瞬变电磁原理、仪器及应用

合集下载

瞬变电磁法应用条件

瞬变电磁法应用条件

瞬变电磁法应用条件瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用电磁学原理来探测地下的电性和导电性结构。

因其便捷、高效、精准的特点,被广泛应用于矿产勘探、地下水资源调查、环境地质调查等领域。

下面我们将详细介绍瞬变电磁法的应用条件,包括地质背景、地下介质、设备要求等内容。

一、地质背景瞬变电磁法通常适用于地表条件相对较好的地区,如平原、丘陵、山地等地貌,适用于研究区域的地质历史和地下介质结构。

在进行勘探前,需要详细了解地质条件,包括地表覆盖情况、地下水情况、岩石性质等。

只有充分了解地质背景,才能更好地设计勘探方案,提高勘探效果。

二、地下介质瞬变电磁法适用于导电率较高的地下介质,如含水层、矿床、盐水层等。

由于瞬变电磁法原理是通过观测地下电磁参数的变化来识别地下结构,因此对于介质的导电性要求较高。

在适用条件下,瞬变电磁法可以很好地探测地下水资源、矿产矿床等目标。

三、设备要求瞬变电磁法需要专门的仪器设备来进行测量。

在实际应用中,需要考虑设备的稳定性、精度以及适用范围。

目前市面上有多种瞬变电磁仪器,可以根据实际需求选用合适的设备。

还需要配备一定数量的电极、接收线圈等配套设备,以确保勘探工作的顺利开展。

四、环境条件瞬变电磁法对环境条件的要求较高,主要包括天气、地表情况等方面。

在进行勘探时,需要考虑天气因素对野外工作的影响,避免在极端恶劣的天气条件下进行测量。

地表覆盖情况也对瞬变电磁法的有效性产生影响,需要选择开阔的地区进行勘探,避免复杂地形对数据解释的影响。

五、专业人员瞬变电磁法需要专业技术人员进行操作和数据解释。

在进行勘探前,需要组建具备相关专业知识和实践经验的团队,从而保证勘探工作的顺利实施。

在数据解释阶段,也需要专业人员进行综合分析,提出科学合理的建议和结论。

六、安全防护在进行瞬变电磁法勘探时,需要注意安全防护措施。

特别是在野外作业时,要对设备操作人员进行安全培训,确保他们了解相关危险因素和应急措施。

瞬变电磁法 解释

瞬变电磁法 解释

瞬变电磁法解释
什么是瞬变电磁法?
瞬变电磁法是一种地球物理勘探方法,用于探查地下的电性和磁性特征。

它利用瞬变电磁场在地下介质中传播的特性来获取地下结构的信息。

这种方法通常通过发送短脉冲电流来产生瞬变电磁场,并测量感应的电磁响应。

通过分析接收到的信号,可以推断地下介质的电导率、磁导率和形态等特征。

瞬变电磁法在石油勘探、地质灾害预测和地下水资源评估等领域具有重要应用价值。

瞬变电磁法的原理
在瞬变电磁法中,发送器通过电流脉冲产生瞬变磁场。

这个瞬变磁场会在地下介质中感应出涡流,产生感应电场和磁场。

接收器会测量感应电场和磁场的变化,并将这些信号转化为数字数据。

这些数据可以用来分析地下介质的电磁性质。

不同类型的地下介质对瞬变电磁场的响应不同,因此可以通过分析信号来识别地下结构的特征。

瞬变电磁法的应用
瞬变电磁法在以下领域具有广泛的应用:
•石油和矿产资源勘探
•地下水资源评估
•地质灾害预测(例如地震和滑坡)
•环境地质研究。

瞬变电磁法报告

瞬变电磁法报告

瞬变电磁法报告引言瞬变电磁法(Transient Electromagnetic Method,TEM)是一种非侵入性地下物探方法,广泛应用于矿产勘探、地质调查和水资源评价等领域。

该方法通过测量地下介质对电磁场的响应,可以获取地下的电阻率和电导率等信息,从而推测地下的地质结构和水文特征。

本报告将介绍瞬变电磁法的原理、仪器设备、数据处理方法以及其在勘探领域的应用情况。

原理瞬变电磁法是基于法拉第电磁感应定律和电磁场传播理论的。

其核心原理是在地下埋设主发射线圈和用于接收电磁信号的线圈,通过给主发射线圈施加瞬变电流,产生瞬变电磁场。

这个瞬变电磁场会感应地下的电流,进而产生感应电磁场,其中电磁场的传播过程会导致接收线圈中电磁信号的变化。

通过测量接收线圈中的电磁信号变化情况,可以推测地下介质的电阻率和电导率等物理参数。

仪器设备瞬变电磁法的仪器设备主要包括发射线圈和接收线圈两部分。

发射线圈通常由一对同心圆线圈组成,中间隔离一段距离,并通过一个高电压电流源施加瞬变电流。

接收线圈通常也是一对同心圆线圈,与发射线圈对应放置。

为了减少噪音干扰,接收线圈一般会使用差分模式进行测量。

此外,为了提高测量精度,仪器还包括数据采集设备、控制器和电缆等。

数据处理方法瞬变电磁法的数据处理主要分为两个步骤:预处理和解释处理。

预处理主要包括数据校正和数据滤波。

校正过程主要是对接收线圈信号进行校正,去除仪器和噪音引起的偏移。

滤波过程主要是对数据进行滤波处理,去除高频噪音和低频漂移等。

解释处理是根据已校正并滤波的数据,利用数学模型和反演算法对地下电阻率进行推测。

常用的解释处理方法包括二维反演、三维反演和测深等。

应用情况瞬变电磁法在矿产勘探、地质调查和水资源评价等领域有广泛的应用。

在矿产勘探中,可以利用瞬变电磁法探测地下的矿床和矿体分布情况,帮助寻找矿产资源。

在地质调查中,可以利用瞬变电磁法推测地下构造和地质体分布,辅助地质勘探和地质灾害预测。

CUGTEM-8瞬变电磁仪说明书

CUGTEM-8瞬变电磁仪说明书

目录一、瞬变电磁仪的介绍................................................................................................................... - 4 -1.1瞬变电磁法的概念 (4)1.2瞬变电磁仪的特点 (4)1.3瞬变电磁仪的主要应用 (5)1.4CUGTEM-8瞬变电磁仪的主要性能指标 (6)二、瞬变电磁仪CUGTEM-8的组成................................................................................................. - 7 -2.1发送机 (8)2.1.1 发送机的工作原理......................................................................................................... - 8 -2.1.2 发送机电路组成............................................................................................................. - 8 -2.1.3 发送机面键控制功能..................................................................................................... - 8 -2.2接收机 (9)2.2.1 接收机工作原理............................................................................................................. - 9 -2.2.2 接收机的电路组成......................................................................................................... - 9 -2.2.3 接收机面键功能............................................................................................................. - 9 -2.2.4 电池箱........................................................................................................................... - 10 -2.3相关配件 (10)2.3.1 航插转USB数据线、U盘............................................................................................ - 10 -2.3.2 电缆................................................................................................................................ - 11 -三、仪器软件的介绍及野外施工的操作步骤 ............................................................................. - 13 -3.1仪器软件的介绍 (13)四、仪器的数据采集..................................................................................................................... - 15 -4.1仪器的连接 (15)4.1.1 仪器的准备................................................................................................................... - 15 -4.1.2 工区基本资料的准备................................................................................................... - 15 -4.1.3仪器的摆放.................................................................................................................... - 15 -4.2参数设置 (15)4.2.1 工作信息设置............................................................................................................... - 15 -4.2.3通讯检查........................................................................................................................ - 17 -4.2.4匹配电阻的选择............................................................................................................ - 17 -4.2.5 野外数据采集............................................................................................................... - 18 -4.3数据采集过程中注意事项 (18)五、数据的处理及判别................................................................................................................. - 20 -5.1野外施工数据质量简单判别及数据处理准备工作 (20)5.2输入采集的数据 (21)5.3进行数据预处理 (21)5.3.1 数据预处理向导........................................................................................................... - 21 -5.3.2 时间道的设置............................................................................................................... - 23 -5.3.3 数据滤波处理............................................................................................................... - 24 -5.4完成解释图 (27)5.5输出多测道数据文件 (28)六、 SURFER软件的应用................................................................................................................ - 29 -6.1数据网格化 (29)6.2新建等值线图 (29)6.3填充等值线图 (30)七、仪器装备的维护及常见问题的处理 ..................................................................................... - 33 -7.1仪器维护的基本要求 (33)7.2仪器常见故障检查及处理方法 (33)附录锂离子电池专用充电器使用说明书(电池生产厂家提供) ........................................... - 34 -一、瞬变电磁仪的介绍1.1 瞬变电磁法的概念瞬变电磁法(Transient Electromagnetics Method, TEM)是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间隙期间,利用线圈或接地电极观测二次涡流场,并研究该场的空间与时间分布规律, 来寻找地下矿产资源或解决其它地质问题的一支时间域电磁法。

ATEM瞬变电磁测量系统资料

ATEM瞬变电磁测量系统资料

ATEM瞬变电磁测量系统资料ATEM瞬变电磁测量系统是一种用于瞬变电磁场测量和分析的设备。

本文将介绍ATEM系统的基本原理、应用、技术特点等方面的资料。

基本原理ATEM瞬变电磁测量系统基于瞬态电磁法的测量原理,通过测量地下物质对瞬变电磁场的响应,来推断地下结构、岩性、水文地质等信息。

其主要原理可以概括为:1.激发源在地面上放置一对互相平行的电流线圈,利用一台高压脉冲发生器产生电流或电压突变信号激发电流线圈。

2.地下结构接受到电磁波后会发生电流及电荷分布,导致感应线圈中出现电势差,记录线圈输出的信号,进而反演出地下结构信息。

ATEM系统能够采集高时间分辨率的数据,并且对地下岩石、矿物、液体等亚表面结构特征的探测具有较高精度和可靠性。

应用场景ATEM瞬变电磁测量系统被广泛应用于地下水文地质、矿产资源勘探、土地利用规划、道路、桥梁、隧道、地铁等工程中的地质隐患分析等领域。

具体应用场景包括:•地下水资源勘探:对水源地水资源分布情况进行探测,帮助水利部门进行水资源管理和规划,保障城市及农业用水需求。

•矿产资源勘探:通过刻意的激发源、观测线选点的选择,透过地表特定的负荷电流等方法,可在照明状况相同下,从地下找到某些特定矿产的含量等信息。

•土地利用规划:系统可用于动态监测地下管道和建筑物等结构体至设立的埋深水平、及时跟踪物质运移和稳滞域进程,实现土地利用规划的科学化和经济化。

•隧道、地铁及其他工程钻探:对于排列较密、位置相近难以保证钻探施工安全的工程钻井,ATEM能够在一定范围内将被测量目标高度度量出来,从而对钻探的目标和步骤提供保障。

技术特点ATEM瞬变电磁测量系统具有以下技术特点:1.采样速度快:系统可以实现多通道数据采集,采样速度可达数百万个采样点每秒。

2.数据准确:ATEM系统可以实现高分辨率的振幅测量和高精度、高分辨率的时间同步测量,从而实现数据准确性。

3.信噪比高:系统设计了具有良好抗干扰的电路和软件算法,有效提高了信噪比。

煤矿瞬变电磁法的基本原理

煤矿瞬变电磁法的基本原理

煤矿瞬变电磁法的基本原理
煤矿瞬变电磁法是一种地球物理勘探技术,其基本原理是利用变化的电磁场在地下物质中引起的感应电流的变化来推断地下结构和地质特征。

瞬变电磁法的原理可以归结为以下几个步骤:
1. 发射电磁场:在地表上放置一个发射线圈,通过电流激发线圈产生变化的电磁场。

2. 感应电流产生:地下物质对电磁场的变化会产生感应电流。

地下物质的电导率和磁导率决定了感应电流的大小和分布。

3. 接收电磁信号:在地表上放置接收线圈,接收感应电流产生的变化信号。

4. 数据采集和处理:将接收到的信号传输到数据采集设备上,然后通过数学模型和计算方法对数据进行处理,将其转化为地下结构和电性特征的信息。

根据瞬变电磁法的原理,可以通过分析感应电流的变化来推断地下的物质性质和特征,如地层的厚度、电导率和磁导率等,进而对煤矿区域进行勘探和评估。

瞬变电磁(TEM)检测方法

瞬变电磁(TEM)检测方法

J 、 J 、 J 分别为管外介质、防腐层和管内介质的磁导率、电导率与介电常数; G、 G 为管体的磁导率与电导率。
2.数学模型 管道外介质的电导率和磁导率远远小于金属管道的电导率和磁导率, 利用瞬 变电磁响应的时间可分性, 实际检测中可以在恰当的时窗范围内只考虑金属管道 与管内介质的响应。此外,将金属管道及其管内介质作为一个外径相同的等效柱 体来考虑,在管外观测时二者所产生的瞬变电磁响应相同。等效柱体与金属管道 及其管内介质之间的参数关系如下:
6
位置的分布情况,确定检测间距,一般情况下应当采用基本检测点距基础上适当 加密的措施,必要时可进行全覆盖(点距不大于被检管道埋深的 2 倍)检测。 B. 对于根据管道日常管理中汇集的管道穿孔及泄漏、介质腐蚀性等数据判 断可能发生腐蚀较严重的管段,可按 25m~50m 基本点距基础上适当加密的方式 布设测点。防腐(保温)层破损、缺陷点及其两侧、阴极保护失效部位、杂散干 扰显著地段及怀疑发生腐蚀的管段应布置加密检测点。弯头或接头两侧、土壤介 质明显变化处、 环境因素明显分界处、 第三方破坏频发处可适当布置加密检测点。 C. 也可以根据管道运行方要求进行抽检。 抽检时需考虑检测位置的代表性, 一般应布置在根据管壁腐蚀影响因素、 维修历史/记录和其他任何管壁腐蚀/破裂 历史等资料所分析的腐蚀可能性较大的管段位置上。 检测点位置测量:瞬变电磁(TEM)检测设计中还应包含定位测量的内容, 具体方法可根据管道运行方对定位测量精度的要求按相关标准确定。 2.现场检测作业 (1) 操作数据采集器 无论使用 GBH-1 或者使用其他脉冲瞬变电磁仪采集数据时, 要按照相应说明 书中规定的步骤操作仪器和附属设备。 (2) 实地布设检测点 根据实地情况布设测点,必要时可适当调整,要避免布置在靠近强干扰源、 强磁场、有金属干扰物的地方。观测前,应首先校对测点号是否正确,随即作好 现场记录,对干扰、周围地物以及必要的点位移动情况要详细记录。 (3) 安放发射-接收回线 在已确定的观测点上安放发射-接收回线使其平面接近水平,回线中心偏离

瞬变电磁法在铁矿采空区勘查中的应用

瞬变电磁法在铁矿采空区勘查中的应用

瞬变电磁法在铁矿采空区勘查中的应用概述瞬变电磁法是一种地球物理勘探方法,通过记录地下储层对电磁场的响应,来获取地下电性参数的方法。

在铁矿勘查中,由于采空区和开采导致的地下结构变化,传统的地球物理勘探方法往往无法满足勘查的需求。

而瞬变电磁法正是针对这一问题而发展起来的一种新型勘探技术,具有高分辨率、深部探测能力强等优点,在铁矿采空区勘查中有着广泛的应用价值。

瞬变电磁法原理瞬变电磁法是通过人工产生的瞬时电磁场来探测地下储层的电性结构。

其原理是首先在地表布置发射线圈,通过交变电流激发地下的电磁场;然后在被测区域布置接收线圈,接收地下储层对电磁场的响应。

根据接收到的信号,利用数学方法和电磁理论,可以反演地下储层的电性参数,从而获取地下结构信息。

瞬变电磁法在铁矿采空区勘查中的应用1. 铁矿采空区地下结构复杂铁矿采空区是指矿体被开采后形成的洞穴或空间,地下结构非常复杂。

通常情况下,地质勘查难以穿透采空区进行探测,使得矿床的储量和分布情况无法准确确定。

而瞬变电磁法能够在采空区进行深部探测,获取采空区下方地层的电性参数,为铁矿勘查提供关键的信息。

2. 高分辨率优势与传统的地球物理勘探方法相比,瞬变电磁法具有更高的分辨率。

由于采空区下方往往存在纷繁复杂的地质构造,高分辨率的探测能力可以有效地识别不同类型的地层和岩石,帮助勘查人员准确判断铁矿矿床的储量和分布情况。

3. 深部探测能力由于采空区下方的地质构造往往较为复杂,而且深度较大,因此需要具有强大的深部探测能力。

瞬变电磁法在铁矿采空区勘查中能够深入到几十到几百米的深度范围内进行探测,可以有效地获取采空区下方的地质构造信息,为铁矿勘查提供必要的数据支撑。

4. 实际案例瞬变电磁法在铁矿采空区勘查中已经取得了一些成功的应用案例。

例如在某铁矿的采空区勘查中,使用瞬变电磁法成功识别了采空区下方的高电阻率带和低电阻率带,为确定铁矿矿体的延伸方向和未来的矿床开发提供了重要的指导,取得了良好的勘查效果。

瞬变电磁原理、仪器及应用

瞬变电磁原理、仪器及应用

瞬变电磁原理、仪器及应用第1章绪论 (1)1.1 瞬变电磁法发展概况 (1)1.2 瞬变电磁探测方法的特点及应用领域 (2)第2章瞬变电磁法探测原理 (4)第3章ATEM-II瞬变电磁探测系统 (7)3.1 ATEM-II瞬变电磁发射机 (7)3.2 ATEM-II瞬变电磁接收机 (10)第4章瞬变电磁响应分析 (17)4.1各向同性水平层状大地上回线源的瞬变电磁响应 (17)4.2均匀大地表面上大回线源在地表形成的瞬变电磁场 (17)4.3中心回线下的隐伏球体的响应特征 (18)4.4中心回线下的隐伏无限延伸的水平圆柱体的响应特征 (20)4.5导电围岩中的局部导体瞬变电磁响应 (20)第5章瞬变电磁野外工作方法 (22)5.1 回线组合选择 (22)5.2 发射电流的选择 (24)5.3 发射脉冲宽度的选择 (26)5.4 关断时间的影响 (26)5.5 发射边长的选择 (28)5.5 接收最早取样时间的选择 (29)5.7 接收线圈的频率选择 (30)第6章瞬变电磁探测的数据处理与成图 (31)6.1数据质量判别 (31)6.2 数据处理 (33)6.2.1 平滑滤波 (33)6.2.2 近似对数等间隔取样 (34)6.3 基于“烟圈”理论的一维快速反演 (37)6.4 数据成图 (40)第7章 ATEM系统野外应用 (42)7.1 长春秦家屯模型验证研究 (42)7.2 长春伊通河活断层勘察研究 (44)7.3 内蒙正镶白旗水源勘察 (45)7.4 安徽铜陵矿山接替资源勘探 (49)7.5 浙江舟山连岛工程探测 (52)第1章绪论1.1 瞬变电磁法发展概况在1933年,美国科学家L.W.Blan最早提出利用电流脉冲激发供电偶极形成时间域电磁场,采用电偶极测量电场,并命名为“Eltran”法,于当年获得美国发明专利,该方法提出后美国石油公司做了很多野外实验,希望得到类似地震反射法的结果。

但由于脉冲激发的瞬变电磁响应频率较低,在沉积盆地难以得到能识别的分辨率,使得“Eltran”法的幻想破灭。

试谈瞬变电磁法的应用

试谈瞬变电磁法的应用

试谈瞬变电磁法的应用一、瞬变电磁法的概述瞬变电磁法(简称TEM法)属于时间域电磁法,由于该方法是纯二次场测量,故与传统直流电法勘探相比较,具有对低阻异常体反映灵敏,勘探深度大,受地形影响小,工作效率高等优势。

瞬变电磁法开始只应用于金属矿勘探,上世纪90年代以后随着仪器的数字智能化发展,瞬变电磁法才开始应用于煤田水文探测中,如查明断层和陷落柱等构造的含导水性、地下采空区勘查、评价含水层富水性、结合水文钻孔预测矿井涌水量、矿井迎头超前探测等方面都取得了良好的效果。

地面瞬变电磁法多采用大定源回线装置,探测深度较大。

瞬变电磁法主要有:(1)地面动源类。

即发射系统和接收系统依点移动并观测记录结果,又可分为以下类型:同点类型:包括中心回线组合,同一回线组合,重叠回线组合。

该类型指发射回线的中心点与接收回线的中心点重合;分离回线类型:发射线圈与接收线圈相隔一段距离且同时移动;双回线类型:因使用步骤繁琐,使用效果不明显,故此方法极少使用,在此不做赘述。

(2)地面定源类。

不移动发射源,只移动接收线圈,并观测记录结果,又可分为以下类型:(大定源组合:发射回线边长一般较长;偶极定源组合:发射回线边长较小。

(3)地一井类。

发射回线在地面敷设,在井中逐点移动探头进行观测,可以在地面开孔,也可以是在坑道中开孔。

二、瞬变电磁法的特点及野外工作的要求2.1瞬变电磁法的特点瞬变电磁法能够在脉冲间隙中进行测量,这主要和这种方法不容易受到其他物质和磁场的干扰有关。

在使用这种方法的过程中,不同的脉冲强度是由不同的频率所合成的,这就使得脉冲在相同的时间场中有着不同的传播速度,勘察的深度也会不一样。

下面我们就具体的谈一下这种方法在空间和时间上的可分性特征。

(1)在提高煤炭資源勘察精确度的方法中,频率域法主要是通过提高自身精确度来实现的,但是瞬变电磁阀则是通过提高自身的灵敏度来实现,并成功的实现了提高精确度向提高灵敏度方面的转变。

(2)由于采空区的围岩区域地形差异比较大,所以如果采用原始的勘测方法,就容易受到地形的倾向而降低精确度,如果采用瞬变电磁法则能够避免这一问题。

瞬变电磁法资料

瞬变电磁法资料

第1章概述瞬变电磁法,是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法。

其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减。

1、原理瞬变电磁法(Transient Electromagnetic Method)也称时间域电磁法(Time domain electromagnetic methods),简称TEM,它是利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场间歇期间,利用线圈或接地电极观测二次涡流场的方法。

它是建立在电磁感应原理基础上的时间域人工源电磁探测方法。

它利用不接地回线或接地线源向地下发送一次脉冲磁场,在其激发下,地下地质体中产生的感应涡流将产生随时间变化的感应电磁场。

该信号和地下地质结构的电性特征有着直接的关系。

通过研究瞬变场随时间的变化规律,从而达到解决地质问题的目的。

其工作原理见图1。

其衰减过程一般分为早、中和晚期。

早期的电磁场相当于频率域中的高频成分,衰减快,趋肤深度小;而晚期成分则相当于频率域中的低频成分,衰减慢,趋肤深度大。

通过测量断电后各个时间段的二次场随时间变化规律,可得到不同深度的地电特征。

瞬变电磁法是在没有一次场背景情况下观测研究二次场,简化了对探测目标产生异常的研究。

该方法以其装置轻便、受旁侧影响小、高工效、低成本等特点已被广泛用于金属矿和煤田地质勘探、工程物探、地下水与地热勘探、采空区与岩溶发育带探测及环境灾害地质调查研究等诸多领域。

由于方法本身的属性,不宜在高压超高压输变电线路、铁路等强干扰源附近采集资料,这也为相关规范、技术规程所规定。

2、优点瞬变电磁法探测具有如下优点⑴由于施工效率高,纯二次场观测以及对低阻体敏感,使得它在当前的煤田水文地质勘探中成为首选方法;⑵瞬变电磁法在高阻围岩中寻找低阻地质体是最灵敏的方法,且无地形影响;⑶采用同点组合观测,与探测目标有最佳耦合,异常响应强,形态简单,分辨能力强;⑷剖面测量和测深工作同时完成,提供更多有用信息。

瞬变电磁法在铁矿采空区勘查中的应用

瞬变电磁法在铁矿采空区勘查中的应用

瞬变电磁法在铁矿采空区勘查中的应用瞬变电磁法(Transient Electromagnetic,TEM)是一种地球物理勘探技术,它可以非侵入式地探测地下电导率分布,用于工程勘查、矿产勘查、环境地质勘查等领域。

在铁矿采空区勘查中,瞬变电磁法可以通过探测采空区的电导率变化来确定矿山的底部形态和大小,以及未采区域里的矿体分布情况。

本文将介绍瞬变电磁法在铁矿采空区勘查中的应用。

1. 瞬变电磁法原理瞬变电磁法利用时间变化的磁场激发地下感应电场,并测量电场响应,从而确定地下电导率分布。

瞬变电磁法仪器由一个发射线圈和一个接收线圈组成。

发射线圈通过电流激发磁场,瞬间改变电流方向,产生变化的磁场。

接收线圈测量这个变化磁场对地下物质的感应电场响应,这个响应信号被记录下来并处理成电场数据。

地下介质的电导率决定了电场信号的衰减速率,低电导率的区域会使电场信号衰减得更慢。

因此,瞬变电磁法可以通过测量地下电场响应来确定地下物质的电导率分布,进而推断地下各种物质的分布情况。

2. 应用案例针对铁矿采空区的特点和难点,瞬变电磁法可以通过以下3个方面在采空区勘查中发挥重要作用:确定采矿区域底部形态和大小、分析采空区漏斗区漏斗角度和深度、检测未采区域里的矿体分布情况。

(1)确定采矿区域底部形态和大小由于瞬变电磁法能够探测地下电导率的分布情况,因此可以通过在采空区内进行大量采集瞬变电磁法数据,确定采矿区域的底部形态和大小。

采用瞬变电磁法探测采空区,可以准确探测出采空区的底部形态和大小,避免了在采空区下进行钻探等传统勘探方法可能出现的安全问题和勘探难度较大的情况。

(2)分析采空区漏斗区漏斗角度和深度瞬变电磁法可以通过对采空区漏斗区进行测量,分析矿区漏斗区的形态和大小,根据漏斗区的建立和发育条件判断漏斗深度和漏斗倾角,从而推断矿区内矿体的分布情况。

这样一来,就可以有效提高采矿效率和采矿安全性。

(3)检测未采区域里的矿体分布情况瞬变电磁法也可以在采空区内检测未采区域里的矿体分布情况。

瞬变电磁原理与应用课件

瞬变电磁原理与应用课件

无损探测
瞬变电磁法是一种非接触式探 测方法,对地下目标进行无损 探测,不会破坏地质结构。
成本低
瞬变电磁法所需设备相对简单, 成本较低,便于推广应用。
瞬变电磁法的局限性
受地形影响较大
瞬变电磁法在复杂地形和地表覆盖地 区的应用受到一定限制,探测精度和 可靠性可能下降。
对高阻覆盖层穿透能力以探测深部目标。
对低阻目标敏感度低
瞬变电磁法对低阻目标体的敏感度较 低,可能难以识别和区分。
数据处理和解释难度较大
瞬变电磁法的数据处理和解释涉及到 多个参数和复杂的地球物理特征,需 要专业知识和经验。
瞬变电磁法的发展趋势与展望
智能化探测
多方法综合应用
随着人工智能和机器学习技术的发展,未 来瞬变电磁法有望实现智能化探测,提高 数据处理的自动化程度和精度。
瞬变电磁法的应用领域
矿产资源勘探
瞬变电磁法可以用于寻找金属矿、煤炭等矿产资源,通过测量和分析 二次磁场的变化,可以推断出矿体的位置和埋深等信息。
工程地质勘察
瞬变电磁法可以用于工程地质勘察,如公路、铁路、桥梁、建筑等工 程的场地勘察,了解场地地质构造和岩土性质等信息。
水文地质调查
瞬变电磁法可以用于水文地质调查,如地下水资源的勘探、地下水污 染的监测等,了解地下水的分布和流动规律等信息。
瞬变电磁法在矿产资源勘探中的应用
总结词
高效、准确
详细描述
瞬变电磁法在矿产资源勘探中应用广泛,通过测量地下介质的电性特征,能够高效准确地探测出矿产 资源的分布和储量,为矿产资源开发提供重要的技术支持。
瞬变电磁法在地下水勘探中的应用
总结词
快速、无损
详细描述
瞬变电磁法在地下水勘探中具有快速、 无损的优势,通过测量地下介质的电 导率变化,能够快速准确地确定地下 水的位置和储量,为地下水资源开发 提供重要的技术手段。

TEM瞬变电磁法简述

TEM瞬变电磁法简述

TEM瞬变电磁法简述瞬变电磁法或称时间域电磁法(Transient Electromagnetic Method,简称TEM),是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,以不接地回线(磁偶源)向被测地质体发射脉冲式电场作为场源(一次场)。

以此来激励地下介质的二次涡流场,并对二次场进行观测。

在发射脉冲的间隙利用接收回线(线圈)接收二次场,通过分析二次场随时间的变化特征,来获取地下介质的电性特征(电阻率),推断目标体的空间赋存位置、产状、埋深等信息。

图1瞬变电磁法原理图如图1所示,在地面布设发送回线,并给发送回线上供一个电流脉冲方波,在一次磁场的激励下,地质体将产生涡流,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。

该过渡过程又产生一个衰减的二次磁场向地表传播,在回线一定范围内接收回线接收二次磁场。

1.2 TEM如何实现测深在瞬变过程早期阶段,高频谐波占主导地位。

由于高频的趋肤效应,涡旋电流主要集中在导电介质的表层附近且阻碍电磁场向地质体深处传播。

所以早期阶段主要反映地质体断面上部地质信息。

随着时间的推移,高频成分被导电介质吸收,从而低频成分占主导地位。

它在导电地质体中激发出很强的涡旋电流。

然而由于热损耗,这些涡旋电流场很快就消失了。

在瞬变过程的晚期,局部地质体中的涡流实际上全部消失,而在各个地层中的涡流磁场之间连续的相互作用使场均匀化和使电流均匀分布,晚期场将依赖于断面的总纵向电导。

1.3 TEM如何探测地质体信息在发送一次脉冲磁场的间歇期间,观测由地质体受激励引起的涡流产生的随时间变化的感应二次场的强度。

地质体介质被激励所感应的二次涡流场的强弱决定于地质体介质所耦合的一次脉冲磁场磁力线的多少,即二次场的大小与地下介质的电性有关:(1)低阻地质体感应二次场衰减速度缓慢,二次场电压较大;(2)高阻地质体感应二次场衰减速度较快,二次场电压较小。

根据二次场衰减曲线的特征,就可以判断被测地质体的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号是二次涡流场的电动势(即二次电位),因此,瞬变电磁作为一种时间域的人工源地球物理电磁感应探测方法,是根据地质构造本身存在的物性差异来间接判断相关地质现象的一种有效的地质勘探手段。

瞬变电磁信号检测原理及仪器

瞬变电磁信号检测原理及仪器

瞬变电磁信号检测原理及仪器瞬变电磁信号检测原理本章主要阐述瞬变电磁信号的特点及主要的噪声源,结合这些特点简要阐明几种主要检测方法及原理。

1 瞬变电磁信号的特点1.1 信号的动态范围第3章中已提起,局部导电体上用接收线圈观测到的感应电压的时间特性决定于可见,其异常幅度及衰减速度很大程度上决定于导体的时间常数τ值。

对于良导电矿体而言,由于τ值较大,尽管初始响应的幅值并不很大,但衰减却相当慢,典型的衰减时问范围从100~200μS至10-20mS,并跨越近二个级次。

在测深工作中,时间范围决定于探测深度,探测n×10m至1Km的地电体,其时间范围需要n x 10μS到n×102ms左右,探测油气田构造时,探测深度达1-5Km,其时间范围为n ms至n x10s,所跨越的时间范围就更大。

在这么宽的时间范围内,信号衰减的规律如图6-1所示,在早期,信号幅值高而且衰变速度很快;在晚期的信号很弱,衰减速度却慢得多。

对于同一个观测点而言,从早期到晚期的信号幅值从n x 105μV变到0.n μV,如此大的动态范围内的信号一般都要求准确测定。

显然,并不是每一个测点都是如此,异常的幅值除了与τ值有关外,还与地质对象的规模产状埋深及观测点位置等几何因子有关。

1.2 对信号的分辨如图6-l所示,瞬变信号在早、中、晚期的衰变速度差别相当大。

为了在很宽的时间范围内围内不失真地准确确定瞬变衰减特性,除了在足够宽的时间范围内必须有足够的测道外,各测道之间的间隔及采样门宽(t g)应随测道不同而有所改变。

如图6-1所示,在早期,信号幅值高而且衰减速度快,因此采样时间间隔及门宽都必须相当窄才能保证足以精确地分辨信号的衰减特性;在晚期,采样间隔及门宽应增大,以适应弱信号慢衰变的特性。

l.3 信号的频带瞬变电磁方法实际上是宽频的电磁系统。

在理论上频谱可以无限延伸,其中包括了频域电磁方法的整个频带(n~n×104Kz)。

瞬变电磁:瞬变电磁仪器主要特点

瞬变电磁:瞬变电磁仪器主要特点

瞬变电磁:瞬变电磁仪器主要特点
什么是瞬变电磁?
瞬变电磁是一种用于探测地下物质的地球物理测试方法。

通过将高频电流通过
一个线圈中,产生一个瞬变电磁场,然后依靠地下物质对瞬变电磁场的影响进行检测和解释。

瞬变电磁观测方法具有非侵入性、非破坏性、高分辨率等特点,已广泛应用于
地下水资源、矿产资源、地下构造等方面的勘探和研究。

瞬变电磁仪器主要特点
高精度
瞬变电磁仪器具有高精度的特点,能够在地下数百米的深度检测到地下物质,
对浅层地下结构探测精度更高,可以达到亚米级别。

高速度
瞬变电磁仪器能够快速地进行测量和数据采集,可以在较短的时间内对较大范
围的地下结构进行探测和研究。

全自动化
瞬变电磁仪器为全自动化设计,操作简单,适用于不同场地和不同环境下的勘探,操作人员只需对仪器进行设定和启动,可以实现全自动化采集数据。

强抗干扰能力
瞬变电磁仪器具有强抗干扰的特点,可以在高电磁噪声和干扰环境下进行测量
和数据采集,确保数据的准确性和可靠性。

大数据处理能力
瞬变电磁仪器可以进行大数据的处理和分析,具有高效高精度的数据处理能力,可以帮助研究者更好地分析和解释地下结构的信息。

结语
瞬变电磁仪器的主要特点是高精度、高速度、全自动化、强抗干扰能力和大数
据处理能力,这些特点使得它成为一种高效、可靠、准确的地球物理测试方法。

瞬变电磁仪器的不断发展和升级,将会为地下勘探和研究带来更多的机会和挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瞬变电磁原理、仪器及应用第1章绪论 (1)1.1 瞬变电磁法发展概况 (1)1.2 瞬变电磁探测方法的特点及应用领域 (2)第2章瞬变电磁法探测原理 (4)第3章ATEM-II瞬变电磁探测系统 (7)3.1 ATEM-II瞬变电磁发射机 (7)3.2 ATEM-II瞬变电磁接收机 (10)第4章瞬变电磁响应分析 (17)4.1各向同性水平层状大地上回线源的瞬变电磁响应 (17)4.2均匀大地表面上大回线源在地表形成的瞬变电磁场 (17)4.3中心回线下的隐伏球体的响应特征 (18)4.4中心回线下的隐伏无限延伸的水平圆柱体的响应特征 (20)4.5导电围岩中的局部导体瞬变电磁响应 (20)第5章瞬变电磁野外工作方法 (22)5.1 回线组合选择 (22)5.2 发射电流的选择 (24)5.3 发射脉冲宽度的选择 (25)5.4 关断时间的影响 (26)5.5 发射边长的选择 (27)5.5 接收最早取样时间的选择 (29)5.7 接收线圈的频率选择 (30)第6章瞬变电磁探测的数据处理与成图 (31)6.1数据质量判别 (31)6.2 数据处理 (33)6.2.1 平滑滤波 (33)6.2.2 近似对数等间隔取样 (34)6.3 基于“烟圈”理论的一维快速反演 (37)6.4 数据成图 (40)第7章 ATEM系统野外应用 (42)7.1 长春秦家屯模型验证研究 (42)7.2 长春伊通河活断层勘察研究 (44)7.3 内蒙正镶白旗水源勘察 (45)7.4 安徽铜陵矿山接替资源勘探 (49)7.5 浙江舟山连岛工程探测 (52)第1章绪论1.1 瞬变电磁法发展概况在1933年,美国科学家L.W.Blan最早提出利用电流脉冲激发供电偶极形成时间域电磁场,采用电偶极测量电场,并命名为“Eltran”法,于当年获得美国发明专利,该方法提出后美国石油公司做了很多野外实验,希望得到类似地震反射法的结果。

但由于脉冲激发的瞬变电磁响应频率较低,在沉积盆地难以得到能识别的分辨率,使得“Eltran”法的幻想破灭。

在30年代末,前苏联的А.П.Краев提出将瞬变电磁信号应用于地质构造测深,在1946年,А.Н.Тихонов等人作了论证,此后由Л.Л.Ваянъян建立远区建场测深方法(ЗСД),它主要采用电偶源(通以方波的接地导线),在距源r处用接收线圈测垂直分量,了解磁场的建立过程,初期发射-接收距r≤(4~6)H,(H为高阻基底上部沉积岩的总厚度),这是一种以分析地层深度变化特征的方法,此法主要用于地震探测油田效果不理想的地区。

在西方,1951年首先由学者J.R.Wait提出利用瞬变电磁场法寻找导电矿体的概念。

60年代В.В.Тикшаев、В.А.Сидоров等人将发射-接收距改成r≤0.7H,建立近区建场测深方法(ЗСБ)。

在同时期,前苏联科学家Ю.В.Якубовский、В.К.Коваленик及Ф.М.Камецкий等人创立了应用于勘查金属矿产的过渡过程法(МПП)。

60年代以后,建场法和过渡过程法得到更广泛及成功的应用和发展,该方法步入实用阶段。

20世纪60年代前苏联在全国各个盆地进行普查,发现了奥伦堡地轴上的大油田。

60年代中期到70年代末这段时间,人们认识到时间域电磁测深法可以利用远远小于期望探测深度的收发距时,这种方法有了快速发展,随之如“短偏移”、“晚期”、“近区”这类方法迅速发展起来。

美国等西方国家在20世纪70~80年代,短偏移法一直处于实验和研究阶段,未被广泛应用,而长偏移法得到了应用,特别是在地热调查和地壳结构调查中。

比较有代表的学者:G.V.Keller,1977;Stemberg,1979。

随后,J.R.Wait,G.V.Keller,A.A.Kaufman 等科学家对瞬变电磁法一维正、反演计算及方法技术进行了大量研究。

20世纪80年代以后随着计算机技术的发展,在二三维正演模拟技术方面,G.W.Hohmem,A.P.Raiche,B.R.Spies,M.N.Nabighian等学者,发表了大量论文。

我国的瞬变电磁法研究起始于20世纪70年代初,较早开展这项工作的有原长春地质学院的朴化荣、曾孝箴、王延良等人,推出了均匀大地上空时间域电磁响应,并将脉冲式航电仪用于地质填图和找矿。

1977年地矿部物化探勘查研究所的蒋邦远等将脉冲电磁法用于勘探良导体金属矿。

1985年牛之琏将脉冲电磁法用于金属矿勘探,并取得了明显的效果。

随后中南工业大学、西安地质学院、北京矿产地质研究所、中国地质大学、中国有色金属工业总公司矿产地质研究院等单位进行研究。

通过国内学者的二十多年的努力,取得了一些有价值的研究成果和大量的应用实例,在理论和方法技术方面推动了TEM在我国的应用和发展。

仪器研制方面,专门用于时间域电磁法仪器:1953年出现第一专利,为Newmont 勘探公司申请,1962年Mclanghlin和Dolan研制出Newmont EMP-1型仪器,1964年EMP-1野外实验成功,1974年Crone公司推出偶极系统的商品仪器,1974年Newmont EMP正式用于野外,1977年CSIRO研制出SIROTEM-I,1972年Lamontagne研制出UTEM -1,1980年Geonics研制出EM-37,1996年EM-67等。

20世纪80年代末以后,多功能电法仪器相继问世,美国Zonge公司的GDP12、GDP16、GDP32,加拿大的V-5、V-6、V5-2000等。

我国从20世纪70年代开始研制的脉冲式航电仪用于野外实验研究,80年代地矿部物化探研究所的WDC系列瞬变电磁仪,西安物化探研究所的LC瞬变电磁仪,90年代中南工业大学的SD-2仪器,中国有色金属工业总公司的TEM-3S仪器,2001年,吉林大学研制的ATEM-II型瞬变电磁仪器系统。

1.2 瞬变电磁探测方法的特点及应用领域在发射电流脉冲间歇期间(断电)后,观测地下介质产生的感应二次场随时间的变化,既瞬变电磁响应,不存在一次场源的干扰,这称之为时间上的可分性。

从傅里叶变换可知,一个阶跃脉冲是由各种高频和低频谐波叠加而成,产生的激发场(一次场)是宽频带电磁波,其瞬变电磁响应不同延时观测的主要频率成分不同,相应时间的场在地层中的传播速度不同,探测深度也就不同,这称之为空间的可分性。

瞬变电磁法的特点就基于这两个可分性。

因此与频率域电磁法相比具有以下特点:1.断电后观测二次场,可以近区观测,减少旁测影响,增强电性分辨能力;2.可用加大功率的方法增强二次场信号,提高信噪比,从而加大勘探深度;3.在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩区,由于是多道观测早期道的地形影响也较易分辨;4.可以采用同点组合(重叠回线,中心回线)进行观测,使与探测目标的耦合最紧,取得的异常响应强,形态简单,分层能力强;5.线圈形状、方位或接发距要求相对不严格,测地工作简单,工效高;6.有穿透低阻覆盖的能力,探测深度大;7.由于测磁场,受静态位移影响小;8.通过多次脉冲激发,响应信号的重复观测叠加和空间域多次覆盖技术的应用,提高信噪比和观测精度;9.剖面测量与测深工作同时完成,提供了更多有用信息减少了多解性。

由于瞬变电磁法这些特点,近几年在国内外得到迅速发展。

伴随仪器的数字化和智能化,功率的增大,数学模型计算正反演的应用,解释水平的提高与经验的丰富,可以解决的地质问题不断扩大。

如:矿产资源勘探、构造探测、工程地质调查、环境调查与监测以及考古等。

特别需要指出的是近年来在找水、市政工程、土壤盐碱化和污染调查以及浅层石油构造填图都有良好效果的报导。

目前几乎涉及了地球物理探测的各个领域包括空中和海洋,可见已成为重要的地球物理探测方法技术之一。

第2章瞬变电磁法探测原理瞬变电磁法(Transient Electromagnetic Methods),又称时间域电磁法(Time Domain Electromagnetic Methods)简称TEM或TDEM。

是近年来发展很快的电法勘探分支方法,在国际上有人称作是电法的“二次革命”。

由于它是一种无损高分辨率电磁探测技术,而且不同于探地雷达,它利用探测的电导率数据成图,可提供解释出地下埋藏的金属物体及相关信息。

利用瞬变电磁信号进行地球物理探测,早在30年代就由前苏联科学家提出,50年代开始应用于矿藏勘探,在钻井、航空和海洋等领域取得了一些成果。

我国对瞬变电磁法的研究也十分重视,自80年代初开始分别在方法理论、仪器及野外试验方面已经做了大量工作。

瞬变电磁测量是利用不接地线圈 (或称回线 )向地下发射一次瞬变磁场, 通常是在发射线圈上供一个电流方波 ,可在地下产生稳定的磁场分布, 当电流方波关断后, 地球介质将产生涡流, 其大小取决于地球介质的导电程度。

该涡流不能立即消失, 它将有一个过渡过程, 过渡过程产生的磁场向地表传播, 在地表接收线圈把磁场的变化转化为感应电压的变化。

瞬变电磁法的测深原理 Nabighian(1979)又可以“烟圈”效应形象地加以阐明,如图2.1所示,地表接收的二次电磁场是地下感应涡流产生的,其涡流以等效电流环向下并向外扩散,形如“烟圈”。

随着时间的推移,“烟圈”的传播与分布将受到地下介质的影响,这样从“烟圈效应”的观点看,可得早期瞬变电磁场是近地表感应电流产生的,反映浅部电性分布;晚期瞬变电磁场主要是由深部的感应电流产生的,反映深部的电性分布。

因此,观测和研究大地瞬变电磁场随时间的变化规律,可以探测大地电性的垂向变化,这便是瞬变电磁测深的原理。

瞬变电磁法工作过程可以划分为发射、电磁感应和接收三部分。

当发射回线中的稳定电流突然切断后,根据电磁感应理论,发射回线中电流突然变化必将在其周围产生磁场、该磁场称为一次磁场。

一次磁场在周围传播过程中,如遇到地下良导电的地质体,将在其内部激发产生感应电流,又称涡流或二次电流(如图2.2所示)。

由于二次电流随时间变化,因而在其周围又产生新的磁场,称二次磁场。

由于良导电矿体内感应电流的热损耗,二次磁场大致按指数规律随时间衰减,如图2.3所示的瞬变磁场。

二次磁场主要来源于良导电矿体内的感应电流,因此它包含着与矿体有关的地质信息。

二次磁场通过接收回线来观测, 并对所观测的数据进行分析和处理,进而来解释地下矿体及相关物理参数。

图2.2瞬变电磁法工作原理示意图图2.3瞬变电磁法发射和接收波形示意图近年来,瞬变电磁法在国内外得到迅速发展,可以解决的地质问题范围不断扩大 ,目前几乎涉足了地球物理勘探的各个领域包括空中和海洋,并且取得了显著的效果,可见已经成为不可缺少的地球物理勘探方法之一。

而且其作为勘探地上溶洞、空洞、断层、地裂缝、地下水、有色金属矿、地层软弱带以及浅层至中深层的地电结构,比其它物探方法能取得更为理想的地质效果,在工程地球物理勘探方面不失为一种快捷、精细,先进并行之有效的方法。

相关文档
最新文档