初一下相交线与平行线题型复习(重难点+难题突破)
七年级下数学相交线与平行线专题总结(含答案)
一、知识点填空1. 2. 对顶角的性质可概括为:3. 互_______.4. 垂线的性质:⑴过一点5.6. 关系的一对角叫做在第三条直线的两侧,角叫做7. 的位置关系只有________8.9. 条直线平行.简单说成:角互补,那么.简单说成:条平行直线被第三条直线所截,内错角相等.简单说成:⑶两条平行直线被第三条直线所截,.简单说成:________________________________ .叫做_______.命题由________和_________两部分组成.______________________.命题常可以写成“如的形式,这时“如果”后接的部分是 ,“那_________. 如果题设成立,那么结论一定成立.像这样的___________.如果题设成立时,不能保证结论一定成立,像这样的___________.定理都是真命题._______.图形平移的方向不一定是水平的.___ ___.⑵新图形中的每一点,都是由原图形中的某一点移动后.连接各组对应点的线段_________________.,8,6,10,BC AC CB cm AC cm AB cm ⊥===那A 到BC 的距离是_____,点B 到AC 的距离是_______,B 两点的距离是_____,点C 到AB 的距离是________.b 、c 为平面上三条不同直线,若//,//a b b c ,则a 与c 的位置关系是;若,a b b c ⊥⊥,则a 与c 的位置关系是_________;若//a b ,b c ⊥,则a 与c 的位置关系是________.17. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠求∠COE 、∠AOE 、∠AOG 的度数.18. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与∠线,试判断OD 与OE 的位置关系,并说明理由.19. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2+∠E =∠BCE .1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.AB ∥CD ,∠1=∠2,试说明EP ∥FQ . AB ∥CD ,MEB =∠MFD ( ) 1=∠2,MEB -∠1=∠MFD -∠2, MEP =∠______.( )DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC 的大小;⑵∠PAG 的大小.ABC ∆,AD BC ⊥于D ,E 为AB 上EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠24. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 三:兴趣拓展平行线问题:平行线是我们日常生活中非常常见的图形.平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.例1 如图 1-18,直线a ∥b ,直线 AB 交 a 与 b 于 A ,B ,CA CB 平分∠ 2,求证:∠C=90°例2 如图1-21所示,AA 1∥BA 2求∠A 1=∠B 1+∠A 2.1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°, 求∠C .180°. 360°. 1-29所示.直线l 的同侧有三点A ,B ,C ,且AB ∥l ,BC ∥ A ,B ,C 三点在同一条直线上.1-30所示.∠1=∠2,∠D=90°,EF ⊥CD .求证:∠3=∠B .四,课后思考题1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG∠BEG和∠DEG.2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠DE∥BC.求∠EDC和∠BDC的度数.3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?4.证明:五边形内角和等于540°.5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF平分∠DEB.参考答案2.对顶角,对顶角相等3.垂直有且只有垂线段最短4.点5.同位角内错角同旁内角6.平行相交平行8.同位角相等两直线平行;内错角相等两同旁内角互补两直线平行.9.平行10.两直线平行同位角内错角相等;两直线平行同旁内角互补.11.命题题设结题设结论真命题假命题12.平行且相等13.6cm 8cm 10cm 4.8cm.14.平行平行28°118°59°16. OD⊥OE理由略17. 1(两直线DE∥CF(平行于同一直线的两条直线平行)2(两直线.18.⑴∵∠1=∠2,又∵∠2=∠3(对顶角相等),3∴a∥b(同位角相等两直线平行)⑵∵a∥b∴∠1=∠3(两直线)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19. 两直线MFQ FQ同位角相等两直线平行20..21.,AD BC FE BC⊥⊥90EFB ADB∴∠=∠=//EF AD∴23∴∠=∠//,31DG BA∴∠=∠1 2.∴∠=∠∠F.∵∠1=∠DGF(对顶角相等)又∠1=∠2∴∠DGF=∠2(同位角相等,两直线平行)∴∠DBA=∠C∵∠C=∠D∴∠DBA=∠D∴DF∥AC=∠F(两直线平行,内错角相等).三例1 如图 1-18,直线a∥b,直线 AB交 a与 b于 A,B,CA平分∠1,CB平分∠ 2,求证:∠C=90°分析由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=过C点作直线 l,使 l∥a(或 b)角转移.过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,1+∠2=180°(同侧内角互补).因为AC平分∠1,BC2,所以又∠3=∠,∠4=∠CBF(内错角相等),所以∠3+∠4=∠CAE+∠CBF即“两条b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠C=90°,问直线a与直线b是否一定平行?”(将条件与结论交换位置),因此,不1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.分析本题对∠A1,∠A2,∠B1案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠是零,即∠A1+∠A2=∠B1.①一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1证过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图示)因为AA1∥BA2,所以B1E∥BA2.从而∠1=∠A1,∠2=∠A2(所以∠B1=∠1+∠2=∠A1+∠A2,即∠A1-∠B1+∠A2=0.说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2A1,A2两点之间的折线段的数目无关,如图1-23所示.连接间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有∠A1+∠A2+∠A3=∠B1+∠B2.(即那些向右凸出的角的和=向左凸的角的和)即∠A1-∠B1+∠A2-∠B2+∠A3=0.A1-∠B1+∠A2-∠B2+…-∠B n-1+∠A n=0.A1,A n之间的折线段共有n段A1B1,B1A2,…,B n-1A n(当然,仍1∥BA n).有些简单的问题,如果抓住了问那么,在本质不变的情况下,可以将问题推广到复杂的情况.1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?1-25所示.若A1+∠A2+…+∠A n=∠B1+∠B2+…+∠B n-1,问AA1与BA n是否平行?这两个问题请同学加以思考.例3 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .分析 或∠AFB .若能将∠1,∠2,∠C 过的了,过F 点作BC 的平行线恰能实现这个目标. 解 过F 到 FG ∥CB ,交 AB 于G ,则∠C=∠AFG(同位角相等), ∠2=∠BFG(内错角相等).因为 AE ∥BD ,所以∠1=∠BFA(内错角相等),所以∠C=∠AFG=∠BFA -∠BFG=∠1-∠2=3∠2-∠2=2∠2=50°. 说明(1)运用平行线的性质,将角集中到适当位置,线)的常用技巧.(2)便的解法:∠1=∠DFC=∠C+∠2,即∠C=∠1-∠2=2∠2=50°.180°.180°.若能运用平行线的性质,将三角形三个内角集中 下面方法是最简单的1-27所示,在△ABC 中,过A 引l ∥BC ,则∠B=∠1,∠C=∠2(内错角相等).显然 ∠1+∠BAC+∠2=平角, 所以 ∠A+∠B+∠C=180°.或干脆不在三角形的边上的其他任360°.3类似的方法,添加适当的平行线,将这四个角“聚合”在添加平行线中,尽可能利用原来的证 如图1-28所示,四边形ABCD 中,过顶点B 引BE ∥AD ,并延长 AB ,CB 到 H ,G .则有∠A=∠2(同位角相等),∠D=∠相等),∠1=∠3(同位角相等).∠C=∠4(同位角相等),又 ∠B)=∠GBH(对顶角相等).由于∠2+∠3+∠4+∠GBH=360∠A+∠B+∠C+∠D=360°.说明(1)同例3不变.(2)总结例3、例4广:三角形内角和=180°=(3-2)×180°, 四边形内角和=360°=2×180°=(4-2)×180°. 人们不禁会猜想:五边形内角和=(5-2)×180°=540°,…………………………n 边形内角和=(n -2)×180°.这个猜想是正确的,它们的证明在学过三角形内角和之后,简单.(3)是发展人的思维能力的一种重要方法.例6 如图1-29所示.直线l 的同侧有三点A ,B ,C ,且AB l .求证: A ,B ,C 三点在同一条直线上.B ,C 三点在同一条直线上可以理解为∠ABC 为平角,即只要证与BC 所夹的角为180°即可,考虑到以直线l 上任意一点为结合所给平B 作与l 相交的直线,就可将l 上的平角转换到顶点B 处. BD ,交l 于D .因为AB ∥l ,CB ∥l ,所以,∠2=∠CBD(内错角相等).2=180°,所以∠ABD+∠CBD=180°,°=平角.A ,B ,C 三点共线.思考 若将问题加以推广:n 个点A1,A2,…,An -1,An ,且有AiAi+1∥l(i=1,2,…,1-30所示.∠1=∠2,∠D=90°,EF ⊥CD .求证:∠3=∠B .分析如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC ∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.证因为∠1=∠2,所以AD∥BC(内错角相等,两直线平行).因为∠D=90°及EF⊥CD,所以AD∥EF(同位角相等,两直线平行).所以 BC∥EF(平行公理),所以∠3=∠B(两直线平行,同位角相等).。
专题 相交线与平行线章末重难点题型(举一反三)(北师大版)
专题相交线与平行线章末重难点题型【北师大版】【考点1 点到直线的距离】【方法点拨】从直线外一点到直线的垂线段的长度,叫做点到直线的距离。
【例1】(2019春•厦门期末)如图,三角形ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法错误..的是()A.点A到直线BC的距离为线段AB的长度B.点A到直线CD的距离为线段AD的长度C.点B到直线AC的距离为线段BC的长度D.点C到直线AB的距离为线段CD的长度【变式1-1】(2019春•雨花区期末)如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中正确的是()①BC与AC互相垂直;②AC与CD互相垂直;③点A到BC的垂线段是线段BC;④点C到AB的垂线段是线段CD;⑤线段BC是点B到AC的距离;⑥线段AC的长度是点A到BC的距离.A .①④③⑥B .①④⑥C .②③D .①④【变式1-2】(2019春•娄星区期末)如图所示,点A 到BC 所在的直线的距离是指图中线段( )的长度.A .ACB .AFC .BD D .CE【变式1-3】(2019春•天河区校级月考)如图,AC ⊥BC ,CD ⊥AB ,下列结论中,正确的结论有( ) ①线段CD 的长度是C 点到AB 的距离;②线段AC 是A 点到BC 的距离;③AB >AC >CD ;④线段BC 是B 到AC 的距离;⑤CD <BC <AB .A .2个B .3个C .4个D .5个【考点2 相交线的交点问题】【方法点拨】3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,n 条直线相交,最多有1+2+3+…+(n ﹣1)=21n (n ﹣1)个交点. 【例2】(2019秋•旌阳区校级月考)在同一平面内的n 条直线两两相交,最多共有36个交点,则n =( )A .7B .8C .9D .10【变式2-1】(2019秋•鄄城县期末)两条直线最多有一个交点,三条直线最多有三个交点,四条直线最多有6个交点,……,那么7条直线最多( )A .28个交点B .24个交点C .21个交点D .15个交点【变式2-2】(2019春•沙坪坝区校级月考)同一平面内两两相交的四条直线,最多有m 个交点,最少有n 个交点,那么m n 是( )A.1B.6C.8D.4【变式2-3】(2019秋•江阴市校级月考)观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,最多有一个交点;三条直线相交,最多有三个交点;四条直线相交,最多有6个交点,像这样,11条直线相交,最多交点的个数是()A.40个B.50个C.55个D.66个【考点3 同位角、内错角、同旁内角的判断】【方法点拨】直线AB,CD被第三条直线EF所截。
新版七下数学第五章相交线与平行线复习题五套
第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
初一下相交线与平行线题型复习(重难点+难题突破)
初一下相交线与平行线题型复习(重难点+难题突破)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN相交线及平行线复习1. 如图所示, ∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2. 如图所示,已知直线AB , CD 相交于O , OA 平分∠EOC ,∠EOC =70°, 则∠BOD =•______.3. 如图所示, 直线AB ,CD 相交于点O , 已知∠AOC =70°, OE 把∠BOD 分成两部分,• 且∠BOE :∠EOD =2:3, 则∠EOD =________.4.如图所示, 直线a ,b ,c 两两相交, ∠1=2∠3, ∠2=65°, 求∠4的度数。
5. 如图所示,∠AOB =∠COD =90°,则下列叙述中正确的是( )A.∠AOC =∠AODB.∠AOD =∠BODC.∠AOC =∠BODD.以上 【练习】1、下列语句正确的是( ).A 、相等的角是对顶角B 、相等的两个角是邻补角C 、对顶角相等D 、邻补角不一定互补,但可能相等 2、下列语句错误的有( )个.(1)两个角的两边分别在同一条直线上,这两个角互为对顶角 (2)有公共顶点并且相等的两个角是对顶角OE D CBA OE DCBAcba3412(3)如果两个角相等,那么这两个角互补 (4)如果两个角不相等,那么这两个角不是对顶角A 、1B 、2C 、3D 、4 3、如果两个角的平分线相交成90°的角,那么这两个角一定是( ).A 、对顶角B 、互补的两个角C 、互为邻补角D 、以上答案都不对 4、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是( ).A 、对顶角B 、相等但不是对顶角C 、邻补角D 、互补但不是邻补角 5、下列说法正确的是( ).A 、有公共顶点的两个角是对顶角B 、两条直线相交所成的两个角是对顶角C 、有公共顶点且有一条公共边的两个角是邻补角D 、两条直线相交所成的无公共边的两个角是对顶角6、如图1所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段 7、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个8、点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线m 的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm9.则下列结论:垂足为如图,,,,90D BC AD BAC ⊥︒=∠ (1)点C 到AB 的垂线段是线段AB ; (2)点A 到BC 的距离是线段AD; (3)线段AB 的长度是点B 到AC 的距离; (4)线段BC 的长度是点B 到AC 的距离。
北师大版七年级下册数学[《相交线与平行线》全章复习与巩固(基础)知识点整理及重点题型梳理]
北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习《相交线与平行线》全章复习与巩固(基础)知识讲解【学习目标】1.熟练掌握对顶角,余角,补角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解尺规作图的概念,熟练掌握用尺规作角或线段的方法.【知识网络】【要点梳理】要点一、两条直线的位置关系1.同一平面内两条直线的位置关系:相交与平行要点诠释:(1)只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.(2)在同一平面内不相交的两条直线叫做平行线.平行用符号“∥”表示.2.对顶角、补角、余角(1)定义:①由两条直线相交构成的四个角中,有公共顶点且两边互为反向延长线的两个角叫做对顶角.②如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.(2)性质:同角或等角的余角相等.同角或等角的补角相等.对顶角相等.3.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、用尺规作线段和角1.用尺规作线段(1)用尺规作一条线段等于已知线段.(2)用尺规作一条线段等于已知线段的倍数.(3)用尺规作一条线段等于已知线段的和.(4)用尺规作一条线段等于已知线段的差.2.用尺规作角(1)用尺规作一个角等于已知角.(2)用尺规作一个角等于已知角的倍数.(3)用尺规作一个角等于已知角的和.(4)用尺规作一个角等于已知角的差.【典型例题】类型一、两条直线的位置关系1.如图,直线AB、CD、EF相交于点O,那么互为对顶角(平角除外)的角共有对,它们分别是,共有对邻补角.【思路点拨】根据邻补角定义和对顶角定义,每一个顶点处有四个角,可以组成四对邻补角和两对对顶角,而本题图形中,三个顶点重叠在一起,所以再乘以3即可.【答案】6,∠AOC与∠BOD,∠AOF与∠BOE,∠COF与∠DOE, ∠BOC与∠AOD,∠BOF与∠AOE, ∠DOF与∠COE ,12.【解析】找对顶角或邻补角,先从某一个角开始,顺时针或逆时针旋转,这样做,既不漏也不重.【总结升华】两条直线相交得到的四个角中,共有2对对顶角,4对邻补角.举一反三:【变式】如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.【答案】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角.因为∠AOD+∠BOD=180º(平角定义),∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠B OC的补角有两个:∠BOD和∠AOC.而∠BOC的邻补角只有一个∠AOC,且∠BOC没有对顶角.2.已知:如图,直线a、b、c两两相交,且a⊥b,∠1=2∠3,,求∠4的度数.【答案与解析】解:∵a⊥b,∴∠2=∠1=90°.又∵∠1=2∠3,∴90°=2∠3,∴∠3=45°,又∠3与∠4互为邻补角,所以∠3+∠4=180°即45°+∠4=180°.所以∠4=135°.【总结升华】涉及到角的运算时,充分利用已知条件和隐含条件(平角、余角、补角、对顶角等)是解题的关键.类型二、平行线的性质与判定3.如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整:因为EF∥AD,所以∠2= ()又因为∠1=∠2,所以∠1=∠3所以AB∥()所以∠BA C+ =180°()因为∠BAC=70°,所以∠AGD= .【答案】∠3,两直线平行,同位角相等;DG,内错角相等,两直线平行;∠AGD,两直线平行,同旁内角互补;110°.【解析】首先由已知EF∥AD根据两直线平行同位角相等可得∠2=∠3,再由∠1=∠2,利用等量代换可得∠1=∠3,根据内错角相等,两直线平行可得AB∥DG,再根据两直线平行同旁内角互补可得∠BAC+∠AGD=180°,进而得到答案.【总结升华】本题主要考查的是平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.此外注意证明题规范的书写格式.举一反三:【变式】如图,已知∠ADE=∠B,∠1=∠2,那么CD∥FG吗?并说明理由.【答案】解:平行,理由如下:因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),所以∠1=∠BCD(两直线平行,内错角相等).又因为∠1=∠2(已知),所以∠BCD=∠2.所以CD∥FG(同位角相等,两直线平行).4.(2015春•杭州期末)如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【答案与解析】解:(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠AFM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠FA Q=∠AFM+∠FAQ=65°.∵AQ平分∠FAC,∴∠QAC=∠FA Q=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.【总结升华】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.类型三、用尺规作线段和角5. 在如图中,补充作图:(1)在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹);(2)CP与AB会平行吗?为什么?【思路点拨】(1)根据作一个角等于已知角的方法即可作出;(2)根据平行线的判定方法即可判断.【答案与解析】解:(1)作图如下:(2)会平行.用同位角相等,两直线平行.【总结升华】本题考查了基本作图:作一个角等于已知角,以及平行线的判定定理,正确掌握基本作图是关键.举一反三:【变式】(2014秋•娄底期中)尺规作图的画图工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规【答案】D提示:尺规作图的画图工具是没有刻度的直尺和圆规.类型四、实际应用6.如图,107国道a上有一个出口M,想在附近公路b旁建一个加油站,欲使通道最短,应沿怎样的线路施工?【答案与解析】解:如图,过点M作MN⊥b,垂足为N,欲使通道最短,应沿线路MN施工.【总结升华】灵活运用垂线段最短的性质是解答此类问题的关键.。
人教版七年级数学下册第五章相交线与平行线知识整理复习(含答案)
⼈教版七年级数学下册第五章相交线与平⾏线知识整理复习(含答案)七年级数学下册第五章知识整理知识梳理1.两个⾓有⼀条公共边,它们的另⼀条边互为反向延长线,具有这样位置关系的两个⾓,互为___________.2.两个⾓有⼀个公共顶点,并且⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,具有这种位置关系的⾓,互为___________.对顶⾓的性质:___________.3.垂直是相交的⼀种特殊情形,两条直线互相垂直,其中的⼀条直线叫做另⼀条直线的___________,它们的交点叫做___________。
4.在同⼀平⾯内,过⼀点有且只有___________直线与已知直线垂直。
5.连接直线外⼀点与直线上各点的所有线段中,___________最短,简单说成:___________。
6.直线外⼀点到这条直线的垂线段的长度,叫做___________。
7.如图,∠1和∠4,这两个⾓分别在直线AB,CD的同⼀⽅(上⽅),并且都在直线EF的同侧(右侧),具有这种位置关系的⼀对⾓叫做_______;∠2和∠4,这两个⾓都在直线AB,CD之间,并且分别在直线EF两侧,具有这种位置关系的⼀对⾓叫做_______;∠2和∠3也都在直线AB,CD之间,但它们在直线EF的同⼀旁,具有这种位置关系的⼀对⾓叫做_______;8.在同⼀平⾯内不相交的两条直线(a与b)互相_______,记作_______.9.平⾏线的基本事实(平⾏公理):经过直线外⼀点,有且只有_______直线与这条直线平⾏.10.如果两条直线都与第三条直线平⾏,那么这两条直线也_______.11.平⾏线的判定⽅法:(1)_______相等,两直线平⾏;(2)_______相等,两直线平⾏;(3)_______互补,两直线平⾏。
12.平⾏线的性质:(1)两直线平⾏,同位⾓_______;(2)两直线平⾏,内错⾓_______;(3)两直线平⾏,同旁内⾓_______.13.判断⼀件事情的语句,叫做_______.经过推理证实的真命题叫做_______.14.在很多情况下,⼀个命题的正确性需要经过推理才能作出判断,这个推理过程叫做_______.15.平移得到的新图形与原图形的形状和⼤⼩_______.知识反馈★知识点1;邻补⾓与对顶⾓1.下列说法正确的是( )A.和为180°的⾓为邻补⾓B和为180°的两个⾓为邻补⾓C,有公共顶点,和为90°的⾓为邻补⾓D.有公共顶点和⼀条公共边,它们的另⼀边互为反向廷长线的两个⾓为邻补⾓2.如图,∠1和∠2是对顶⾓的是( )3.如图,直线AB、CD相交于点O,若∠AOC=(3x+10°),∠BOC=(2x-10°),求∠AOD的度数.★知识点2:垂线与垂线段4.过直线AB外⼀点P画直线AB的垂线,则( )A.能画⽆数条B只能画2条 C.只能画1条 D.不能画成5.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有⼀部分同学画出下列四种图形,请你数⼀数,错误的个数为( )A.1个B.2个C.3个D.4个6.如图,在体育测试中,裁判员测量某同学的跳远成绩,在直线l上的A、B、C三点中,点________到沙坑中脚印点P的距离为该同学的成绩.7.如图,在三⾓形ABC中,∠BCA=90°,CD⊥AB,垂⾜为点D.线段AB,BC,CD的⼤⼩关系如何?并说明理由.★知识点3:同位⾓、内错⾓、同旁内⾓8.如图,下⾯说法中正确的是( )A.∠2和∠3是同位⾓B.∠3和∠4是同旁内⾓C,∠1和∠2是内错⾓ D.∠1和∠3是同旁内⾓9.如图所⽰,直线DE、BC被直线AB所截,∠1与∠4是_________,∠2与∠4是_________,∠1与∠2是_________,∠3与∠4是_________.★知识点4:平⾏线的定义及画法10.下列⽣活中的线是平⾏线的有( )①铁路上并排的两条铁轨;②上体育课时,双杠的两个横杠;③滑雪时两只雪撬滑动轨迹;④操场上的升旗杆与教室屋梁。
初一数学七下相交线与平行线所有知识点总结和常考题型练习题
相交线与平行线知识点⑵ 如果∠α与∠β是 对 顶角,则一定有∠α=∠β; 反之如果∠α = ∠β, 则∠α与∠β不一定是对顶角.⑶ 如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°; 反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑷ 两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
⑸ 两线四角:经过一点画m 条直线,共有m ( m-1) 对 对顶角,共有2m ( m-1) 对邻补角。
2、垂线定义: 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD ,垂足为O.垂直定义有以下两层含义: (1) ∵∠AO C=90°(已知), ∴AB ⊥CD (垂直的定义).(2) ∵AB ⊥CD (已知), ∴∠AOC =90°(垂直的定义).3、垂线性质: 性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
4、垂线的画法:过直线外一点画已知直线的垂线:以点P 为圆心,任意长为半径,画弧,交直线于两点(如图),分别以这两点为圆心,大于两点间距离的1/2长为半径,画弧,两弧交与一点.连接p 与该点,并延长与直线相交即可.5、垂线段的概念:由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
6、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7、正确理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近又相异的概念:⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。
⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。
⑶线段与距离:距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
相交线与平行线重点难点
相交线与平行线重难点知识点拨一.余角、补角、对顶角1,余角:如果两个角的和是直角,那么称这两个角互为余角.2,补角:如果两个角的和是平角,那么称这两个角互为补角.3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线.4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6,对顶角的性质:对顶角相等.二.同位角、内错角、同旁内角的认识及平行线的性质7,同一平面内两条直线的位置关系是:相交或平行.8,“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同位”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.三.平行线的性质与判定9,平行线的定义:在同一平面内,不相交的两条直线是平行线.10,平行公理:过直线外一点有且只有一条直线和已知直线平行.11,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.12,如果两条直线都与第三条直线平行,那么这两条直线互相平行. 13,平行线的判定定理:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.14,平行线的性质定理:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.难题巧解点拨例1求证三角形的内角和为180度.例2如图,AB、CD两相交直线与EF、MN两平行直线相交,试问一共可以得到同旁内角多少对例3已知:∠B+∠D+∠F=360o.求证:AB∥EF.AB C例4如图,∠1+∠2=∠BCD,求证AB∥D E.ABCED典型热点考题例1如图2—15,∠1=∠2,∠2+∠3=180°,AB∥CD吗AC∥BD 吗为什么例2 已知直线a、b、c在同一平面内,a∥b,a与c相交于p,那么b与c也一定相交.请说明理由.小试牛刀一、选择题1.图2—17中,同旁内角共有A .4对B .3对C .2对D .1对2、光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,光线的反射角等于入射角.若已知∠1=35°,∠3=75°,则∠2=A .50°B .55°C .66°D .65°3、如图3,把长方形纸片沿EF 折叠,使D ,C 分别落在D ',C '的位置,若65EFB =∠,则AED '∠等于A .50B .55C .60D .65第2题图 第3题图4.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么A .8角均相等B .只有这一对内错角相等C. 凡是内错角的两角都相等,凡是同位角的两角也相等 D .凡是内错角的两角都相等,凡是同位角的两角都不相等 5、如图,在ABC 中,已知AB=AC,点D 、E 分别在AC 、AB 上,且BD=BC,AD=DE=EB,那么A ∠的度数是 BA 、30°B 、45°C 、35°D 、60°6、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上CABDE平行前进,则这两次拐弯的角度可以是 A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐40° 7、已知:如图,AB A 、++=360 B 、++=180 C 、+-=180 D 、--=908、如图,把三角形纸片沿DE 折叠,当点A 落在四边形BCED 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是 . A ∠A =∠1+∠2 B2∠A =∠1+∠2 C3∠A =2∠1+∠2 D3∠A=2∠1十∠2 二、填空题1、用等腰直角三角板画45AOB =∠,并将三角板沿OB 方向平移到如图17所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______ 2、如图2—30,直线CD 、EF 相交于点A,则在∠1、∠2、∠3、∠4、∠B 和∠C 这6个角中.1同位角有______; 2内错角有______; 3同旁内角有_____.OM BA22α第1题图第2题图3、如图2—31,直线a、b被直线AB所截,且AB⊥BC,1∠1和∠2是_______角;2若∠1与∠2互补,则∠1-∠3=_______.4、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.三、解答题1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.2、在3×3的正方形ABCD的方格中,1+2+3+4+5+6+7+8+9之和是多少度解:3、已知:如图,CD 解:4、如图,哪些条件能判定直线AB ∥CD5、如图,已知DE 、BF 平分∠ADC 和∠ABC ,∠ABF =∠AED ,∠ADC =∠ABC ,由此可推得图中哪些线段平行并写出理由.6、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.1如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.14 32ADC B2在1中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.3由1、2,请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗7、潜望镜中的两个镜子MN 和PQ 是互相平行的,如图所示,光线AB 经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB 与射出的光线CD 平行吗为什么8、如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 1、求证BC EF // ; 2、求21∠∠与的度数P OFBEACQ2 1 321nmba。
七年级下册第二章相交线与平行线复习总结(全)
第二章 相交线与平行线考点一、余角与补角:1、 如果两个角的和是直角,称这两个角互为余角.2、 如果两个角的和是平角,称这两个角互为补角. 典型例题:例1:如图所示,点A 、O 、B 在一条直线上,OC 垂直于AB 垂足是O ,若∠1=∠2,则图互余、互补的角有哪些?3、性质:(1)同角或等角的余角相等;(2)同角或等角的补角相等。
例2:如图CD 垂直于AB ,且∠1=∠2. (1) 求∠DCF 与∠DCE 有什么关系,为什么? (2) 求∠BCF 与∠DCE 有什么关系,为什么?3、 两个角有公共顶点,且它们的两边互为反向延长线,这样的两个角叫做对顶角,对顶角的性质:对顶角相等。
例3:下面四个图形中,∠1与∠2是对顶角的图形的个数是( )12121212A .0B .1C .2D .3 例4:已知一个角的余角比它的补角的135还少4°求这个角。
例5:如图所示,三条直线AB 、CD 、EF 相交于点O ,∠AOF =3∠FOB ,∠AOC=90°,求∠EOC 的度数。
技巧总结:要注意什么是互补,什么是互余;同角的余角和补角相等;对应的课堂练习:一、填空题1.如图1,直线l1与l2相交,∠1=50°,则∠2=_________,∠3=_________.图1 图22.如图2,直线AB与CD相交于O点,且∠AOD=90°,则∠AOC=_________=_________ =_________=_________.3.如图3,若AO⊥CO,BO⊥DO,∠BOC=150°,则∠DOC=________,∠AOD=________.图3 图44.如图4,直线AB与CD相交于O,∠EOD=90°,正确填写下列两角关系的名称.∠1与∠2:______________________________________________________∠2与∠3:______________________________________________________∠2与∠4:______________________________________________________∠1与∠4:______________________________________________________三、选择题1.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对2.下面说法正确的个数为()①对顶角相等②相等的角是对顶角③若两个角不相等,则这两个角一定不是对顶角④若两个角不是对顶角,则这两个角不相等A.1个B.2个C.3个D.4个3.若∠1和∠2互余,∠2与∠3互余,∠1=40°,则∠3等于( ) A.40°B.130°C.50°D.140°4.如图,∠1和∠2是对顶角的图形有( )A.(1)(3)B.(2)(3)C.(3)D.(3)(4)一、判断题1.若∠1+∠2=90°,则∠1与∠2互余.( )2.若∠A 与∠B 互补,则∠A +∠B =180°.( )3.若∠1与∠2互补,∠2与∠3互补,则∠1与∠3互补.( )4.若∠AOB +∠BOC =180°,则点A 、O 、C 必在同一直线上.( )5.若∠α+∠β+∠γ=90°,则∠α、∠β、∠γ互余.( ) 四、解答题1.如图,AO ⊥BO ,直线CD 经过点O ,∠AOC =30°,求∠BOD 的度数.考点二、探索直线平行的条件同位角的特征:(1)在被截两直线的同旁;(2)在截线的两旁 内错角的特征:(1)在被截两直线之间;(2)在截线的两旁 同旁内角的特征:(1)在被截两直线之间;(2)在截线的同旁 例1:如图,写出图中的同位角、内错角和同旁内角。
掌握初一数学:重难点题型全面解析
掌握初一数学:重难点题型全面解析引言初一下册数学内容丰富,涵盖了相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组等多个重要知识点。
本文将对这些重难点题型进行详细解析,帮助学生更好地掌握初一数学。
一、相交线和平行线1.重难点解析:平行线的性质:平行线的性质是初中数学的重要内容,常以选择题和填空题形式出现。
1.例题:已知两条平行线被第三条直线所截,求对应角、内错角和同位角的关系。
2.解析:利用平行线的性质,找出对应角、内错角和同位角的相等关系。
2.平行线的判别方法:掌握平行线的判别方法是解题的关键。
1.例题:给出几组角度,判断哪些角度可以判定两条直线平行。
2.解析:根据平行线的判别方法,判断角度关系是否满足平行条件。
二、实数1.重难点解析:实数的概念和运算:实数的概念和运算是基础内容,常以计算题形式出现。
1.例题:计算给定实数的加减乘除。
2.解析:熟练掌握实数的运算规则,进行正确计算。
2.实数的分类:了解实数的分类及其性质。
1.例题:将给定的数分类为有理数或无理数。
2.解析:根据实数的定义和性质进行分类。
三、平面直角坐标系1.重难点解析:坐标系的基本概念:掌握平面直角坐标系的基本概念和应用。
1.例题:在坐标平面上标出给定点的坐标。
2.解析:理解坐标系的构成,正确标出点的位置。
2.函数图像的绘制:学会绘制简单函数的图像。
1.1.例题:绘制一次函数的图像。
2.解析:根据函数的解析式,确定函数图像的形状和位置。
四、二元一次方程组1.重难点解析:方程组的解法:掌握解二元一次方程组的方法,如代入法和加减法。
1.例题:解给定的二元一次方程组。
2.解析:选择合适的方法,逐步求解方程组。
2.应用题的解法:将实际问题转化为二元一次方程组进行求解。
1.例题:根据题意列出二元一次方程组并求解。
2.解析:理解题意,正确列出方程组并求解。
五、不等式和不等式组1.重难点解析:不等式的解法:掌握一元一次不等式和不等式组的解法。
人教版七年级数学下册第五章相交线与平行线 重难点突破
重难点突破重难点1与相交线有关的角度计算【例1】如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF 平分∠AOE.(1)判断OF与OD的位置关系;(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.【思路点拨】(1)根据∠DOE=∠BOD,OF平分∠AOE,求得∠FOD =90°,从而判断OF与OD的位置关系.(2)根据∠AOC,∠AOD的度数比以及邻补角的性质,求得∠AOC.然后利用对顶角性质得∠BOD的度数,从而得∠EOD的度数.最后利用∠FOD=90°,求得∠EOF的度数.:求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.1.如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O.已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°2.如图,已知直线AB与CD交于点O,ON平分∠DOB.若∠BOC=110°,则∠DON为____________.3.如图,直线AB,CD相交于点O,已知∠AOC=70°,OE把∠BOD 分成两部分,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.重难点2平行线的性质与判定【例2】如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【思路点拨】首先根据“同位角相等,两直线平行”可得a∥b,再根据平行线的性质可得∠3=∠5,最后根据邻补角互补可得∠4的度数.此类题目一般会综合考查平行线的性质与判定,即“由形推角”或“由角判形”,所以解决时要明确条件和结论,不要产生混淆,性质是由“形”得到“角”,判定是由“角”得到“形”.4.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°5.(2016·柳州期末)如图,a∥b,∠1=30°,则∠2=____________.6.已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于点H,问AB与CD是否垂直?并说明理由.重难点3平移【例3】如图,四边形ABCD向右平移一段距离后得到四边形A′B′C′D′.(1)四边形ABCD与四边形A′B′C′D′的形状、大小相同吗?(2)找出图中存在的平行且相等的四条线段;(3)找出图中存在的四组相等的角.本题考查平移的基本性质:(1)平移不改变图形的形状和大小;(2)经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC 沿CB方向向右平移得到三角形DEF.若平移距离为2,则四边形ABED 的面积等于____________.备考集训一、选择题(每小题3分,共30分)1.如图,直线AB,CD被直线EF所截,则∠3的同旁内角是()A.∠1B.∠2C.∠4D.∠52.下面四个图形中,∠1=∠2一定成立的是()A B C D3.将左边的图案通过平移后可以得到的图案是()4.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是()A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定5.如图,梯子的各条横档互相平行.若∠1=80°,则∠2的度数是()A.80°B.100°C.110°D.120°6.(2017·钦州期末)下列命题中,是真命题的是()A.相等的两个角是对顶角B.有公共顶点的两个角是对顶角C.一条直线只有一条垂线D.在同一平面内,过直线外一点有且只有一条直线垂直于已知直线7.以下关于距离的几种说法中,正确的有()①连接两点间的线段长度叫做这两点的距离;②连接直线外的点和直线上的点的线段叫做点到直线的距离;③从直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.1个B.2个C.3个D.4个8.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°9.(2017·钦州钦北区期末)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥CD的条件有()A.1个B.2个C.3个D.4个10.(2017·钦州钦南区期末)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠3=180°B.∠1+∠2=∠3C.∠2+∠3+∠1=180°D.∠2+∠3-∠1=180°二、填空题11.(2017·钦州钦南区期末)把命题“对顶角相等”改写成“如果……那么……”的形式:______________________________________.12.(2017·柳州)如图,AB∥CD,若∠1=60°,则∠2=____________.13.将线段AB平移1cm,得到线段A′B′,则点A到点A′的距离是____________.14.(1)如图1,村庄A到公路BC最短的距离是AD,根据是________________;(2)如图2,建筑工人常在一根细绳上拴上一个重物,做成一个“铅锤”,挂铅锤的线总垂直于地面内的任何直线,当这条线贴近墙壁时,说明墙与地面垂直,请说出它的根据是__________________________________________.图1图215.如图,BC⊥AE,垂足为点C,过点C作CD∥AB.若∠ECD=48°,则∠B=____________.16.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=____________.三、解答题(共52分)17.(9分)(2016·南宁马山县期末)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完整.解:∵EF∥AD(已知),∴∠2=________(________________________).又∵∠1=∠2(____________),∴∠1=∠3(____________).∴AB∥________(________________________).∴∠DGA+∠BAC=180°(______________________________).18.(9分)如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE,垂足为E;(2)过点P画CD的垂线,与AB相交于点F;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?19.(10分)如图,画图并填空:(1)画出三角形ABC先向右平移6格,再向下平移2格得到的三角形A1B1C1;(2)线段AA1与线段BB1的关系是:________________;(3)三角形ABC的面积是____________.20.(12分)如图,直线AB,CD被直线EF所截,∠1+∠2=180°,EM,FN分别平分∠BEF和∠CFE.(1)判定EM与FN之间的关系,并证明你的结论;(2)由(1)的结论我们可以得到一个命题:如果两条直线________,那么内错角的角平分线互相____________;(3)由此可以探究并得到:如果两条直线____________,那么同旁内角的角平分线互相____________.21.(12分)(2017·来宾期末)如图,已知直线AB∥CD,∠A=∠C =100°,点E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.教之以简用之为丰11/11。
初一下册数学-相交线与平行线-难题-提高题-中考题
初一下册数学-相交线与平行线-难题-提高题-中考题1.根据题目描述,需要在角钢上截去一个缺口使其弯成120°的钢架。
缺口的角度应该是60度(120度-60度=60度)。
2.根据题目描述,矩形ABCD沿EF对折后使两部分重合。
由于对折后两部分重合,因此∠AEF=∠FEC=50°。
3.根据题目描述,将三角尺的直角顶点放在直尺的一边上,且∠1=30°,∠2=50°。
根据三角形内角和公式可得,∠3=100°。
4.1) 当动点P落在第①部分时,由于直线AC∥BD,因此∠PAC和∠PBD是同旁内角,即∠PAC=∠PBD。
又因为∠APB是一条直线的内角,因此∠APB=180°。
因此,∠APB=∠PAC+∠PBD。
2) 当动点P落在第②部分时,由于P点在直线AC上,因此∠PAC=180°-∠ACB。
同理,由于P点在直线BD上,因此∠PBD=180°-∠CBD。
因此,∠APB=∠PAC+∠PBD成立。
3) 当动点P在第③部分时,由于直线AC∥BD,因此∠PAC和∠PBD是同旁内角,即∠PAC=∠PBD。
又因为∠APB是一条直线的内角,因此∠APB=180°。
由于P点在第③部分,因此∠ACB和∠CBD是同旁外角,即∠ACB=∠CBD。
因此,∠PAC=∠PBD=180°-∠ACB=180°-∠CBD。
因此,∠APB=2∠PAC成立。
7.根据题目描述,已知∠1=55°,∠3=75°,且光线在平面镜AB和CD之间来回反射。
由于光线的入射角等于反射角,因此∠2=∠4=75°。
根据三角形内角和公式可得,∠5=55°。
由于∠1和∠5是同旁内角,因此∠2=∠6=55°。
8.根据题目描述,刀柄外形是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1、∠2.由于刀柄外形是一个直角梯形,因此∠1=90°。
七年级数学下册第五章相交线与平行线重难点归纳(带答案)
七年级数学下册第五章相交线与平行线重难点归纳单选题1、下列说法不正确的是()A.对顶角相等B.两点确定一条直线C.两点之间线段最短D.一个角的补角一定大于这个角答案:D分析:根据对顶角的性质,直线的性质,两点之间线段最短,补角的定义,依次判断即可得到答案.解:A、对顶角相等,故该项不符合题意;B、两点确定一条直线,故该项不符合题意;C、两点之间线段最短,故该项不符合题意;D、一个角的补角不一定大于这个角,说法错误,故该项符合题意;故选:D.小提示:此题考查对顶角的性质,直线的性质,两点之间线段最短,补角的定义,正确理解各性质及定义是解题的关键.2、如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠α=135°,则∠β等于()A.45°B.60°C.75°D.85°答案:C分析:直接利用平行线的性质以及三角形的性质进而得出答案.由题意可得:∵∠α=135°,∴∠1=45°,∴∠β=180°−45°−60°=75°.故选C.小提示:此题主要考查了平行线的性质,正确得出∠1的度数是解题关键.3、如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )A.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定答案:B分析:根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.如图:根据平移可得两只蚂蚁的行程相同,∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选B.小提示:本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.4、如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5答案:A分析:根据平行线的性质和对顶角的性质进行判断.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不一定平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.小提示:本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键.5、如图,已知a//b,∠1=120°,∠2=90°,则∠3的度数是( )A.120°B.130°C.140°D.150°答案:D分析:延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.如图,延长∠1的边与直线b相交,∵a//b,∴∠4=180°−∠1=180°−120°=60°,由三角形的外角性质可得,∠3=90°+∠4=90°+60°=150°.故选:D.小提示:本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6、如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离答案:C分析:根据点到直线的距离等于垂线段的长度,垂线段最短逐项分析判断即可.解:A. 线段PB的长是点P到直线a的距离,故该选项正确,不符合题意;B.PA、PB、PC三条线段中,PB最短,故该选项正确,不符合题意;C. 线段AP的长是点A到直线PC的距离,故该选项不正确,符合题意;D. 线段PC的长是点C到直线PA的距离,故该选项正确,不符合题意;故选C小提示:本题考查了点到直线的距离等于垂线段的长度,垂线段最短,掌握垂线段的定义是解题的关键.7、如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不能确定答案:C分析:根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.小提示:本题考查了垂线和余角,解题的关键是掌握垂线的定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.8、如图,下列说法错误的是()A.∠1与∠2是对顶角B.∠1与∠3是同位角C.∠1与∠4是内错角D.∠B与∠D是同旁内角答案:C分析:分别根据对顶角、同位角、内错角以及同旁内角的定义判断即可.解:A、∠1与∠2是对顶角,正确,故该选项不合题意;B、∠1与∠3是同位角,正确,故该选项不合题意;C、∠1与∠4是内错角,错误,故该选项符合题意;D、∠B与∠D是同旁内角,正确,故该选项不合题意;故选:C.小提示:本题主要考查了对顶角、同位角、内错角以及同旁内角的定义,熟记定义是解答本题的关键.9、如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°答案:A分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.10、如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°答案:B分析:根据平行线的性质可得解.详解:∵a//b∴∠1=∠2又∵∠1=60°,∴∠2=60°故选B.点睛:两条平行线被第三条直线所截,同位角相等.填空题11、如图a∥b,∠1+∠2=75°,则∠3+∠4=______________.答案:105°分析:根据平行线的性质和等量代换可以求得∠3+∠4=∠5+∠4,所以根据三角形内角和是180°进行解答即可.如图,∵a∥b,∴∠3=∠5,又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,∴∠5+∠4=105°,∴∠3+∠4=∠5+∠4=105°,故答案是:105°.小提示:本题考查了平行线的性质和三角形内角和定理.解题的技巧性在于把求(∠3+∠4)的值转化为求同一三角形内的(∠5+∠4)的值.12、如图,将三角尺与两边平行的直尺(EF∥HG)贴在一起(∠ACB=90°)在直尺的一边上.若∠2=47°,则∠1的大小为 _____度.答案:43分析:先根据平行线的性质求出∠2的度数,再由∠1与∠3互余即可得出结论.解:如图所示:∵EF//HG,∠2=47°,∴∠2=∠3=47°又∵∠ACB=90°,∠1+∠3=∠ACB=90°,∴∠1=∠ACB−∠3=90°−47°=43°,∴∠1=43°.所以答案是:43.小提示:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13、如图,添加一个你认为合适的条件______使AD//BC.答案:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)分析:根据平行线的判定方法即可求解.第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,AD//BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,AD//BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,AD//BC;故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.小提示:本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.14、如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是_____.答案:20cm分析:根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.所以答案是:20cm.小提示:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15、如图,已知直角三角形ABC,∠A=90∘,AB=4cm,BC=5cm.将△ABC沿AC方向平移1.5cm得到△A′B′C′,求四边形BCC′B′的面积为________cm2.答案:6分析:根据题意,再结合平移的性质,可得AB=A′B′,AA′=BB′=CC′=1.5cm,BB′∥CC′,S△ABC=S△A′B′C′,然后再根据等量代换,得出S四边形AA′OB =S四边形OCC′B′,然后再根据等量代换,得出S四边形BCC′B′=S四边形AA′B′B,然后再根据长方形的特征,得出四边形AA′B′B是长方形,然后再根据长方形的面积公式,算出长方形AA′B′B的面积,即可得出四边形BCC′B′的面积.解:如图,∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴A的对应点为点A′,点B的对应点为点B′,点C的对应点为点C′,∴由平移的性质,可得:AB=A′B′=4cm,AA′=BB′=CC′=1.5cm,BB′∥CC′,又∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴S△ABC=S△A′B′C′,又∵S△ABC=S四边形AA′OB+S△A′OC,S△A′B′C′=S四边形OCC′B′+S A′OC,∴S四边形AA′OB =S四边形OCC′B′,∵S四边形BCC′B′=S四边形OCC′B′+S△BOB′,S四边形AA′B′B =S四边形AA′OB+S△BOB′,∴S四边形BCC′B′=S四边形AA′B′B,∵AB=A′B′,AA′=BB′,∠A=90∘,∴根据长方形的特征,可得:四边形AA′B′B是长方形,∴S长方形AA′B′B=AB⋅AA′=4×1.5=6cm2,∴S四边形BCC′B′=S四边形AA′B′B=6cm2所以答案是:6小提示:本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等.解答题16、已知:如图,∠1=∠2.求证:AB//CD.分析:如图,欲证AB//CD,只要证∠1=______.证明:∵∠1=∠2,(已知)又∠3=∠2,()∴∠1=__________.()∴AB//CD.(__________,____________)答案:∠3;对顶角相等;∠3;等量代换;同位角相等,两直线平行.分析:根据等量代换和同位角相等,两直线平行即可得出结果.分析:如图,欲证AB//CD,只要证∠1=∠3.证明:∵∠1=∠2,(已知)又∠3=∠2,(对顶角相等)∴∠1=∠3.(等量代换)∴AB//CD.(同位角相等,两直线平行)小提示:本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.17、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;答案:(1)∠BOF=33°(2)∠AOC=72°分析:(1)先根据对顶角相等求出∠BOD=76°,再由角平分线定义得∠DOE=∠BOE=38°,由邻补角得∠COE=142°,再根据角平分线定义得∠EOF=71°,从而可得结论.(2)利用角平分的定义得出∠BOE=∠EOD,∠COF=∠FOE,进而表示出各角求出答案.(1)∵∠AOC、∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∠BOD=38°∴∠DOE=∠BOE=12∴∠COE=142°,∵OF平分∠COE.∠COE=71°,∴∠EOF=12又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴∠BOE=∠EOD,∠COF=∠FOE,∴设∠BOE=x,则∠EOD=x,故∠COA=2x,∠EOF=∠COF=x+36°,则∠AOC+∠COF+∠BOF=2x+x+36°+36°=180°,解得x=36°,故∠AOC=72°.小提示:本题考查了角平分线的定义和对顶角的性质,解决本题的关键是掌握对顶角的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线).18、完成下面的证明如图.已知:AD∥EF,∠1=∠2,求证:AD平分∠BAC.证明:∵AD∥EF(),∴∠2=(),∠1=().∵∠1=∠2(已知),∴∠BAD=∠CAD().即AD平分∠BAC.答案:已知;∠CAD,两直线平行,同位角相等;∠BAD,两直线平行,内错角相等;等量代换.分析:根据平行线的性质进行推理即可解答.解:∵AD∥EF(已知),∴∠2=∠CAD(两直线平行,同位角相等),∠1=∠BAD(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠CAD=∠BAD(等量代换),即AD平分∠BAC(角平分线的定义).小提示:本题主要考查了平行线的性质,掌握两直线平行、内错角相等,两直线平行、同位角相等成为解答本题的关键.。
相交线与平行线考点及题型总结
相交线与平行线考点及题型总结第一节 相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l 十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A +∠B =180°,则∠A 、∠B 互补;反过来,若∠A 、∠B 互补,则∠A +∠B =180°.②同角或等角的补角相等.如果∠A +∠C =180°,∠A +∠B =180°,则∠B =∠C .6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。
1、经过直线外一点,作直线垂线,有且只有一条; 2、点到直线上各点的距离中,垂线段最短。
(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD 的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解 求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138、 B 、都是10 C 、42138、或4210、 D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。
初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
相交线与平行线(常考考点专题)(巩固篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)
专题5.20 相交线与平行线(常考考点专题)(巩固篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .2.下列说法中,正确的是( )A .相等的两个角是对顶角B .有一条公共边的两个角是邻补角C .有公共顶点的两个角是对顶角D .一条直线与端点在这条直线上的一条射线组成的两个角是邻补角【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB ,CD 相交于点O ,OE AB ⊥于点O ,OF 平分AOE ∠,12530'∠=︒,则下列结论中不正确的是( )A .13∠=∠B .245∠=︒C .AOD ∠与1∠互为补角D .1∠的余角等于6530'︒ 4.下列说法中,正确的是( )A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.平面内,互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角5.如图,下列判断中正确的个数是()(1)∠A与∠1是同位角;(2)∠A和∠B是同旁内角;(3)∠4和∠1是内错角;(4)∠3和∠1是同位角.A.1个B.2个C.3个D.4个6.如图,同位角共有()对.A.6B.5C.8D.7【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4,b与c 的距离为1,则a与c的距离为()A.3或4B.5C.3或5D.4或58.如图所示,∠BAC=90°,AD∠BC,则下列结论中,正确的个数为()∠AB∠AC;∠AD与AC互相垂直;∠点C到AB的垂线段是线段AB;∠点A到BC的距离是线段AD的长度;∠线段AB的长度是点B到AC的距离;∠AD+BD>AB.A.2个B.3个C.4个D.5个【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,正确的是()A.B.C.D.10.如图,P是直线l外一点,A,B,C三点在直线l上,且PB l⊥于点B,90∠=︒,APC则下列结论:∠线段AP是点A到直线PC的距离;∠线段BP的长是点P到直线l的距离;∠PA,PB,PC三条线段中,PB最短;∠线段PC的长是点P到直线l的距离.其中正确的是()A.∠∠B.∠∠∠C.∠∠D.∠∠∠∠【考点六】相交线与平行线➽➼➵作图➻➼平移11.下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是()A.7步B.8步C.9步D.10步12.如图所示,下列关于∠ABC与∠A′B′C′的说法不正确的是()A.将∠ABC先向右平移4格,再向上平移1格后可得到∠A′B′C′B.将∠ABC先向上平移1格,再向右平移4格后可得到∠A′B′C′C.将∠A′B′C′先向下平移1格,再向左平移4格后可得到∠ABCD.将∠A′B′C′向左平移6格后就可得到∠ABC【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,l是一条水平线,把一头系着小球的线一端固定在点A,小球从B到C从左向右摆动,在这一过程中,系小球的线在水平线下方部分的线段长度的变化是()A.从大变小B.从小变大C.从小变大再变小D.从大变小再变大14.下列说法中是真命题正确的个数有()个(1)若a∥b,b∥d,则a∥d;(2)过一点有且只有一条直线与已知直线平行;(3)两条直线不相交就平行;(4)过一点有且只有一条直线与已知直线垂直.A.1个B.2个C.3个D.4个15.在下列说法中,正确的有( )个.∠过一点有且只有一条直线与已知直线平行;∠已知α∠、∠β的两边分别平行,那么αβ∠=∠;∠垂直于同一条直线的两条直线平行;∠从直线外一点到这条直线的垂线段,叫做这点到直线的距离.A .3B .2C .1D .016.如图,有下列条件:∠12∠=∠;∠34180∠+∠=︒;∠56180∠+∠=︒;∠23∠∠=.其中,能判断直线a b ∥的有( )A .4个B .3个C .2个D .1个17.如图,在下列给出的条件中,不能判定DE BC ∥的是( )A .12∠=∠B .3=4∠∠C .5C =∠∠D .180B BDE ∠+∠=︒ 18.如图,要得到AB CD ,只需要添加一个条件,这个条件不可以是( )A .180D BAD =∠+∠B .180B BCD ∠+∠=C .24∠∠=D .13∠=∠19.如图,45,AOB CD OB ∠=︒∥交OA 于E ,则AEC ∠的度数为( )A .130︒B .135︒C .140︒D .145︒20.如图,∠BAC =40°,AD 平分∠BAC ,BD ∠AC ,则∠D 的度数为( )A .20°B .30°C .40°D .50°【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系21.如图,AD ∠BC ,DE AB ∥,则∠CDE 与∠BAD 的关系是( )A .互为余角B .互为补角C .相等D .不能确定22.如图,若AB ∠CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小23.一张长方形纸条按如图所示折叠,EF 是折痕,若∠EFB =35°,则:∠∠GEF =35°;∠∠EGB =70°;∠∠AEG =110°;∠CFC '∠=70°.以上结论正确的有( )A .∠ ∠ ∠ ∠B .∠ ∠ ∠C .∠ ∠ ∠D .∠ ∠24.如图,AB //CD ,∠1=13∠ABF ,CE 平分∠DCF ,设∠ABE =∠1,∠E =∠2,∠F =∠3,则∠1、∠2、∠3的数量关系是( )A .∠1+2∠2+∠3=360°B .2∠2+∠3—∠1=360°C .∠1+2∠2—∠3=90°D .3∠1+∠2+∠3=360°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,已知A ADE ∠=∠,若54EDC C ∠=∠,则C ∠=( )A .80︒B .90︒C .100︒D .110︒26.如图,AB //CD ,一副三角尺按如图所示放置,∠AEG =20°,则∠HFD 的度数为( )A .20°B .70°C .45°D .35°【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,下列判断中错误的是( )A .∠A +∠ADC = 180° 所以AB ∥CDB .∠l=∠2,所以AD ∥BC C .AB ∥CD ,所以∠ABC +∠C = 180° D .AD ∥BC ,所以∠3=∠428.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ∠BC ,下列结论:∠BC 平分∠ABG ;∠AC ∥BG ;∠与∠DBE 互余的角有2个;∠若∠A =α,则∠BDF =180°−2α.其中正确的有( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.一辆汽车在笔直的公路上行驶,两次拐弯后,还在原来的方向上平行前进,那么这两次拐弯的角度应是( )A .第一次右拐50︒,第二次左拐130︒B .第一次左拐50︒,第二次右拐50︒C .第一次左拐50︒,第二次左拐50︒D .第一次右拐50︒,第二次右拐50︒ 30.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128°【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.以下命题的逆命题为真命题的是( )A .若a b >,则22a b >B .对顶角相等C .直角三角形两锐角互余D .若a b =,则22a b =32.命题“如果x y =,那么22x y =”的逆命题是( )A .如果x y ≠,那么22x y ≠B .如果x y =,那么22x y ≠C .如果22x y =,那么x y =D .如果22x y ≠,那么x y ≠【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.有下列描述:∠过点 A 作直线 AF // BC ;∠连接三角形两边中点的线段叫做三角形的中位线;∠两直线平行,同旁内角互补;∠垂直于同一直线的两条直线互相垂直.其中是定理 的有( )A .0 个B .1 个C .2 个D .3 个34.下列定理中,没有逆定理的是( )A .两直线平行,同旁内角互补;B .两个全等三角形的对应角相等C .直角三角形的两个锐角互余;D .两内角相等的三角形是等腰三角形【考点十七】平移➽➼➵性质35.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,连接CD 、CE ,若△ACD 的面积为6,则△BCE 的面积为( )A .5B .6C .10D .336.如图,在直角三角形ABC 中,90BAC ∠=︒,将三角形ABC 沿直线BC 向右平移2cm 得到三角形DEF ,连接AE ,有以下结论:∠BE AD ∥;∠B ADE ∠=∠;∠DE AC ⊥;∠BE AD =,其中正确的有( )A.1个B.2个C.3个D.4个【考点十八】平移➽➼➵应用37.如图是从一块边长为50cm的正方形材料中裁出的垫片,现测得FG=9cm,则这块垫片的周长为()A.182cm B.191cm C.209cm D.218cm38.如图,是两个有重叠的直角三角形,可以看作是将其中的一个直角三角形ABC沿着BC方向平移5个单位长度就得到了另一直角三角形DEF,其中AB=8,BE=5,DH=3,则下列结论正确的有()∠AC∠DF;∠HE=5;∠CF=5;∠四边形DHCF的面积为32.5.A.1个B.2个C.3个D.4个二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=_____.40.如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=138°,则∠COE的度数为_____度.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图:∠BAC=90°,AD⊥BC,垂足为D,则点A到直线BC的距离是线段_____的长度.42.已知在同一个平面内,一个角的度数是70°,另一个角的两边分别与它的两边垂直,则另一个角的度数是___________.【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a b c+-的值是____________44.如图,∠1和∠3是直线______ 和______ 被直线______ 所截而成的______ 角;图中与∠2是同旁内角的角有______ 个.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图所示,已知90ACB ∠=︒,若3cm BC =,4cm AC =,5cm AB =,则点A 到BC 的距离是______,点C 到AB 的距离是______.46.如图,直线AB //CD ,GH 平分∠CGF ,GI 平分∠DGF ,且HG =15cm ,GI =20cm ,HI =25cm ,则直线AB 与直线CD 之间的距离是_____cm .【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.已知直线 AB ,CB , l 在同一平面内,若 AB ∠ l ,垂足为 B ,CB ∠ l ,垂足也为 B ,则符合题意的图形可以是如图中的图___(填甲或乙), 你选择的依据是_____(写出你学过的一条公理).48.如图,AD BC ∥,E 是线段AD 上任意一点,BE 与AC 相交于点O ,若ABC ∆的面积是5,EOC ∆的面积是1,则BOC ∆的面积是______.【考点六】相交线与平行线➽➼➵作图➻➼平移49.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______50.如图,如果把∠ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的位置关系是_______________.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.52.下列说法正确的有(填序号):_____.∠同位角相等;∠在同一平面内,两条不相交的线段是平行线;∠在同一平面内,如果a//b,b//c,则a//c;∠在同一平面内,过直线外一点有且只有一条直线与已知直线平行.【考点八】相交线与平行线➽➼➵平行线的判定53.如图,不添加辅助线,请写出一个能判定AB ∥CD 的条件__54.在同一平面内有2022条直线122022,a a a ,如果12a a ⊥,2a ∥3a ,34a a ⊥,4a ∥5a ……那么1a 与2022a 的位置关系是_____________.55.将一块三角板ABC (∠BAC =90°,∠ABC =30°)按如图方式放置,使A ,B 两点分别落在直线m ,n 上,对于给出的五个条件:∠∠1=25.5°,∠2=55°30';∠∠1+∠2=90°;∠∠2=2∠1;∠∠ACB =∠1+∠3;∠∠ABC =∠2-∠1.能判断直线m ∥n 的有__.(填序号)56.如图,a 、b 、c 三根木棒钉在一起,170,2100∠=︒∠=︒,现将木棒a 、b 同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a ,b 平行.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,把一张长方形纸条ABCD 沿EF 折叠,若150∠=︒,则AEG ∠= ______ .58.如图,已知BC DE ∥,BF 平分∠ABC ,DC 平分∠ADE ,则下列结论中:∠ACB E ∠=∠;∠180FBD CDE ∠+∠=︒;∠BFD BCD ∠=∠;∠ABF BCD ∠=∠.正确的有( )(填序号)【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的2倍少18°,则∠A 的度数是__________. 60.∠如图1,AB ∥CD ,则∠A +∠E +∠C =180°;∠如图2,AB ∥CD ,则∠E =∠A +∠C ;∠如图3,若AB ∥EF ,则∠x =180°-∠α-∠γ+∠β;∠如图4,AB ∥CD ,则∠A =∠C +∠P .以上结论正确的是_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,已知2375AB CD PAQ BAQ PCD QCD P ∠=∠∠=∠∠=︒∥,,,,则AQC ∠=___________.62.有一条长方形纸带,按如图方式折叠,形成的锐角α∠的度数为______.【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小63.如图,已知∠1=72°,∠4=110°,∠3=70°,则∠2=____________.64.如图,直线MN 分别与直线AB ,CD 相交于点E ,F ,EG 平分∠BEF ,交直线CD 于点G ,若∠MFD =∠BEF =56°,射线GP ∠EG 于点G ,则∠PGF =____________________.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.一副直角三角板中,60A ∠=︒,30D ∠=︒,45E B ∠=∠=︒,现将直角顶点C 按照如图方式叠放,点E 在直线AC 上方,且0180ACE ︒<∠<︒,能使三角形ADC 有一条边与EB 平行的所有ACE ∠的度数的和为_______.66.如图,AB BC ⊥于点B ,DC BC ⊥于点C ,连接AD ,DE 平分ADC ∠交BC 于点E ,点F 为CD 延长线上一点,连接AF ,BAF EDF ∠=∠,下列结论:∠180BAD ADC ∠+∠=︒;∠AF DE ∥;∠DAF F ∠=∠.正确的有______.(填序号)【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.《七彩云南》少数民族传统艺术表演,是七彩云南欢乐世界的王牌演艺节目,它荟萃云南人文之美,深受观众喜爱.在展演中,舞台上的灯光由灯带上位于点A 和点C 的两盏激光灯控制.如图,光线AB 与灯带AC 的夹角40A ∠=︒,当光线CB '与灯带AC 的夹角ACB '∠=______时,CB AB '∥.68.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为_____.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若33a b ->-,则a b <”的逆命题是________.70.已知:在同一平面内,三条直线a ,b ,c .下列四个命题为真命题的是_____________.(填写所有真命题的序号)∠如果a ∥b ,a c ⊥,那么b c ⊥; ∠如果b a ⊥,c a ⊥,那么b c ⊥;∠如果a ∥b ,c ∥b ,那么a ∥c ; ∠如果b a ⊥,c a ⊥,那么b ∥c .【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.用推理的方法判断为正确的命题叫做 .72.请写出一个存在逆定理的定理:______.【考点十七】平移➽➼➵性质73.如图,将ABC ∆沿AC 所在的直线平移到DEF ∆的位置,若图中10AC =,3DC =,则CF =____.74.如图,338∠=︒,直线b 平移后得到直线a ,则12∠+∠=_________︒.【考点十八】平移➽➼➵应用75.在一块长m a ,宽102m 的草坪上修筑宽2m 的小路(如图),则种草地面的面积是______2m .76.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.三、解答题77.如图,已知O为直线AC上一点,过点O向直线AC上引三条射线,,OB OD OE,且OD平分AOB∠.(1)若OE平分BOC∠,求DOE∠的度数;(2)若13BOE EOC∠=∠,50DOE∠=,求EOC∠的度数.78.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1) 求BOF ∠的度数;(2) 试说明AB CD ∥的理由.79.请在括号内完成证明过程和填写上推理依据. 如图,已知12180∠+∠=︒,DEF A ∠=∠,试判断ACB ∠与DEB ∠的大小关系,并说明理由.解:ACB DEB ∠=∠,理由如下:∠12180∠+∠=︒2180BDC ∠+∠=︒( )∠( )BDC =∠( )∠( )EF ∥( ) ∠DEF ∠=( )∠DEF A∠=∠∠()A=∠()∠DE AC∥()∠ACB DEB∠=∠()80.已知AB CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥ GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数?参考答案1.C【分析】根据对顶角的概念逐一判断即可.解:A 、∠1与∠2的顶点不相同,故不是对顶角,此选项不符合题意;B 、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意;C 、∠1与∠2是对顶角,故此选项符合题意;D 、∠1与∠2的一边不是反向延长线,故不是对顶角,此选项不符合题意.故选:C .【点拨】本题考查的是对顶角的判断,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,解题关键是熟练掌握定义,正确判断.2.D解:A 选项,因为对顶角是一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.两条直线相交,构成两对对顶角.互为对顶角的两个角相等.但相等的两个角不一定是对顶角,所以A 选项错误,B 选项, 因为邻补角是有一条公共边,且一个角的一边是另一个角一边的反向延长线组成的2个角, 有一条公共边,但是没有保证另一条边在一条直线上那么就不一定是邻补角,所以B 选项错误,C 选项, ,因为对顶角是一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角,所以C 选项错误,D 选项,一条直线与端点在这条直线上的一条射线组成的两个角是邻补角,所以D 选项正确,故选D.3.D【分析】根据垂线的性质,角平分线的定义及对顶角、邻补角的性质,逐一判断. 解:∠13∠∠、为对顶角,∠13∠=∠,故选项A 正确;∠OE AB ⊥,∠90AOE ∠=︒,∠OF 平分AOE ∠,∠245∠=︒,故选项B 正确;∠1180AOD ∠+∠=︒,∠AOD ∠与1∠互为补角,故选项C 正确;∠12530'∠=︒,9016430'︒-∠=︒,∠1∠的余角等于6430'︒,故选项D 错误;故选:D .【点拨】本题考查对顶角的性质以及邻补角的定义,解题的关键熟练掌握角平分线的定义和垂线的性质.4.C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.解:从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B 错误;直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cm ,即选项C 正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D 错误;故选:C .【点拨】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.5.C【分析】准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:(1)∠A 与∠1是同位角,正确,符合题意;(2)∠A 与∠B 是同旁内角.正确,符合题意;(3)∠4与∠1是内错角,正确,符合题意;(4)∠1与∠3不是同位角,错误,不符合题意.故选:C .【点拨】此题主要考查了三线八角,在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.6.A【分析】根据同位角的概念解答即可.解:同位角有6对,∠4与∠7,∠3与∠8,∠1与∠7,∠5与∠6,∠2与∠9,∠1与∠3,故选:A.【点拨】此题考查同位角,关键是根据同位角解答.7.C【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.解:当直线c在a、b之间时,∠a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∠a与c的距离=4−1=3(cm);当直线c不在a、b之间时,∠a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∠a与c的距离=4+1=5(cm),综上所述,a与c的距离为5cm或3cm.故选C.【点拨】此题考查平行线的性质,解题关键在于分类讨论两种情况.8.C【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.解:由∠BAC=90°,AD∠BC,得AB∠AC,故∠正确;AD与AC不垂直,故∠错误;点C到AB的垂线段是线段AC的长,故∠错误;点A到BC的距离是线段AD的长度,故∠正确;线段AB的长度是点B到AC的距离,故∠正确;AD+BD>AB,故∠正确;故选:C.【点拨】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.9.A【分析】满足两个条件:∠经过点B.∠垂直AC;由此即可判断.解:根据垂线段的定义可知,图∠线段BE,是点B作线段AC所在直线的垂线段,故选A.【点拨】本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.解:∠线段AP是点A到直线PC的距离,错误;∠线段BP的长是点P到直线l的距离,正确;∠PA,PB,PC三条线段中,PB最短,正确;∠线段PC的长是点P到直线l的距离,错误,故选:A.【点拨】此题主要考查了垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.11.B【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.解:所画图形如下图所示:其中移动方案为: AB向下移动2格,EF向右1格再向.上2格,CD向左3格,共应8格.共走了8步.故选B.【点拨】本题考查图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.12.D解:根据平移变换的概念及平移的性质进行判断.13.C【分析】根据题意可知:小球在以点A为圆心,以AB长为半径的圆弧上运动,据此即可解答.解:根据题意可知:小球在以点A为圆心,以AB长为半径的圆弧上运动,⊥与点E,交弧BC于点G,如图:过点A作AE l∴,AB=AG=AC,AD AF AE=>BD CF EG,<∴-=--,即=<AB AD AC AF AG AE故系小球的线在水平线下方部分的线段长度的变化是从小变大再变小,故选:C.【点拨】本题考查了垂线段最短,圆的相关概念,理解垂线段的性质是解决本题的关键.14.B【分析】根据平行线的定义与判定、垂线的性质、平行公理对各小题分析判断后即可得解.解:(1)若a b,b d,则a d,故此说法正确;(2)过直线外一点有且只有一条直线与已知直线平行,故此说法错误;(3)在同一平面内,两条直线不相交就平行,故此说法错误;(4)过一点有且只有一条直线与已知直线垂直,故此说法正确.故选:B.【点拨】此题主要考查了平行公理,平行线的性质定义,垂线的性质,关键是熟练掌握课本内容.15.D【分析】利用平行公理,平行线的性质定理,点到直线的距离的定义逐项判断即可.解:同一平面内,过直线外一点有且只有一条直线与已知直线平行,因此∠错误;α∠、∠β的两边分别平行时,αβ∠=∠或180αβ∠+∠=︒,因此∠错误;同一平面内,垂直于同一条直线的两条直线平行,因此∠错误;从直线外一点到这条直线所画的垂线段的长度叫做这点到直线的距离,故∠错误; 故选:D .【点拨】本题考查平行公理,平行线的性质定理,点到直线的距离的定义等,解题的关键是熟练掌握上述基本知识,不要漏掉前置条件.16.B【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法即可得出结论. 解:∠由∠1=∠2,可得a b ;∠由∠3+∠4=180°,可得a b ;∠由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a b ;∠由∠2=∠3,不能得到a b ;故能判断直线a b 的有3个,故选:B .【点拨】本题主要考查平行线的判定,掌握平行线的判定方法是解决问题的关键.17.B【分析】根据平行线的判定定理逐一判断即可.解:因为12∠=∠,所以DE BC ∥,故A 不符合题意;因为3=4∠∠,不能判断DE BC ∥,故B 符合题意;因为5C =∠∠,所以DE BC ∥,故C 不符合题意;因为180B BDE ∠+∠=︒,所以DE BC ∥,故D 不符合题意;故选B .【点拨】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.D【分析】根据A 、B 中条件结合“同旁内角互补,两直线平行”可以得出AB //CD ,根据C 中条件结合“内错角相等,两直线平行”可得出AB //CD ,而根据D 中条件结合“内错角相等,两直线平行”可得出AD //BC .由此即可得出结论.解:A 、∠D +∠BAD =180°,∠AB //CD (同旁内角互补,两直线平行),不符合题意;B 、∠∠B +∠BCD =180°,∠AB //CD (同旁内角互补,两直线平行),不符合题意;C 、∠2=∠4,∠AB //CD (内错角相等,两直线平行),不符合题意;D 、∠∠1=∠3,∠AD //BC (内错角相等,两直线平行),符合题意;故选D .【点拨】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.19.B【分析】由∥45,CD OB AOB ∠=︒,根据平行线的性质得到45AED ∠=︒,根据平角的意义即可求出答案.解:∥45,CD OB AOB ∠=︒,45AOB AED ∴∠=∠=︒, 180AEC AED ∠+∠=︒,18045135AEC ∴∠=︒-︒=︒,故选:B .【点拨】本题考查了平行线的性质、邻补角的意义,解题的关键是求出AED ∠的度数.20.A【分析】由角平分线的定义和平行线的性质结合即可求解.解:∠AD 平分∠BAC ,∠BAC =40°,∠∠CAD =12BAC ∠=20°, ∠BD ∠AC ,∠∠D=∠CAD =20°.故选:A【点拨】此题考查角平分线的定义和平行线的性质,掌握相应的性质是解答此题的关键.21.A【分析】先根据垂直的定义可得90CDE ADE ∠+∠=︒,再根据平行线的性质可得BAD ADE ∠=∠,然后根据余角的定义即可得.解:AD BC ⊥,90CDE ADE ADC ∴∠+∠=∠=︒,DE AB ∥,BAD ADE ∴∠=∠,90CDE BAD ∴∠+∠=︒,则CDE ∠与BAD ∠的关系是互为余角,故选:A .【点拨】本题考查了垂直、平行线的性质、余角,熟练掌握平行线的性质是解题关键.22.C【分析】过E 作EF ∥AB ∥CD ,由平行线的质可得∠α+∠AEF =180°,∠ECD =∠γ,由∠β=∠AEF +∠FED 即可得∠α、∠β、∠γ之间的关系.解:过点E 作EF ∥AB ,∠∠α+∠AEF =180°,∠AB ∥CD ,∠EF ∥CD ,∠∠FEC =∠ECD ,∠∠β=∠AEF +∠FED ,又∠γ=∠ECD ,∠∠α+∠β-∠γ=180°.故选:C .【点拨】本题考查了平行线的性质,根据题意正确作出辅助线是解题的关键.23.A【分析】先根据平行线的性质可得DEF ∠的度数,根据折叠的性质可得GEF ∠,进而可得,DEG AEG ∠∠,即可判断∠ ∠ ;再利用平行线的性质可得EGB ∠、EFC ∠的度数,即可判断∠ ;再根据折叠的性质可得EFC '∠的度数,进而可得CFC '∠的度数,即可判断∠解:∠ 四边形ABCD 是长方形∠AD BC ∥35DEF EFB ∴∠=∠=︒由折叠的性质可得35GEF DEF ∠=∠=︒故 ∠ 正确35270DEG ∴∠=︒⨯=︒18070110AEG ∴∠=︒-︒=︒ 故 ∠ 正确AD BC ∥70EGB DEG ∴∠=∠=︒故 ∠ 正确又180********EFC EFB ∠=︒-∠=︒-︒=︒由折叠的性质可得:145EFC EFC '∠=∠=︒360145270CFC '∠=︒-︒⨯=︒故 ∠ 正确故选:A【点拨】本题主要考查平行线的性质和折叠的性质,解题关键是熟练掌握平行线的性质和折叠的性质.24.A。
人教版数学七年级下册重点突破与同步训练-第五章
1 2 ∠1与∠2第五章相交线与平行线5.5 《相交线与平行线》章末复习(基础巩固)【要点梳理】知识点一、相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.邻补角互补即∠3+∠4=180°要点诠释:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2.垂线及性质、点到直线的距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作: AB ⊥CD,垂足为O.要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P 到直线AB的距离是垂线段PO的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.知识点二、平行线1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB 与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.知识点三、命题及平移1.命题:判断一件事情的语句,叫做命题.每个命题都由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:平移的性质:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、相交线例1. a、b、c是平面上任意三条直线,交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对【思路点拨】根据三条直线两两平行,三条直线交于一点,两条直线平行与第三条直线相交,三条直线两两相交不交于同一点,可得答案.【答案】B【解析】解:三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交不交于同一点,有三个交点,故选B.【总结升华】本题考查了相交线,分类讨论是解题关键:①三条直线两两平行,②三条直线交于一点,③两条直线平行与第三条直线相交,④三条直线两两相交不交于同一点,注意不要漏掉任何一种情况.举一反三:【变式】如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.【答案】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角.因为∠AOD+∠BOD=180º(平角定义),∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠B OC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.而∠BOC的邻补角只有一个∠AOC,且∠BOC没有对顶角.例2. 已知:如图,直线a、b、c两两相交,且∠1=2∠3,∠2=86°,求∠4的度数.【答案与解析】解:根据对顶角相等,∴∠1=∠2=86°.又∵∠1=2∠3,∴86°=2∠3,∴∠3=43°,又∠3与∠4对顶角,所以∠3=∠4=43°.【总结升华】涉及到角的运算时,充分利用已知条件和隐含条件(对顶角)是解题的关键.性质是解答此类问题的关键.类型二、平行线的性质与判定例3.如图,已知∠ADE = ∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.【答案与解析】解:平行,理由如下:因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),所以∠1=∠BCD(两直线平行,内错角相等).又因为∠1=∠2(已知),所以∠BCD=∠2.所以CD∥FG(同位角相等,两直线平行).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应先想到角相等或角互补.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.【答案】∠AED=∠ACB,理由如下:∵∠1+∠2=180°,又∠1+∠4=180°,∴∠2=∠4.∴AB∥EF(内错角相等,两直线平行).∴∠5=∠3.又∠3=∠B,∴∠5=∠B.∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).类型三、命题及平移例4.如图所示,请你填写一个适当的条件:________,使AD∥BC.【思路点拨】欲证AD∥BC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件.【答案】∠FAD=∠FBC,或∠ADB=∠CBD,或∠ABC+∠BAD=180°.【解析】解:本题答案不唯一,如:利用“同位角相等,两直线平行”,可添加条件∠FAD=∠FBC;利用“内错角相等,两直线平行”,可添加条件∠ADB=∠CBD;利用“同旁内角互补,两直线平行”,可添加条件∠ABC+∠BAD=180°.【总结升华】这是一道开放性试题,分清题设和结论:结论:AD∥BC,题设可根据平行线的判定方法,逐一寻找即可.举一反三:【变式】下列说法中正确的个数是()(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2C.3D.4 【答案】C例5.如图(1),线段AB经过平移有一端点到达点C,画出线段AB平移后的线段CD.【思路点拨】连接AC或BC便得平移的方向和距离.【答案与解析】解:如图(2),线段CD有两种情况:(1)当点A平移到点C时,则点D在点C的下方,因此下边线段CD即为所求;(2)当点B平移到点C时,则点D在点C的上方,上边线段CD 即为所求.【总结升华】平移是由平移的方向和距离决定的.本题中未指明哪一端点(A还是B)移动到点C,故应有两种情况:即点A平移到点C或点B平移到点C.举一反三:【变式】下列说法错误的是()A.平移不改变图形的形状和大小B.平移中图形上每个点移动的距离可以不同C.经过平移,图形的对应线段、对应角分别相等D.经过平移,图形对应点的连线段相等【答案】B类型四、实际应用例6.如图,107国道a上有一个出口M,想在附近公路b旁建一个加油站,欲使通道最短,应沿怎样的线路施工?【答案与解析】解:如图,过点M作MN⊥b,垂足为N,欲使通道最短,应沿线路MN施工.【总结升华】灵活运用垂线段最短的性质是解答此类问题的关键.【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直3.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有().A.0个B.1个C.2个D.3个4.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完全重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.平行用符号表示,直线AB与CD平行,可以记作为.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (广东湛江)如图所示,请写出能判断CE∥AB的一个条件,这个条件是;①:________ ②:________ ③:________13.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=________度.北北甲乙14.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.16.如图所示,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,能表示点到直线(或线段)的距离的线段有条.三、解答题17.把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC平分∠DAB,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a米,宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?【答案与解析】一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】D.3. 【答案】B;【解析】(1)只有两条直线平行时,同位角相等,错误;(2)正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误.故选:B.4. 【答案】D;【解析】因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角是否相等,故选D.5. 【答案】D【解析】易见A、B、C都可以通过基本图形平移得到,只有D不能.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P 是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C 正确.8.【答案】C【解析】分析:两个能够完全重合的多边形,如果把其中一个多边形旋转一个角度,那么另一个多边形不论怎样平移,也不可能和这个多边形(指旋转一个角度的多边形)完全重合在一起,只有两个点或两个半径相等的圆总能完全重合在一起,故选C.二、填空题9. 【答案】50°【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB =∠AGF,故∠EGB=50°.10.【答案】∥,AB∥CD.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度.12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】70°;【解析】∠EFD+∠FEB=180°,∠EFD=180°-50°-90°=40°,∴∠EFP=20°,则∠EPF=180°-90°-20°=70°.14.【答案】∥,∥,⊥;15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】8;【解析】表示点到直线或线段距离的垂线段有:线段AC、BC、DE、CE、BE、CD、CB、AD.三、解答题17.【解析】解:AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.18.【解析】解:AB∥CD,理由如下:因为AC平分∠DAB(已知),所以∠1=∠3(角平分线定义).又因为∠1=∠2(已知),所以∠2=∠3(等量代换),所以AB∥CD(内错角相等,两直线平行).19.【解析】解:将马路的一边向另一边平移到重合,则此时草地的形状为:长为(a-2)米,宽为b米的长方形,所以面积为:(a-2)b=(ab-2b)平方米.20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下相交线与平行线题型复习(重难点+难题突破)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN相交线及平行线复习1. 如图所示, ∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2. 如图所示,已知直线AB , CD 相交于O , OA 平分∠EOC ,∠EOC =70°, 则∠BOD =•______.3. 如图所示, 直线AB ,CD 相交于点O , 已知∠AOC =70°, OE 把∠BOD 分成两部分,• 且∠BOE :∠EOD =2:3, 则∠EOD =________.4.如图所示, 直线a ,b ,c 两两相交, ∠1=2∠3, ∠2=65°, 求∠4的度数。
5. 如图所示,∠AOB =∠COD =90°,则下列叙述中正确的是( )A.∠AOC =∠AODB.∠AOD =∠BODC.∠AOC =∠BODD.以上 【练习】1、下列语句正确的是( ).A 、相等的角是对顶角B 、相等的两个角是邻补角C 、对顶角相等D 、邻补角不一定互补,但可能相等 2、下列语句错误的有( )个.(1)两个角的两边分别在同一条直线上,这两个角互为对顶角 (2)有公共顶点并且相等的两个角是对顶角OE D CBA OE DCBAcba3412(3)如果两个角相等,那么这两个角互补 (4)如果两个角不相等,那么这两个角不是对顶角A 、1B 、2C 、3D 、4 3、如果两个角的平分线相交成90°的角,那么这两个角一定是( ).A 、对顶角B 、互补的两个角C 、互为邻补角D 、以上答案都不对 4、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是( ).A 、对顶角B 、相等但不是对顶角C 、邻补角D 、互补但不是邻补角 5、下列说法正确的是( ).A 、有公共顶点的两个角是对顶角B 、两条直线相交所成的两个角是对顶角C 、有公共顶点且有一条公共边的两个角是邻补角D 、两条直线相交所成的无公共边的两个角是对顶角6、如图1所示,下列说法不正确的是( )A.点B 到AC 的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段;D.线段BD 是点B 到AD 的垂线段 7、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个8、点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线m 的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm9.则下列结论:垂足为如图,,,,90D BC AD BAC ⊥︒=∠ (1)点C 到AB 的垂线段是线段AB ; (2)点A 到BC 的距离是线段AD; (3)线段AB 的长度是点B 到AC 的距离; (4)线段BC 的长度是点B 到AC 的距离。
其中正确的有( )D C BAA. 1个B. 2个C. 3个D. 4个 【同位角、内错角、同旁内角】1.如图,∠1和∠5是直线_______,______被直线_______所截而成的______角;∠2和∠3是直线______,_______被直线_______所截而成的_______角;∠6和∠9是直线______,_______被直线______•所截而成的______•角;•∠ABC•和∠BCD•是直线______,______被直线_____所截得的________角.2.如图,下列说法错误的是( ) A 、∠1和∠B 是同位角 B 、∠B 和∠2是同位角 C 、∠C 和∠2是内错角 D 、∠BAD 和∠B 是同旁内角平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ;若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.如图8,推理填空:(1)∵∠A =∠ (已知),∴AC∥ED ( ); (2)∵∠2 =∠ (已知),∴AC∥ED ( );(3)∵∠A +∠ = 180°(已知),AB CED12 31 2 3 AF CDB E图8∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();二.填空题:1.如图③∵∠1=∠2,∴_______∥________()。
∵∠2=∠3,∴_______∥________()。
2.如图④∵∠1=∠2,∴_______∥________()。
∵∠3=∠4,∴_______∥________()。
3.如图⑤∠B=∠D=∠E,那么图形中的平行线有________________________________。
4.如图⑥∵AB⊥BD,CD⊥BD(已知)∴AB∥CD ( )又∵∠1+∠2 =180(已知)∴AB∥EF ( )∴CD∥EF ( ) 三.选择题:1.如图⑦,∠D=∠EFC,那么()A.AD∥BC B.AB∥CDC.EF∥BC D.AD∥EF2.如图⑧,判定AB∥CE的理由是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.如图⑨,下列推理错误的是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠2,∴c∥d四.完成推理,填写推理依据:1.如图⑩∵∠B=∠_______,∴ AB∥CD()∵∠BGC=∠_______,∴ CD∥EF()∵AB∥CD ,CD∥EF,AB∥_______()五.证明题1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE2.如图:∠1=︒53,127,∠3=︒53,∠2=︒试说明直线AB与CD,BC与DE的位置关系。
1 32 A E CD BF 图103.已知:如图,,,且.求证:EC ∥DF.4.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.5.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。
求证:AB ∥CD ,MP ∥NQ .6、如图所示,已知AB ∥CD,∠ABE=130°,∠CDE=152°,求∠BED 的度数.7、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°, 求∠DEG 的度数.8.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .EDC BAF2A B CDQE 1P MN 图11NMG F EDC BA9.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.10.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.11、如图,已知AB ∥CD ,∠1=100°,∠2=120°,求∠α。
12、已知AB ∥CD ,∠B=65°,CM 平分∠BCE ,∠MCN=90°,求∠DCN 的度数.13、如图,DB ∥FG ∥EC ,A 是FG 上的一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求∠PAG 的度数。
21F E DCB ANMEDCBA 图912 AC B F GED图1021B CEDC图121 2 3AB DF14.已知:如图, AB ∥DF ,BC ∥DE ,求证:∠1=∠2.15.已知:如图AD ∥BE ,∠1=∠2,求证:∠A =∠E .16.:如图, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF的平分线相交于点P .求证:EP ⊥PF17.如图,CD ∥BE ,试判断∠1,∠2,∠3之间的关系.平行线的性质1、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.DCBAFE12_G _F _E_P_D_C_B _AD CBA132D1CBAE322.如图1,已知∠1 = 100°,AB∥CD ,则∠2 = ,∠3 = ,∠4= .3.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则4.如图3所示(1)若EF∥AC ,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF . (3)若∠A +∠ = 180°,则AE∥BF . 5.如图4,AB∥CD ,∠2 = 2∠1,则∠2 = .6.如图5,AB∥CD ,EG⊥AB 于G ,∠1 = 50°,则∠E = ..7若两条平行线被第三条直线所截,则一组同位角的平分线互相8、已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关ba3412图1 2 4 3 1 A B C D E 1 2 AB DC E F 图2 1 2 3 4 5 A B C DF E 图3 图4 图51 A B C DE F GH 图712 D A C B l 1 l 2图81 ABF C D EG 图6C F E BA1、如图, 四边形ABCD 中, AD ∥BC, DE 平分∠ADB, ∠BDC=∠BCD.(1) 求证: ∠1+∠2=90°.(2) 若∠ABD 的平分线与CD 的延长线交于F, 且∠F=55°, 求∠ABC.(3) 若H 是BC 上一动点, F 是BA 延长线上一点, FH 交BD 于M, FG 平分∠BFH, 交DE 于N, 交BC 于G. 当H 在BC 上运动时(不与B 重合), ①DNG DMH BAD ∠∠+∠的值不变; ②BMHDNG ∠∠的值不变, 其中只有一个结论是正确的, 请判断正确的结论并求出其值.3、已知, 如图, 射线CB ∥OA, ∠C=∠OAB, 点E 、F 在CB 上, 且满足∠FOB=∠AOB, OE 平分∠COF.(1) 若∠C=100°, 求∠EOB 的度数.(2) 若平行移动AB, 其它条件不变, 那么∠OBC:∠OFC 的值是否发生变化 若变化, 找出变化规律, 若不变, 求出这个比值.(3) 在平行移动AB 的过程中, 若∠OEC=∠OBA, 则有①COE AOB ∠∠为定值; ②OABOEB ∠∠ 为定值, 其中有一个结论是正确的, 找出正确结论并求该定值.4、已知, 如图, 直线AB∥CD, 直线EF分别交AB、CD于E、F两点, EM、FN分别平分∠BEF、∠CFE.(1) 求证: EM∥FN;(2) 如图, ∠DFE的平分线交EM于G点, 求∠EGF度数;(3) 如图∠BEG、∠DFG的平分线交于H点, 试问: ∠H与∠G的度数是否存在某种特定的等量关系证明你的结论, 并根据结论猜想: 若∠BEH、∠DFH的平分线交于K点, ∠K与∠G 度数关系,请是,说明理由。