实用可靠地阻容降压电路分析

合集下载

阻容降压原理图及电路图

阻容降压原理图及电路图

阻容降压原理及电路将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。

一、电路原理电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。

在实际应用时常常采用的是图2的所示的电路。

当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。

因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。

C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。

当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁.2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

三、设计举例图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。

C1在电路中的容抗Xc为:Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K流过电容器C1的充电电流(Ic)为:Ic = U / Xc = 220 / 9.65 = 22mA。

通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电阻容降压原理和计算公式这一类的电路通常用于低成本取得非隔离的小电流电源。

阻容降压原理及稳压电源设计详解

阻容降压原理及稳压电源设计详解

阻容降压原理及稳压电源设计详解电容降压电源的特点一、概述电子工程师总是在不断追求减小设备体积,优化设计,以期最大限度地降低设备成本。

其中,减小作为辅助电源的直流稳压电源电路部分的体积,往往是最难解决的问题之一。

普通的线性直流稳压电源电路效率比较低,电源的变压器体积大,重量重,成本较高。

开关电源电路结构较复杂,成本高,电源纹波大,RFI和EMI干扰是难以解决的。

下文介绍的是一种新颖的电容降压型直流稳压电源电路。

这种电路无电源变压器,结构非常简单,具体有:体积小、重量轻、成本低廉、动态响应快、稳定可靠、高效(可达90%以上)等特点。

二、电容降压原理当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。

也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。

即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。

容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。

电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。

三、原理方框图电路由降压电容,限流,整流滤波和稳压分流等电路组成。

1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。

2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。

3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。

4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。

四、设计势实例1.桥式全波整流稳压电路:规格要求:输出DC电压12V,DC电流300mA;输入电源220V AC/50HZ 市电。

37.阻容降压电路全分析

37.阻容降压电路全分析

37.阻容降压电路全分析所谓阻容降压电路,原理是电容在一定的交流信号频率下产生的容抗来限制最大工作电流。

工程师们利用电容的这个特性,在一些要求不高的小产品中(如LED灯泡)会使用阻容降压来提供电源,主要优点是器件少、成本低。

阻容降压电路原理分析:阻容降压的本质不是降压,而是限流,其输出电压大小由负载的阻抗大小决定,阻抗大电压就高,阻抗小电压就低。

电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

根据电容容抗的公式:Xc=1/(2πfC),在市电中(220V/50Hz)接入一个1uF的电容所产生的容抗约为3180欧姆,则流过电容的最大电流约为70mA。

并且电容器所作的功为无功功率,不会产生功耗。

将一个5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。

就是因为5W/65V的灯泡的工作电流也约为70mA。

阻容降压电路(半波)上图是阻容降压的典型应用电路,C1为降压电容,R1为断开电源时C1的泄放电阻,D1为半波整流二极管,D2在市电的负半周为C1提供放电回路,否则电容C1充满电就不工作了,Z1为稳压二极管,C2为滤波电容。

输出为稳压管Z1的稳定电压值。

阻容降压电路(全波)阻容降压电路(全波)参数计算:1.首先根据负载的工作电流大小和交流电的电压频率选取适当的电容,计算公式如下:容抗Xc=1/(2πfC)电流Ic=U/Xc=2πfCU此电容必须是无极性,且耐压要大于400V,常用金属膜CBB电容。

2.根据电容大小选取合适的泄放电阻,按下表取值即可。

3.选择的稳压二极管最大反向电流要大于总电流,这样当负载断开时,稳压管才不会烧坏,此处由于电容已经限制了电流,所以稳压二极管可不用串限流电阻。

4.整流管选择1N4007即可,输出滤波电容选择几百uF就行。

阻容降压电路应用注意事项:阻容降压电路虽然成本低,但是不隔离,存在安全隐患,一般应用在接触不到的地方。

阻容降压电路

阻容降压电路

阻容降压电路阻容降压电路是电子学领域中一个重要的应用,它被广泛用于直流/直流(DC/DC)降压、半波整流和变频等电源领域,特别是在太阳能发电电力调节方面发挥着重要作用。

本文从理论和实践两方面介绍了阻容降压电路的基本原理、结构、应用及其优点与缺点。

一、阻容降压电路基本原理阻容降压电路是一种利用静态元件(电容、电阻)和晶体管开关元件(关模块)来实现直流/直流(DC/DC)降压的电路,它具有非常好的功能效率,可满足有效功率的需求。

阻容降压电路的基本原理是利用晶体管开关元件轮流把电源高压改变为电源低压,并且通过电容电阻让低压保持持续。

当晶体管开关元件接通时,电动势引起电容充放电,产生了短暂的电流,由于电容具有非常高的电容力,可以储存大量电能,当晶体管开关元件断开时,上涌的电能可以被充放电中的电容释放,形成一个新的低压状态。

二、结构及应用阻容降压电路的结构一般由电源、晶体管开关元件和电容电阻组成。

在构成这种电路时,晶体管开关元件负责连接电路中的电源,电容电阻则负责储存和释放电能,调节低压状态。

阻容降压电路主要应用在直流/直流(DC/DC)降压、半波整流和变频等电源领域,并且在太阳能发电电力调节方面也发挥着重要作用。

特别是在电池供电的特殊环境下,它比其他电路结构有更高的灵活性和可靠性,可以将电池供电电压降至安全、稳定的电压值,为电子元器件提供持续稳定的供电。

三、优点与缺点阻容降压电路有着很多优点,其中一个最重要的优点是它具有良好的效率,可以节省大量的能源,还可以更加精确和稳定地控制电源输出电压;此外,它还可以满足输出电流需求,确保电子元件的安全工作。

但阻容降压电路也存在一些不足之处,其中最主要的是其噪声比较大,这不仅会影响到电路的稳定性,而且也会影响到其他电子元件的正常工作。

另外,它也需要消耗一定的功率,这会影响电路的效率和性能,而且还需要依赖电容和电阻的质量来确保电路的稳定和可靠性。

四、总结从上文可以看出,阻容降压电路具有良好的功率效率,能够满足有效功率的需求。

阻容降压原理及电路

阻容降压原理及电路

阻容降压原理及电路将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。

一、电路原理电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。

在实际应用时常常采用的是图2的所示的电路。

当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。

因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。

C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。

当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁.2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

三、设计举例图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。

C1在电路中的容抗Xc为:Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K流过电容器C1的充电电流(Ic)为:Ic = U / Xc = 220 / 9.65 = 22mA。

通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电阻容降压原理和计算公式这一类的电路通常用于低成本取得非隔离的小电流电源。

阻容电路详解

阻容电路详解

阻容电路详解
阻容电路是一种常见的电子电路,它利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。

这种电路结构简单,成本低廉,在许多小型的家电中使用非常广泛,如LED节能灯电路、养生壶控制电路等。

在阻容电路中,电容降压实际上是利用容抗限流,而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

从电路图中可以看出,阻容降压环节的工作原理并不复杂。

它的工作原理其实是利用电容在一定的交流信号频率下产生的容抗来限制工作电流。

一般来说,如果负载所需的电流比较小,这样多余的电流就会流过稳压管,如果电流太大这对稳压管是有害处的,严重的话会烧毁稳压二极管。

这就要求电容的容量要选择合理,它的作用实际上起到一个限制电流和动态分配自己和负载两端电压的角色,利用电容的容抗特性来限流的,一旦电容选定之后,它输出电压的高低要由后面的负载内阻来决定了。

需要注意的是,阻容降压电路是一种非隔离电源,使用时要注意防止触电的发生。

阻容降压电路分析

阻容降压电路分析

阻容降压电路分析
阻容降压电路的基本结构为串联电阻和并联电容,电源与电路的输入
端并联一个电容,用于储存和平滑电压;输出端串联一个电阻,用于限制
电流和降低电压。

这种结构可以有效地降低电压,使得输出电压稳定且具
有良好的纹波。

阻容降压电路的工作原理是,当输入电源施加到电路上时,电容会首
先开始充电。

在充电过程中,电容的电压会逐渐上升,直到达到稳定值。

同时,电阻会对电流进行限制,避免过大的电流通过电路。

当电容充电完
毕后,电路达到稳定状态,输出电压稳定在设计值。

在阻容降压电路中,电阻的大小和电容的容值是影响输出电压的重要
因素。

电阻的大小决定了电路的输出电压,较大的电阻可以实现较低的输
出电压;而电容的容值决定了电路的纹波电压,较大的电容可以减小纹波
电压的幅度。

此外,阻容降压电路还需要考虑加载效应和功率损耗。

加载效应是指
当电路输出电流增大时,输出电压下降的现象。

为了减小加载效应,可以
通过增加输出电阻或使用更大容值的电容来提高电路的稳定性。

功率损耗
是指在降压过程中电路所消耗的功率,通过合理的设计和选择电阻、电容
可以实现功率损耗的最小化。

总之,阻容降压电路是一种简单、稳定性好、成本低廉的电源降压技术,广泛应用于各种电子设备和系统中。

了解阻容降压电路的原理和特性,对于电子工程师来说是非常重要的。

通过合理的设计和选择电阻和电容,
可以实现满足各种需求的稳定降压效果。

220v 阻容降压 原理

220v 阻容降压 原理

220v 阻容降压原理阻容降压电路是常用于电子电路中的一种电源降压方式。

其原理是通过串联电阻和电容器的方式对输入电路进行限制,从而实现输出电压的降低。

在实际电路设计中,这种降压方式被广泛应用于各类电器、电子设备中。

该电路的特点是简单可靠、成本较低、能够输出稳定的直流电压。

下面将从阻容降压电路的原理、优缺点、设计和应用等多个方面进行详细说明。

一、阻容降压电路原理阻容降压电路的基本原理是以电容器作为滤波器,将交流电压滤波成直流电压。

通过串联电阻的方式对电路进行限制,将输入电压控制在一定范围之内,实现输出电压的降低。

具体地,电容器将交流电流滤波成稳定的直流电流,电阻通过限制电流的大小来控制输出电压的大小。

阻容电路示意图如下所示:R为串联电阻,C为电容器,Vin为输入电压,Vout为输出电压,I为电路中的电流。

二、阻容降压电路的优缺点阻容降压电路具有以下优点:1、简单可靠:阻容降压电路的原理和构造都比较简单,可以达到稳定输出电压的目标。

电阻和电容器本身都是常见的电子元器件,易于制造和获取。

该电路的可靠性也比较高。

2、成本较低:阻容降压电路成本较低,主要是因为电阻和电容器成本较低,且该电路的构造比较简单。

3、电压输出稳定:通过适当的选择电阻和电容,可以使阻容降压电路输出的电压保持稳定。

阻容降压电路的缺点包括:1、效率低:由于阻值比较大,因此在电路中会有一定的功率损耗,电路效率不高。

2、不能输出高电流:阻容降压电路的电路中电阻比较大,因此电路不能输出较大的电流,通常只能传输小电流。

三、阻容降压电路的设计在进行阻容降压电路的设计时,需要考虑输入电压和输出电压的大小、电阻和电容器的选择等多个因素。

下面对该电路的设计要点进行详细说明:1、选择电容器:选择合适的电容器是阻容降压电路设计中的一个重要步骤。

电容器的容量大小影响输出电压的稳定性,容量越大滤波效果越好。

但过大的电容会导致启动时间较长,且会增加成本。

应根据实际应用需求选择适当的电容器。

分析阻容降压电路及应用

分析阻容降压电路及应用

分析阻容降压电路及应用一 阻容降压的基本概念1、什么是阻容降压?阻容降压是一种利用电容在一定频率的交流信号下产生的容抗来限制最大工作电流的电路。

电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

2、阻容降压电路由哪几部分组成?阻容降压电路由降压模块、整流模块、稳压模块和滤波模块组成。

3、阻容降压基本设计要素电路设计时,应先确定负载最大工作电流,通过此电流值计算电容容值大小,从而选取适当电容。

此处与线性变压器电源的区别:阻容降压电源是通过负载电流选定电容;线性变压器电源是通过负载电压和功率选定变压器。

阻容降压电流计算阻容降压电路可以等效为由降压电容C1和负载电阻R1组成,电阻和电容串联分压。

电容C1的容抗为Zc=-j/wC=-j/2πfC电阻R1的阻抗为Zr=R总的等效阻抗为Z=Zc+Zr=-j/2πfC+R所以I=U/Z=U/(Zc+Zr)=U/(-j/2πfC+R)因为阻容降压电源仅适用于小电流电路,选取的电容容值范围一般为0.33UF到2.5UF,所以Zc为-1592j到-9651j。

而等效负载阻抗Zr在200Ω左右,显然有|Zc|>>|Zr|,同时输入电源电压分在负载上的压降也远小于电容的压降,所以有:Z≈Zc,矢量图的θ角接近于90°。

由此可得:I=U/Z=U/Zc=U/(-j/2πfC)=220*2π*f*C*j=220*2π*50*C*j=j69000CI=|I|∠90°,电流有效值I1=|I|=69000C。

当整流方式采用半波整流时,I1=0.5|I|=34500C。

设计举例已知条件:负载工作电流15mA,工作电压5V。

求降压电容容值?采用半波整流方式,根据计算式I1=0.5|I|=34500C可知,C=0.43uF。

所以此处选用0.47uF的电容,反过来可以验证提供的电流I1=34500C=16.2mA,多余电流从稳压管流过。

阻容降压的优点:体积小;成本低。

典型的阻容降压电路

典型的阻容降压电路

典型的阻容降压电路⼀、概述将交流市电转换为低压直流的常规⽅法是采⽤变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实⽤的⽅法就是采⽤阻容降压式电源。

阻容降压包括电容降压和电阻降压两种。

电容降压的原理⽤复函数来分析:电容的阻抗Xc=1/jωC,电容上的压降IXc,此处I为复函数电流。

也可近似表⽰为IoXc,此处Io为负载电流。

电容降压整流后未经稳压的直流电压⼀般会⾼于30伏,并且会随负载电流的变化发⽣很⼤的波动,故不适合⼤电流供电的应⽤场合。

本⽂将根据从基本到复杂的顺序,介绍这⼏种常见电容降压和电阻降压的典型电路。

在实际应⽤中应优先选择图5和图6的线路。

在有可控硅的系统中,应优选负电源。

⼆、典型电路1、单负电源电容降压半波整流电路该电路常⽤于电流⼩,空间有限,电源单⼀,有可控硅控制的电路中。

可避免可控硅使⽤在第四象限。

如⽆可控硅控制优先选⽤全波整流。

1.1原理图1.2电路参数选型及分析符号元器件名称型号备注F1保险管 1.25A 250VAC⼀般控制板都选⽤此规格,太⼩容易烧断.选择R1电阻时,可以不⽤保险丝。

C1X2电容0.1UF 275VAC容量的⼤⼩由负载的特性决定。

优选0.1,0.22,0.33,0.47,0.68UFR1线绕电阻30R/3W此电阻应为阻燃的线绕电阻,根据电流的⼤⼩优选30,47,51。

在有保险丝时可省掉ZNR1压敏电阻10D561根据电源电压优选:220V选 10D561; 120V 选10D431根据吸收能量的不同优选7D,10D,14D.R2碳膜电阻470K(120V) 1M(230V)由电源电压决定,不能⽤单个贴⽚电阻D1⼆极管1N4007或SMA4007(贴⽚)ZD1稳压⼆极管5V6/1W具体采⽤型号由电压和功率决定,优选3.3V,5.1V,5.6V,12V,24VC2电解电容220UF/16V具体采⽤型号由电压和功率决定,容值可采⽤下例公式计算:RLC>(3~5)T/2C3瓷⽚(贴⽚)电容100N消除⾼频谐波。

阻容降压电路

阻容降压电路

阻容降压电路阻容降压电路 一、阻容降压原理 电容降压的工作原理并不复杂。

他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。

例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。

当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。

虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。

根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。

例如,我们将一个110V/8W的灯泡与一个1uF 的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。

因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF 电容所产生的限流特性相吻合。

同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。

因为5W/65V的灯泡的工作电流也约为70mA。

因此,电容降压实际上是利用容抗限流。

而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。

在实际应用时常常采用的是图2的所示的电路。

当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。

因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。

C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。

当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。

基于电容和电阻的两种降压电路的分析与实现

基于电容和电阻的两种降压电路的分析与实现

208电力电子Power Electronic电子技术与软件工程Electronic Technology & Software Engineering降压电路种类繁多,且应用非常广泛。

降压电路按照电压种类来分,常见的可主要分为交流降为交流,交流降为直流,直流降为直流。

首先交流降为交流,通常采用的方法是变压器,通过线圈互感实现交流电压的降压[1]。

直流降压为直流,多采用buck 电路,如果是低电压的降压,通常采用电源集成芯片的方案,既易于实现,成本又低。

本文主要讨论的是交流降压为直流。

交流到直流的降压,必须经过一个交流转换成直流的过程。

这个过程,常用的方法就是桥式整流电路[2,3]。

本文论述的实验,采用的是一款成熟的单相桥整流集成芯片DB106。

集成芯片往往比自己搭建的整流桥电路可靠性高,且体积小,成本低,防护好,因此,集成芯片的使用是电子行业的趋势。

本文论述的两种降压电路,都使用了这款DB106集成芯片。

220V 降压电路,运用场合非常广泛。

很多设备,通常不能直接使用220V 的交流市电,需要将其转换成直流电。

如DCS 系统中的I/O 模块,多数场合,需要为其提供24V 供电。

应用于一些特殊场合的DCS 系统的I/O 模块,需要使用DC48V 供电。

本文所述,即为实现市电AC220V 转为DC48V 。

1 第一种降压电路第一种降压电路的电路图如图1所示。

如图1所示,从左到右,N1、L1分别连接市电AC220V 的零线和火线,电容C1、C2串联, R1与C1并联,整流桥芯片DB106与C2并联。

R1的作用是为C1提供放电回路,在电路断电时泄放与之并联的C1储存的电荷,否则人体接触会有触电感,因此R1起到一定的安保作用。

电容C1、C2对AC220V 进行交流分压,DB106与C2并联,将C2两端的交流电转换成直流电压后,经47V 的稳压管1N4756稳压后,再经C17进行滤波,最后得到DC48V±10%的电压,其中A1为DC48V 的正端,B1为DC48V 的负端。

阻容降压原理图及电路图

阻容降压原理图及电路图

阻容降压原理及电路将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和本钱等因素的限制时,最简单实用的方法就是采用电容降压式电源。

一、电路原理电容降压式简易电源的根本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。

在实际应用时常常采用的是图2的所示的电路。

当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适宜大电流供电的应用场合。

二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考例如来选择降压电容器的容量。

因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。

C1容量越大,容抗Xc越小,那么流经C1的充、放电电流越大。

当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,假设稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁.2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

三、设计举例图2中,C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。

C1在电路中的容抗Xc为:流过电容器C1的充电电流〔Ic〕为:Ic = U / Xc = 220 / 9.65 = 22mA。

通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电阻容降压原理和计算公式这一类的电路通常用于低本钱获得非隔离的小电流电源。

它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。

所能提供的电流大小正比于限流电容容量。

阻容降压电路使用注意事项浅析

阻容降压电路使用注意事项浅析

阻容降压电路使用注意事项浅析阻容降压阻容降压是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。

例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。

当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。

虽然流过电容的电流有70mA,但在电容器上并不产生功耗,因为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。

根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。

例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。

因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。

同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。

因为5W/65V的灯泡的工作电流也约为70mA。

因此,电容降压实际上是利用容抗限流。

而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

采用电容降压时应注意以下几点: 1. 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率。

2. 限流电容必须采用无极性电容,绝对不能采用电解电容。

而且电容的耐压须在400V以上。

最理想的电容为铁壳油浸电容。

3. 电容降压不能用于大功率负载,因为不安全。

4. 电容降压不适合动态负载。

5. 同样,电容降压不适合容性和感性负载。

6. 当需要直流工作时,尽量采用半波整流。

不建议采用桥式整流,因为全波整流产生浮置的地,并在零线和火线之间产生高压,造成人体触电伤害。

而且要满足恒定负载的条件。

容降压式简易电源的基本电路如图1,C1为降压电容器,VD2为半波整流二极管,VD1在市电的负半周时给C1提供放电回路,VD3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。

阻容降压电源电路稳压二极管可靠性分析

阻容降压电源电路稳压二极管可靠性分析

阻容降压电源电路稳压二极管可靠性分析编制:曾招前审核: 赖建君审批: 刘晓峰品质管理部产品评价与测试二0一二年十月三十一日发:品质管理部送:风扇公司品质部油汀吊扇公司品质部研发中心1、目的:品质管理部产品评价与测试在日常电路板初品评价中,稳压二极管被击穿(浪涌测试)不良占比17%。

为此,产品评价与测试对稳压二级管在电路中的位置和电压、电流波形进行分析和研究,来发现电路存在的缺陷和质量隐患,以达到改善和提升电路板质量的目的。

风扇电路板电源电路大部分采用阻容降压,如图1所示。

阻容降压电路在待机状态电路所有电流流过稳压二极管;降压电容在上电、断电和电压波动瞬间会产生尖峰脉冲电流冲击稳压二极管;由于电路与市电隔离性差和电容感性特性,电路对电网中的谐波、脉冲、浪涌等干扰信号抑制能力差甚至起放大的作用,会对电源电路本身、后级电路产生冲击和伤害,尤其是稳压二级管。

从以上分析可以看出,整个电源电路中对稳压二极管质量要求较高,产生故障概率也较高。

图1 阻容降压电路图2、稳压二极管电压、电流测试:以典型风扇FS40-6DR电路板为样板,分别在正常工作、电磁炉干扰、浪涌干扰三种工况下对稳压二极管电压、电流波形进行测试。

稳压二极管正常工作电压、电流波形:图2 电压波形图3 电流波形小结:稳压管接在交流电源端(如图1所示),从图2波形可以看出,稳压管正向反向轮流导通。

电流波形(图3)毛刺较多,意味着电流突变较大。

稳压二极管电磁炉干扰下工作电压、电流波形:图4电压波形图5 电流波形小结:电路板在电磁炉干扰下,稳压二极管电压、电流波形受较大,峰值功率约达,超出其额定功率1W。

稳压二极管浪涌干扰下工作电流波形:图6 电流波形小结:电路板在浪涌(50μs-8/20μs)1000V干扰下,稳压二极管电流瞬间峰值约达到左右,大大超出最大允许浪涌电流:。

结论:电路板在正常工作状态下,稳压二极管参数在正常范围内,但在正反向轮流导通工作状态下工作,电流突变较大,稳压二极管工作强度较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用可靠地阻容降压电路分析
以前在论坛上看到阻容降压电路,很多人都说不稳定,不可靠,比较危险,但是仔细想想声控开关、触摸开关、定时插座等等那么小的东西,如果不采用阻容降压的方式,怎么取电呢?那么多大量实际应用,足以说明阻容降压电路可以设计的稳定可靠。

当然如果是电力行业、工业领域等要求比较严格的场合,那就另当别论了。

先转载一下阻容降压电路的原理吧:
这一类的电路通常用于低成本取得非隔离的小电流电源。

它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。

所能提供的电流大小正比于限流电容容量。

采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C
=0.44*220*2*3.14*50*C=30000C
=30000*0.000001=0.03A=30mA
f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆.
如果采用全波整流可得到双倍的电流(平均值)为:
I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C
=0.89*220*2*3.14*50*C=60000C
=60000*0.000001=0.06A=60mA
一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。

使用这种电路时,需要注意以下事项:
1、未和220V交流高压隔离,请注意安全,严防触电!
2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。

3、注意齐纳管功耗,严禁齐纳管断开运行。

电容降压式电源将交流式电转换为低压直流
电容降压原理
电容降压的工作原理并不复杂。

他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。

例如,在50Hz 的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。

当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。

虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。

根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。

例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。

因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。

同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。

因为5W/65V的灯泡的工作电流也约为70mA。

因此,电容降压实际上是利用容抗限流。

而电容器实际上起到一个限制
电流和动态分配电容器和负载两端电压的角色。

将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。

一、电路原理
电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。

在实际应用时常常采用的是图2的所示的电路。

当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

二、器件选择
1. 电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。

因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。

C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。

当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁.
2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

三、设计举例
图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。

C1在电路中的容抗Xc为:
Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K
流过电容器C1的充电电流(Ic)为:
Ic = U / Xc = 220 / 9.65 = 22mA。

通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。

以上原理部分转载自网络,但是这仅仅是个原理,应用这个电路会涉及到上电冲击电流过大的问题,很容易使C2爆掉,所以这个原理性的电路是不稳定不可靠的。

这种情况下其实只需加一个限流电阻或者电感就可以使电路稳定可靠地工作了。

转载一个网上比较实用的电路:
因受到成本的制约,具有成本优势的阻容降压在现在的电控风扇和其它小家电中应用非常广泛,现就目前最常用的半波整流电路对其进行详细的分析;
此图是一个220VAC/50Hz供电输出5.1VDC <30mA的阻容降压原理图,交流电源从ACL和ACN端输入,其中FUSE(F2A250V保险管)为过流保护,VAR(10D511K压敏电阻)为浪涌保护,C1(MKP-X2 0.1uF/275VAC安规电容)为交流滤波电容,因这三个器件和线路板(或称PCB)直接关系到控制器的安全与电磁兼容性,所以它们必须通过销售国的安全认证,如在中国销售的必须通过CCC认证,其它如美国的UL认证、欧洲的TUV或VDE认证、日本的JET认证等。

电路中C2是降压电容;常用CL21聚脂或CBB21聚丙烯(价格高,性能好),其容抗Rc=1/2ΠFC2,其中Π≈3.14,F=电网频率(50Hz),C2为电容容量,单位是F(法拉),所以此图中C2的容抗Rc≈3.184KΩ,在220VAC输入半波整流条件下最大能输出34.54mA电流,但在实际使用当中,电网电压和电网频率都有波动,所以我们在设计此电容大小时必须考虑到最坏的情况下使用不会出现异常和损坏,还要求在设计时余量不能预留过大以降低整机功耗,同时此电容容量越大电路越不安全,我们在设计此电路时,如果220VAC供电情况下容量超过2.5uF,120VAC供电情况下容量超过4uF就因该放弃阻容降压考虑其它电路。

电路中R1是为C2放电的电阻;防止在快速插拔电源插头或插头接触不良时C2电容上的残余电压和电网电压叠加对后续器件形成高压冲击和防止拔出电源插头后接触到人体对人员产生伤害,所以此RC时间常数在理想状态下≤T(T=1/F,F=50Hz),但在实际使用当中R1不能取太小,否则R1功耗太大,一般我们取RC时间常数≤300mS,另外还要注意此电阻的耐压,我们常用的0.25W碳膜电阻耐压是500V,0.5W碳膜电阻耐压是700V,具体可以参考电阻厂家的性能手册。

电路中R2、R3为限流电阻;此电阻主要是防止首次上电和在快速插拔电源插头或插头接触不良时所产生的高压冲击对整流二极管的损坏,电容C2在首次上电如果刚好碰在波峰处,因C2在通电瞬间呈短路状态,此时交流电源直接加在R2、R3和整流管上,R2、R3上有220VAC×1.414=311VDC瞬间直流电压;电容C2在快速插拔电源插头或插头接触不良时,如果电容C2在第n+1波峰处断电,在n+2波峰处通电,电容C2在n+1到n+2时间内放掉⊿V(由C2,R1决定),此时R2、R3上有220VAC×1.414+(220VAC×1.414-⊿V)=622VDC-⊿V瞬间直流电压,如果考虑到电网电压的波动,此电压会更高,所以R2,R3要选择耐电流冲击强和耐高压的电阻,一般选用大功率氧化膜电阻或金膜电阻,R2、R3总电阻不能太小,也不能太大,电阻太小冲击电流大,电阻太大整个电路功耗增大,整流二极管的峰值电流一般会比较大,如1N400X系列峰值电流为200A,所以一般取R2、R3总电阻=40-50Ω之间。

电路中D1、D2为整流二极管,组成半波整流回路,C3、C4组成第一级滤波,这里要注意的是C3、C4电容的耐压值和电网最高电压、电网最高频率、C2、ZD1、R4有关,如果此产品最高工作电压是242VAC,电网最高频率是53Hz,则C3,C4最高耐压
≈(242VAC×1.414)/(1/2ΠFC2)×R4+5.1≈22.2VDC,所以C3、C4选用耐压≥25VDC的产品,R4、C5、C6组成第二级RC滤波同时ZD1将电压稳定在5.1VDC上,R4的大小决定了产品在低工作电压下的纹波大小,R5是放电电阻,R5的作用首先是在快速插拔电源插头或插头接触不良时在断电瞬间对滤波电容放电,以使通电瞬间时的冲击电流从电容上耦合过去,防止冲击电流加到稳压二极管上造成稳压二极管损坏,同时从这点考虑,在处理PCB布线时必须将稳压二极管放在滤波电容C5、C6后面,防止PCB铜箔上的寄生电感和铜箔电阻对滤波的影响。

相关文档
最新文档