-D .0a b +=D【分析】根据a 与b 的值结合选项进行一一比较及计算即可结论.∵2a =(22b ==-,∴a b ,A 选项不正确;∴(227ab =-=-+∴B 、C 选项都不正确;∴220a b +==,D 选项正确.故选D .【点睛】此题考查了二次根式求值运算,掌握二次根式的运算法则是解题关键.22.已知:5a b +=-,1ab = ) A .5B .-5C .25D .5或-5A【分析】首先由a+b=-5,ab=1得出a 、b 的取值范围,然后使原式分母有理化,再由a 、b 的取值范围确定所求值的符号,通分化简代入求值;解:∵ab=1>0,∴a 、b 同号,又∵a+b=-5<0,∴a <0,b <0.115a b ⎫==+==⎪⎭; 故选:A【点睛】此题考查的知识点是二次根式的化简求值,关键是体现了整体代入思想,还要注意字母的取值.23.已知x =y =y x x y+=______. 8【分析】先把所求代数式通分,再把x 、y 的值代入进行计算即可. 解:22y x y x x y xy++=,将x =y =得:原式=22(53)(53)1682(53)(53)++-==+-, 故答案为:8. 【点睛】本题考查了二次根式的化简求值,结合平方差公式以及完全平方公式是解题的关键.题型6:二次根式的混合运算与分式24.先化简,再求值:223112-⎛⎫-÷⎪++⎝⎭a a a a ,其中3a =. 2aa+,233- 【分析】根据分式的加减乘除法则进行化简,然后代入数值计算即可. 解:原式1(1)2(1)(1)-+=⨯++-a a a a a a 2=+a a 当3a =时,原式323=+ 233=-.【点睛】本题考查了分式加减乘除的混合运算,分式的化简求值,二次根式的加减运算,解题的关键是熟练掌握运算法则,正确进行化简.25.已知1526x =-,则21055x x x -+-的值.63【分析】 先根据分母有理化化简x ,再把原式变形即可求解. ∵1526x =-()()526526226526+==+-⨯+ ∴21055x x x -+-21025205x x x -+-=-25+2652065+26526--.【点睛】此题主要考查分式的化简求值,解题的关键是熟知二次根式、分式及完全平方公式的运算. 26.先化简,再求值:已知a 23+2221211a a a a a -+-+- 11a a-+,3【分析】先化简得11aa-+,再将a=11aa-+即可得.解:原式=2(1)1aa--=11(1)aaa a----=11aa -+当a=代入11aa-+得:111221231+=++.【点睛】本题考查了整式的化简求值,二次根式的混合运算,正确计算是解题的关键.题型7:复杂的二次根式混合运算275【分析】先把二次根式进行化简,再合并同类二次根式即可求得结果.55==【点睛】本题考查了二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.28.计算:(1);(2).(1)4(2)【分析】(1)先把括号内的二次根式化简及除法运算,再计算二次根式的除法运算,最后合并同类二次根式即可;(2)先计算括号内的二次根式的减法运算,再计算二次根式的除法运算,从而可得答案.(1)解:2332332232322322626262626 464(2)解:ab a ab ab a b a ab a ab ab aa ab a ba ab ab a2a ab a bab aa ab a baba b a【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.292式的性质和二次根式的加减计算法则进行化简即可.2===【点睛】本题主要考查了平方差公式,完全平方公式,分式的化简,二次根式的加减计算,解题的关键在于能够熟练掌握平方差公式和完全平方公式.30.计算:(1(2)(12. 【分析】(1)先化为最简二次根式,再利用二次根式的加减法则进行计算; (2)利用二次根式的乘除法则及分式乘法运算法则进行计算即可.解:(1)原式=4= (2)原式22213a m n m n =+-222133a m n m n=⨯+- )212a m n m n=+-2=2== 【点睛】本题考查了二次根式的混合运算,分式的乘法运算,熟练掌握各运算法则是解题的关键.题型8:二次根式混合运算的应用31=________.根据长+宽列式,利用二次根式的性质化简,再进行二次根式的加法计算即可.解:这个长方形的长与宽的和 .故答案为 【点睛】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简方法.32.解不等式:11)x x +>-2x +<根据解不等式的步骤解不等式即可.解:去括号,得1x +>,移项、合并同类项,得(11x >- 系数化为1,得x <2x <+【点睛】本题考查了一元一次不等式的解法和分母有理化,本题的易错点是易忽略10.33.如图是一个简单的数值运算程序,若输入x _________.24x x →→→输入减输出-根据题意可得:程序所代表的代数式为24x -,再由x 1x =,代入即可求解. 解:程序所代表的代数式为24x -, ∵x∴1x =,当1x =时,输出的值为21)4314-=--=-故答案为:- 【点睛】本题主要考查了二次根式的混合运算,根据程序图得到程序所代表的代数式为24x -是解题的关键. 34.宋代数学家秦九韶,古希腊数字家海伦在探究三角形面积的求解过程中发现,若一个三角形的三边长分别为a ,b ,c ,设1()2p a b c =++,则这个三角形面积为:S =明,这个公式叫海伦秦九韶公式,当4a =,5b =,6c =时,三角形边a 上的高等于( )A B C D A【分析】由题意易得()11522p a b c =++=,则有S a 边上的高为h ,进而问题可求解.解:由题意,得:4a =,5b =,6c =;()11522p a b c ∴=++=;S ∴==; 设a 边上的高为h ,则12ah S =,22424s h a∴==故选:A.【点睛】本题主要考查二次根式的应用,熟练掌握二次根式的运算是解题的关键.35.若22248t t---=2.5,则22248t t-+-的值为_____.325【分析】设224t-=a,将原等式变形后可求得a的值,代入所求式子可得结论.设224t-=a,则24-t2=a2,8-t2=a2-16,∵224t-−28t-=2.5,a-216a-=52,a−52=216a-,两边同时平方得:(a−52)2=a2−16,解得:a=89 20,则22248t t-+-,=8920+216a-,=8920+289()1620-,=8920+1521400,=8920+3920,=325,故答案为325.【点睛】本题是二次根式的化简求值问题,利用换元法,将原方程转化为关于a的方程,解方程可解决问题,计算量大,要细心.一、单选题1.下列运算正确的是()A222B222233=C.333D633=B【分析】根据二次根式的化简、加法与乘除法法则逐项判断即可得.解:A=B==C1>,所以,则此项错误,不符题意;D=故选:B.【点睛】本题考查了二次根式的运算以及化简,熟练掌握运算法则是解题关键.2.下列等式成立的是()A=B=C=3C【分析】用二次根式的加减法的法则,二次根式的乘除法的法则对各项进行运算即可.A A不符合题意;B=B不符合题意;C=C符合题意;D=D不符合题意;故选:C.【点睛】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握.3)A.2与3之间B.3与4之间C.4与5之间D.5与6之间C【分析】由二次根式的性质,二次根式的乘法、加法进行计算,再进无理数的估算即可.==3∵12<<,∴435<+;故选:C【点睛】本题考查了二次根式的性质,二次根式的乘法、加法运算法则,以及无理数的估算,解题的关键是掌握运算法则进行计算.4.当x=222x x++的值为()A.14 B.17 C.533D.5+D【分析】将x=解:由题意得:当x=22++=+=+22225x x故选:D.【点睛】本题考查了二次根式的混合运算及求代数式的值,熟练掌握二次根式的混合运算法则是解题的关键.m,小数部分为n,则(2m+n)(2m﹣n)的值是()5A.B.-C.2D.2-A【分析】m、n的值,再用平方差公式计算(2m+n)(2m﹣n),最后再再代入求值即可.2,解:∵1m=1,小数部分为n,∴(2m+n)(2m﹣n)=224m n-=)22411⨯-=()431--=故选:A.【点睛】本题考查估算无理数的大小、二次根式的计算及平方差公式,理解算术平方根的定义是正确估算的前提.6)A.0 B.3 CD.不存在B【分析】先根据二次根式有意义,求出xx的增大而增大,则在x取值范围内x取最小值时代入计算,即可求解.则102020xxx-≥⎧⎪-≥⎨⎪+≥⎩,解得:x≥2,∵x的增大而增大,∴当x=2时,代数式的值最小,1+0+2=3.故选:B.【点睛】此题考查了函数的最值问题,考查了二次根式的意义.此题难度适中,解题的关键是根据题意求得x的取值范围.7.已知ab11a b+的值为( ) A .﹣B .C .﹣D .A 【分析】先进行通分计算,然后代入求值即可. 解:原式=b a ab ab+=a bab + 当ab=﹣故选:A . 【点睛】本题主要考查了分式的化简求值以及二次根式的混合运算,掌握二次根式的混合运算成为解答本题的关键. 8.若0a <,0b <,化简 ) A .(23-b a B .(23--b a C .(23-+b a D .(23+b a C 【分析】a 化简 ,注意0a <,0b <,最后加减运算即可.解:223,ab a ab =-0a <,0b <,(2223332ab a abb a ∴-=-=-+故选:C .【点睛】a 是解题关键.9.已知a b =c =a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .c b a <<D .b c a << A【分析】先把,,a b c再结合2021+20202020+2019,从而可得答案.解:∵a ==,b =,c ==,2021+20202020+2019, ∴.a b c <<故选A .【点睛】本题考查的是二次根式的大小比较,二次根式的混合运算,掌握“二次根式的大小比较的方法”是解本题的关键.10.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++.其中n 为正整数,则)A .201920202020 B .202020202021 C .202020212021 D .202120212022D【分析】11(1)n n =++,然后把代数式进行化简,再进行计算,即可得到答案.解:∵n 为正整数,=21(1)n n n n +++ =11(1)n n ++;2021a +=(1+112⨯)+(1+123⨯)+(1+134⨯)+…+(1+120212022⨯) =2021+1﹣11111112233420212022+-+-++- =2021+1﹣12022 =202120212022. 故选:D .【点睛】本题考查了二次根式的化简求值,解题的关键是用裂项法将分数1n(n 1)+化成111n n -+抵消规律求和.二、填空题11=________.33【分析】先根据二次根式的性质化简,同时进行二次根式的乘法运算,然后合并即可.解:原式=33=故答案为:3本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.12= ____.4--4-【分析】根据二次根式的混合运算可进行求解.解:原式=2⎝=31--=4--故答案为4--【点睛】本题主要考查二次根式的混合运算,熟练掌握二次根式的混合运算是解题的关键.13,一矩形的长为,若该圆的面积与矩形的面积相等,则矩形的宽为____cm.【分析】园的面积=2rπ,矩形的面积=长×宽,根据圆的面积与矩形的面积相等可得2rπ=长×宽,代入数据即可求解.设矩形的宽为x cm∵圆的面积与矩形的面积相等,∴2rπ=长×宽2π=,解得:x=故答案为:【点睛】本题主要考查了圆的面积与矩形面积得等量代换,熟练地掌握圆的面积公式与矩形的面积公式,根据题意找出等量关系列出等式是解题的关键.14==ab=_________2【分析】运用二次根式化简的法则先化简,再得出a,b的值即可.解:246-==∴== 2.2,1,a b∴=故答案为:2.ab本题考查了二次根式的化简求值,解题的关键是掌握二次根式运算法则.15.已知52x =+,52y =-,求下列各式的值: (1)x y +=______;(2)222x xy y -+=______;(3)22x y -=______.25 16 85【分析】(1)把52x =+,52y =-代入x y +进行计算即可;(2)先计算x y -,再把222x xy y -+化为()2x y -,再代入计算即可;(3)把22x y -化为()()x y x y +-,再整体代入计算即可.解:(1)∵52x =+,52y =-,2 5.x y(2)∵52x =+,52y =-, 52524,x y ∴()22222416.x xy y x y -+=-==(3)∵25,x y4,x y -= ∴()()222548 5.x y x y x y -=+-=⨯=故答案为:(1)25;(2)16;(3)85【点睛】本题考查的是二次根式的加减运算,二次根式的乘法运算,掌握“利用完全平方公式与平方差公式进行简便运算”是解本题的关键.16.现有一块长25dm ,宽23dm 的长方形木板,能否采用如图的方式,在这块木板上截出两个面积分别是4dm 2和9dm 2的正方形木板?______(填“能”或者“否”).否根据正方形的面积可以分别求得两个正方形的边长是2dm 和3dm ,然后进行比较相应的边长即可.解:,由于,∴不能够在这块木板上截出两个面积分别是4dm 2和9dm 2的正方形木板.故答案为:否.【点睛】本题考查了二次根式的应用,正确求得每个正方形的边长,并能够正确比较实数的大小是解题的关键.17.对任意的正数a ,b ,定义运算“*”如下:)),*.a b a b a b ⎧≥⎪=⎨<⎪⎩计算()()3*23*5+的结果为______.【分析】根据新定义,将所给数值代入计算即可.解:∵))*a b a b a b ⎧≥⎪=⎨>⎪⎩, ∴()()3*23*5+==故答案为:【点睛】本题考查实数的计算,解题的关键是读懂新定义的运算法则.180.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______.5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.解:a =b =1ab ==∴, 1112211112a b a b a b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++, …,10010010010010010010010010010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++=121005050++⋯⋯+=故答案为:5050【点睛】 本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.三、解答题19.计算:﹣(22+(3)( (1)-5(2)-6【分析】(1)先利用完全平方公式和平方差公式计算,然后化简后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.(1)解:原式))7﹣﹣1=﹣5(2)原式=﹣6.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.计算:⎛ ⎝-【分析】先化简括号内的二次根式,同步计算后面的分母化,再计算二次根式的除法运算,最后合并同类二次根式即可.解:⎛ ⎝2222326322222222222222=-【点睛】本题考查的是二次根式的混合运算,掌握“二次根式的加减乘除运算的运算法则与混合运算的运算顺序”是解本题的关键.21.计算:)21⎭.-根据二次根式的性质、二次根式的加减混合运算法则计算.解:原式=31-=31231---+=-【点睛】本题考查了二次根式的加减运算、乘法运算,掌握二次根式的加减运算法则是解题的关键.22==的值.4 【分析】根据二次根式分母有理化计算即可;2=+2==原式===224=;【点睛】本题主要考查了二次根式分母有理化和乘除运算,准确化简是解题的关键.23-【分析】通分并利用同分母分式的减法法则合并,再利用平方差公式简便计算即可求解.=((1218⨯=-==-【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键.24.已知:11,x y--==,求值:x2﹣y2.先利用分母有理化把二次根式化简,再利用平方差公式分解因式,进而即可求解.解:∵11,x y--==,∴x y====∴x2﹣y2=(x+y)(x-y)=⎝⎭∙535322=【点睛】本题主要考查二次根式的混合运算,掌握负整数指数幂和分母有理化是解题的关键.25.三角形的周长为(cm,面积为(2cm,求:(1)第三边的长;(2)第三边上的高.(1);(2)()4cm【分析】(1)首先化简二次根式,进而合并同类二次根式得出答案;(2)设第三边上的高为x,列出等式12x⨯,求解即可.解:(1)三角形周长为(cm,∴第三边的长是:(故第三边的长为:;(2)设第三边上的高为x,则12x⨯,解得:x=,故第三边上的高为:()4cm.【点睛】本题考查了二次根式的加减运算,解题的关键是掌握正确化简二次根式运算法则.26.算即可===本题考查了因式分解,二次根式的加减,将分式的分子因式分解是解题的关键.27先将各项分别化简,再合并同类二次根式.=【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则以及二次根式的性质.28.计算:(1)129+)0115-⎛⎫- ⎪⎝⎭;(2)41a⎫+⎪⎪-⎭.(1)3-;(2【分析】(1)分别计算分数指数幂,零指数幂,负指数幂以及化简二次根式,再算加减法;(2)根据二次根式和分母有理化以及约分进行计算即可.解:(1))1121915-⎛⎫+- ⎪⎝⎭=(3152+--=3-(2)41a⎫+⎪⎪-⎭=13⎤21-21本题考查的是二次根式的化简求值,熟知二次根式混合运算的法则是解答此题的关键.29.在二次根式的计算和比较大小中,有时候用“平方法”会取得很好的效果,例如,比较a =b =的大小,我们可以把a 和b 分别平方,∵a 2=12,b 2=18,则a 2<b 2,∴a <b .请利用“平方法”解决下面问题:(1)比较c =,d =c d (填写>,<或者=).(2)猜想m =n =(3)= (直接写出答案).(1)c >d(2)m <n ,证明过程见解析(3)4或【分析】(1)根据题干中“平方法”比较实数大小;(2)根据题干中“平方法”比较二次根式的大小;(3)根据题干中“平方法”找出21)p =-21)p =+质结合完全平方公式进而开平方分类讨论得出答案.(1)解:∵c 2=32,d 2=28,则c 2>d 2,∴c >d ;故答案为:>.(2)解:猜想:m <n ,证明:∵m =n =∴m 2=(2 n 2=(2∴m 2<n 2,∴m <n ;(3)解:∵21)p =-21)p =+11∴p ≥1,分情况讨论:①1≤0,即1≤p ≤2时,原式=2(1+21),=4;②1>0,即p >2时,原式=21)+21),综合①②得:当1≤p ≤2时,原式=4;当p >2时,原式故答案为:4或.【点睛】此题考查了实数的大小比较,二次根式的大小比较和化简二次根式,解题的关键是熟练运用题干中“平方法”,第(3)题注意分情况讨论.30.综合与实践:在学习二次根式时,发现一些含有根号的式子可以结合完全平方式化成另一个式子的平方,如:()(2224131211+++=+⨯=+,()2225322-=+--=.1==(1)请你依上述方法将4-(2)(3)=a 、m 、n 均为正整数,则=a ________.(1))211 (2)2(3)5或7【分析】(1)参照题目例子,将4拆分为1和3,把4-转化为2()a b -的形式,即可求解;(2)用(1)中方法把被开方数是无理数的式子依次化简,再进行二次根式的加减运算即可;(3的平方,与a +进行对比即可求出a 值. (1)解:())22243121-=+-=-=,1. (2)解:()2228215532-+-=-===3=132=. (3)解:222()m n m n =+=+=++26a +a 、m 、n 均为正整数,()m n a ∴++=+m n a ∴+=,6mn =,当2m =,3n =或3m =,2n =时,5a m n =+=;当1m =,6n =或6m =,1n =时,7a m n =+=;故答案为:5或7.【点睛】本题考查完全平方公式、二次根式的混合运算,题目较为新颖,能够灵活运用完全平公式对二次根式进行化简是解题的关键.。

二次根式的混合运算

二次根式的混合运算

平方差公式:(a+b)(a-b)=a2-b2; 完全平方公式:(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 问题2 整式的乘法公式对于二次根式的运算也适
用吗?
前面我们已 经知道二次 根式运算类 比整式运算, 所以适用哟
整式的乘法 公式就是多 项式×多项

典例精析
例3 计算: (1) ( 5 3)( 5 3) ; (2) ( 3 2)2.
解:(1) ( 5 3)( 5 3) ( 5)2 ( 3)2 53 2.
(2) ( 3 2)2 ( 3)2 2 3 2+22 3 4 3+4 74 3.
(3) 3 2 48 18 4 3 ; (4) a3 a2b a b .
a ab
a b
解:(3) 3 2 48 18 4 3 3 2 4 3 3 2 4 3
2
5 1 4.
课堂小结
二次根式 混合运算
乘法公式
(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 (x+a)(x+b)=x2 +(a+b)x+ab
化简已知条件和所求代数式 化简求值
分母有理化
解:∵ x 3 2, y 3 2 , ∴ x y 3 2 3 2 2 3,
xy 3 2 3 2 3 2 1,
∴x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]
1
2
3 2 2 1 10.
归纳 用整体代入法求代数式值的方法:求关于x,y的
a 3, b 10 3 . a2 b2 32 ( 10 3)2

二次根式混合运算法则

二次根式混合运算法则

二次根式混合运算法则
二次根式混合运算法则是指在计算含有二次根式的算式时,按照一定的顺序进行运算。

这个规则是由平方、开平方、乘法、除法、加法、减法等运算法则组成的。

我们需要知道二次根式的基本性质。

二次根式是指一个数的平方根再开平方根。

例如,√(9+4√5)就是一个二次根式。

我们可以将其化简为a+b√5的形式,其中a和b是有理数。

接下来,我们来看看二次根式混合运算法则的具体步骤。

第一步:先计算二次根式内的运算
如果二次根式内有加减乘除的运算,先进行内部运算。

例如,计算√(3+2√2)+√(3-2√2)。

我们可以将两个二次根式内的加法运算先进行计算,得到:
√(3+2√2)+√(3-2√2)=√3+√2+√3-√2=2√3
第二步:计算二次根式之间的运算
如果算式中含有多个二次根式,先进行二次根式之间的加减运算。

例如,计算√5+√2-√10。

我们可以先将√5和√2进行加法运算,再将结果与√10进行减法运算,得到:
√5+√2-√10=√5+√2+(-√10)=√5+√2-√10
第三步:计算非二次根式的运算
如果算式中还含有非二次根式的运算,最后进行加减运算。

例如,计算(√3+√2)×(√3-√2)。

我们可以先将括号内的二次根式之间的减法运算进行计算,得到:
(√3+√2)×(√3-√2)=√3×√3-√2×√3+√2×√3-√2×√2=3-2=1
我们需要注意的是,在计算含有二次根式的算式时,需要特别注意运算的顺序。

只有按照一定的顺序进行运算,才能得到正确的结果。

二次根式的混合运算》教案

二次根式的混合运算》教案

二次根式的混合运算》教案二次根式的混合运算》教案教学目标:1、使学生理解实数范围内的运算律和运算顺序在二次根式的混合运算中仍然适用。

2、能够应用乘法公式进行二次根式的乘法运算及分母有理化。

3、使学生能够熟练进行二次根式的加、减、乘、除混合运算。

教学过程:一、复引入1、回顾实数的运算定律,包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法对加法的分配律。

2、回顾单项式和多项式的乘法法则。

3、回顾二次根式的加减法和乘除法的计算方法。

二、探究新知识让学生阅读教材“做一做”,解决下面的问题:1、在梯形面积的计算中,包含二次根式的哪几种运算?按什么顺序运算的?2、计算过程中,每一步的依据是什么?3、整个计算运算运用了哪些运算律和二次根式的哪些性质?引导学生归纳:二次根式的混合运算是根据实数的运算律和运算顺序进行的。

三、例题讲解教材P147例3分析:1、小题类似单项式乘以多项式,应用分配律后,先做乘法,再做减法,按法则进行,注意化简二次根式。

2、小题类似多项式乘以多项式,利用多项式的乘法法则进行计算。

解:1、(6-3)×2/(8/3)×2/8 = 6×2 - 3×2/(8/3)×2/8 = 23/3 - √2/32、2+3√21-2教学重点:二次根式的混合运算。

教学难点:利用乘法公式进行计算及分母有理化。

情感态度与价值观:1、培养学生进行类比的研究思想和理解运算律、乘法公式的广泛意义。

2、激发学生的求知欲和提高学生的运算能力。

文章中没有明显的格式错误和有问题的段落,但是可以对每段话进行小幅度改写。

重写1:可以利用平方差公式计算出例2中的第一小题。

具体地,2-2的平方是0,3的平方是9,所以2-2的平方加上3的平方等于9.然后,3乘以2得到6,所以最终结果是-4加上2等于-2.重写2:例2中的第二小题可以利用完全平方差公式进行计算。

首先,3的平方是9,2的平方是4,所以9减去4等于5.然后,5乘以2得到10,所以最终结果是10加上4减去4等于10.重写3:本题的解法比较简单,因为只需要利用平方差公式或完全平方差公式进行计算即可。

二次根式的混合运算

二次根式的混合运算

1 −1
2
应用练习
3.3 计算: − 2 × 6 +
3−2 −
1 −1
2
课 堂 小 结

− >0
− =0
绝对值的化简: − = ቐ 0
− − − <0
例题讲解四
4.计算: 12 −
1 −1
2
+
1
3−1
− − 3.14
0
+ 2 3−4
应用练习
4.1 计算:
2012 − 1
− − 2
0
+ −
1 −1
3
+ 3 − 12
课 堂 小 结
1. 完全平方公式: +
2
= 2 + 2 + 2 , (a − b)2 = 2 − 2 + 2
2. 平方差公式: + − = 2 − 2
课堂大总结
1.二次根式的混合运算依据:有理数的运算律(交换律、结合律、分配律)、
3.二次根式的除法法则: ÷ =
4.二次根式除法法则的逆用:
5.完全平方公式: +
2




≥ 0, > 0
= ÷ ≥ 0, > 0
= 2 + 2 + 2 , (a − b)2 = 2 − 2 + 2
6.平方差公式: + − = 2 − 2
应用练习
5.2
2
计算:
3
9 − 6

4
+
1

例题讲解六
6. 计算:

八年级数学《二次根式》知识点归纳和题型归类

八年级数学《二次根式》知识点归纳和题型归类

二次根式知识点归纳和题型归类一、知识框图二.知识要点梳理知识点一、二次根式的主要性质:1.; 2.; 3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理; (3) 乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。

3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. (3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数. 4.简化二次根式的被开方数,主要有两个途径: ○1因式的内移:因式内移时,若,则将负号留在根号外.即:.○2因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 三.典型题训练一. 利用二次根式的双重非负性0≥a (a ≥0),1.下列各式中一定是二次根式的是( )。

A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。

(1) (2)121+-x (3)45++x x (4)(5)(6). (7)若1)1(-=-x x x x ,则x 的取值范围是(8)若1313++=++x x x x ,则x 的取值范围是 。

3.若13-m 有意义,则m 能取的最小整数值是 ; 是一个正整数,则正整数m 的最小值是________.1213-+-x x4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。

二次根式混合运算的法则

二次根式混合运算的法则

二次根式混合运算的法则二次根式混合运算,听起来是不是有点高大上?咱们可以把它变得简单又有趣。

咱们要明白,什么是二次根式。

就是那种像√2、√3的东西,乍一看有点神秘,实则就是一种数的表现形式。

想象一下,二次根式就像是数学界的小精灵,它们时不时冒出来,让我们惊讶又无奈。

有些人一看到它们,就像看到鬼一样,心里咯噔一下。

不过别担心,今天咱们就来聊聊这玩意儿,轻松一点儿,嘿嘿。

在处理这些二次根式的时候,有一个很重要的法则,叫做“根式的和与差”。

你可以把它想象成一场数学派对,根式们都在聚会。

有些喜欢一起,像√2和√8,嘿,它们的和是√10。

这就像朋友们在一起,愉快地聊天,不愿意分开。

不过,别搞错了,√2和√3是不能合在一起的,咱们的根式朋友可不是随便交的。

它们各有各的脾气,混在一起就尴尬了。

咱们再聊聊“根式的乘法与除法”。

想象一下,乘法就像二次根式们一起合力打怪,嘿,两个人合力可真强。

比如说,√2乘√3,哎呀,这可是√6!好厉害呀,像打游戏一样,力量翻倍了。

至于除法,那就更简单了,二次根式们相互之间分个清楚。

√6除以√2,结果是√3,这就好比一个人带着包裹,把另一个人的包裹拿走,轻松又简单。

在这场二次根式的游戏中,还有一个超级重要的法则,那就是“根号外的数”。

如果在根号外面有个数字,比如2,那么这就意味着它是个强大的助攻。

√2乘以2,那可真是厉害了,直接变成2√2!就像是给小精灵加了buff,立刻变得强大无比。

看到没,数学其实也是有点魔法的,嘿嘿。

当然了,二次根式的混合运算还有很多小细节要注意。

比如说,根式里的数要尽量简化,就像把一堆杂乱的东西收拾整齐,让它们看起来更漂亮。

√8其实可以简化成2√2,瞬间变得高大上,简直是变魔术一样。

如果你发现有些根式很复杂,别着急,慢慢拆解,找到简单的形式,感觉就像在解开一个谜一样,乐趣无穷。

运算过程中的小错误也很常见,像是走路时绊了一下,嘿,这很正常。

数学这条路,偶尔也会有点崎岖。

二次根式的混合运算

二次根式的混合运算

二次根式的混合运算1. 引言在数学中,二次根式是一种形如√a的数,其中a为非负实数。

二次根式可以进行加减乘除等基本运算,也可以与整数、有理数等进行混合运算。

本文将介绍如何进行二次根式的混合运算,包括加减、乘法以及除法。

2. 二次根式的加减运算2.1 加法运算对于两个二次根式的加法运算,我们只需要将它们的根号内的数相加,并保持根号不变。

例如:√a + √b = √(a + b)2.2 减法运算对于两个二次根式的减法运算,我们也只需要将它们的根号内的数相减,并保持根号不变。

例如:√a - √b = √(a - b)3. 二次根式的乘法运算二次根式的乘法运算稍微复杂一些,需要使用到一条性质,即:两个二次根式的乘积等于根号内两个数的乘积。

例如:√a * √b = √(a * b)4. 二次根式的除法运算二次根式的除法运算同样需要使用到一条性质,即:两个二次根式的除法等于根号内两个数的除法。

例如:√a / √b = √(a / b)5. 混合运算的例子为了更好地理解二次根式的混合运算,举个例子:假设有以下的运算:√8 + √2 - √18 * √3 / √4首先,我们可以将各个二次根式的根号内的数进行化简:√8 = √(4 * 2) = 2√2 √18 = √(9 * 2) = 3√2 √4 = 2然后,将化简后的结果带入原表达式中:2√2 + √2 - 3√2 * √3 / 2继续进行混合运算:2√2 + √2 - 3√6 / 2最后,将所有的二次根式及有理数进行合并得到最终结果:2√2 + √2 - (3 / 2)√66. 结论本文介绍了二次根式的混合运算,包括加减、乘法以及除法。

通过理解和应用这些运算规则,我们可以更方便地处理涉及二次根式的数学问题。

希望本文的内容能够帮助读者在学习和应用二次根式时更加得心应手。

(文章)二次根式的混合运算要点精析

(文章)二次根式的混合运算要点精析

二次根式的混合运算要点精析一、要点精析1.二次根式的混合运算是指二次根式的加、减、乘、除、乘方、开方的混合运算,它的运算顺序与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).在进行二次根式的混合运算时要注意三点:⑴在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”;⑵实数运算中的运算律(分配律、结合律、交换律)、运算法则及所有的乘法公式(平方差公式、完全平方公式等),在二次根式的运算中仍然适用.⑶运算的结果可能是二次根式,也可能是有理式,如果是二次根式,要化为最简二次根式.⑷二次根式的混合运算,一般先将二次根式化为最简二次根式,再按运算计算。

2.在二次根式的混合运算中,常遇到两个二次根式相除,分母中含有根式,此时需要把分子、分母同乘以分母的有理化因式,去掉分母中的根号,使分母中的无理数变成有理数,这种运算过程,叫分母有理化.分母有理化的依据是分式的基本性质:分式的分子和分母都乘以同一个不等于零的因式,分式的值不变.分母有理化应用了二次根式的加减和乘除四种运算,是二次根式混合运算过程中的重要环节.3.分母有理化的实质是两个含有根式的代数式相乘,使其积不含根式,这样的两个根式叫互为有理化因式,a b是互为有理化因式;是互为有理化因式.4.利用分母有理化,可以进行二次根式的除法运算.分母有理化的方法是多种多样的,应根据题目特点采用相应的方法.因此,分母的有理化因式是不唯一的,但以最简为宜,例如:⑴当分母是形如的式子,分母有理化时,可以乘 (b≠0)就可以达到化去分母中根号的目⑵当分母是形如+的式子,分母有理化时,根据平方差公式特点,+乘以c(-) (c≠0)就可以达到化去分母中根号的目的,但以-最简,所以只要分子、分母都乘以-就可以了.5.进行分母有理化的方法一般有两种:⑴将分母、分子都乘以分母的有理化因式;⑵在一定条件下,将分子分解因式后与分母进行约分,从而约去分母中含根号的式子.6.二次根式的一个重要性质(a)2= a (a≥0)可以写成a·a= a ,即两个相同的二次根式的积一定是有理数(式),应用这一性质可以把分母有理化.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.在进行分母有理化时,只要分子、分母同乘以分母的有理化因式,即可实现分母有理化.二、典型例题解析例132010.评析:当分式的分母含有一个或两个根式时,一般选用分子与分母同时乘以分母的有理化因式的方法.解此题的关键是找出有理化因式,只有对(1-进行重新组合,才能找出其有理化因式.例2.12.评析:当分子或分母可分解因式时,可使用约分法改变式子结构,把问题简化.分母提取“公因式”后可直接约分,应用“分解因式”约简的方法,达到分母有理化,从而简化运算.例3..评析:当分式的分子或分母含有多个根式,此时式子较复杂时,可通过拆项的方法把问题转化.此式分子正好是分母两因式之和,因此,可把分子拆成两项之和,然后用a bab+=1a+1b来简化运算.裂项是解本题的关键,做题时要善于观察、分析,找到最佳解题途径.例432.,则a = x2,b = y2.32=34333()2x y x x yx y-+÷+++2233xy yx y--=32222333()()x x y xyx y x xy y-++-++3yx y+=22223()()()x x xy yx y x xy y-++-++3yx y+=3xx y++3yx y+= 3评析:当根式多且无规律可寻时,通过换元的方法,以此达到调整分式中的结构,使新变量在解题过程中起到媒介和桥梁作用,使问题得到合理的转化.换元的实质是将原问题移至新对象的知识背景中去研究,达到化简数学式子,沟通已知与未知的联系,促使未知向已知转化,从而使问题获解.。

二次根式的混合运算

二次根式的混合运算

二次根式的混合运算一、混合运算的定义混合运算是指将不同类型的运算在同一个表达式中进行计算的过程。

在数学中,混合运算常常涉及到加法、减法、乘法、除法等基本运算规则。

二、二次根式的定义二次根式是指具有平方根的数学表达式。

一般情况下,二次根式的形式为√(a × b)或√(a / b),其中a和b为实数。

需要注意的是,a和b不能是负数。

三、二次根式的混合运算规则在进行二次根式的混合运算时,需要按照以下规则进行计算:1.二次根式的加法运算:当两个二次根式具有相同的根数和次方数时,可以进行加法运算。

例如:√2 + √3 = √(2 + 3) = √52.二次根式的减法运算:当两个二次根式具有相同的根数和次方数时,可以进行减法运算。

例如:√5 - √3 = √(5 - 3) = √23.二次根式的乘法运算:可以将二次根式的根数和次方数相乘。

例如:√2 × √3 = √(2 × 3) = √64.二次根式的除法运算:可以将二次根式的根数和次方数相除。

例如:√6 ÷ √2 = √(6 ÷ 2) = √35.二次根式的乘方运算:可以将二次根式的根数和次方数进行乘方计算。

例如:(√2)² = √(2²) = √4 = 2四、二次根式混合运算的示例示例一:计算√3 + √5 - √2根据混合运算的规则,我们可以首先进行加法运算,然后再进行减法运算。

即:√3 + √5 - √2 = √(3 + 5) - √2 = √8 - √2由于√8不能继续简化,最后的结果为√8 - √2。

示例二:计算√2 × √3 ÷ √5根据混合运算的规则,我们可以先进行乘法运算,然后再进行除法运算。

即:√2 × √3 ÷ √5 = √(2 × 3) ÷ √5 = √6 ÷ √5由于√6不能被√5整除,所以最后的结果为√6÷ √5。

2.7(3)二次根式的混合运算(教案)

2.7(3)二次根式的混合运算(教案)
2.二次根式的除法法则:a√b ÷ c√d = (a÷c)√(b÷d)(其中a、b、c、d为正实数,且c≠0)。
3.二次根式混合运算的步骤:
a.先进行乘除运算,再进行加减运算。
b.化简二次根式,使其尽可能简单。
c.合并同类二次根式。
4.应用二次根式的混合运算解决实际问题。
二、核心素养目标
本节课旨在培养学生以下学科核心素养:
1.教学重点
(1)掌握二次根式的乘法×c)√b
-除法法则:a√b ÷ c√b = (a÷c)√b(其中c≠0)
(2)能够将二次根式的混合运算化简,并合并同类项。
-例如:2√3 + 3√3 = 5√3
(3)运用二次根式的混合运算解决实际问题。
2.7(3)二次根式的混合运算(教案)
一、教学内容
本节课选自教材第二章第七节(3)二次根式的混合运算。主要内容包括:
1.掌握二次根式的乘法、除法法则。
2.熟练运用二次根式的乘法、除法法则进行混合运算。
3.能够解决实际问题中涉及的二次根式混合运算。
教学内容如下:
1.二次根式的乘法法则:a√b × c√d = (a×c)√(b×d)(其中a、b、c、d为正实数)。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式的混合运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如计算长方形地的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式混合运算的奥秘。
-例题2:计算(4√5) ÷ (2√5)。
-例题3:化简并计算2√3 + 3√3 - √3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 8 2
(3) 80 40 5
二、合作探究 形成知识
例2 计算: (1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
解:(1)( 2+3)( 2-5)=( 2)2 +3 2-5 2-15 =2-2 2-15= -13-2 2 ;
二、合作探究 形成知识
2
2
3-
24
3.(2013 包头) 8 - 3 1 2 2
4.(2014 包头) 1 20 - 5 1
2
45
五、能力提升
1、比较根式的大小.
6 14和 7 13
解:∵( 6 14)2 6+2√ 84 +14=20+2√ 84
( 7 13 )2 20+2 91
又 ∵ 6 14 0
16.3 二次根式的加减(第二课时)
一、 复习引入
复习回顾: (1)二次根式乘法法则是什么?
a b ab(a 0,b 0)
(2)二次根式除法法则是什么?
a b a (a 0, b 0) b
(3)单项式乘多项式法则是什么?
ab c ac ab
(4)多项式乘多项式法则是什么?
例2 计算: (1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
解:(2)( 5+ 3)( 5- 3)=( 5)2 -( 3)2 =5-3= 2 .
练习2
(1)( 5 3)( 5 2) (2)( a b)(3 a b)
(3)( 6 2)( 6 2)(4)(2 5 2)2
思考:(1)中,每一步的依据是什么?
二、合作探究 形成知识
例1 计算: (1)( 8+ 3) 6 ; (2)(4 2-3 6) 2 2 .
解:(2)(4 2-3 6) 2 2 =4 2 2 2-3 6 2 2=2- 3 3 . 2
练习1 计算:
(1) 2 7 7 1 (2)
(2) 8 12 27 .
解:原式 2 2 2 3 - 3 3
2 2 (2 3 -3 3)
2 2- 3
一、自主学习 复习引入
思考:二次根式加减,分为几个步骤?
二次根式的加减主要归纳为两个步骤: 第一步,先将二次根式化成最简二次根式; 第二步,再将被开方数相同的二次根式进行合并.
(a b)(c d) ac ad bc bd
一、自主学习 复习引入
复习回顾: 完全平法公式和平方差公式
a b2 _a_2 __2a_b__b_2
a ba b _a__2___b_2
一、自主学习 复习引入
计算下列各题
(1) 3 2 3 2 2 3 3
简称为:一化简,二判断,三合并
二、合作探究 形成知识
例1 计算: (1)( 8+ 3) 6 ; (2)(4 2-3 6) 2 2 .
二、合作探究 形成知识
例1 计算: (1)( 8+ 3) 6 ; (2)(4 2-3 6) 2 2 .
解:(1) 8 3 6
8 6 3 6 分配律或多项式乘单项式 48 18 二次根式乘法法则 4 3 3 2 二次根式化简
三、基础训练
(1)填空:根式 2,
75,
1, 27
15,
1 3
中可以与 3合并的
二次根式有
个;
(2)选择:下列计算正确的是(

A 2 3 5
B2 2 2 2
C 63 28 5 7
D 8 18 4 9
2
(3)选择:下列计算正确的是(

A 102 82 102 82 10 8 2
B 2 3 2 2 3 2 4 3 2 2
C 3 a b 3 a b 3 a2 b2
2
D 5 6 5 6 11
四、中考链接:
1.(2014 威海) 45 - 2 50
5
2.(2015聊城)
七、课后作业
作业: 必做:教科书第15页第4,6题; 5
(2)( 5 3)( 5 3)
(3)( 5 2)2
(4) ( 2 6)( 6 2)
(5) (2 5 2)2
(6)(2 2 3 3)(3 3 2 2)
(7)(2 2)(3 2 2)
知识点3:拓展应用
(8) 化简: 1 , 3 2
1, 3 2
(9)化简: 2 3 , 2 3
2, 5 3
(10)已知 a
1 ,b
1,
32 2
32 2
求代数式
a b
的值.
a 2 ab b
7 13 0
6 14 7 13
2、已知a 3 2, b 3 2, 求a 2 ab b 2的值.
3、
4、已知 的值。 x
3 3
2 ,y 2
3 3
2 2
求x y
yx
六、课堂小结
(1)不是最简二次根式,应化成最简二次根式。 (2)几个二次根式化成最简二次根式后,同类二次 根式可以进行合并。
相关文档
最新文档