第五章:核磁共振碳谱

合集下载

波谱原理第五章核磁共振碳谱分析法

波谱原理第五章核磁共振碳谱分析法
3
三、 13C-NMR测定方法
13C-NMR谱中,1J 约100-200Hz,偶合谱的谱线交 CH
迭,谱图复杂。常采用一些特殊的测定方法:
1、质子宽带去偶(噪音去偶)
在扫描的同时,用一个强的可使全部质子共振的去偶射 频的频率区进行照射,使得1H 对13C的偶合全部去掉。
每种碳原子都出一个单峰,互不重叠。
σi值越大, 屏蔽作用越强,δC位于高场端,δC越小 。 以TMS为内标物质。规定TMS的13C信号的δC为零,位于 其左侧的δC为正值,其右侧的δ C为负值。 此外,CS2(δC 192.5)和溶剂峰均可作内标。
δC(TMS) = 192.5 + δC ( CS2)
16
1、化学位移与屏蔽原理 γ C νC = 2π B0 (1-σi )
9
3、质子选择去偶
用一个很小功率的射频以某一特定质子的共振频率进 行照射,观察碳谱。 结果只与被照射质子直接相连的碳发生谱线简并,且由 于NOE效应,峰的强度增强。 连有其它质子的碳,只引起偏共振去偶的作用,谱线压 缩而不发生简并。 是归属碳的吸收峰的重要方法之一
10
C2 C3 CH3 1 C4 2 3
>C=O: 电子跃迁类型为n→π*跃迁, ΔE值较小,δC低场; 炔碳: sp杂化的碳,顺磁屏蔽降低,较sp2杂化碳处于高场。
21
(2)、碳原子的电子云密度
核外电子云密度增大,屏蔽作用增强,化学位移向高场移动。
(CH3)3C+
(CH3)3CH 24
(CH3)3CLi 10.7
δ(ppm)
330
22
对于13C核σdia不是主要的。最大贡献约15ppm 。
18
(2)、 σpara (局部顺磁屏蔽)

第五讲_核磁共振碳谱

第五讲_核磁共振碳谱

17.7
20.0
29
8、构型
• 构型对化学位移也有不同程度影响。如烯 烃的顺反异构体中,烯碳的化学位移相差 1-2ppm。顺式在较高场;与烯碳相连的饱 和碳的化学位移相差更多些,约为 3-5ppm, 11.4 顺式也在较高场。 H
124.2 125.4
H
H
H
16.8
30
9、介质效应(测定条件)
• 不同的溶剂、介质,不同的浓度以及不同的
16
6、DEPT谱
确定碳分子级数
常规的13C NMR谱是指宽带质子去偶谱。在去 偶的条件下,失去了全部C-H偶合的信息,质子 偶合引起的多重谱线合并,每种碳原子只给出一 条谱线。虽然用偏共振去偶技术可以分辨CH3、 CH2、CH及季C的归属,但由于偏共振去偶谱中偶 合常数分布不均匀,多重谱线变形和重叠,在复 杂分子的研究中仍然受到限制。
(CH3)2N
1
3 2 4
5
CHO 的偏共振去偶谱 6
12
3、门控去偶
交替脉冲去偶,保留峰的多重性,增加峰强 度,既有偶合信号,又有NOE效应的谱图。
反转门控去偶
既无偶合信号,又无有NOE效应的谱图。
抑制NOE的门控去耦谱提供了碳原子的定量信息 (谱线高度正比于碳原子的数目)。
14
4、选择质子去偶
(1) 提高仪器灵敏度; (2) 提高仪器外加磁场强度和射频场功率; (3) 增大样品浓度; (4) 采用双共振技术,利用NOE效应增强信号强 度;
(5) 多次扫描累加,这是最常用的方法。
氘锁与溶剂
扫描时间长
磁场稳定
如 不 稳 定
? 溶剂峰 氘锁
当发生微小场频变化,信号产生微小漂移, 通过氘锁通道的电子线路来补偿微小的漂移, 维持信号稳定。

第五章 核磁共振碳谱

第五章  核磁共振碳谱
13CNMR
值范围大得多,超过200。每个 C 谱的 δ 值范围大得多,超过 。
值的明显变化, 原子结构上的微小变化都可引起 δ 值的明显变化,因 此在常规宽带质子去偶谱中, 此在常规宽带质子去偶谱中,每一种化学等价的核可 望显示一条独立的谱线。 望显示一条独立的谱线。
三.给出不连氢的碳的吸收峰 原子构成, 有机化合物分子骨架主要由 C 原子构成,因而
4.立体效应 .
13C的化学位移对分子的立体构型十分敏感。对于范 的化学位移对分子的立体构型十分敏感。 的化学位移对分子的立体构型十分敏感
德华效应,当两个 原子靠近时 原子靠近时, 德华效应,当两个H原子靠近时,由于电子云的相互 排斥, 原子移动, 排斥,使电子云沿着 H-C 键向 C 原子移动,C 的屏蔽 作用增加, 向高场移动 向高场移动。 作用增加,δ向高场移动。
3.共轭效应 . 共轭效应会引起电子云 分布的变化, 分布的变化,导致不同位 置C的共振吸收峰发生偏 的共振吸收峰发生偏 移。例如: 例如: 再如: 再如:
C3 H . 1 78 3
N2 O . 1 83 4 .
1 34 2 1 95 2. 1 47 3
1 93 2
.
1 56 2
.
. 1 85 2
2.诱导效应 . 诱导效应使碳的核外电子云密度降低,具有去屏 诱导效应使碳的核外电子云密度降低, 蔽作用。 蔽作用。 化合物 CH4 CH3I CH3Br CH3Cl δC/ppm -2.6 -20.6 10.2 25.1 化合物 CH3F CH2Cl2 CHCl3 CCl4 δC/ppm 75.4 52 77 96
中的自旋-自旋偶合 三.13CNMR中的自旋 自旋偶合 中的自旋 1.13C-13C偶合 . 偶合 因为13C的天然丰度很低,只有1.1%,两个13C核相 的天然丰度很低,只有 , 核相 的天然丰度很低 邻的几率更低,因而13C-13C偶合可以忽略不计。 偶合可以忽略不计。 邻的几率更低, 偶合可以忽略不计 2.13C-1H偶合 . 偶合

第五章 核磁共振碳谱电子版本

第五章 核磁共振碳谱电子版本
C=C的碳(100~160),C=O的碳(160~220)
四、碳化学位移的经验计算
五、核磁共振碳谱解析
1.解析方法 (1)根据分子式计算不饱和度 (2)根据质子宽带去偶谱判断分子中有几种等价的碳 (3)根据其他去偶谱判断是什么类型碳 (4)根据化学位移判断是什么杂化方式的碳 (5)综合以上信息得到结构单元,将结构单元合理 组合成分子,再通过化学位移的经验计算排除、验证
2.图谱解析举例
例1: 化合物C7H14O,如下 NMR谱图确定结构。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
第五章 核磁共振碳谱
3.DEPT(不失真地极化转移增强) DEPT45:除季碳(不出峰)外, 所有碳核都出正峰
DEPT90:只出现CH峰,正峰
DEPT135:CH3 和CH为正峰, CH2为负峰,
三、常见化合物中13C化学位移δ的范围
sp3杂化碳的δ范围: 0~60ppm sp杂化碳的δ范围: 60~90ppm sp2杂化碳的δ范围: 100~220ppm

第5章碳谱

第5章碳谱

三、碳谱的测定
1、氘锁 2、溶剂峰 3、样品管 4、样品用量
第二节 δC与结构的关系
一、核外围电子的影响 电子云密度:碳负离子δC出现为高场,碳正离子
的δC 出现为低场。
诱导效应 共轭效应 二、化学键的影响 磁各向异性效应(与氢谱一样) 碳原子杂化方式 平均电子激发能 三、氢键的影响 四、溶剂和介质的影响
1、分子大小与弛豫机理
2、碳的取代程度:季>叔>仲 3、分子运动的各向异性 4、分子内旋转
第五节 碳谱的类型
1、不去偶碳谱(与相连的及邻位的氢均有
偶合,可读出δ,J值)
2、质子宽带去偶谱(噪声去偶谱 COM)
用双照射技术使所有13C与1H之间的偶合消失, 谱线均为单峰.
峰高与碳数目不成正比关系。信号强度还与碳的 类型和NOE效应有关。
第5章 13C-核磁共振
第一节 碳谱的特点与实验方法
一、碳谱的特点
1、灵敏度低: 灵敏度约是1H的1/5800,所需样品量大。 2、分辩率高。δC在0-250ppm之间,甚至可达600ppm。 3、可识别不含氢的基团如:季碳、羰基、氰基等。 4、可用不同的测试技术得到各种(伯、仲、叔、季、
NH COOCH2CH3
139.2
119.6
B CH3CONH
131.9
114.3
154.5OCH2CH3
例4、C14H20O2的结构测定
CH3
CH3
A
C COO CH CH2CH3
CH3
CH3
CH3
B
C CH2 CH OCOCH3
CH3
CH3
CH3
C
CH2 CH O C COCH3

第五章 核磁共振碳谱(white)

第五章 核磁共振碳谱(white)

=100~210 ppm
碳的类型(SP3)
化学位移(ppm)
C-I
0~40
C-Br
25~65
C-Cl
35~80
—CH3
8~30
—CH2
15~55
—CH—
第五章 核磁共2振0碳~谱60
23
碳的类型 三C—(炔) =C—(烯) C=O C-O C6H6(苯) C-N
化学位移 (ppm) 65~85 100~150 170~210 40~80 110~160 30~65
计算机的问世及谱仪的第不五章断核磁改共振进碳谱,可得很好的碳谱。3
第一节 核磁共振碳谱13C NMR的特点
1. 灵敏度低 2. 分辨能力高 3. 给出不连氢的碳的吸收峰 4. 不能用积分高度来计算碳的数目
★ 化学位移范围宽: 0~ 300 ppm, 1H 谱的 20~30 倍
★ 分辨率高:谱线之间分得很开,容易识别
质子选择性去偶是偏共振去偶的特例。当测一个化合物的13C NMR谱,而又准确知道这个化合物的1H NMR 各峰的δ值及归属 时,就可测选择性去偶谱,以确定碳谱谱线的归属。
选择某特定的质子作为去耦对象,用去耦频率照射该特定的质
子,使被照射的质子对13C的耦合去掉,13C成为单峰,并因
NOE而使谱线强度增大。第五章 核磁共振碳谱
场位移
★ 温度:温度的改变可使δc有几个ppm的位移。当分子有构型、 构象变化或有交换过程时,谱线的数目、分辨率、线型都将随 温度变化而发生明显变化。
如,吡唑:
第五章 核磁共振碳谱
35
” 吡咯氮“
” 吡啶氮“ 吡唑的变温13C NMR谱
- 40°时两条谱线,分别对应于C-3、5和C-4。温度降低,C-4 谱线基本不变,C-3、5谱线因分子两种状态互相转换速度变慢, 呈现两条尖锐的谱线。

第五章 碳谱 13C

第五章  碳谱 13C

160
140
120 PPM
100
80
60
40
20
0
P240 9. B
O
127.9
O 200.4 136.5 43.2 16.9 13.6
220
200
180
160
140
120
PPM
100
80
60
40
20
0
P241. 10
O199.8 29.3
133.8 128.7 128.7
129.0
129.0 142.8 24.3
例如:2-丁醇的质子宽带去耦谱
1 2 3 4
CH3CHCH2CH3 OH
2、偏共振去耦谱(OFR) – 在13C的FID信号读取期间,用偏离所有1H核 的共振宽频一定距离的辐射照射1H核,部分 消除1H对13C核的耦合(即保留1JC-H 的耦 合,消除2J 3J 4J 的耦合).
– 可以区分C的类型:峰存在裂分(保留了同 碳质子的耦合信息): CH3 (q)
例:选择氢去耦谱
p168
例如:用各种方法测定的对二甲胺基苯甲醛的13C NMR (CDCl3)
(b) 偏共振去偶
(c) 反门控去偶
(d) 门控去偶
四、 13C-NMR的化学位移
• 变化规律与1H有一定对应性,但并不完全相同
糖区 C=C =C=O
sp3杂化
220 0
200
180
160
140
120
180
160
140
120
100
PPM
80
60
40
20
0
P240 9. A
142.1 18.7 132.3

有机波谱-习题-第五章:碳核磁共振

有机波谱-习题-第五章:碳核磁共振

第五章一、填空1.因为1H和13C的化学位移相差很大,它们形成的CH n系统符合________规律进行裂分。

2.在CDCl3中,碳为________重峰。

在丙酮-d6中,甲基碳原子为________重峰。

3.在13C NMR测定中常规的测试方法是________。

4.在天然丰度的化合物中,由于13C丰度很低,故13C双共振都是________。

5.反转门控去偶法的目的是得到________,但消除________,保持碳数与信号强度成比例,可用于碳核的定量。

6. 在DEPT实验中,可以区分________、________、________碳,________碳的信号不出现。

7.在13C NMR________谱中,采用一个较弱的干扰照射场,使碳原子的质子在一定程度上去偶,峰的裂分数目不变,裂距减小。

8.在13C NMR谱中,与1H NMR谱类似,仍用________为内标,也可用________作内标。

9.由于碳处在分子骨架上,分子内部相互作用如________、________、________、________等对其化学位移的影响很大。

10.当第二周期的杂原子N、O、F处在被观察碳的γ位并且为________时,则观察到杂原子使γ碳的δ向________位移2—6ppm.这可以用________解释。

11.对于卤代烷中各个碳的化学位移不仅要考虑________效应,还要考虑________效应。

12.邻羟基苯甲醛及羟基苯乙酮中分子内氢键的形成,使羰基碳________,化学位移值________。

13.醛基的质子被甲基取代后,δc(c=o)仅向________移动约5 ppm.与烯键或苯环共轭后,δc(c=o)向________位移。

15.一般13C NMR谱从高场到低场可分为四大区:δ0—40为________;δ40—90为________;δ90—160为________;δ>160为________。

第五章 核磁共振谱

第五章 核磁共振谱

于外磁场,发射与磁场强
度相适应的电磁辐射信号。 60 、 80 、 100 、 300 、 400 、
500或600MHz
3 .射频信号接受器和检测 器):当质子的进动频率 与辐射频率相匹配时 ,发 生能级跃迁,吸收能量, 在感应线圈中产生毫伏级 信号。
4.探头:有外径5mm的玻璃样品管座, 发射线圈,接收线圈, 预放大器和变温元件等。样品管座处于线圈的中心,测量过
-CH3 , =1.6~2.0,高场; -CH2I, =3.0 ~ 3.5,
-O-H,
-C-H,

低场

高场
几种氢核化学位移与元素电负性的关系
化学式 CH3F CH3Cl CH3Br CH3I CH4 (CH3)4Si
电负性
化学位移
4.0
4.26
3.1
3.05
2.8
2.68
2.5
2.16
图右端)其他各种吸收峰的化学位移可用化学参数δ来
表示, δ定义为:
试样 - TMS 10 6 0
δ单位为ppm(百万分之一),无量纲单位, δ与磁场强度无关, 各种不同仪器上测定的数值是一样的。
1H-NMR谱图可以给我们提供的主要信息:
1. 化学位移值——确认氢原子所处的化学环境,即属于何
讨论:
(1) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2:
11B,35Cl,79Br,81Br
I=5/2:17O,127I 这类原子核的核电荷分布可看作一个椭 圆体,电荷分布不均匀,共振吸收复杂, 研究应用较少;
(重要) (2)I=1/2的原子核
1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋,

核磁共振碳谱的原理和应用

核磁共振碳谱的原理和应用

核磁共振碳谱的原理和应用1. 介绍核磁共振碳谱(Nuclear Magnetic Resonance Carbon Spectroscopy)是一种用于研究化合物的结构和化学环境的无损分析技术。

核磁共振碳谱通过测量样品中不同碳原子核的共振频率来获得关于化合物的信息。

本文将介绍核磁共振碳谱的原理和应用。

2. 核磁共振碳谱的原理核磁共振碳谱的原理基于核磁共振现象。

在一个外加磁场中,具有非零自旋的核会产生一个磁矩。

在核磁共振实验中,样品置于强磁场中,通过向样品施加射频(Radio Frequency, RF)脉冲,使核磁矩发生能级跃迁。

样品中的不同碳原子核具有不同的共振频率,这是由于不同化学环境对碳原子核的局部磁场产生不同的影响。

对样品进行一定时间的射频辐射,然后停止辐照,测量样品在外加磁场下的的自由感应衰减振荡信号,从而获得各个碳原子核的共振频率和峰强度。

3. 核磁共振碳谱的应用核磁共振碳谱广泛应用于有机化学、药物研发、材料科学等领域。

以下是核磁共振碳谱的主要应用之一:3.1 化合物结构鉴定核磁共振碳谱可用于确定化合物的结构和官能团。

通过观察样品的碳谱谱图,可以确定化合物中不同碳原子核的化学位移,并推断出分子中的官能团、杂化状态和取代基等信息。

3.2 化合物纯度分析通过核磁共振碳谱可以判断化合物的纯度。

在样品中出现额外的峰或者杂质的存在会导致峰的形状和峰强度发生变化,从而能够判断化合物是否纯净。

3.3 反应过程监测核磁共振碳谱可以用于监测化学反应的过程。

通过连续记录不同时间点的核磁共振碳谱,可以观察到化合物结构的变化,进而了解反应的进展和反应产物的形成。

3.4 代谢组学研究核磁共振碳谱可用于代谢组学研究。

通过测定生物体中的代谢产物的核磁共振碳谱,可以获得关于生物体内代谢通路和生化过程的信息,用于研究疾病的发生机制和评估药物对生物体的影响。

3.5 药物开发核磁共振碳谱在药物开发过程中扮演着重要的角色。

第五章 碳谱简介

第五章 碳谱简介

(ppm) 5.7
(2)烯烃的顺反效应。 顺反异构体------順式小,反式大。
11.4 28.2 21.4 12.5 34.1 22.1 12.5
CH3
122.8
CH2 CH2 CH3 C C
129.7
H
123.9
CH2 CH2 CH3 C C
130.6
H
H
CH3
16.5
H
36.1
H C O N
H2C CH2 123.3 H3C 132.8 H C C H 152.1 CHO 191.4
CH3CHO 201
共轭羰基化合物的移向高场,当共轭作用破坏时,移向低场。
O
195.7
O
199.0
O
205.5
共轭双键化合物,中间碳原子因共轭作用移向高场。
140.2 112.8 137.2 116.6 138.7
例5:某化合物分子式为C16H22O4,根据氢谱和碳谱推导其结构。
溶剂峰
=(2×16+2-22)/ 2=6
碳谱有8组峰,共16碳, 对称结构 邻二取代苯 酯羰基-COO6H -O-CH2-CH2CH2CH2CH3 4H 4H
O COCH2CH2CH2CH3 COCH2CH2CH2CH3 O
4H
例2:某未知化合物分子式为C7H12O3,根据氢谱和碳谱推倒 其结构。
-CH2-
=(2×7+2-12)/ 2=2
酮C=O 酯-COO无对称结构
-CH3
-OCH3
-CH2CH3
O
O
CH3CH2CCH2CH2COCH3
-CH2CH2-
Hale Waihona Puke -OCH3例3:某未知化合物分子式为C10H10O,根据氢谱和碳谱推导 其结构。

第五章 核磁共振碳谱

第五章 核磁共振碳谱
1. 质子宽带去偶 ( Proton Broad Band decoupling) 又称质子噪音去偶( proton noise band decoupling ) 用一个强的有一定带宽的去偶射频使全部质子去偶,使得 1H对13C的偶合全部去掉。 CH 3、CH2、CH、季C皆是单峰。 特点:图谱简化,所有信号均呈单峰。 其他核如 D、19F、31P对碳的偶合此时一般还存在。峰的重 数由核的个数和自旋量子数Ix确定,用2nIx+1计算。 如ID=1, IF=1/2, IP=1/2
80 Averages
800 Averages
三、核磁共振碳谱特点
1. 化学位移范围宽,
1H 13C
NMR常用的δ值范围为0~10ppm;
NMR常有范围为0~220ppm(正碳离子可达330ppm,而 CI4约为-292ppm),约是氢谱的20倍,其分辨能力远高于 1H NMR。结构上的细微变化可望在碳谱上得到反映。 2. 13C NMR给出不与氢相连的碳的共振收峰; 季碳、C=O、C≡C、C≡N、C=C等基团中的碳不与氢直 接相连,在1H NMR谱中不能直接观测,只能靠分子式及其 对相邻基团值的影响来判断。而在13C NMR谱中,均能给 出各自的特征吸收峰。
羰基碳、双键季碳因T1值很大,故吸收信号非常弱,有时甚 至弱到无法观测的程度。下图所示-紫罗兰酮的9-、6-、5-碳 信号之所以较弱,就是因为这个原因。其中,5-C因附近还存 在连有多质子的基团 (5-CH3及CH2-),多少还受到因照射1H核 引起的NOE效应的影响,故比6-C信号的强度增大许多。
13C化学位移与1H有着相似的平行趋势。
例如:饱和烃的13C和1H均在高场共振,而烯烃和芳烃均在 较低场出现吸收峰。 取代基的诱导、共轭效应、基团屏蔽的各向异性效应等对 13C化学位移的影响也与1H NMR谱相同。 1. 杂化状态 杂化状态是影响C的重要因素,一般说C与该碳上的H 次 序基本上平行。

第五章-核磁共振碳谱

第五章-核磁共振碳谱
❖由于自然界中13C核的丰度太低,另外13C的旋磁比只 有1H核的1/4, 13C NMR的灵敏度比1H NMR要低得多;
❖13C NMR由于邻近质子的偶合作用使谱峰变得非常复 杂,必须采用标识技术(去偶技术),实际上13C NMR谱 图若不去偶就不能解析。
5.2 13CNMR 的测定方法
在13CNMR谱中, 因碳与其相连的质子偶合常数很大, 1JCH大约在100~200Hz, 而且2JCCH和3JCCCH等也 有一定程度的偶合, 以致偶合谱的谱线交迭, 使图谱复杂 化。故常采用一些特殊的测定技术, 如质子宽带去偶、 偏共振去偶、门控去偶、反门控去偶等核磁双共振方法 和DEPT技术。
5.3.2 影响化学位移dC的因素
(2)碳核周围的电子云密度 碳核外电子云密度越大, 屏蔽效应越强, dC移向高场; 碳负离子出现在高场, 碳正离子出现在低场。
CH3C(C2H5)2
(CH3)2CC2H5 (CH3)3 333.8
dC 330.0 dC 319.6
24.9 20.0
CH4 dC -2.6
CH3I -20.7
取代基

取代基
的电负性
X CH CH CH
2.1
H0 0 0
2.5
CH3 +9 +10 -2
2.5
SH +11 +12 -6
3.0
NH2 +29 +11 -5
3.0
Cl +31 +11 -4
4.0
F +68 +9 -4
5.3.2 影响化学位移dC的因素
(6)分子内氢键
邻羟基苯甲醛及邻羟基苯乙酮分子内可形 成氢键, 使羰基碳上的电子云密度降低, 从而 增大去屏蔽效应, 化学位移移向低场。

第五章 核磁共振碳

第五章  核磁共振碳
33
34
35
36
例:分子式C6H12O, 两种异构体13CNMR如图(见p186),具 体化学位移如下:IR显示不含羰基,给出结构。 A:13.9,19.5,31.5,67.9,86.1,152.3 B:18.0,23.8,25.7,64.6,130.4,132.4
1.计算不饱和度:UN=1,含有一个碳碳双键(为什么?) 2.分子中均没有对称因素(为什么?) 3.有两个不饱和碳,四个饱和碳(?) 4.A中有一个甲基,3个亚甲基,不饱和碳上分别有一个氢和两个氢,表明 双键处在一端,单取代。 5.全部氢都连接在碳上,没有活泼氢意味着氧为醚键,连接氧原子的为亚 甲基(67.9),且只有一个。

取代基α、β位的碳化学位移值低场位移,γ位高 场位移。
25
26
■环烷烃及其衍生物
环丙烷:-3.8ppm
27
取代环己烷化学位移计算式:
Ci 26.6 Ai
1 OH 4 3 2
例:环己醇13C化学位移计算: δC1=26.6+43=69.6, δC2=26.6+8=34.6, δC3=26.6-3=23.6, δC4=26.6-2=24.6
28
★烯烃及其衍生物 表4.11

烯烃化学位移值100~165 ppm

烯烃中双键的引入对饱和碳的影响不大


注意顺反构型影响(反大顺小)
丙烯以上的端烯,δC1 112~114ppm;δ C2 137~139ppm
29

共轭烯烃:中间碳原子化学位移有下降趋势
140. 2 112. 8

137. 2 116. 6
200.5
202.7
192
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均为单d
c
a
氢谱与碳谱
5.2 13C的化学位移
13C NMR化学位移也是相对值,以TMS为内标,C
= 0 ppm,各类碳的化学位移在0 ~ 220 ppm之 间。下表为各类型C的化学位移参考值。
碳的类型
-C-I -C-Br -C-Cl -CH3 -CH2-CH-
的有关顺磁屏蔽的大小,它与电子云密度、激发
能量和键级等因素有关,是13C谱化学位移的决 定因素是顺磁屏蔽。
a:表示相邻基团磁各项异性的影响。 s:表示溶剂和介质的影响,表式溶剂种类、浓度的
大小、pH值等对核产生的屏蔽影响。
2、影响13C化学位移的因素
13C NMR谱化学位移的分布范围约为400 ppm,因 此对分子构型和构象的微小差异也很敏感,一般情况下, 对于宽带去偶的常规谱,几乎化合物的每个不同种类的 碳均能分离开。影响13C化学位移的因素有: (1)碳杂化状态 (2)诱导效应 (3)空间效应 (4)超共轭效应 (5)重原子效应 (6)氢键 (7)测定条件:溶解样品的溶剂、溶液的浓度、测定时的
参数,帮助指认碳原子;
总结碳谱的特点:
化学位移范围:0 ~ 220 ppm,氢谱0 ~16ppm 提供各种类型碳(伯、仲、叔、季碳)的信息 不能用积分曲线获取碳的数目信息 邻近有吸电子基团,信号移向低场(左移)
碳周围电子密度增加,信号移向高场(右移) 常规 13C NMR 谱为全去偶谱,因而所有的碳信号
PFT-NMR:脉冲傅里叶变换核磁共振仪
数模转换器,又称D/A转换器,简称DAC,它是把数字量转变成模 拟的器件。D/A转换器基本上由4个部分组成,即权电阻网络、运算放大 器、基准电源和模拟开关。模数转换器中一般都要用到数模转换器,模 数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散 的数字信号的器件。
5.1 核磁共振碳谱的特点
主要特点:灵敏度低:为1H 的1/5800,13C 的天然丰度只占1.108%,所以含碳化合物 的13C NMR信号很弱,需借助PFT-NMR。 缺点:PFT-NMR扭曲了信号强度,不能用 积分高度来计算碳的数目。
注:PFT-NMR:脉冲傅里叶变换核磁共振仪 采用恒定磁场,用一定频率宽度的射频辐射试样,激发
O CH2 C 127 ~ 134 41 171
14 CH3
CH2
61 O
114 36 138 36 126-142
(2)取代基的电负性
有电负性取代基、杂原子以及烷基连接的碳,都能使其
C信号向低场位移,位移的大小随取代基电负性的增大而增
化学位移(ppm) 碳的类型
0 ~ 40
C-
25 ~ 65
=C-
35 ~ 80
C=O
8 ~ 30
C-O
15 ~ 55 20 ~ 60
C6H6 C-N
化学位移(ppm) 65 ~ 85
100 ~ 150 170 ~ 210
40 ~ 80 110 ~ 160
30 ~ 65
13C的化学位移是13C NMR谱的重要参数,由碳
温度等。
(1)碳杂化轨道
杂化状态是影响 C的重要因素,一般说 C与该碳上的 H 次序
基本上平行。
sp3 CH3 < CH2 < CH < 季C 在较高场 0 ~ 50 ppm
sp2 -CH=CH2
在较低场 100 ~ 150 ppm
>C=O
在最低场 150 ~ 220 ppm
sp CCH
在中间 50 ~ 80 ppm
最常见的数模转换器是将并行二进制的数字量转换为直流电压或直 流电流,它常用作过程控制计算机系统的输出通道,与执行器相连,实 现对生产过程的自动控制。数模转换器电路还用在利用反馈技术的模数 转换器设计中。
采用PFT技术实现:
(1)提高分辨能:谱线之间分得很开,容易识别; (2)化学位移范围大:0~300 ppm,是1H NMR谱的20~30
大多数有机分子骨架由碳原子组成,用13C核磁共振研究 有机分子的结构显然是十分理想的,但13C的天然丰度低,仅 为12C的1.108%,其磁旋比()约是1H核的1/4,所以13C NMR的灵敏度相当于1H NMR的1/5800 。采用连续波扫描,加 以脉冲傅里叶变换(PFT)和去偶技术的应用,使13C NMR谱 测试变得简单易行,也加快了13C NMR在结构测定、构象分析、 动态过程讨论、活性中间体及反应机制、定量分析等应用,成 为化学、生物学、医学等领域不可缺少的分析测试方法。
全部欲观测的核,得到全部共振信号。当脉冲发射时,试 样中每种核都对脉冲中单个频率产生吸收,接收器得到自 由感应衰减信号(FID),这种信号是复杂的干涉波,产生于 核激发态的弛豫过程。FID信号是时间的函数,经滤波、 转换数字化后被计算机采集,再由计算机进行傅里叶变换 转变成频率的函数,最后经过数/模转换器变成模拟量, 显示到屏幕上或记录在记录纸上,得到通常的NMR谱图。
倍; (3)自然丰度低:不可能同时有两个13C出现在一个分子中,
不必考虑13C与13C的偶合,只需考虑1H-13C偶合; (4)无法区别碳上连接的1H核数目; (5)掌握碳原子(特别是无H连接时)的信息,确定碳原子级
数 (6)容易实现双共振实验; (7)准确测定驰豫时间T1,可作为化合物结构鉴定的波谱
有机波谱分析课件
有机波谱分析 Organic Spectroscopy
王伟
2016 年 4月
第五章 核磁共振碳谱
主要内容:
5.1 碳核磁共振谱简介 5.2 13C的化学位移 5.3 13C NMR偶合谱 5.4 碳核磁共振谱中的实验技术 5.5 碳核磁共振谱的解析及其应用
在有机物中,有些官能团不含氢, 例如C=O,C=C=C和 N=C=O, 官能团的信息不能从1H NMR谱中得到,只能从13C NMR谱中得到。
核所处的化学环境决定。其化学位移的计算公式
与H谱一致。
样品标准106 仪器
共振
B0 2
(1)
σ为屏蔽常数,反应碳核外围电子(包括核本身的电子
及周围其他原子的电子)环流对该核所产生屏蔽作用的总和。
即为 i 。
1.屏蔽常数 i
i = d + p + a + s d:反映由核周围局部电子引起的抗磁屏蔽的大小。 p:项主要反映非球形电子(比如p电子)环流产生
相关文档
最新文档