交大大物第三章习题答案

合集下载

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

上海交大版大学物理上册答案

上海交大版大学物理上册答案

上海交大版大学物理上册答案第一章质点运动学【例题】例1-1 At= s 例1-2D 例1-3 D 例1-4 B 例1-5 33 例1-6 D 例1-7 C 例1-8 证明:dvdt?dvdx?dxdt?vdvdx??Kv ∴ d v /v =-Kdx 2?v1vv0dv???Kdx , ln0xvv0??Kx ∴v =v 0e-Kx例1-9 1 s m例1-10 B 【练习题】1-1 x=(y-3)2 1-2 -/s-6m/s 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小at必为常数,即at1?at2?at3,现在虽然a1?a2?a3,但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即at1?at2?at3,故该质点不作匀变速率运动。

1-5 D 1-6证明:设质点在x处的速度为v a?1-7 16 R t 4 rad /s2 2 dvdt?dvdx?dxdtv?2?6x 2?vdv?0??2?6x?dx v20x?2x?x?3?12 1-8 Hv/(H-v) 1-9 C 第二章质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv,牛顿定律?Kmdt?dvvt ∴dxdt,??m0xKvdt?t?v0dvv?Kt/m∴v?v0e (2) 求最大深度v? dx?v0e?Kt/mdt?0dx??0v0e?Kt/ mdt∴x?(m/K)v0(1?e?Kt/m) xmax?mv0/K 例2-4 D 例2-5 答:(1) 不正确。

向心力是质点所受合外力在法向方向的分量。

质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。

即使某个力指向圆心,也不能说它就是向心力,这要看是否还有其它力的法向分量。

(2) 不正确。

作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心。

上海交通大学出版社 大学物理教程 3振动与波习题思考题答案

上海交通大学出版社 大学物理教程 3振动与波习题思考题答案

习题33-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。

(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =; ∴ω===。

取竖直向下为x 正向,弹簧伸长为0.1m 时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =0.1m ,当t =0时,x =-A ,那么就可以知道物体的初相位为π。

所以:0.1cos x π=+)即:)x =-。

3-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ= 向平衡位置运动。

设小球的运动可看作简谐振动,试求:(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。

(g 取9.8)解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。

(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s ===; (2)振动方程可表示为:cos 3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+ () 根据初始条件,0t =时:cos A θϕ=,0(12sin 0(343.13Aθϕ>=-< ,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,, 所以得到振动方程:28.810cos 3.13 2.32t m θ-=⨯-() 。

3-3.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。

当0=t 时,位移为cm 6,且向x 轴正方向运动。

求:(1)振动表达式;(2)s 5.0=t 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。

西安交大版大学物理上学习指导作业及选择题答案参考答案

西安交大版大学物理上学习指导作业及选择题答案参考答案

第一章质点运动学第二章运动与力第三章动量与角动量第四章功和能第五章刚体的转动第六章狭义相对论基础- 2 -第七章振动第八章波动- 3 -第九章温度和气体动理论第十章热力学第一定律- 4 -- 5 -第十一章 热力学第二定律第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分- 6 - ()x x xd 62d 020⎰⎰+=v v v 2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.- 7 -解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.- 8 - 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分- 9 - 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得题1-4图tss t l ld d 2d d 2=- 10 - 根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船- 11 - 第二章 运动与力 课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分- 12 - 令0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.m 1m 22、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)g M P =θFNf- 13 -解:人受力如图(1) 图2分a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?- 14 - m 1m 22a解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T =-2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分- 15 - 4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得:T ( r )-T ( r + d r ) = ( M / L ) d r r ω2 令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 4分由于绳子的末端是自由端 T (L ) = 0 1分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分OO- 16 - 第三章 动量与角动量 课 后 作 业hAv1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆1分设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分- 17 - 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分 f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ- 18 - )(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ② 由①、②得 t =2 s , v x =500 m/s 2分- 19 - 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分mv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹- 20 - 以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v ' 有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分- 21 - 课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F 和y F 分别作的功.解:(1)位矢 j t b i t a rωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x=+v v 2分 (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22-- 2分- 22 - 由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得- 23 - 222121)(kL kx x L F -=+- ② 2分 由② 解出kFL x 2-= 使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?- 24 -al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g l ym f μ= 1分 摩擦力的功 ⎰⎰--==00d d a l al f y gy l my f W μ 2分=022al y lmg-μ =2)(2a l lmg --μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分- 25 - W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .- 26 - 解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章 刚体的转动课 后 作 业- 27 - 1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分 T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分 a =r β 2分解上述5个联立方程得: T =11mg / 8 2分- 28 -2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T2-T1)R=Jβ=MR2β / 4 ③2分因绳与滑轮无相对滑动,a=βR④1分①、②、③、④四式联立解得a=2g / 7 1分3、一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t内下降了一段距离S.试求整个轮轴的转动惯量(用m、r、t和S表示).解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和转动定律得:mg­T=ma①2分T r=Jβ②2分由运动学关系有:a = rβ③2分- 29 -- 30 - 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0式代入④式得:J =mr 2(Sgt 22∴ S =221at , a =2S / t 2 ⑤ 2分将⑤-1) 2分Am 1 ,l1v2俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l mJ =)- 31 -解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是- 32 - 多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =.相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.- 33 -解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 2 3分 3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 maaO y x- 34 - 则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有- 35 - 2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 2 2分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴ )1111(22122220cc c m W v v ---==4.72×10-14 J =2.95×105 eV 2分 第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问: (1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?- 36 -解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程;- 37 - (2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分 ∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250 g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方- 38 - 程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/m11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分4、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m 1分取下m 1挂上m 2后,2.11/2==m k ω rad/s 2分ω/2π=T =0.56 s 1分t = 0时, φcos m 10220A x =⨯-=-- 39 - φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m 2分=-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad 2分 振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI) 2分或 x = 2.05×10-2cos(11.2t +3.36) (SI)- 40 - 5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm . (1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0则 0202)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),- 41 - kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分- 42 - A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2cos[1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论 课 后 作 业1、黄绿光的波长是5000A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分 3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分 4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分第十章 热力学第一定律 课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) p (105 Pa) A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量.此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分(2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分 (4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分BAOVp 1p 2p V 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中1 2 3 1 2 3 a bcV (L)p (atm)气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分 4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:Oadcbp (×105 Pa)V (×10-3 m 3)2312(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分 (2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分 (3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R , T a T c = (p a V a p c V c )/R 2=(12×104)/R 2 T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分 5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量)ABCD OVp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q--=--= 4分根据绝热过程方程得到:γγγγ----=D D A A T p T p 11, γγγγ----=C C B B T p T p 11 ∵ p A = p B , p C = p D ,∴ T A / T B = T D / T C 4分故 %251112=-=-=B C T T Q Qη 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条。

大学物理第三章部分答案知识讲解

大学物理第三章部分答案知识讲解

大学物理第三章部分答案知识讲解大学物理第三章部分答案大学物理部分课后题参考答案第三章动量守恒定律和能量守恒定律选择题:3.15—3.19 A A D D C计算题:3.24 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50kg 的重物,结果是A 船停了下来,而B 船以3.4m/s 的速度继续向前驶去。

A 、B 两船原有质量分别为0.5?103kg 和1.0?103kg ,求在传递重物前两船的速度。

(忽略水对船的阻力)解:(1)对于A 船及抛出的重物和B 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设A 船抛出重物前的速度大小为v A 、B 船抛出重物前的速度大小为v B ,两船抛出的重物的质量均为m .则动量守恒式为,0B A A A =+-mv mv v m (1)(2)对于B 船及抛出的重物和A 船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设B 船抛出重物后的速度大小为V B ,则动量守恒式为,B B A B B B V m mv mv v m =+- (2)联立(1)、(2)式并代入kg 105.03A ?=m 、kg 100.13B ?=m 、kg 50=m 、m /s 4.3B =V 可得 m/s 4.0))((2B A B B A -=----=m m m m m mV m v3.38用铁锤把钉子敲入墙面木板。

设木板对钉子的阻力与钉子进入木板的深度成正比。

若第一次敲击,能把钉子钉入木板m1000.12-?,第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?解:因阻力与深度成正比,则有F = kx (k 为阻力系数)。

现令x 0 = 1.00?10-2 m ,第二次钉入的深度为x ?,由于钉子两次所作功相等,可得+=x x x x x kx x kx 000d d 0m 1041.02-?=?x。

大学物理第三章测试题及答案

大学物理第三章测试题及答案

第三章答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

3. 如图所示,一半径为r ,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度。

解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= (1)对于滑轮按转动定律有 212Tr mr β=(2) 由角量线量关系有 a r β= (3)联立以上三式解得.4 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径).解:(1) 球体收缩过程满足角动量守恒:0022I I ωω=2000202225421()52mR I I m R ωωωω=== 所以0202244T T ππωω=== .6 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.解:(1) 子弹击中圆盘过程满足角动量守恒:2201()2mRv mR MR ω=+ 所以 0022()22mRv mv mR MR m M R ω==++ (2)圆盘受到的摩擦力矩为0223R M rdrgr MRg μσπμ'=-⋅=-⎰由转动定律得 M Iβ'= 2200001()(0)12()()32223mv mR MR m M R I mv t M Mg MRg ωωωωβμμ+-+--===='-。

大学物理第三章练习及答案

大学物理第三章练习及答案

大学物理第三章练习及答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、判断题1. 刚体是质点与质点之间的相对位置保持不变的质点系。

………………………………[√]2. 刚体中任意质点都遵循质点力学规律。

…………………………………………………[√]3. 定轴转动的刚体上的每一个质点都在作圆周运动,都具有相同的角速度。

…………[√]4. 刚体对轴的转动惯量越大,改变其对轴的运动状态就越困难。

………………………[√]5. 刚体质量一定,其转动惯量也就一定。

…………………………………………………[×]6. 当作用在刚体上的两个力合力矩为零时,则它们的合力也一定为零。

………………[×]7. 当作用在刚体上的两个力合力为零时,则它们的合力矩也一定为零。

………………[×]8. 平行于转轴的力对刚体定轴转动没有贡献。

……………………………………………[√]9. 刚体所受合外力矩为零时,刚体总角动量守恒。

………………………………………[√] 10. 刚体对某一轴的角动量守恒,刚体的所受合外力矩为零。

……………………………[×] 二、填空题11. 质量为m 的质点沿半径为r 的圆周以速率v 运动,质点对过圆心的中心轴转动惯量J =2mr ,角动量L =;质量为m 的质点沿着直线以速率v 运动,它相对于直线外距离为d 的一点的角动量为L =mdv 。

12. 长度为l 的均匀细棒放在Oxy 平面内,其一端固定在坐标原点O 位置,另一端可在平面内自由转动,当其转动到与x 轴正方向重合时,在细棒的自由端受到了一个34F i j =+牛顿的力,则此力对转轴的力矩M =4l 。

13. 在Oxy 平面内有一个由3个质点组成的质点系,其质量分别为1m 、2m 、3m ,坐标分别为()11,x y 、()22,x y 、()33,x y ,则此质点系对z 轴的转动惯量J =()()()222222*********m x y m x y m x y +++++。

大学物理答案 3.第三章

大学物理答案 3.第三章

第三章 质点系统的运动规律思考题3-19 在地球表面附近将物体以足够速度发射出去,物体可能以稳定轨道环绕地球运行,这就是所谓的“人造地球卫星”。

试估算物体能够环绕地球所需的最小发射速度(第一宇宙速度)。

分析:将地球与物体看成一个封闭系统,系统不受外力,机械能守恒。

答:物体被抛出后以稳定的轨道环绕地球运动,那么物体所受到的重力提供物体环绕地球运动的向心力:2v mg m R =. 此时,系统的机械能为:212mgR mv +初始时刻(物体被发射时)系统的机械能为:2012mgR mv + (R 为地球半径)所以,07.9/v v m s =≈ (第一宇宙速度)3-20 无风天气放烟花时,烟花质心的运动轨道如何?若将全部烟花微粒看作一组初速度相同,抛射监不同的斜抛运动,试证明在任何时刻所有烟花微粒都分布在同一球面上。

分析:这是一个质点组的问题。

将所有的烟花颗粒看成一个质点组系统,在无风天气,这个质点组系统爆炸之后只受到重力的作用,没有其他外力作用。

本题采用质心系分析起来比较方便。

答:无风天气放烟花,说明烟花爆炸后除重力以外,不再受其它外力的作用。

那么烟花爆炸时,有一个爆炸力,使烟花产生一个向斜上方的运动速度,其后只受重力的作用,所以烟花质心的运动轨道为一抛物线,烟花质心作的是斜抛运动。

**此处应为初速率相同。

我们选取烟花爆炸点作为坐标原点,建立直角坐标系。

假设初速率为v 0,它与水平面(XOY)的夹角为α,与XOZ 平面的夹角为β。

当抛射角不同时,角度α与β不同。

在直角坐标系中的初始速度分量分别为:αβαβαsin sin cos cos cos 000000v v v v v v z y x === 各个烟花微粒在水平方向(x 和y 方向)不受力,作匀速直线运动,在竖直方向受重力,作竖直上(或下)抛运动(即匀减速直线运动)。

烟花爆炸t 时间后,位移分别为:2020000021sin 21sin cos cos cos gt t v gt t v z t v t v y t v t v x z y x -=-=====αβαβα202222)()21( x t v gt z y =+++∴轨迹方程: 所以,在任何时刻,烟花微粒全部分布在一个以)21- 0, ,0(2gt 为中心,半径为t v 0的球面上。

大学物理第三章题目答案【精选文档】

大学物理第三章题目答案【精选文档】

第三章3.10 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如题3。

10图.试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少?题3。

10图解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得1002112301112130212()()M gmr M g M M mr M M M M r g r m M M ωωω=+'=+'==⋅'+3.13 计算题3。

13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg ,M =15 kg , r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b )所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有β)21(212Mr r T r T =- ③又, βr a = ④ 联立以上4个方程,得2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题3.13(a )图 题3。

13(b )图3.15 如题3.15图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?题3.15图解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=lg I Mgl ω由①式mlI v v ω-=0 ④ 由②式mI v v 2202ω-= ⑤所以22200()I I v v ml mωω-=- 求得021(1)(1)2236(23)312l I l M v ml m gl m Mmωω=+=+-+=(2)相碰时小球受到的冲量为d ()F t mv mv mv=∆=-⎰由①式求得ωωMl l I mv mv t F 31d 0-=-=-=⎰ 6(23)6gl M -=-负号说明所受冲量的方向与初速度方向相反.3.16 一个质量为M 、半径为R 并以角速度ω转动着的飞轮 (可看作匀质圆盘),在某一瞬时突然有一片质量为m 的碎片从轮的边缘上飞出,见题3.16图.假定碎片脱离飞轮时的瞬时速度方向正好竖直向上. (1)问它能升高多少?(2)求余下部分的角速度、角动量和转动动能.题3.16图解: (1)碎片离盘瞬时的线速度即是它上升的初速度ωR v =0设碎片上升高度h 时的速度为v ,则有gh v v 2202-=令0=v ,可求出上升最大高度为2220212ωR gg v H ==(2)圆盘的转动惯量221MR I =,碎片抛出后圆盘的转动惯量2221mR MR I -=',碎片脱离前,盘的角动量为ωI ,碎片刚脱离后,碎片与破盘之间的内力变为零,但内力不影响系统的总角动量,碎片与破盘的总角动量应守恒,即R mv I I 0+''=ωω式中ω'为破盘的角速度.于是R mv mR MR MR 0222)21(21+'-=ωω ωω'-=-)21()21(2222mR MR mR MR 得ωω=' (角速度不变)圆盘余下部分的角动量为ω)21(22mR MR - 转动动能为222)21(21ωmR MR E k -=。

大学物理习题答案第三章

大学物理习题答案第三章

大学物理习题答案第三章[习题解答]??33-1用锤子敲钉子。

如果锤子的质量是500g,那么撞击钉子的速度是8.0m?S1,动作时间2.0?十s,求钉子所受的冲量和榔头对钉子的平均打击力。

对于hammer:,式中,I1是液压锤接收到的脉冲,是榔头所受钉子的平均打击力;对于指甲:,式中,I2是指甲接收到的脉冲,是钉子所受的平均打击力,显然=?。

标题要求的是I2和:,i2的方向与榔头运动方向一致。

,的方向与榔头运动方向一致。

500米处质量为10克的3-2发子弹?s?1在垂直于板面的方向上,向板子射击的速度穿过板子,速度下降到400m?s?1。

如果子弹穿过木板所需时间为1.00?10?5s,试分别利用动能定理和动量定理求木板对子弹平均阻力。

解(1)用动能定理求解:,(1)在…之间是木板对子弹的平均阻力,d为穿过木板的厚度,它可用下面的关系求得:,(2).(3)通过同时建立公式(2)和公式(3)得到的板厚度为&nb.根据式(1),木板对子弹的平均阻力为.(2)用动量定理求解:,.这与上述结果是一致的。

从求解过程可以看出,用动量定理求解要容易得多。

3-4质量为m的小球与桌面相碰撞,碰撞前、后小球的速率都是v,入射方向和出射方向与桌面法线的夹角都是?,如图3-3所示。

若小球与桌面作用的时间为?t,求小球对桌面的平均冲力。

图3-3解设桌面对小球的平均冲力为f,并建立如图所示的坐标系,根据动量定理,对于小球可列出,.它可以从第一个方程得到,它可以从第二个方程中得到.根据牛顿第三定律,球在桌子上的平均冲击力为,减号表示桌面上球的平均冲量在y轴的负方向。

3-5如图3-4所示,一个质量为m的刚性小球在光滑的水平桌面上以速度v1运动,v1与x轴的负方向成?角。

当小球运动到o点时,受到一个沿y方向的冲力作用,使小球运动速度的大小和方向都发生了变化。

已知变化后速度的方向与x轴成?角。

如果冲力与小球作用的时间为?t,求小球所受的平均冲力和运动速率。

大学物理上册第3章习题解答

大学物理上册第3章习题解答

大学物理上册第3章习题解答第3章角动量定理和刚体的转动一、内容提要1、质点的角动量定理⑴质点对于某一定点的角动量和角动量定理:角动量L r mv =? 角动量定理 dL M dt=⑵质点对于z 轴的角动量和角动量定理:角动量z L r mv τ⊥=? 角动量定理 zz dL M dt=2、质点系的角动量定理刚体的转动惯量和定轴转动定理⑴质点系的角动量定理 i i iidM L dt =∑∑ ⑵刚体的转动惯量 2z iiiI r m =∑ 或2zI r dm =?⑶刚体的定轴转动定理 z z zd M I I dtωβ== 3、刚体的定轴转动动能定理⑴力矩的功z A M d θ=?⑵刚体的转动动能 212k z E I ω=⑶刚体的定轴转动动能定理 22211122z z z A M d I I θωω==-?4、角动量守恒定律⑴质点的角动量守恒定律:若0M =,则21L L = ⑵刚体的对轴角动量守恒定律:刚体对轴的角动量也可写为2z izizL r m I ωω=?=∑,若0iziM =∑,则0z z I I ωω=,即有0ωω=二、习题解答3.1 一发动机的转轴在7s 内由200/min r 匀速增加到3000/min r . 求:(1)这段时间内的初末角速度和角加速度. (2)这段时间内转过的角度和圈数. (3)轴上有一半径为2.0=r m 的飞轮, 求它边缘上一点在7s 末的切向加速度、法向加速度和总加速度.解:(1)初的角速度1200220.9/60rad s πω?=≈ 末的角速度230002314/60rad s πω?=≈角加速度231420.941.9/7rad s t ωβ?-==≈?(2)转过的角度为2211120.9741.97117622t t rad θωβ=+=?+??=117618622 3.14n r θπ===? (3)切向加速度241.90.28.38/a r m s τβ==?=法向加速度为:22423140.2 1.9710/n a r m s ω==?=?总的加速度为:421.9710/a m s ===?3.3 地球在1987年完成365次自转比1900年长14.1s. 求在1900年到1987年间, 地球自转的平均角加速度.解:平均角加速度为0003652365287T t T a t T ππωω??--+?==212373036523652 1.140.9610/8787(3.1510)t rad s T ππ-≈=-=-3.4一人手握哑铃站在转盘上, 两臂伸开时整个系统的转动惯量为22kgm . 推动后, 系统以15/min r 的转速转动. 当人的手臂收回时, 系统的转动惯量为20.8kgm . 求此时的转速.解:由刚体定轴转动的角动量守恒定律,1122I I ωω=121221537.5/min 0.8I r I ωω==?=3.5 质量为60kg , 半径为0.25m 的匀质圆盘, 绕其中心轴以900/min r 的转速转动. 现用一个闸杆和一个外力F 对盘进行制动(如图所示), 设闸与盘之间的摩擦系数为4.0. 求:(1)当100F N =, 圆盘可在多长时间内停止, 此时已经转了多少转?(2)如果在2s 内盘转速减少一半, F 需多大?图3-5 习题1.4图解:(1)设杆与轮间的正压力为N ,10.5l m =,20.75l m =,由杠杆平衡原理得121()F l l Nl +=121()F l l N l +=闸瓦与杆间的摩擦力为: 121()F l l f N l μμ+== 匀质圆盘对转轴的转动惯量为212I mR =,由定轴转动定律,M I β=,有 ()122112F l l R mR l μβ+-= 21212()40/3F l l rad s mRl μβ+=-=-停止转动所需的时间: 0900200607.06403t s πωβ--===- 转过的角度201532332.762t t rad rad θωβπ?=+=?≈532n θπ==圈(2)030ωπ=,在2s 内角速度减小一半,知0227.5/23.55/rad s rad s tωωβπ-=-=-=-()1222112F l l R mR l μβ+-= 112600.250.5(23.55)1772()20.4 1.25mRl F N l l βμ-=-=-≈+??3.6 发动机带动一个转动惯量为250kgm 的系统做定轴转动. 在0.5s 内由静止开始匀速增加到120/min r 的转速. 求发动机对系统施加的力矩.解:由题意,250I kgm =,00ω=,120/min 4/r rad s ωπ==系统角加速度为:20825.12/rad s t tωωωβπ-?====?? 由刚体定轴转动的转动定理,可知M I β=5025.121256M Nm =?=3.7一轻绳绕于半径为R 的圆盘边缘, 在绳端施以mg F =的拉力, 圆盘可绕水平固定光滑轴在竖直平面内转动. 圆盘质量为M , 并从静止开始转动. 求:(1)圆盘的角加速度及转动的角度和时间的关系. (2)如以质量为m 的物体挂在绳端, 圆盘的角加速度及转动的角度和时间的关系又如何?解:(1)由刚体转动定理可知:M I β= 上题可知: M FR mgR ==212I MR =代入上式得2mgMRβ=, 2212mg t t MRθβ==(2)对物体受力分析'mg F ma -= 'F R I β= a R β=,212I MR =由上式解得22mgMR mR β=+22122mg t t MR mRθβ==+3.8某冲床飞轮的转动惯量为32410kgm ?. 当转速为30/min r 时, 它的转动动能是多少?每冲一次, 其转速下降10/min r . 求每冲一次对外所做的功.解:由题意,转速为:()030/min /r rad s ωπ== 飞轮的转动动能为:232411410 1.9721022E I J ωπ===? 第一次对外做功为:22011122A I I ωω=- 1220/min 3r πω==()2422222301011111515410 3.14 1.0910*******A I I I I J ωωωωπ=-=-=?==?3.9半径为R , 质量为M 的水平圆盘可以绕中心轴无摩擦地转动. 在圆盘上有一人沿着与圆盘同心, 半径为R r <的圆周匀速行走, 行走速度相对于圆盘为v . 设起始时, 圆盘静止不动, 求圆盘的转动角速度.解:设圆盘的转动角速度为2ω,则人的角速度为12vrωω=-,圆盘的转动惯量为212MR ,人的转动惯量为2mr ,由角动量守恒定律, 222212v mr MR r ωω??-=即22222mrvmr MRω=+3.10 两滑冰运动员, 质量分别为60kg 和70kg , 他们的速率分别为7/m s 和6/m s , 在相距1.5m 的两平行线上相向滑行. 当两者最接近时, 互相拉手并开始绕质心做圆周运动. 运动中, 两者间距离保持m 5.1不变. 求该瞬时:(1)系统的总角动量. (2)系统的角速度.(3)两人拉手前后的总动能.解:⑴ 设1m 在原心,质心为c r70 1.50.87060c r m ?=≈+120.8, 1.50.810.7c r r m r m ===-=21112226070.870607630./J m v r m v r kg m s =+=??+??=⑵ 系统的转动惯量为: 222221122600.8700.772.7I m r m r kgm =+=?+?=6308.66/72.7J rad s I ω==≈ 222201122111160770627302222E m v m v J =+=??+??=221172.78.66272622E I J ω==??≈3.11半径为R 的光滑半球形碗, 固定在水平面上. 一均质棒斜靠在碗缘, 一端在碗内, 一端在碗外. 在碗内的长度为c , 求棒的全长.解:棒的受力如图所示本题属于刚体平衡问题,由于碗为光滑半球形,A 端的支持力沿半径方向,而碗缘B 点处的支持力方向不能确定,两个支持力和重力三者在竖直平面内。

大学物理 第三章习题答案PPT课件

大学物理 第三章习题答案PPT课件
2mv
式中n为正整数;
(3)试证明符合以上两个要求的轨道半径必须满足下式
r
n2 0h2 ne2
,式中n为正整数
最新课件
8
解:由题意可知
(1)
m v2 r
e2
4 0r 2
r
e2
4 0mv2
(2)电子做圆周运动,其对核的角动量为L=rmv,依题意有
Lrmv hn
2
r nh
2mv
(3)由
r
nh ,
2mv
机械能守恒,得:
1J212mg1 lcos
22
3
联立以上各式,解得: cos 23
48
61.37。
最新课件
12
3.24、在一圆柱容器底部有一圆孔,孔的直径为d,圆柱体直
径为D,容器中水的高度随着水的流出而下降,试找出小孔
中水的流速v和水面高度h之间的关系。
D
解:由题意可得
设S1与S2分别为容器与小孔横截面积,v1为 h
f
的大小:与 f 的大小相最新同课件;方向:与 f
的方向相反。 3
3.7 一水平均质圆台的质量为200kg,半径为2m,可绕通过其 中心的铅直轴自由旋转(即轴摩擦忽略不计).今有一质量为
60kg的人站在圆台边缘.开始时,人和转台都静止,如果人在 台上以1.2m·s-1的速率沿台边缘逆时针方向奔跑,求此圆台转动 的角速度.
料量为 r ,试求传递带受到饲料的作用力的大小和方向(不计
相对传送带静止的饲料质量)
解 以 t~t+dt 内落到传递带上的饲
H
v
料为研究对象,它的质量为 dm
= rdt ,在与传递带接触之前的
速度大小为:

大学物理习题答案解析第三章

大学物理习题答案解析第三章

第三章动量守恒定律和能量守恒定律3 -1对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是()(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的(D) (2)、(3)是正确的分析与解在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C).3 -2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则()(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒分析与解对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.3 -3对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.下列上述说法中判断正确的是()(A) (1)、(2)是正确的(B) (2)、(3)是正确的(C) 只有(2)是正确的(D) 只有(3)是正确的分析与解保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位置有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C).3 -4如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A和C、B和D之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有()(A) 动量守恒,机械能守恒 (B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).3 -5 如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是( )(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.3 -6 一架以3.0 ×102 m·s-1 的速率水平飞行的飞机,与一只身长为0.20 m 、质量为0.50 kg 的飞鸟相碰.设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率甚小,可以忽略不计.试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算).根据本题的计算结果,你对于高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰后会产生什么后果的问题有些什么体会?分析 由于鸟与飞机之间的作用是一短暂时间内急剧变化的变力,直接应用牛顿定律解决受力问题是不可能的.如果考虑力的时间累积效果,运用动量定理来分析,就可避免作用过程中的细节情况.在求鸟对飞机的冲力(常指在短暂时间内的平均力)时,由于飞机的状态(指动量)变化不知道,使计算也难以进行;这时,可将问题转化为讨论鸟的状态变化来分析其受力情况,并根据鸟与飞机作用的相互性(作用与反作用),问题就很简单了.解 以飞鸟为研究对象,取飞机运动方向为x 轴正向.由动量定理得式中F ′为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为Δt =l /v ,以此代入上式可得0Δ-='v m t F鸟对飞机的平均冲力为式中负号表示飞机受到的冲力与其飞行方向相反.从计算结果可知,2.25 ×105 N 的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的.若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故.3 -7 质量为m 的物体,由水平面上点O 以初速为v 0 抛出,v 0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O 到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.分析 重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可.由抛体运动规律可知,物体到达最高点的时间,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍.这样,按冲量的定义即可求得结果.另一种解的方法是根据过程的始、末动量,由动量定理求出.解1 物体从出发到达最高点所需的时间为则物体落回地面的时间为 于是,在相应的过程中重力的冲量分别为 解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为3 -8 F x =30+4t (式中F x 的单位为N,t 的单位为s)的合外力作用在质量m =10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v 1 N 1055.252⨯=='lm F v N 1055.25⨯-='-=FF gαt sin Δ01v =gαt sin Δ01v =gαt t sin Δ2Δ012v ==j j F I αm t mg t t sin Δd 011Δ1v -=-==⎰j j F I αm t mg t t sin 2Δd 022Δ2v -=-==⎰j j j I αm y m mv Ay sin 001v v -=-=j j j I αm y m mv By sin 2002v v -=-==10 m·s -1 ,方向与Fx 相同,在t =6.86s 时,此物体的速度v 2 .分析 本题可由冲量的定义式,求变力的冲量,继而根据动量定理求物体的速度v 2.解 (1) 由分析知(2) 由I =300 =30t +2t 2 ,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N·s ,将I 、m 及v 1代入可得3 -9 高空作业时系安全带是非常必要的.假如一质量为51.0 kg 的人,在操作时不慎从高空竖直跌落下来,由于安全带的保护,最终使他被悬挂起来.已知此时人离原处的距离为2.0 m ,安全带弹性缓冲作用时间为0.50 s .求安全带对人的平均冲力.分析 从人受力的情况来看,可分两个阶段:在开始下落的过程中,只受重力作用,人体可看成是作自由落体运动;在安全带保护的缓冲过程中,则人体同时受重力和安全带冲力的作用,其合力是一变力,且作用时间很短.为求安全带的冲力,可以从缓冲时间内,人体运动状态(动量)的改变来分析,即运用动量定理来讨论.事实上,动量定理也可应用于整个过程.但是,这时必须分清重力和安全带冲力作用的时间是不同的;而在过程的初态和末态,人体的速度均为零.这样,运用动量定理仍可得到相同的结果.解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为(1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有(2)由式(1)、(2)可得安全带对人的平均冲力大小为解2 从整个过程来讨论.根据动量定理有3 -10 质量为m 的小球,在合外力F =-kx 作用下运动,已知x =A cos ωt ,其中k 、ω、A 均为正常量,求在t =0 到 时间内小球动量的增量. 分析 由冲量定义求得力F 的冲量后,根据动量原理,即为动量增量,注意用式积分前,应先将式中x 用x =A cos ωt 代之,方能积分.解 力F 的冲量为 ⎰=21d t t t F I ()s N 68230d 43020220⋅=+=+=⎰t t t t I 112s m 40-⋅=+=mm I v v gh 21=v ()12Δv v m m t -=+P F ()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v N 1014.1/2Δ3⨯=+=mg g h tmg F ωt 2π=⎰21d t t t F即 3 -11 如图所示,在水平地面上,有一横截面S =0.20 m 2 的直角弯管,管中有流速为v =3.0 m·s-1 的水通过,求弯管所受力的大小和方向.分析 对于弯曲部分AB 段内的水而言,由于流速一定,在时间Δt 内,从其一端流入的水量等于从另一端流出的水量.因此,对这部分水来说,在时间Δt 内动量的增量也就是流入与流出水的动量的增量Δp =Δm (v B -v A );此动量的变化是管壁在Δt 时间内对其作用冲量I 的结果.依据动量定理可求得该段水受到管壁的冲力F ;由牛顿第三定律,自然就得到水流对管壁的作用力F′=-F .解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力从而可得水流对管壁作用力的大小为作用力的方向则沿直角平分线指向弯管外侧.3 -12 一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为19.6 m .爆炸1.00 s 后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为1.00×102 m .问第二块落在距抛出点多远的地面上.(设空气的阻力不计)分析 根据抛体运动规律,物体在最高点处的位置坐标和速度是易求的.因此,若能求出第二块碎ωkA t t ωkA t kx t F I ωt t t t -=-=-==⎰⎰⎰2/π02121d cos d d ()ωkA m -=vΔ()A B t S ρtv v v -==ΔΔI F N 105.2232⨯-=-=-='v S ρFF片抛出的速度,按抛体运动的规律就可求得落地的位置.为此,分析物体在最高点处爆炸的过程,由于爆炸力属内力,且远大于重力,因此,重力的冲量可忽略,物体爆炸过程中应满足动量守恒.由于炸裂后第一块碎片抛出的速度可由落体运动求出,由动量守恒定律可得炸裂后第二块碎片抛出的速度,进一步求出落地位置.解 取如图示坐标,根据抛体运动的规律,爆炸前,物体在最高点A 的速度的水平分量为(1) 物体爆炸后,第一块碎片竖直落下的运动方程为 当该碎片落地时,有y 1 =0,t =t 1 ,则由上式得爆炸后第一块碎片抛出的速度(2) 又根据动量守恒定律,在最高点处有 (3) (4) 联立解式(1)、(2)、(3) 和(4),可得爆炸后第二块碎片抛出时的速度分量分别为爆炸后,第二块碎片作斜抛运动,其运动方程为(5)(6) 落地时,y 2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置x 2 =500 m3 -13 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50 kg 的重物,结果是A 船停了下来,而B 船以3.4 m·s -1的速度继续向前驶去.A 、B 两船原有质量分别为0.5×103 kg 和1.0 ×103 kg,求在传递重物前两船的速度.(忽略水对船的阻力)分析 由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统Ⅰ来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统Ⅱ亦是这样.由此,分别列出系统Ⅰ、Ⅱ的动量守hg x t x x 21010==v 21121gt t h y --=v 12121t gt h -=v x x m m 2021v v =y m m 2121210v v +-=1102s m 100222-⋅===hg x x x v v 112112s m 7.1421-⋅=-==t gt h y v v 2212t v x x x +=2222221gt t h y y -+=v恒方程即可解出结果.解 设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A ′ 、v B ′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有(1)(2)由题意知v A ′ =0, v B ′ =3.4 m·s -1 代入数据后,可解得也可以选择不同的系统,例如,把A 、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解.3 -14 质量为m′ 的人手里拿着一个质量为m 的物体,此人用与水平面成α角的速率v 0 向前跳去.当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出.问:由于人抛出物体,他跳跃的距离增加了多少? (假设人可视为质点)分析 人跳跃距离的增加是由于他在最高点处向后抛出物体所致.在抛物的过程中,人与物之间相互作用力的冲量,使他们各自的动量发生了变化.如果把人与物视为一系统,因水平方向不受外力作用,故外力的冲量为零,系统在该方向上动量守恒.但在应用动量守恒定律时,必须注意系统是相对地面(惯性系)而言的,因此,在处理人与物的速度时,要根据相对运动的关系来确定.至于,人因跳跃而增加的距离,可根据人在水平方向速率的增量Δv 来计算.解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得人的水平速率的增量为 而人从最高点到地面的运动时间为 ()A A B A A m m m m v v v '=+-()''=+-B B A B B m m m m v v v ()()12s m 40.0-⋅-=---'-=m m m m m m m A B B B A v v ()()()12s m 6.3-⋅=---'-=m m m m m m m m B A B B A B vv ()()u m m αm m -+'='+v v v cos 0u mm m α'++=cos 00v v u m m m α'+=-=cos Δ0v v v所以,人跳跃后增加的距离 *3 -15 一质量均匀柔软的绳竖直的悬挂着,绳的下端刚好触到水平桌面上.如果把绳的上端放开,绳将落在桌面上.试证明:在绳下落过程中的任意时刻,作用于桌面上的压力等于已落到桌面上绳的重量的三倍.分析 由于桌面所受的压力难以直接求出,因此,可转化为求其反作用力,即桌面给绳的托力.但是,应注意此托力除了支持已落在桌面上的绳外,还有对d t 时间内下落绳的冲力,此力必须运用动量定理来求.解 取如图所示坐标,开始时绳的上端位于原点,Oy 轴的正向竖直向下.绳的总长为l ,以t 时刻,已落到桌面上长为y 、质量为m′的绳为研究对象.这段绳受重力P 、桌面的托力F N 和下落绳子对它的冲力F (如图中所示)的作用.由力的平衡条件有(1) 为求冲力F ,可取d t 时间内落至桌面的线元d y 为研究对象.线元的质量,它受到重力d P 和冲力F 的反作用力F ′的作用,由于F ′>>d P ,故由动量定理得 (2) 而 (3)由上述三式可得任意时刻桌面受到的压力大小为 gαt sin 0v =()gm m αm t x '+==sin ΔΔ0vv 0N =-+F F yg l m y lm m d d =y lm t F d 0d v -='F F '-=g m yg lm l m yg l m F F '==+=-='332N N v*3 -16 设在地球表面附近,一初质量为5.00 ×105 kg 的火箭,从尾部喷出气体的速率为2.00 ×103 m·s -1 .(1) 试问:每秒需喷出多少气体,才能使火箭最初向上的加速度大小为4.90 m·s -2 .(2) 若火箭的质量比为6.00,求该火箭的最后速率.分析 这是一个系统内质量转移的问题.为了讨论火箭的运动规律,仍需建立其在重力场中的动力学方程.为此,以t 时刻质量为m 的火箭为研究对象,它在t →t +Δt 的时间内,将分离成火箭主体(包括尚剩的燃料)和排出的燃料两部分.根据它们的总动量的增量Σd P i 和系统所受的外力———重力(阻力不计),由动量定理可得到-mg =u d m′/d t +m d v /d t (推导从略,见教材),即火箭主体的动力学方程.由于在d t 时间内排出燃料的质量d m ′很小,式中m 也就可以视为此刻火箭主体的质量, 而燃料的排出率d m ′/d t 也就是火箭质量的变化率-d m /d t .这样,上述方程也可写成.在特定加速度a 0 的条件下,根据初始时刻火箭的质量m 0 ,就可求出燃料的排出率d m /d t .在火箭的质量比( 即t 时刻火箭的质量m 与火箭的初始质量m 0之比) 已知的条件下,可算出火箭所经历的时间,则火箭运动的速率可通过对其动力学方程积分后解得.解 (1) 以火箭发射处为原点,竖直向上为正方向.该火箭在重力场中的动力学方程为 (1) 因火箭的初始质量为m 0 =5.00 ×105 kg, 要使火箭获得最初的加速度a 0 =4.90 m·s -2,则燃气的排出率为(2) 为求火箭的最后速率,可将式(1)改写成分离变量后积分,有 火箭速率随时间的变化规律为 (2) 因火箭的质量比为6.00,故经历时间t 后,其质量为 得 (3) 将式(3)代入式(2),依据初始条件,可得火箭的最后速率 ma mg tm u=-d d ma mg tm u =-d d ()1300s kg 1068.3d d -⋅⨯=+=ua g m t m tm mg t m ud d d d v =-⎰⎰⎰-=t mm t g m m u 0d d d 00v v v gt m m u --=00lnv v m t t m m m 61d d 0=-=tm m t d /d 650=13000s m 1047.2d /d 65ln ln -⋅⨯=-=-='tm m m m u gt m m u v3 -17 质量为m 的质点在外力F 的作用下沿Ox 轴运动,已知t =0 时质点位于原点,且初始速度为零.设外力F 随距离线性地减小,且x =0 时,F =F 0 ;当x =L 时,F =0.试求质点从x =0 处运动到x =L 处的过程中力F 对质点所作功和质点在x =L 处的速率.分析 由题意知质点是在变力作用下运动,因此要先找到力F 与位置x 的关系,由题给条件知.则该力作的功可用式 计算,然后由动能定理求质点速率. 解 由分析知, 则在x =0 到x =L 过程中作功, 由动能定理有 得x =L 处的质点速率为 此处也可用牛顿定律求质点速率,即 分离变量后,两边积分也可得同样结果.3 -18 如图所示,一绳索跨过无摩擦的滑轮,系在质量为1.00 kg 的物体上,起初物体静止在无摩擦的水平平面上.若用5.00 N 的恒力作用在绳索的另一端,使物体向右作加速运动,当系在物体上的绳索从与水平面成30°角变为37°角时,力对物体所作的功为多少? 已知滑轮与水平面之间的距离d =1.00 m .分析 该题中虽施以“恒力”,但是,作用在物体上的力的方向在不断变化.需按功的矢量定义式来求解.解 取图示坐标,绳索拉力对物体所作的功为3 -19 一物体在介质中按规律x =ct 3 作直线运动,c 为一常量.设介质对物体的阻力正比于速度的平方.试求物体由x 0 =0 运动到x =l 时,阻力所作的功.(已知阻力系数为k )分析 本题是一维变力作功问题,仍需按功的定义式来求解.关键在于寻找力函数F =F (x ).根据运动学关系,可将已知力与速度的函数关系F (v ) =k v 2 变换到F (t ),进一步按x =ct 3 的x LF F F 00-=⎰L x F 0d x L F F F 00-=2d 0000L F x x L F F W L =⎪⎭⎫ ⎝⎛-=⎰0212-=v m W mL F 0=v xm t m x L F F d d d d 00v v v ==-⎰⋅=s F d W J 69.1d d cos d 2122=+-==⋅=⎰⎰⎰x x d Fx x θF W x x x F ⎰⋅=x F d W关系把F (t )转换为F (x ),这样,就可按功的定义式求解.解 由运动学方程x =ct 3 ,可得物体的速度按题意及上述关系,物体所受阻力的大小为则阻力的功为3 -20 一人从10.0 m 深的井中提水,起始桶中装有10.0 kg 的水,由于水桶漏水,每升高1.00 m 要漏去0.20 kg 的水.水桶被匀速地从井中提到井口,求所作的功.分析 由于水桶在匀速上提过程中,拉力必须始终与水桶重力相平衡.水桶重力因漏水而随提升高度而变,因此,拉力作功实为变力作功.由于拉力作功也就是克服重力的功,因此,只要能写出重力随高度变化的关系,拉力作功即可题3 -20 图求出.解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为3 -21 一质量为0.20 kg 的球,系在长为2.00 m 的细绳上,细绳的另一端系在天花板上.把小球移至使细绳与竖直方向成30°角的位置,然后从静止放开.求:(1) 在绳索从30°角到0°角的过程中,重力和张力所作的功;(2) 物体在最低位置时的动能和速率;(3) 在最低位置时的张力.23d d ct tx ==v 3/43/242299x kc t kc k F ===v ⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W l o l -=-==⋅=⎰⎰⎰xF ()J 882d d 1000=-=⋅=⎰⎰y agy mg W l y F分析 (1) 在计算功时,首先应明确是什么力作功.小球摆动过程中同时受到重力和张力作用.重力是保守力,根据小球下落的距离,它的功很易求得;至于张力虽是一变力,但是,它的方向始终与小球运动方向垂直,根据功的矢量式,即能得出结果来.(2) 在计算功的基础上,由动能定理直接能求出动能和速率.(3) 在求最低点的张力时,可根据小球作圆周运动时的向心加速度由重力和张力提供来确定.解 (1) 如图所示,重力对小球所作的功只与始末位置有关,即在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位置时的动能为小球在最低位置的速率为(3) 当小球在最低位置时,由牛顿定律可得3 -22 一质量为m 的质点,系在细绳的一端,绳的另一端固定在平面上.此质点在粗糙水平面上作半径为r 的圆周运动.设质点的最初速率是v 0 .当它运动一周时,其速率为v 0 /2.求:(1) 摩擦力作的功;(2) 动摩擦因数;(3) 在静止以前质点运动了多少圈?分析 质点在运动过程中速度的减缓,意味着其动能减少;而减少的这部分动能则消耗在运动中⎰⋅=s d F W ()J 53.0cos 1Δ=-==θmgl h P W P s F d T T ⋅=⎰W J 53.0k k ==E E 1P K s m 30.222-⋅===mW m E v lm P F 2T v =-N 49.22T =+=lm mg F v克服摩擦力作功上.由此,可依据动能定理列式解之.解 (1) 摩擦力作功为(1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有(2)由式(1)、(2)可得动摩擦因数为(3) 由于一周中损失的动能为,则在静止前可运行的圈数为 圈 3 -23 如图(a)所示,A 和B 两块板用一轻弹簧连接起来,它们的质量分别为m 1 和m 2 .问在A 板上需加多大的压力,方可在力停止作用后,恰能使A 在跳起来时B 稍被提起.(设弹簧的劲度系数为k )分析 运用守恒定律求解是解决力学问题最简捷的途径之一.因为它与过程的细节无关,也常常与特定力的细节无关.“守恒”则意味着在条件满足的前提下,过程中任何时刻守恒量不变.在具体应用时,必须恰当地选取研究对象(系统),注意守恒定律成立的条件.该题可用机械能守恒定律来解决.选取两块板、弹簧和地球为系统,该系统在外界所施压力撤除后(取作状态1),直到B 板刚被提起(取作状态2),在这一过程中,系统不受外力作用,而内力中又只有保守力(重力和弹力)作功,支持力不作功,因此,满足机械能守恒的条件.只需取状态1 和状态2,运用机械能守恒定律列出方程,并结合这两状态下受力的平衡,便可将所需压力求出.解 选取如图(b)所示坐标,取原点O 处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有F 1 =P 1 +F (1)当外力撤除后,按分析中所选的系统,由机械能守恒定律可得式中y 1 、y 2 为M 、N 两点对原点O 的位移.因为F 1 =ky 1 ,F 2 =ky 2 及P 1 =m 1g ,上式可写为F 1 -F 2 =2P 1 (2)由式(1)、(2)可得20202k 0k 832121v v v m m m E E W -=-=-=mg μr πs F W 2180cos o f -==rgπμ16320v =2083v m 34k0==W En 2221212121mgy ky mgy ky +=-F=P1+F2(3) 当A板跳到N点时,B板刚被提起,此时弹性力F′2=P2 ,且F2=F′2.由式(3)可得F=P1+P2=(m1+m2 )g应注意,势能的零点位置是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点.3 -24如图(a)所示,有一自动卸货矿车,满载时的质量为m′,从与水平成倾角α=30.0°斜面上的点A 由静止下滑.设斜面对车的阻力为车重的0.25 倍,矿车下滑距离l时,与缓冲弹簧一道沿斜面运动.当矿车使弹簧产生最大压缩形变时,矿车自动卸货,然后矿车借助弹簧的弹性力作用,使之返回原位置A 再装货.试问要完成这一过程,空载时与满载时车的质量之比应为多大?分析矿车在下滑和返回的全过程中受到重力、弹力、阻力和支持力作用.若取矿车、地球和弹簧为系统,支持力不作功,重力、弹力为保守力,而阻力为非保守力.矿车在下滑和上行两过程中,存在非保守力作功,系统不满足机械能守恒的条件,因此,可应用功能原理去求解.在确定重力势能、弹性势能时,应注意势能零点的选取,常常选取弹簧原长时的位置为重力势能、弹性势能共同的零点,这样做对解题比较方便.解取沿斜面向上为x轴正方向.弹簧被压缩到最大形变时弹簧上端为坐标原点O.矿车在下滑和上行的全过程中,按题意,摩擦力所作的功为Wf=(0.25mg+0.25m′g)(l+x) (1) 式中m′和m分别为矿车满载和空载时的质量,x为弹簧最大被压缩量.根据功能原理,在矿车运动的全过程中,摩擦力所作的功应等于系统机械能增量的负值,故有Wf=-ΔE=-(ΔE P+ΔEk)由于矿车返回原位时速度为零,故ΔEk=0;而ΔE P=(m -m′) g(l+x) sinα,故有Wf=-(m-m′) g(l+x) sinα (2) 由式(1)、(2)可解得。

交大大物第三章习题答案

交大大物第三章习题答案

习题3-1. 如图,一质点在几个力作用下沿半径为R=20m的圆周运动,此中有一恒力=,求质点从A 开始沿逆时针方向经 3/4 圆周祥达B的过程中,力F所做的F功。

解:r r B r A 20i 20j由做功的定义可知:W F ? r 0.6i ? ( 20i 20j) 12J3-2. 质量为 m=的质点,在x O y坐标平面内运动,其运动方程为 x=5t 2,y=(SI), 从 t =2s到 t =4s这段时间内,外力对证点的功为多少?r r 4 r 2 (80i 0.5j) (20i 0.5j ) 60ia dv / dt d 2r / dt 2 10iF ma m 10i 5i由做功的定义可知:W F r 5i ? 60i 300J3-3. 劲度系数为k 的轻盈弹簧竖直搁置,下端悬一小球,球的质量为m,开始时弹簧为原长而小球恰巧与地接触。

今将弹簧上端迟缓提起,直到小球能离开地面为止,求此过程中外力的功。

依据小球是被迟缓提起的,刚离开地面时所受的力为F=mg,k x mg可得此时弹簧的伸长量为:mgx k1 2 mg 2 g 2 x k m由做功的定义可知:W0 kxdx2kx0 2k3-4. 如图,一质量为m的质点,在半径为R的半球形容器中,由静止开始自边沿上的 A 点滑下,抵达最低点 B 时,它对容器的正压力数值为N,求质点自 A 滑到 B 的过程中,摩擦力对其做的功。

剖析: W f直接求解明显有困难,因此使用动能定理,那就要知道它的末速度的状况。

解:求在 B 点的速度: N-G= mv 2可得: 1mv21(N G)RR2 2mgR W f1 mv2 0由动能定理:21( N1( NW fG )R mgR 3mg ) R2 23-5. 一弹簧其实不恪守胡克定律,其弹力与形变的关系为F ( 52.8x38.4 x 2 ) i ,此中F 和 x 单位分别为N 和 m .( 1)计算当将弹簧由x 10.522m 拉伸至 x 21.34m 过程中,外力所做之功;( 2)此弹力能否为守旧力解:?( 1)由做功的定义可知:Wx 2 1. 34 2)dx26.4( x2 x 2 ) 12.6( x3 x 3 )F ? dx( 52.8x 38.4xx 10.522212169.2J( 2)由计算结果可知, 做功与起点和终点的地点相关, 与其余要素没关, 因此该弹力为守旧力。

大学物理基础练习题3答案.doc

大学物理基础练习题3答案.doc

《大学物理基础》练习题第三章刚体的定轴转动一、选择题1、关于力矩有以下说法,正确的是:(B )(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2)—对作用力和反作用力对同一•轴的力矩之和必为零;(3)质S:相同,大小和形状不同的两个刚体,在相同力矩的作用下,他们的运动状态一定相同。

A、只有(2)是正确的;B、(1) (2)是正确的;C、(2) (3)是正确的;D; (1) (2) (3)是正确的2、刚体角动量守恒的充分而必要的条件是(B )(A)刚体不受外力矩的作用.(B)刚体所受合外力矩为零.(C)刚体所受的合外力和合外力矩均力零.(D)刚体的转动惯量和角速度均保持不变3、如图所示,在水平光滑的圆盘上,有一质量为m的质点,栓在一根穿过圆盘屮心光滑小孔的轻细绳上.开始时质点离屮心的距离为r时,并以角速度勿转动.今以均匀速度叫下拉绳,将质点拉至离屮心0.5r处时,求拉力F所做的功(C )•7 2 2A、-mr~co~B、-mr-arC、-mr1 2 3 4(o21 7 7D、— mr 一co 一2222 4、有两个力作用在有固定转轴的刚体上:1这两个力都平行于轴作用吋,他们对轴的合力矩一定是零;2 这两个力都垂直于轴作用时,他们对轴的合力矩可能是零;3这两个力的合力为零时,他们对轴的合力矩也一定是零;4 这两个力的合力矩为零时,他们对轴的合力也一定是零;5、 均匀细棒0A 可绕通过其一段0而与棒垂直的水平固定光滑轴转动,今使细棒从平衡位 置由静止开始自由下落,在棒摆到竖直位置的过程中,下列说法正确的是:(C )。

(A )角速度从小到大,角加速度不变; (B )角速度从大到小,角加速度不变;(C )角速度从小到大,角加速度从大到小;(D )角加速度不变,角加速度为零;6、 关于刚体对轴的转动惯量,下列说法屮正确的是(C)(A ) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B ) 収决于刚体的质量和质量的空间分布,与轴的位置无关. (C ) 取决于刚体的质量、质量的空间分布和轴的位置.(D ) 只取决于转轴的位罝,与刚体的质量和质呈的空间分布无关.7、 一个物体正在绕固定光滑轴自由转动( D )(A ) 它受热膨胀或遇冷收缩时,角速度不变 (B ) 它受热时角速度变大,遇冷时角速度变小 (C ) 它受热或遇冷时,角速度均变大 (D ) 它受热时角速度变小,遇冷时角速度变大8、 如图所示,/!、B 力两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量力M 的物体,B 滑轮受拉力F,而且设A 、B 两滑轮的角加速度分别为凡和凡,不计滑轮轴的摩擦, 则有( C )IlII(A ) (B ) H.W(C )(D )开始时凡=凡,以后凡 <凡. I9、 两个均质圆盘A 和B 的密度分别为/^和/^ ,若p A 〉p B ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为和J B ,则(B )(A ) J A >J B (B ) J B > J A(C ) J A =J H(D ) J A , 哪个大,不能确定对上述说法正确的是:( B A 只有(1)是正确的;C (丨)、(2)、(3)都正确(4)B (1)、(2)正确(3)、(4)错误; D (1)、(2)、(3)、(4)10有A ,B 两个半径相同、质量也相同的细圆环,其屮A 环的质量分布均匀,而B 环的质量分布不均匀。

大学物理上海交大参考答案

大学物理上海交大参考答案

大学物理上海交大参考答案大学物理上海交大参考答案在大学物理课程中,上海交通大学一直以来都是备受关注的学府。

其严谨的教学体系和扎实的学术研究基础,使得上海交大的物理学科在国内外享有盛誉。

学生们在学习物理课程时,常常会遇到各种难题,而参考答案则成为他们解决问题的重要依据。

本文将为大家提供一些大学物理上海交大参考答案,希望对广大学子有所帮助。

第一章:力学1. 一个物体以初速度v0沿着直线做匀加速运动,经过时间t后速度变为v,求物体的加速度a。

答案:根据物体匀加速运动的公式v = v0 + at,可以得到a = (v - v0) / t。

2. 一个质量为m的物体在水平面上受到一个恒力F作用,已知物体在受力方向上的加速度为a,求恒力F的大小。

答案:根据牛顿第二定律F = ma,可以得到F = ma。

第二章:热学1. 一个理想气体在等温过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于等温过程中气体的温度不变,根据理想气体的状态方程PV = nRT,可以得到P1V1 = P2V2。

所以气体对外界所做的功为W = P1(V1 - V2)。

2. 一个理想气体在绝热过程中,体积从V1变为V2,求气体对外界所做的功。

答案:由于绝热过程中气体与外界不发生热交换,根据理想气体的状态方程PV^γ = 常数,可以得到P1V1^γ = P2V2^γ。

所以气体对外界所做的功为W = P1(V1 - V2) / (γ - 1)。

第三章:电磁学1. 一个电容器由两块平行金属板组成,两板间的电容为C,电压为U,求电容器储存的电能。

答案:电容器储存的电能为E = (1/2)CU^2。

2. 一个电感器的感抗为X,通过的电流为I,求电感器的电压。

答案:电感器的电压为U = IX。

第四章:光学1. 一束光线从空气射入玻璃中,入射角为θ1,折射角为θ2,求光线的折射率。

答案:光线的折射率为n = sinθ1 / sinθ2。

2. 一束平行光通过一个凸透镜后,光线会汇聚于焦点处,求凸透镜的焦距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题3-1. 如图,一质点在几个力作用下沿半径为R =20m 的圆周运动,其中有一恒力F =0.6iN ,求质点从A 开始沿逆时针方向经3/4圆周到达B 的过程中,力F 所做的功。

解:j i 2020+-=-=∆A B r r r由做功的定义可知:J W 12)2020(6.0-=+-∙=∆∙=j i i r F3-2. 质量为m=0.5kg 的质点,在x O y 坐标平面内运动,其运动方程为x=5t 2,y=0.5(SI),从t =2s 到t =4s 这段时间内,外力对质点的功为多少?i j i j i 60)5.020()5.080(=+-+=-=∆24r r r 22//10d dt d dt ===i a v r 105m m ==⨯=i i F a由做功的定义可知:560300W J =∙∆=∙=i i F r3-3.劲度系数为k 的轻巧弹簧竖直放置,下端悬一小球,球的质量为m ,开始时弹簧为原长而小球恰好与地接触。

今将弹簧上端缓慢提起,直到小球能脱离地面为止,求此过程中外力的功。

根据小球是被缓慢提起的,刚脱离地面时所受的力为F=mg ,mg x k =∆可得此时弹簧的伸长量为:kmgx =∆ 由做功的定义可知:kg m kx kxdx W k mg x2212202===⎰∆3-4.如图,一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力数值为N ,求质点自A 滑到B 的过程中,摩擦力对其做的功。

分析:W f 直接求解显然有困难,所以使用动能定理,那就要知道它的末速度的情况。

解:求在B 点的速度: N-G=R v m 2 可得:R G N mv )(21212-=由动能定理:R mg N mgR R G N W mv W mgR f f )3(21)(210212-=--=-=+3-5.一弹簧并不遵守胡克定律,其弹力与形变的关系为i F )4.388.52(2x x --=,其中F 和x 单位分别为N 和m .(1)计算当将弹簧由m 522.01=x 拉伸至m 34.12=x 过程中,外力所做之功;(2)此弹力是否为保守力? 解:(1)由做功的定义可知:Jx x x x dx x x d W x x 2.69)(6.12)(4.26)4.388.52(31322122234.1522.021=----=--=∙=⎰⎰x F (2)由计算结果可知,做功与起点和终点的位置有关,与其他因素无关,所以该弹力为保守力。

3-6. 一质量为m 的物体,在力)(2j i F bt at +=的作用下,由静止开始运动,求在任一时刻t 此力所做功的功率为多少。

解:要求功率就必须知道力和速度的情况,由题意:)3121(1)(1322j i j i bt at m dt bt at m t m +=+==⎰⎰F v 所以功率为:)3121(1)3121(1)(5232322t b t a m bt at m bt at N +=+∙+=∙=j i j i V F3-7. 一质点在三维力场中运动.已知力场的势能函数为cz bxy ax E ++-=2p .(1)求作用力F ;(2)当质点由原点运动到3=x 、3=y 、3=z 位置的过程中,试任选一路径,计算上述力所做的功。

其中p E 的单位为J ,z y x 、、的单位为m ,F 的单位为N .解:(1)由作用力和势能的关系:k j i F c bx by ax rcz bxy ax r E P ---=∂++-∂-=∂∂-=)2()(2(2)取一个比较简单的积分路径:k j i r dz dy dx ++=,则积分可得:)(])2[(k j i k j i dr F dz dy dx c bx by ax W ++∙---=∙=⎰⎰=9a-9b-3c3-8. 轻弹簧AB 的上端A 固定,下端B 悬挂质量为m 的重物。

已知弹簧原长为0l ,劲度系数为k ,重物在O 点达到平衡,此时弹簧伸长了0x ,如图所示。

取x 轴向下为正,且坐标原点位于:弹簧原长位置O ';力的平衡位置O 。

若取原点为重力势能和弹性势能的势能零点,试分别计算重物在任一位置P 时系统的总势能。

解:(1)取弹簧原长位置O '为重力势能和弹性势能的势能零点,则重物在任一位置P (坐标设为x ')时系统的总势能:2P 21E x k x mg '+'-= (2)取力的平衡位置O 为重力势能和弹性势能的势能零点,则重物在任一位置P (坐标设为x )时系统的总势能:2020P 2121E kx mg kx x x k mgx =-++-=而)(所以22020P 212121E kx kx x x k mgx =-++-=)(3-9. 在密度为1ρ的液面上方,悬挂一根长为l ,密度为2ρ的均匀棒AB ,棒的B端刚和液面接触如图所示,今剪断细绳,设细棒只在浮力和重力作用下运动,在1212ρρρ<<的条件下,求细棒下落过程中的最大速度max v ,以及细棒能进入液体的最大深度H 。

解:分析可知,棒下落的最大速度是受合力为零的时候,所以:hsg lsg 12ρρ=,则l h 12ρρ=。

在下落过程中,利用功能原理:2221012h slv sglh gsydy ρρρ-=-⎰所以:max v =进入液体的最大深度H 为细棒运动的速度为零时:210Hsglh gsydy ρρ-=-⎰所以1122l H ρρρ=∙-3-10. 若在近似圆形轨道上运行的卫星受到尘埃的微弱空气阻力f 的作用,设阻力与速度的大小成正比,比例系数k 为常数,即kv f -=,试求质量为m 的卫星,开始在离地心R r 40=(R 为地球半径)陨落到地面所需的时间。

解:根据题意,假设在离地心R r 40=处质点的速度为v 1,地面上的速度为v 2。

提供卫星运动的力为万有引力:202rMmG r v m =,所以2012==Rr v v 在这个过程中阻力的作用时间可通过动量定理求出:mdv kvdt fdt =-= 通过分离变量取积分,可 得:2121ln ln 2v v v m m mt dt dv kv k v k==-==⎰⎰3-11. 一链条放置在光滑桌面上,用手揿住一端,另一端有四分之一长度由桌边下垂,设链条长为L ,质量为m ,试问将链条全部拉上桌面要做多少功?解:直接考虑垂下的链条的质心位置变化,来求做功,则:1114832P W E mg l mgl =∆=⨯=3-12. 起重机用钢丝绳吊运质量为m 的物体时以速率0v 匀速下降,当起重机突然刹车时,因物体仍有惯性运动使钢丝绳有微小伸长。

设钢丝绳劲度系数为k ,求它伸长多少?所受拉力多大?(不计钢丝绳本身质量)解:当起重机忽然刹车时,物体的动能将转换为钢丝绳的弹性势能:由2202121kx mv =,可得: 0v kmx =分析物体的受力,可得到绳子的拉力为:0v mk mg kx mg T +=+=3-13. 在光滑水平面上,平放一轻弹簧,弹簧一端固定,另一端连一物体A 、A 边上再放一物体B ,它们质量分别为A m 和B m ,弹簧劲度系数为k ,原长为l .用力推B ,使弹簧压缩0x ,然后释放。

求:(1)当A 与B 开始分离时,它们的位置和速度; (2)分离之后.A 还能往前移动多远? 解:(1)当A 和B 开始分离时,两者具有相同的速度,根据能量守恒,可得到:20221)(21kx v m m B A =+,所以:0x m m kv BA +=;x l =(2)分离之后,A 的动能又将逐渐的转化为弹性势能,所以:222121kx v m A =,则:0A x =3-14. 已知地球对一个质量为m 的质点的引力为r F 3e r mGm -=(e e ,R m 为地球的质量和半径)。

(1)若选取无穷远处势能为零,计算地面处的势能;(2)若选取地面处势能为零,计算无穷远处的势能.比较两种情况下的势能差.解:(1)取无穷远处势能为零,计算地面处的势能为:e e 211bear P eR rE f dr Gm m dr Gm m ∞=∙=-=-⎰⎰(2)若选取地面处势能为零,计算无穷远处的势能为:e e 211ebaR r erE f dr Gm m dr Gm m r R ∞∞=∙=-=⎰⎰两种情况下势能差是完全一样的。

3-15. 试证明在离地球表面高度为()e R h h <<处,质量为m 的质点所具有的引力势能近似可表示为mgh .解:由万有引力的势能函数值,在离地球表面高度为()e R h h <<处,质量为m 的质点所具有的引力势能为:)()()()()(20200h R mg h R R MmG h R h R Mm G h R Mm G e e ee e e +-=+-≈++-=+- 如果以地面作为零电势处,则质点所具有的引力势能近似可表示为mgh .思考题33-1. 求证:一对内力做功与参考系的选择无关。

证明:对于系统里的两个质点而言,一对内力做功可表示为:A=2211r d f r d f ∙+∙由于外力的存在,质点1.2的运动情况是不同的。

2121,f f r d r d -=≠上式可写为:A=)(212211r d r d f r d f r d f-∙=∙+∙也就是内力的功与两个质点的相对位移有关,与参考系的选择无关。

3-2. 叙述质点和质点组动能变化定理,写出它们的表达式,指出定理的成立条件。

质点的动能变化定理:物体受外力F作用下,从A 运动B ,其运动状态变化,速度为V 1变化到V 2,即动能变化。

合外力对质点所做的功等于质点动能的增量。

12212221212121K K E E mv mv r d f A -=-=⋅=⎰-质点系的动能定理: 质点系总动能的增量等于外力的功与质点系内保守力的功和质点系内非保守力的功三者之和。

即质点系总动能的增量等于外力和内力做功之和。

公式表达:12K K E E A A A -=++内保内非外3-3. A 和B 两物体放在水平面上,它们受到的水平恒力F 一样,位移s 也一样,但一个接触面光滑,另一个粗糙.F 力做的功是否一样?两物体动能增量是否一样?答:根据功的定义:W=r F∆∙所以当它们受到的水平恒力F 一样,位移s 也一样时,两个功是相等的; 当时由于光滑的接触面摩擦力不做功,粗糙的接触面摩擦力做功,所以两个物体的总功不同,动能的增量就不相同。

3-4. 按质点动能定理,下列式子:2212212121d x x x x x mv mv x F -=⎰ 2212212121d y y y y y mv mv y F -=⎰ 2212212121d z z z z z mv mv z F -=⎰是否成立?这三式是否是质点动能定理的三个分量式?试作分析。

相关文档
最新文档