时间序列的平稳性及其检验课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1=X0+1 X2=X1+2=X0+1+2 …… Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序列。
学习交流PPT
12
• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{ Xt}是平稳的。
(1)X与随机扰动项 不相关∶Cov(X,)=0
(2)
(Xi X)2/n
依概率收敛: P li( m (X iX )2/n )Q n
学习交流PPT
5
第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致性”
特性:
Plim(Hale Waihona Puke Baidu)
n
注意:在双变量模型中:
ˆxiui xiui/n
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
不难验证:1)||>1时,该随机过程生成的时间序列是 发散的,表现为持续上升(>1)或持续下降(<-1), 因此是非平稳的;
学习交流PPT
13
2)=1时,是一个随机游走过程,也是非平稳的。
第二节中将证明:只有当-1<<1时,该随机过程 才是平稳的。
• 1阶自回归过程AR(1)又是如下k阶自回归AR(K)过 程的特例:
Xt= 1Xt-1+2Xt-2…+kXt-k +t 该随机过程平稳性条件将在第二节中介绍。
学习交流PPT
14
三、平稳性检验的图示判断
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
1)均值E(Xt)=是与时间t 无关的常数;
2)方差Var(Xt)=2是与时间t 无关的常数;
3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数;
学习交流PPT
15
• 给出一个随机时间序列,首先可通过该序列的 时间路径图来粗略地判断它是否是平稳的。
• 一个平稳的时间序列在图形上往往表现出一种 围绕其均值不断波动的过程;
• 而非平稳序列则往往表现出在不同的时间段具 有不同的均值(如持续上升或持续下降)。
学习交流PPT
16
Xt
Xt
t
t
(a)
(b)
学习交流PPT
2
一、问题的引出:非平稳变量与经典 回归模型
学习交流PPT
3
⒈常见的数据类型
到目前为止,经典计量经济模型常用到的数据有: • 时间序列数据(time-series data); • 截面数据(cross-sectional data) • 平行/面板数据(panel data/time-series cross-
则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。
学习交流PPT
10
例9.1.1.一个最简单的随机时间序列是一具有零 均值同方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
例9.1.2.另一个简单的随机时间列序被称为随机 游走(random walk),该序列由如下随机过程生成:
Xt=Xt-1+t
这里, t是一个白噪声。
学习交流PPT
11
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)
为了检验该序列是否具有相同的方差,可假设Xt的 初值为X0,则易知
第九章 时间序列计量经济学模型的理论与方法
第一节 时间序列的平稳性及其检验 第二节 随机时间序列模型的识别和估计 第三节 协整分析与误差修正模型
学习交流PPT
1
§9.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归模型 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
section data) ★时间序列数据是最常见,也是最常用到的数据。
学习交流PPT
4
⒉经典回归模型与数据的平稳性
• 经典回归分析暗含着一个重要假设:数据是平稳的。 • 数据非平稳,大样本下的统计推断基础——“一致性”
要求——被破怀。 • 经典回归分析的假设之一:解释变量X是非随机变量 • 放宽该假设:X是随机变量,则需进一步要求:
xi2
xi2/n
因此: P li m ˆP li m xiui/n0
n
P lim xi2/n Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
学习交流PPT
6
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
学习交流PPT
7
时间序列分析模型方法就是在这样的情况下, 以通过揭示时间序列自身的变化规律为主线而发 展起来的全新的计量经济学方法论。
时间序列分析已组成现代计量经济学的重要内
容,并广泛应用于经济分析与预测当中。
学习交流PPT
8
二、时间序列数据的平稳性
学习交流PPT
9
时间序列分析中首先遇到的问题是关于时间序列 数据的平稳性问题。
实际上,对一个随机过程只有一个实现(样本), 因此,只能计算样本自相关函数(Sample autocorrelation function)。
图9.1 平稳时间序列与非平稳时间序列图
学习交流PPT
17
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0
分子是时间序列之后K期的协方差,分母是方差, 因此自相关函数是关于滞后期k的递减函数(Why)
学习交流PPT
12
• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{ Xt}是平稳的。
(1)X与随机扰动项 不相关∶Cov(X,)=0
(2)
(Xi X)2/n
依概率收敛: P li( m (X iX )2/n )Q n
学习交流PPT
5
第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致性”
特性:
Plim(Hale Waihona Puke Baidu)
n
注意:在双变量模型中:
ˆxiui xiui/n
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
不难验证:1)||>1时,该随机过程生成的时间序列是 发散的,表现为持续上升(>1)或持续下降(<-1), 因此是非平稳的;
学习交流PPT
13
2)=1时,是一个随机游走过程,也是非平稳的。
第二节中将证明:只有当-1<<1时,该随机过程 才是平稳的。
• 1阶自回归过程AR(1)又是如下k阶自回归AR(K)过 程的特例:
Xt= 1Xt-1+2Xt-2…+kXt-k +t 该随机过程平稳性条件将在第二节中介绍。
学习交流PPT
14
三、平稳性检验的图示判断
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
1)均值E(Xt)=是与时间t 无关的常数;
2)方差Var(Xt)=2是与时间t 无关的常数;
3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数;
学习交流PPT
15
• 给出一个随机时间序列,首先可通过该序列的 时间路径图来粗略地判断它是否是平稳的。
• 一个平稳的时间序列在图形上往往表现出一种 围绕其均值不断波动的过程;
• 而非平稳序列则往往表现出在不同的时间段具 有不同的均值(如持续上升或持续下降)。
学习交流PPT
16
Xt
Xt
t
t
(a)
(b)
学习交流PPT
2
一、问题的引出:非平稳变量与经典 回归模型
学习交流PPT
3
⒈常见的数据类型
到目前为止,经典计量经济模型常用到的数据有: • 时间序列数据(time-series data); • 截面数据(cross-sectional data) • 平行/面板数据(panel data/time-series cross-
则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。
学习交流PPT
10
例9.1.1.一个最简单的随机时间序列是一具有零 均值同方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
例9.1.2.另一个简单的随机时间列序被称为随机 游走(random walk),该序列由如下随机过程生成:
Xt=Xt-1+t
这里, t是一个白噪声。
学习交流PPT
11
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)
为了检验该序列是否具有相同的方差,可假设Xt的 初值为X0,则易知
第九章 时间序列计量经济学模型的理论与方法
第一节 时间序列的平稳性及其检验 第二节 随机时间序列模型的识别和估计 第三节 协整分析与误差修正模型
学习交流PPT
1
§9.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归模型 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
section data) ★时间序列数据是最常见,也是最常用到的数据。
学习交流PPT
4
⒉经典回归模型与数据的平稳性
• 经典回归分析暗含着一个重要假设:数据是平稳的。 • 数据非平稳,大样本下的统计推断基础——“一致性”
要求——被破怀。 • 经典回归分析的假设之一:解释变量X是非随机变量 • 放宽该假设:X是随机变量,则需进一步要求:
xi2
xi2/n
因此: P li m ˆP li m xiui/n0
n
P lim xi2/n Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
学习交流PPT
6
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
学习交流PPT
7
时间序列分析模型方法就是在这样的情况下, 以通过揭示时间序列自身的变化规律为主线而发 展起来的全新的计量经济学方法论。
时间序列分析已组成现代计量经济学的重要内
容,并广泛应用于经济分析与预测当中。
学习交流PPT
8
二、时间序列数据的平稳性
学习交流PPT
9
时间序列分析中首先遇到的问题是关于时间序列 数据的平稳性问题。
实际上,对一个随机过程只有一个实现(样本), 因此,只能计算样本自相关函数(Sample autocorrelation function)。
图9.1 平稳时间序列与非平稳时间序列图
学习交流PPT
17
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0
分子是时间序列之后K期的协方差,分母是方差, 因此自相关函数是关于滞后期k的递减函数(Why)