交大大物第三章习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题

3-1. 如图,一质点在几个力作用下沿半径为R =20m 的圆周运动,其中有一恒力F =0.6iN ,求质点从A 开始沿逆时针方向经3/4圆周到达B 的过程中,力F 所做的功。

解:j i 2020+-=-=∆A B r r r

由做功的定义可知:J W 12)2020(6.0-=+-∙=∆∙=j i i r F

3-2. 质量为m=0.5kg 的质点,在x O y 坐标平面内运动,其运动方程为x=5t 2,y=0.5(SI),从t =2s 到t =4s 这段时间内,外力对质点的功为多少?

i j i j i 60)5.020()5.080(=+-+=-=∆24r r r 22//10d dt d dt ===i a v r 105m m ==⨯=i i F a

由做功的定义可知:560300W J =∙∆=∙=i i F r

3-3.劲度系数为k 的轻巧弹簧竖直放置,下端悬一小球,球的质量为m ,开始时弹簧为原长而小球恰好与地接触。今将弹簧上端缓慢提起,直到小球能脱离地面为止,求此过程中外力的功。

根据小球是被缓慢提起的,刚脱离地面时所受的力为F=mg ,mg x k =∆

可得此时弹簧的伸长量为:k

mg

x =

∆ 由做功的定义可知:k

g m kx kxdx W k mg x

22

1

2

20

2

===⎰

3-4.如图,一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力数值为N ,求质点自A 滑到B 的过程中,摩擦力对其做的功。

分析:W f 直接求解显然有困难,所以使用动能定理,那就要知道它的末速度的情况。

解:求在B 点的速度: N-G=R v m 2 可得:R G N mv )(2

1

212-=

由动能定理:

R mg N mgR R G N W mv W mgR f f )3(2

1

)(2102

12

-=--=

-=

+

3-5.一弹簧并不遵守胡克定律,其弹力与形变的关系为

i F )4.388.52(2x x --=,其中F 和x 单位分别为N 和m .

(1)计算当将弹簧由m 522.01=x 拉伸至m 34.12=x 过程中,外力所做之功;

(2)此弹力是否为保守力? 解:

(1)由做功的定义可知:

J

x x x x dx x x d W x x 2.69)

(6.12)(4.26)4.388.52(3

1322122234

.1522

.02

1

=----=--=∙=⎰

x F (2)由计算结果可知,做功与起点和终点的位置有关,与其他因素无关,所以该弹力为保守力。

3-6. 一质量为m 的物体,在力)(2

j i F bt at +=的作用下,由静止开始运动,求在任一时刻t 此力所做功的功率为多少。

解:要求功率就必须知道力和速度的情况,由题意:

)3

1

21(1)(1322j i j i bt at m dt bt at m t m +=+==⎰⎰

F v 所以功率为:

)3

1

21(1)3121(1)(5232322t b t a m bt at m bt at N +=+∙

+=∙=j i j i V F

3-7. 一质点在三维力场中运动.已知力场的势能函数为

cz bxy ax E ++-=2p .

(1)求作用力F ;

(2)当质点由原点运动到3=x 、3=y 、3=z 位置的过程中,试任选一路径,计算上述力所做的功。其中p E 的单位为J ,z y x 、、的单位为m ,F 的单位为

N .

解:(1)由作用力和势能的关系:

k j i F c bx by ax r

cz bxy ax r E P ---=∂++-∂-=∂∂-=)2()(2

(2)取一个比较简单的积分路径:k j i r dz dy dx ++=,则积分可得:

)(])2[(k j i k j i dr F dz dy dx c bx by ax W ++∙---=∙=⎰⎰

=9a-9b-3c

3-8. 轻弹簧AB 的上端A 固定,下端B 悬挂质量为m 的重物。已知弹簧原长为0l ,劲度系数为k ,重物在O 点达到平衡,此时弹簧伸长了0x ,如图所示。取x 轴向下为正,且坐标原点位于:弹簧原长位置O ';力的平衡位置O 。若取原点为重力势能和弹性势能的势能零点,试分别计算重物在任一位置P 时系统的总势能。

解:(1)取弹簧原长位置O '为重力势能和弹性势能的势能零点,则重物在任一位置P (坐标设为x ')时系统的总势能:2

P 2

1E x k x mg '+

'-= (2)取力的平衡位置O 为重力势能和弹性势能的势能零点,则重物在任一

位置P (坐标设为x )时系统的总势能:

20

20P 2

121E kx mg kx x x k mgx =-++-=而)(

所以22020P 2

12121E kx kx x x k mgx =-++-=)(

3-9. 在密度为1ρ的液面上方,悬挂一根长为l ,密度为2ρ的均匀棒AB ,棒的B

端刚和液面接触如图所示,今剪断细绳,设细棒只在浮力和重力作用下运动,在

121

2

ρρρ<<的条件下,求细棒下落过程中

的最大速度max v ,以及细棒能进入液体的最大深度H 。

解:分析可知,棒下落的最大速度是受合力为零的时候,所以:

hsg lsg 12ρρ=,

则l h 1

2

ρρ=

。 在下落过程中,利用功能原理:222101

2

h slv sglh gsydy ρρρ-=-⎰

所以:max v =

进入液体的最大深度H 为细棒运动的速度为零时:

210

H

sglh gsydy ρρ-=-⎰所以1

122

l H ρρρ=

∙-

3-10. 若在近似圆形轨道上运行的卫星受到尘埃的微弱空气阻力f 的作用,设阻力与速度的大小成正比,比例系数k 为常数,即kv f -=,试求质量为m 的卫星,开始在离地心R r 40=(R 为地球半径)陨落到地面所需的时间。

解:根据题意,假设在离地心R r 40=处质点的速度为v 1,地面上的速度为

相关文档
最新文档