第四章 随机过程中的平稳过程
第四章 平稳随机过程2
C XY (τ ) = CYX (τ ) = 0 R XY (τ ) = RYX (τ ) = m X mY S XY (ω ) = SYX (ω ) = 2π m X mY δ (ω )
(5) 互谱密度的幅度平方满足
S XY (ω ) ≤ S X (ω ) SY (ω )
2
1 ∗ S XY (ω ) = lim E X T (ω )YT (ω ) T →∞ 2T 1 2 S X (ω ) = lim E X T (ω ) T →∞ 2T 1 2 SY (ω ) = lim E YT (ω ) T →∞ 2T
3、互功谱密度性质 、 X(t)和 Y(t)是实随机过程且联合平稳的。 是实随机过程且联合平稳的。 和 是实随机过程且联合平稳的 1 ∞ (1) )
PXY =
(2)
2π ∫−∞ = RYX (0) = PYX
S XY (ω )d ω = R XY (0)
S XY (ω) = SYX (−ω) = S (ω) = S (−ω)
2
∫
∞
−∞
Y (ω ) dω
2
上式方括号内恰好是样本函数x 上式方括号内恰好是样本函数 (t) 在单位频带 上的功率。在整个频域内积分给出平均功率, 上的功率。在整个频域内积分给出平均功率, 还给出x(t)的频率分布情况 所以称为 的频率分布情况, 称为样本的 还给出 的频率分布情况,所以称为样本的 功率谱密度。 功率谱密度。
−∞ −∞ ∞ ∞
若输入过程X(t)的每个样本函数,上面的积分 的每个样本函数, 若输入过程 的每个样本函数 都在均方意义下收敛, 这样就整个过程而言, 都在均方意义下收敛 , 这样就整个过程而言 , 便有
Y (t ) = X (t ) ∗ h(t ) = ∫ X (τ )h(t − τ )dτ = ∫ h(τ ) X (t − τ )dτ
随机过程-平稳过程
FX () S() , d X
随机过程——西安电子科技大学数学系 冯海林
对平稳时间序列有相类似的结果.
设X={Xn, n=0, ±1, ±2,…}是平稳时间序列,则其 相关函数可以表示为 1 jm R(m) X e dFX (), m 0, 1, () 2
1 t T s( )s( )d T t
只与 有关系.
所以X是平稳过程.
随机过程——西安电子科技大学数学系 冯海林
例2 对复随机过程 Z t=Xt +jYt 若mZ(t)是复常数, RZ(t,t+τ )=RZ(τ ),则称 Z={Zt, -∞<t<+ ∞}为复平稳过程. 设Ak和ω k分别是实随机变量和实常数(k=1,2…,n),
随机过程西安电子科技大学数学系冯海林平稳过程的谱分解平稳过程的谱分解随机过程西安电子科技大学数学系冯海林平稳过程的谱分解定理551是均方连续的平稳过程则其相关函数可以表示为上非负有界单调不减右连续且f随机过程西安电子科技大学数学系冯海林所以f是某个随机变量w的特征函数即存在分布函数g随机过程西安电子科技大学数学系冯海林随机过程西安电子科技大学数学系冯海林称函数f为平稳过程x相关函数的谱展开式或谱分解式
k 1
E[Ak ]=0时,上式与t无关.
随机过程——西安电子科技大学数学系 冯海林
R(t , t ) E[Zt Z t ] Z E[ Ak e jk t Ak e jk ( t ) ]
k 1 k 1 n n
= E[ Ak Al ]e j (l k )t e jl
令
Zt Ak e
k 1
n
jk t
精品文档-随机过程——计算与应用(研究生)(冯海林)-平稳过程4
e
j ( )d 1
e
1
jd ( )
2
e
1
jd 2 ()
e
1
j 2 ()d 1
2
随机过程引论—西安电子科技大学数学与统计学院 冯海林
例5.4.6. 已知平稳过程的相关函数
RX ( ) 5 4e3 (cos2 2 )
求其谱密度.
解 RX ( ) 5 2e3 2e3 cos 4 )
SX
()
lim
T
1 2T
E
T T
e
jt
X t dt
2
则称SX ()为平稳过程X的功率谱密度.简称谱密度.
又称
1
lim E[ T 2T
T T
Xt
2 dt]
为平稳过程X的平均功率.
随机过程引论—西安电子科技大学数学与统计学院 冯海林
定理5.4.1 设平稳过程X={Xt -∞<t<+ ∞}的相关函数RX(τ)
S
X
()d
1
2
4
2 3
2
d
2
1
2
(
2 2 2
211)d
1 2
(
2 1).
随机过程引论—西安电子科技大学数学与统计学院 冯海林
例5.4.4. 已知平稳过程的功率谱密度为
S
X
(
)
2 2 4 5 2
1
计算 相关函数.
解
RX ( )
1
2
e
j
S
X
(
)d
1
2
e j
( 2
2 2 4)( 2
)d
S(X -) S(X -) S(X )
平稳随机过程
平稳随机过程1.平稳随机过程(1)严平稳随机过程的定义若ξ(t)的任意有限维概率密度函数与时间起点无关,即对于任意的正整数n和所有实数Δ,有则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。
①一维概率密度与时间t无关,即②二维分布函数只与时间间隔τ=t2-t1有关,即(2)严平稳随机过程ξ(t)的数字特性①均值均值与t无关,为常数a,即(3-1-1)②自相关函数自相关函数只与时间间隔τ=t2-t1有关,即R(t1,t1+τ)=R(τ)。
即(3-1-2)(3)广义平稳随机过程把同时满足式(3-1-1)和式(3-1-2)的过程定义为广义平稳随机过程。
(4)严平稳随机过程与广义随机过程的关系严平稳随机过程必定是广义平稳的,反之不一定成立。
2.各态历经性(1)各态历经性的定义随机过程中的任一次实现都经历了随机过程的所有可能状态称为各态历经性。
(2)各态历经性的意义具有各态历经性的平稳随机过程的统计均值等于其任一次实现的时间均值。
(3)各态历经性与平稳随机过程的关系具有各态历经的随机过程一定是平稳过程,反之不一定成立。
(4)各态历经性的实现如果平稳过程使成立,则称该平稳过程具有各态历经性。
3.平稳过程的自相关函数(1)自相关函数的定义设ξ(t)为实平稳随机过程,则它的自相关函数为(2)自相关函数的性质①R(0)=E[ξ2(t)],表示ξ(t)的平均功率;②R(τ)=R(-τ),表示τ的偶函数;③|R(τ)|≤R(0),表示R(τ)的上界;④,表示ξ(t)的直流功率;这是因为当时,与没有任何依赖关系,即统计独立。
所以⑤R(0)-R(∞)=σ2,σ2是方差,表示平稳过程ξ(t)的交流功率。
当均值为0时,有R(0)=σ2。
4.平稳过程的功率谱密度(1)功率谱密度的定义平稳过程ξ(t)的功率谱密度Pξ(f)定义为(2)功率谱密度的特性①平稳过程的平均功率为②各态历经过程的任一样本函数的功率谱密度等于过程的功率谱密度。
(解答)《随机过程》第四章习题
第四章 二阶矩过程、平稳过程和随机分析 习题解答1、 设∑=-=Nk k k kn U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。
解:计算均值函数和相关函数如下0)}{cos(2)cos(2}{)(11=-=⎭⎬⎫⎩⎨⎧-==∑∑==Nk k k k N k k k k n X U n E U n E X E n ασασμ∑∑∑∑∑∑======-=--=--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=Ni i i N i i i i i i Ni Nj j j i i j i N j j j j N i i i i X m n U m U n E U m U n E U m U n E m n R 12121111)](cos[)}cos(){cos(2)}cos(){cos(2)cos(2)cos(2),(ασαασαασσασασ因此可知,},1,0,{ ±=n X n 是平稳随机过程。
2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。
(1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 解:(1)样本函数不连续。
(2)令:012≥>t t ,下面求相关函数:)(221)(212210)(1212211212121211212212122112221122121121212cos cos )]}(cos[)]({cos[21!)]([)]}(cos[)]({cos[)1(21))]}()(()(cos[))]()(()(2)({cos[21))]}()(()(cos[))]()(()({cos[21))}(cos())({cos(}{))}(cos())(cos({)}()({),(t t t t k t t k kX e t t e t t t t e k t t t t t t t t t t t t t t t E t t t t t t t t E t t t t E A E t t t t A E t X t X E t t R ----∞=--⋅=⋅-++=⋅-⋅-++-=-+-+-+++=-+-++++=++⋅=++==∑λλλωωωωλωωηηπωηηππηωηηπωηηπωπηωπηωπηωπηω因为:t t t R ωξ2cos ),(=因此该过程是均方连续的随机过程。
平稳过程的条件
平稳过程的条件平稳过程的条件一、引言在统计学中,平稳过程是指随机过程的统计性质不随时间的变化而改变。
例如,如果一个时间序列的均值和方差不随时间变化,则该序列是平稳的。
平稳过程是许多统计学方法的基础,因此了解什么是平稳过程以及如何识别它们非常重要。
二、什么是平稳过程?平稳过程是指随机过程在统计上具有不变性。
具体来说,如果一个时间序列的均值、方差和自协方差函数不随时间变化,则该序列被认为是弱平稳的;如果自协方差函数只依赖于时间间隔而与起始时间无关,则该序列被认为是强平稳的。
三、如何判断一个时间序列是否为平稳过程?1. 观察图形通过绘制时序图、自相关图和偏自相关图进行观察。
如果时序图呈现出明显的趋势或周期性,则该序列不是平稳的。
自相关图和偏自相关图可以帮助我们确定是否存在任何显著的自相关或偏自相关。
2. 统计检验使用单位根检验(ADF检验)等方法对时间序列进行统计检验。
如果序列的单位根检验的p值小于0.05,则说明该序列不是平稳的。
3. 模型拟合使用ARIMA模型等方法对时间序列进行拟合。
如果模型的残差具有自相关性,则说明该序列不是平稳的。
四、平稳过程的条件1. 均值不变性平稳过程在时间上保持均值不变性,即随机过程在任何时刻t的均值都相同。
这意味着,在任何时刻t,随机过程与其在另一个时刻t'(t≠t')的均值相同。
2. 方差不变性平稳过程在时间上保持方差不变性,即随机过程在任何时刻t的方差都相同。
这意味着,在任何时刻t,随机过程与其在另一个时刻t'(t≠t')的方差相同。
3. 自协方差函数只依赖于时间间隔自协方差函数只依赖于时间间隔而与起始时间无关,即Cov(X_t,X_{t+h})=Cov(X_{s},X_{s+h}),其中s、t和h为任意实数。
4. 自相关系数只依赖于时间间隔自相关系数只依赖于时间间隔而与起始时间无关,即Corr(X_t,X_{t+h})=Corr(X_{s},X_{s+h}),其中s、t和h为任意实数。
第四章 平稳随机过程的谱分析
1 2
S
X
(
)e
j
d
自相关函数和功率谱密度皆为偶函数
若随机过程X t是平稳的,自相关函数绝对可积,则自相关函数
jt
ddt
1
2
XX
()
x(t)e jt dtd
1
2
X
X
()X
* X
()d
1
2
X
X
()
2d
4.1、平稳随机过程的功率谱密度 ❖功率谱
功率型信号:能量无限、平均功率有限的信号
P lim 1 T s(t) 2 dt T 2T T 其能谱不存在,而功率谱存在
持续时间无限长的信号一般能量无限
4.1、平稳随机过程的功率谱密度
❖如何计算随机信号的平均功率?
2)时域计算方法
任一样本函数的平均功率为
W
lim
T
1 2T
T x2(t, )dt
T
随机过程的平均功率为
W
E[W
]
lim
T
1 2T
T E{X 2(t)}dt
T
若为各态历经过程:
W =W
4.1、平稳随机过程的功率谱密度 ❖如何计算随机信号的平均功率?
2020/5/20
6
4.1、平稳随机过程的功率谱密度
❖傅立叶变换
则 x(t)的傅立叶变换为:
X () x(t)e jt dt
其反变换为:
x(t) 1 X ()e jt d
2
频谱密度存在的条件为:
频谱密度
x(t)dt
2020/5/即20 信号为绝对可积信号
包含:振幅谱 相位谱
求各样本函数功率谱密度的统计平均
平稳过程的定义
平稳过程的定义平稳过程是概率论和统计学中的重要概念,它在许多领域中都有广泛的应用。
本文将介绍平稳过程的定义、特性以及其在实际中的应用。
一、平稳过程的定义平稳过程是指在统计意义上具有不变性的随机过程。
换句话说,无论观察这个随机过程的哪一段,其统计特性都是不发生变化的。
具体而言,平稳过程要满足两个条件:其一是均值不变性,即随机过程的均值在时间上是恒定的;其二是自协方差函数不变性,即随机过程的自协方差函数只与时间差有关,而与具体的时间点无关。
二、平稳过程的特性平稳过程具有许多重要的特性,下面将逐一介绍。
1. 均值不变性:平稳过程的均值在时间上是恒定的,即随机过程的均值不随时间变化而变化。
2. 自协方差函数不变性:平稳过程的自协方差函数只与时间差有关,而与具体的时间点无关。
这意味着随机过程的协方差结构是不变的,不会随时间的推移而发生变化。
3. 自相关函数的性质:平稳过程的自相关函数具有一些特殊的性质。
首先,自相关函数是偶函数,即关于时间差的自相关系数关于原点对称。
其次,自相关函数在时间差为零时达到最大值,随着时间差的增加逐渐减小。
4. 平稳过程的谱密度函数:平稳过程的谱密度函数是描述随机过程在频域上的性质的函数。
对于平稳过程,其谱密度函数是实数函数,并且具有正定性和对称性。
三、平稳过程的应用平稳过程在许多领域中都有广泛的应用,下面将介绍其中几个典型的应用。
1. 金融领域:平稳过程在金融领域中有着重要的应用。
例如,股票价格的随机波动可以用平稳过程来建模,从而为投资者提供决策依据。
此外,利率、汇率等金融指标的变动也可以通过平稳过程来进行建模和预测。
2. 信号处理:平稳过程在信号处理领域中被广泛应用。
例如,通过分析语音信号的平稳过程,可以实现语音识别和语音合成等功能。
此外,平稳过程还可以用于图像处理、雷达信号处理等领域。
3. 通信系统:平稳过程在通信系统中也有重要的应用。
例如,通过建立信道模型的平稳过程,可以分析和优化通信系统的性能。
随机过程中的平稳性和自相关函数
随机过程中的平稳性和自相关函数随机过程是描述随机现象演化的数学对象,随机过程可分为离散时间随机过程和连续时间随机过程。
平稳性和自相关函数是研究随机过程性质的重要工具。
一、平稳性平稳性是指随机过程的一些统计性质在时间的平移下不变。
对于离散时间随机过程,平稳性可以根据不同的定义分为弱平稳性和强平稳性。
弱平稳性指随机过程的一阶和二阶矩在时间上无规律变化,而强平稳性则要求随机过程所有阶的矩在时间上均不变。
对于连续时间随机过程,平稳性的定义有所不同。
连续时间随机过程的平稳性通常指它的概率分布在时间的平移下不变。
这种平稳性也称为稳定性。
例如,如果一个随机过程是平稳的,那么在任意时间t,它的统计特性必须与它在时间t+n的统计特性相同,其中n是任意整数。
平稳性是研究随机过程的基本性质之一。
它在信号处理和时间序列分析中有着广泛的应用。
例如,通过分析一个随机过程的平稳性,可以在背景噪声中提取出有用的信号。
二、自相关函数自相关函数是研究随机过程的另一个重要工具。
自相关函数指的是随机过程在时间t和另一个时间t+h上的取值之间的相关性。
一般地,随机过程X(t)的自相关函数可以表示为:R(h) = E[X(t)X(t+h)]其中,E表示期望。
自相关函数描述了随机过程在时间上的依赖关系。
自相关函数可以帮助我们研究随机过程的基本性质。
例如,自相关函数越快地衰减,那么随机过程就越具有独立性。
通过比较不同随机过程的自相关函数,还可以研究它们的相似性和差异性。
总之,平稳性和自相关函数是研究随机过程的基本工具。
它们在许多领域中都有着重要的应用,包括信号处理、时间序列分析、金融建模等。
对于数学、统计学等领域的学生和从事相关工作的人来说,理解和掌握这些概念至关重要。
西安交通大学研究生随机过程——平稳过程.pdf
第4章 平稳过程粗略地说,“平稳过程”是指其统计特征不随时间推移而变化的一类随机过程.在随机过程理论中有两种不同含义的平稳过程——严平稳过程和宽平稳过程.本章着重研究后者并介绍宽平稳过程相关函数的性质、谱密度及其性质以及各态历经等方面的内容.4.1 二阶矩随机变量空间与均方微积分4.1.1 二阶矩随机变量空间定义4.1.1 给定概率空间(Ω,F ,P ),设X 为定义在(Ω,F ,P )上的复值随机变量,令{}2:||,ˆX E X =<∞H(4.1.1)称H 为二阶矩随机变量空间. 注 (1) 所谓二阶矩随机变量空间H 就是定义在(Ω,F ,P )上的二阶矩存在的复值随机变量全体.因2||X E X ∈<∞H ,即,而期望运算本质上是积分运算,故二阶矩存在这一概念与普通微积分的平方可积概念相对应. (2) 显然,(实值)随机变量是复值随机变量的特例,因而H 中也包含了二阶矩存在的所有(实值)随机变量. (3) H 中的元在几乎处处相等的意义下是相同的,即若X , Y ∈H ,且P {X = Y } = 1,则称X=Y .在本章以后的讨论中都按此注释理解. 对H 中的元定义通常意义下的加法运算,再定义H 中的元与复数域C (相应地,实数域R )中的元的数乘运算,容易验证H 对这两种运算封闭.事实上,若X , Y ∈H ,由Cauchy-Schwarz 不等式[]222||||||,E X Y E X E Y ≤<∞则222||||2||||,E X Y E X E X Y E Y +≤++<∞X Y ∈H 即+。
222||||||X αE αX αE X αX ∈∈=<∞∈C R H H 若,(相应地,),则,即。
此外,H 显然还满足以下条件:,,,X Y Z αβ∈∈C R H 若,(相应地,),则,()(),0,()0,()(),(),(),1.X Y Y X X Y Z X Y Z X X X X αβX αβX αβX αX βX αX Y αX αY X X +=+⎫⎪++=++⎪⎪+=⎪+−=⎪⎬=⎪⎪+=+⎪+=+⎪⎪⋅=⎭由此可得下面的结论. 定理4.1.2 H 是复数域C (相应地,实数域R )上的线性空间.延伸阅读在H 中引入二元运算:(,)(),,,ˆX Y E X Y X Y =∀∈H其中Y Y 表示对取共轭(下同).由Cauchy-Schwarz 不等式知,这样的二元运算是有意义的.不仅如此,还容易验证它具有如下性质12,,,,,,αβX X X Y ∈∈C H 对任意任意有1212(,)(,),(,)(,)(,),(,)0,0(,)0.Y X X Y αX βX Y αX Y βX Y X X X X X =+=+≥==当且仅当时,满足上述条件的二元运算(·, ·)称为H 上的内积(inner product ).当一个线性空间可以引入内积时,称其为内积空间. 若X , Y ∈H 满足(X , Y )= 0,则称X 与Y 正交(orthogonal ). 上面引进的内积与正交概念实际上是对具体问题所涉及的类似概念的抽象.例如,在n 维欧氏空间上就有向量内积与正交概念;在讨论周期函数的Fourier 级数展开时,也遇到过在[-π, π]上的三角函数系{}1,cos ,sin ,,cos ,sin ,x x nx nx ""的内积与正交概念,等等. 如果X , Y ∈H ,且EX = 0 = EY ,那么X 与Y 正交蕴含X 与Y 不相关,反之亦然.对X , Y ∈H ,令(,)ˆd X Y =(4.1.2)可以验证这里引入的d (·, ·)满足以下条件,(,)(,),,,(,)(,)(,),,,,(,)0,(,)0.d X Y d Y X X Y d X Z d X Y d Y Z X Y Z d X Y X Y d X Y =∈≤+∈≥==H H 当且仅当时, 称d (·, ·)为H 上的距离(distance )或度量(metric ).当一个抽象集合可以引入距离时,称其为距离空间(度量空间). 在H 上引进上述距离d (·, ·)使其成为距离空间,就为我们在H 上讨论所谓的均方微积分奠定了基础.4.1.2 均方微积分同普通微积分一样,我们先来介绍均方极限概念,并将此概念贯串于均方连续、均方导数以及均方积分等概念中.1. 均方极限定义4.1.3 设,(1)n X X n ∈≥H ,若2lim ||0,n n E X X →∞−=(4.1.3)则称{},1n X n ≥均方收敛于X , 亦称X 是X n 当n →∞时的均方极限,记作(..)lim n n m s X X →∞=,这里m.s.是mean square 的缩写. 注 (1) 均方收敛就是第1章介绍的2阶平均收敛.(2) 由(4.1.2)式可知,(4.1.3)式表示(,)0()n d X X n →→∞,故均方收敛就是H 中按距离d (·, ·)收敛.下面讨论均方极限的一些性质.定理4.1.4 (Cauchy 准则) {}(1),1n n X n X n ∈≥≥H 设,则均方收敛的充要条件是2,lim||0.m n n m E X X →∞→∞−=(4.1.4)证 必要性:{},1,n X n X ≥∈H 设均方收敛于 因2222||||2||||,m n m n m n X X X X X X X X X X ⎡⎤−=−+−≤−+−⎣⎦故2220||2||||0(,).m n m n E X X E X X E X X m n ⎡⎤≤−≤−+−→→∞⎣⎦即(4.1.4)式成立.充分性:设(4.1.4)式成立,要证明存在某个,X ∈H 使得{},1n X n ≥均方收敛于X .这涉及到空间H 的完备性,其证明要用到测度论知识,此处从略.□通常,将满足 (4.1.4)的随机序列{},1n X n ≥称为均方Cauchy 列.故定理4.1.4表明:随机序列{},1n X n ≥均方收敛当且仅当它是均方Cauchy 列.定理 4.1.5 ,,(1)n X Y X n ∈≥H 设,若(..)lim (..)lim ,n n n n m s X X m s X Y →∞→∞==, 则P {X =Y }=1, 即 X=Y .证 因22220||||2||||0(0),n n n n E X Y E X X X Y E X X E X Y n ⎡⎤≤−=−+−≤−+−→→⎣⎦故得2||0E X Y −=,此即P { X=Y } = 1.□定理4.1.6 ,,,,,,,, 1.n m n X Y X Y a b a n m ∈∈≥C H 设(1) ()(..)lim lim ()()lim ()(..)lim .n n n n n n n n m s X X E X E X E X E m s X →∞→∞→∞→∞===若,则,亦即(2),(..)lim (..)lim lim()().n m n m n m n m m s X X m s Y Y E X Y E XY →∞→∞→∞→∞===若,,则(3) (..)lim (..)lim n n n n m s X X m s Y Y →∞→∞==若,,则aX n + bY n 也均方收敛,且有 (..)lim().n n n m s aX bY aX bY →∞+=+(4) (..)lim lim (..)lim n n n n n n n m s X X a a m s a X aX →∞→∞→∞===若,,则.证 (1) 因0|||()|0(),n n EX EX E X X n ≤−=−≤→→∞lim ()().n n E X E X →∞=故(2) 因0|()()||()|()()()()()()()()0(,),n m n m n m m n n m m n E X Y E XY E X Y XY E X X Y Y E X Y Y E X X Y E X X Y Y E X Y Y E X X Y n m ≤−=−=−−+−+−⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦≤−−+−+−⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦≤→→∞,lim()(n m n m E X Y E XY →∞→∞=故(3)、(4)的证明比较简单,留给读者作练习.□性质(1)、(2)表明均方极限运算与期望运算可以交换顺序,这一良好性质是由均方极限概念本身所决定的.注意:均方极限运算不具备乘积运算性质,即,(..)lim (..)lim n n n n m s X X m s Y Y →∞→∞==若,,则下列结论未必成立:22(..)lim (..)lim nn n n n m s X X m s X Y X Y →∞→∞==,等.定理4.1.7(均方收敛准则) {}(1)1n n X n X n ∈≥≥H 设,则,均方收敛的充要条件是,lim()n m n m E X X →∞→∞存在.证 必要性:{},1.n X n X ≥∈H 设均方收敛于由定理4.1.6(2),得2,lim()()||.n m n m E X X E X X E X →∞→∞==<∞充分性:,lim().n m n m E X X a →∞→∞=设因2||()()()()()()0(,)m n m n m n m m m n n m n n E X X E X X X X E X X E X X E X X E X X a a a a m n ⎡⎤−=−−⎣⎦=−−+→−−+=→∞ 故由定理4.1.4知,{X n , n ≥ 1}均方收敛.□以上讨论了随机序列形式的均方极限概念.同普通微积分一样,可以很方便地将其推广到随机函数形式,并可写出相应的性质(请读者试着写一写). 有了均方极限概念,就可以定义均方连续、均方导数和均方积分等概念,而且借助均方极限性质还可以来研究它们的相应性质. 2. 均方连续在以下的讨论中总假定{}{}(),(),X t t T Y t t T =∈=∈X Y ,为二阶矩过程(复值或实值),X ∈H ,参数集T 为R 或其上的一个区间.定义4.1.8 {}(),X t t T =∈X 设, 若对固定的t 0∈T ,有0(..)lim ()(),t t m s X t X t →=(4.1.5)则称X 在 t 0处均方连续.若X 在T 上的每一点处都均方连续,则称X 在T 上均方连续.定理4.1.9 (均方连续准则) X 在T 上均方连续的充要条件是对任意t ∈T ,相关函数 R X (·, · )在(t , t )点处二元连续.证 必要性:设X 在T 上均方连续,则对任意t ∈T ,有Δ0(..)lim (Δ)().t m s X t t X t →+=由定理4.1.6(2),得Δ0,Δ0Δ0,Δ0lim(Δ,Δ)lim(Δ)(Δ)()()(,),s t s t R t s t t E X t s X t t E X t X t R t t →→→→++⎡⎤=++⎣⎦⎡⎤=⎣⎦=X X故R X (·, · )在(t , t )点处二元连续.充分性:设任意t ∈T ,R X (·, · )在(t , t )点处二元连续.由2|(Δ)()|(Δ)(Δ)(Δ)()()(Δ)()()(Δ,Δ)(Δ,)(,Δ)(,)E X t t X t E X t t X t t E X t t X t E X t X t t E X t X t R t t t t R t t t R t t t R t t +−⎡⎤⎡⎤⎡⎤⎡⎤=++−+−++⎣⎦⎣⎦⎣⎦⎣⎦=++−+−++X X X X (,)(,)(,)(,)0(Δ0),X X X X R t t R t t R t t R t t t →−−+=→知X 在t 点处均方连续,再由t ∈T 的任意性,得X 在T 上均方连续.□推论4.1.10 {}(),X t t T =∈X 设的相关函数为R X (·, · ),则R X (·, · )在{}(,):t t t T ∈上是二元连续的等价于它在{}(,):,s t s T t T ∈∈上是二元连续的.证 充分性是显然的,往证必要性.设R X (·, ·)在{}(,):t t t T ∈上是二元连续的.由定理4.1.9知,X 在T 上均方连续,故对任意s 0, t 0∈T ,有00(..)lim ()(),(..)lim ()().s s t t m s X s X s m s X t X t →→==根据定理4.1.6的 (2),得0000,,0000lim(,)lim()()()()(,).s s t t s s t t R s t E X s X t E X s X t R s t →→→→⎡⎤=⎣⎦⎡⎤=⎣⎦=X X此即R X (·, · )在{}(,):,s t s T t T ∈∈上是二元连续的.□ 3. 均方导数定义4.1.11 {}(),X t t T =∈X 设,若对固定的t 0∈T ,均方极限00Δ0(Δ)()(..)limΔt X t t X t m s t→+− (4.1.6)存在,则称X 在t 0点处均方可导,并称这一极限为X 在t 0点处的均方导数,记作0d ()()d t tX t X t t =′或.若X 在T 上的每一点处都均方可导,则称X 在T 上均方可导,X 的均方导数记作d ()().d X t X t t′或 {}(),X t t T ′′=∈X 也是一个二阶矩过程,称之为X 的导数过程.如果′X 在t ∈T 均方可导,那么称X 在t 点处二阶均方可导,′X 的均方导数记作22d ()(),d X t X t t ′′或 称为X 的二阶均方导数.类似地,可定义更高阶的均方导数.定理4.1.12 (均方可导准则){}(),X t t T =∈X 在t ∈T 均方可导的充要条件是,在(t , t )点处相关函数R X (·, · )存在下列极限0,0(,)(,)(,)(,)lim.h l R t h t l R t h t R t t l R t t hl→→++−+−++X X X X (4.1.7)证 X 在t ∈T 均方可导,即0()()(..)lim h X t h X t m s h→+−存在.根据定理4.1.7,上述均方极限存在的充要条件是0,0()()()()lim h l X t h X t X t l X t E h l →→⎡+−+−⋅⎢⎣⎦存在.将分子上的各项展开并逐项取期望,即要求极限0,0(,)(,)(,)(,)limh l R t h t l R t h t R t t l R t t hl →→++−+−++X X X X存在,证毕.□下面的定理刻画了均方导数具有的性质. 定理4.1.13 (1) 若X 在t (∈T )点处均方可导,则X 在t 点处均方连续. (2) 若X 在T 上均方可导,其均方导数为′X , 则d [()][()],d E X t E X t t′=(4.1.8)221212121221()()()()()().E X t X t E X t X t E X t X t t t t t ∂∂⎡⎤⎡⎤⎡⎤′′==⎣⎦⎣⎦⎣⎦∂∂∂∂(4.1.9) (3) 若X ∈H 为随机变量,则X 对t 的均方导数为0,即0.X ′=(4) 若X ,Y 均方可导,a , b 为常数,则a X + b Y 也均方可导,且有[]()()()().aX t bY t aX t bY t ′′′+=+ (4.1.10)(5) 若f 是普通的可导函数,X 是均方可导的二阶矩过程,则f X 也均方可导,且有[]()()()()()().f t X t f t X t f t X t ′′′=+ (4.1.11)由均方导数的定义和均方极限的性质便不难证明定理4.1.13,证明留给读者.注 (1) 定理4.1.13的(2)表明均方导数运算与期望运算可交换顺序. (2) 两个均方可导的二阶矩过程X 与Y 的乘积X Y 未必均方可导.例4.1.14 设二阶矩过程X = { α cos (λt + Θ),-∞ < t < ∞},其中α,λ为常数,Θ为随机变量且Θ ~ U (0, 2π).因()cos cos sin sin ,X t αλt Θαλt Θ=− 由定理4.1.13的(3) ~ (5)知()(cos )cos (sin )sin sin cos cos sin sin()X t αλt Θαλt Θαλλt Θαλλt Θαλλt Θ′′′=−=−−=−+ 故X 在(-∞, +∞)上均方可导,从而它在(-∞, +∞)上也是均方连续的.4. 均方积分定义 4.1.15 {}(),()X t a t b f t a t b =≤≤≤≤X 设为二阶矩过程,()为普通函数,考虑区间[a, b ]的任意划分:a = t 0 < t 1 <…< t n -1< t n = b , 作和式11()()(),nkk k k k f ξX ξt t −=−∑1[,]k k k ξt t −∈其中.11Δmax()k k k nt t −≤≤=−记, 若均方极限1Δ01(..)lim ()()()nk k k k k m s f ξX ξt t −→=−∑存在且这一极限与区间[a, b ]的划分及{ξk }的选取无关,则称f X 在[a , b ]上均方可积,并称此极限为f X 在[a , b ]上均方积分,记作()()d ba f t X t t ∫,即 1Δ01()()d (..)lim ()()().ˆnb k k k k ak f t X t t m s f ξX ξt t −→==−∑∫定理4.1.16(均方积分准则)若二重积分()()(,)d d b b aaf s f t R s t s t ∫∫X 存在,则 f X 在区间[a , b ]上均方可积. 证 考虑区间[a , b ]的任意两个划分:011011;,n n m m a t t t t b a t t t t b −−′′′′=<<<<==<<<<="" 分别作和式1111()()();()()(),nmkk k k jjjj k j f ξX ξt t f ηX ηt t −−==′′−−∑∑11[,],[,].k k k j j j ξt t ηt t −−′′∈∈其中 1111Δmax(),Δmax().k k j j k nj mt t t t −−≤≤≤≤′′′=−=−记 欲证f X 在区间[a , b ]上均方可积,即要证明1Δ01(..)lim ()()()nk k k k k m s f ξX ξt t −→=−∑存在.由均方收敛准则(定理4.1.7)知,只要证明下面的极限11Δ0,Δ01111Δ0,Δ01111Δ0,Δ011lim ()()()()()()lim ()()()()()()lim()()(,)()()n m k k k k j j j j k j n mkj k j k k j j k j nmkj k j k k j j k j E f ξX ξt t f ηX ηt t f ξf ηE X ξX ηt t t t f ξf ηR ξηt t t t −−′→→==−−′→→==−−′→→==⎡⎤′′−−⎢⎥⎢⎥⎣⎦⎡⎤′′=−−⎣⎦′′=−−∑∑∑∑∑∑X (4.1.12) 存在即可.现在,已知二重积分()()(,)d d b ba af s f t R s t s t ∫∫X(4.1.13)存在,故(4.1.12)式中的极限自然存在,并且其极限值就是(4.1.13)中的积分.□下面讨论均方积分的一些性质. 定理4.1.17 (1) 若X 在[a , b ]上均方连续,则X 在[a , b ]上均方可积. (2) 若 f X 在区间[a , b ]上均方可积,则[]()()d ()()d .bbaaE f t X t t f t E X t t ⎡⎤=⎢⎥⎣⎦∫∫(3) 若二重积分()()(,)d d b baaf s f t R s t s t ∫∫X 存在,则()()d ()()d ()()(,)d d .b b b b a a a aE f s X s s f t X t t f s f t R s t s t ⎡⎤⋅=⎢⎥⎣⎦∫∫∫∫X特别,若(,)d d b b X aaR s t s t ∫∫存在,则2()d (,)d d .b b b X aaaEX t t R s t s t =∫∫∫(4) 若X 和Y 在[a , b ]上均方可积,则αX + βY 在[a , b ]上均方可积(其中α, β为常数)且[]()()d ()d ()d .b bbaaaαX t βY t t αX t t βY t t +=+∫∫∫(5) 若X ∈H ,f (t )为[a , b ]上的可积函数,则()d ()d .bbaaXf t t X f t t =∫∫(6) ()d ()d ()d bc ba acX t t X t t X t t =+∫∫∫,其中X 在最大的积分区间上均方可积.(7) 若X 在[a , b ]上均方连续,则()()d ()t aY t X s s a t b =≤≤∫在区间(a , b )均方可导,且()().Y t X t ′=(8) 若X 在[a , b ]上均方可导,且′X 在[a , b ]上均方连续,则()d ()().b aX t t X b X a ′=−∫均方积分的上述性质,大都可利用均方积分定义以及均方极限的性质予以证明.4.2 平稳过程的基本概念4.2.1 定义与例定义4.2.1 设过程X = { X (t ), t ∈T },若对任意n ≥1,任意n 个时刻t 1,…,t n ∈T 及任意τ (t k +τ∈T , k =1, 2, …, n ),都有()()11(),,()(),,()dn n X t X t X t τX t τ=++""(4.2.1) 则称X 为严平稳过程.(4.2.1)式中的符号“d =”表示等号两端的n 维随机向量具有相同的概率分布,即它们的分布函数是相等的.由定义可知,严平稳过程的任何有限维分布对时间的推移是保持不变的. 在应用中,想要依据上述等式来判断一个随机过程的平稳性,一般是很难办到的.通常的做法是,对于一个被考察的随机过程,如果影响过程的周围环境和主要因素都不随时间推移而变化的话,那么就认为它是平稳的. 当一个严平稳过程还是二阶矩过程时,一方面,过程的均值函数和相关函数都存在.另一方面,因为()()1212()(),(),()(),(),ddX t X t τX t X t X t τX t τ=+=++,所以[][]1212[()][()],()()()().E X t E X t τE X t X t E X t τX t τ=+=++前一个等式表明过程的均值函数为常数.在后一个等式中,令τ = -t 1(不妨假定参数集T 含0时刻),即可看出相关函数的值不依赖于t 1 、t 2的起始时刻,而只可能与两个时刻的间隔 t 2–t 1有关.概言之,过程的一阶矩和二阶矩不随时间推移而改变,这就引出另一种平稳过程. 定义4.2.2 设X = {X (t ), t ∈T }为二阶矩过程(实值或复值).若它满足条件(1) 对任意t ∈T ,E [X (t )] = m X (m X 为某一常数),(2) 对任意t ∈T 及t + τ∈T ,[()()]E X t X t τ+不依赖于t ,则称X 为宽平稳过程.当参数集T 为可列集时,称X 为宽平稳序列. 一般地来讲, 严平稳过程不一定是宽平稳过程, 因为严平稳过程未必都存在二阶矩.反之,宽平稳过程也不一定是严平稳过程,因为宽平稳过程只保证过程的一阶矩、二阶矩不随时间推移而改变,但这些条件不足以保证过程的有限维分布也不随时间推移而改变.如果将严平稳与宽平稳概念放在二阶矩过程类中来进行比较,那么严平稳过程一定是宽平稳过程,反之仍未必成立. 下面讨论的平稳过程若无特别申明均指宽平稳过程.几个平稳过程的例子. 例4.2.3 设{ X (n ), n = 0,±1,±2,…}是互不相关的随机序列,且E [X (n )]=0, D [X (n )]=σ 2 ( n = 0,±1,±2,…),证明它是平稳序列. 证 { X (n ) }显然是二阶矩过程.因为过程的均值函数 E [X (n )]= 0 ( n = 0,±1,±2,…).相关函数2,0,[()()]0,0,σm E X n X n m m ⎧=+=⎨≠⎩当当 不依赖于n ,所以{ X (n ) }是平稳序列. □ 注 (1) 在自然科学和工程技术领域中,称本例给出的过程为白噪声序列或纯随机序列,这是一种常用的噪声模型. (2) 进一步地,若假定X (n ) ~ N (0, σ 2 ) ( n = 0,±1,±2, …),则称{X (n ), n = 0,±1,±2,…}为正态白噪声序列. 例4.2.4 设{X (n ), n = 0,±1,±2,…}是白噪声序列,令()()(0,1,2,),Nk k Y n a X n k n ==−=±±∑"其中N 为某个固定的正整数,01,,,N a a a "为常数组,证明{Y (n ), n = 0,±1,±2,…}是平稳序列.证 因为均值函数[()][()]0(0,1,2,)Nk k E Y n a E X n k n ==−==±±∑"为常数,又相关函数0000||2[()()]()()()()0,||,||N N k j k j N N k j k j N m k m k k E Y n Y n m E a X n k a X n m j E a a X n k X n m j m N a a σm N ====−+=⎡⎤+=−+−⎢⎥⎣⎦⎡⎤=−+−⎢⎥⎣⎦>⎧⎪=⎨≤⎪⎩∑∑∑∑∑不依赖于n ,所以{Y (n ), n =0,±1,±2,…}是平稳序列.□ 注 (1) 称{Y (n ) }是白噪声序列{X (n ) }的滑动和. (2) 由白噪声序列{X (n ) },还可构造如下随机序列()()(0,1,2,),kk Z n aX n k n +∞=−∞=−=±±∑" (4.2.2)其中{a k , k = 0,±1,±2,…}是常数列,对每一固定的n ,(4.2.2)式的右端的级数均方收敛,则称{Z (n )}是白噪声序列{X (n )}的无限滑动和.不难证明, {Z (n )}也是平稳序列.例4.2.5 设过程{}()(1),0t μY t X t ==−≥Y , 其中(1) X 为随机变量,且11~1212X −⎛⎞⎜⎟⎝⎠,(2) {},0t μt ≥是强度为λ的泊松过程, (3) X 与{},0t μt ≥相互独立, 试证 Y 为平稳过程.证 首先,2220,()(1)121121,EX E X ==−×+×=即X ∈H . 再由2(1)1,tμ−≡便知Y 为二阶矩过程.其次,考察Y 的均值函数和相关函数.[]()[(1)][(1)]()((3))0(0).t t μμE Y t E X E E X t =−=−⋅=≥由条件[]22()()(1)(1)()(1).t t τt t τt t τμμμμμμE Y t Y t τE X E E X E ++++++⎡⎤+=−⎣⎦⎡⎤=−⋅⎣⎦⎡⎤=−⎣⎦当τ > 0时,~()t τt μμP λτ+−, 得202(1)(1)(1)()(1)!.t t τt t τt t τtμμμμμμμk λτkk λτE E E λτek e +++++−−−∞=−⎡⎤⎡⎤−=−⎣⎦⎣⎦⎡⎤=−⎣⎦=−=∑ 当τ < 0时,类似可得2(1)t t τμμλτE e ++⎡⎤−=⎣⎦, 因而[]2||()().λτE Y t Y t τe −+= 因Y 的均值函数为常数0,相关函数为2||λτe −不依赖于t ,故Y 为平稳过程.□4.2.2 自相关函数及其性质定理4.2.6 设X = { X (t ), t ∈T }是平稳过程.记()()()R τE X t X t τ⎡⎤=+⎣⎦X 为X 的自相关函数,则R X (τ)具有以下性质,(1) R X (0)≥0;(2) | R X (τ) | ≤ R X (0);(3) ()()R τR τ−=X X ;(4) R X (τ)是非负定的,即对任意正整数n 和任意n 个实数t 1,…,t n 和任意n 个复数z 1,…, z n ,都有11()0.n nk l l k k l Rt t z z ==−≥∑∑X证 (1) 22(0)|()|d ()0t R E X t x F x +∞−∞==≥∫X .(2) 由Cauchy-Schwarz不等式,得()()()(0).R τE X t X t τR ⎡⎤=+≤==⎣⎦X X(3) 因为()()E X t X t τ⎡⎤+⎣⎦不依赖于t 仅为两时刻之差(t +τ) -t = τ的函数,而-τ = t -(t +τ),所以()()()()()().X X R τE X t τX t E X t X t τR τ⎡⎤⎡⎤−=+=+=⎣⎦⎣⎦(4) 由平稳过程自相关函数的定义及期望运算的性质,得1111111121()()()()()()()()0.n nn nk l l k l k l kk l k l n nl l k k l k n n l l k k l k nkkk Rt t z z E X t X t z z E X t z X t z E X t z X t z EX t z=========⎡⎤−=⎣⎦⎡=⎢⎥⎣⎦⎡=⎢⎥⎢⎥⎣⎦=≥∑∑∑∑∑∑∑∑∑X□注 易知平稳过程的自协方差函数也不依赖于t ,记作C X (τ),且有2()()||C τR τm =−X X X .C X (τ)也具有上述四条性质(只需将(1)~(4)中的R 换成C 即可).需要指出,在上述四条性质中,非负定性是平稳过程自相关函数的本质特性.理论上可以证明,任何一个在t = 0处连续且f (0) ≠ 0的函数f (t ),若f (t )是非负定的,则它必是某个平稳过程的自相关函数.4.2.3 互相关函数及其性质设X = {X (t ), t ∈T }, Y = {Y (t ), t ∈T }是两个平稳过程.若()()E X t Y t τ⎡⎤+⎣⎦不依赖t ,则称X 与Y 是平稳相关的或平稳联系的,此时,它们的互相关函数()()E X t Y t τ⎡⎤+⎣⎦为单变量τ的函数, 记作R XY (τ),即 ()()().ˆR τE X t Y t τ⎡=+⎣⎦XY注 (1) 平稳相关是一个相互概念,即,若X 与Y 平稳相关,则Y 与X 也平稳相关.(2) 平稳相关随机过程的互协方差函数也不依赖于t ,记作C XY (τ),并且()().C τR τm m =−XY XY X Y定理4.2.7 若平稳过程X = {X (t ), t ∈T }与平稳过程Y = {Y (t ), t ∈T }是平稳相关的,它们的互相关函数(互协方差函数)为R XY (τ)(C XY (τ)),则 (1) ()()(()())R τR τC τC τ=−=−YX XY YX XY 相应地,;(2)()(()R τC τ≤≤XY XY 相应地, 定理4.2.7的证明方法与前一定理类似,故从略.4.3 平稳过程的谱分析4.3.1 相关函数的谱分解相关函数能进行谱分解源于它具有非负定性.为了说明这一点,先介绍两个定理. 定理4.3.1(Bochner-Khintchine ) 函数φ(t )(-∞ < t < ∞)可表示为()d ()itx φt e F x +∞−∞=∫(4.3.1)的充要条件是:φ(t )非负定、连续且φ(0) = 0,其中F (x )为分布函数(F (-∞) = 0,F (+∞) =1).定理4.3.2(Herglotz ) 数列{},0,1,2,n c n =±±"可表示为d ()πin x n πc e G x −=∫(4.3.2)的充要条件为它是非负定的,其中G (x )是定义在[],ππ−上的有界、单调非降、右连续函数. 定理4.3.3 (1) 若均方连续的平稳过程{ X (t ), -∞< t <+∞}的相关函数为R X (τ),则R X (τ)可表示为1()d (),,2i τωR τe F ωτπ+∞−∞=−∞<<+∞∫X(4.3.3)其中()Fω 是定义在(-∞, +∞)上的单调非降、右连续有界函数. (2) 若平稳序列{}(),0,1,2,X n n =±±"的相关函数为R X (m ),则R X (m )可表示为11()d (),0,1,2,,2πi m ωπR m e F ωm π+−==±±∫X" (4.3.4)其中1()F ω 是定义在[-π, +π]上的单调非降、右连续有界函数.证 (1) 若R X (0)=0,由|()|(0),X X R τR τ≤∀−∞<<+∞,得()0,X R ττ≡−∞<<+∞,此时,取()F ωc = (c 为常数),则(4.3.3)式成立.若R X (0)≠0,令()()(0)R τR τR =X X ,易知()Rτ 满足下列条件:① ()R τ 是连续函数;② (0)1R = ;③ ()R τ 是非负定的.从而由Bochner-Khintchine 定理知,()Rτ 可表示成 ()d (),,i τωR τe F ωτ+∞−∞=−∞<<+∞∫X 其中F (ω)是某个随机变量的分布函数.于是[]1()d 2(0)()21d (),2i τωi τωR τe πR F ωπe F ωπ+∞−∞+∞−∞==∫∫X X其中()2(0)()F ωπR F ω=X是定义在(-∞, +∞)上的单调非降、右连续有界函数. (2)的证明可直接引用Herglotz 定理.□(4.3.3)、(4.3.4)式分别称为R X (τ)、R X (m )的谱分解式,而1()()F ωF ω 与称为平稳过程与平稳序列的谱函数.如果不计常数之差,那么谱函数是由相关函数唯一确定的.若1()()F ωF ω (相应地,)是绝对连续的,即存在S X (ω),使得 ()()d ,ωF ωS λλC −∞=+∫X1()()d ωX πF ωS λλC −=+∫ (相应地,),则称S X (ω)为平稳过程的谱密度.数学上已经证明:若相关函数R X (τ)满足条件()d R ττ+∞−∞<∞∫X ,则存在谱密度S X (ω),使得1()()d ,,2i τωR τe S ωωτπ+∞−∞=−∞<<+∞∫X X(4.3.5)其中()()d ,.i τωS ωe R ττω+∞−−∞=−∞<<+∞∫X X(4.3.6)以上两式表明,相关函数R X (τ)和谱密度S X (ω)之间构成了Fourier 变换对,即[][]1()()()()S ωR τR τS ω−==X X X X FF,.对于平稳序列{}(),0,1,2,X n n =±±"的相关函数R X (m ),若它满足条件()m R m +∞=−∞<∞∑X ,则存在谱密度()()S ωπωπ−≤≤X ,使得1()()d ,0,1,2,,2πi m ωπR m e S ωωm π+−==±±∫X X " (4.3.7)其中()(),.i m ωm S ωeR m πωπ+∞−=−∞=−≤≤∑X X(4.3.8)4.3.2 谱密度的物理意义本段将先介绍确定信号的功率谱密度概念,并由此引申出平稳随机信号的功率谱密度.然后来分析功率谱密度与谱密度之间的关系. 1. 确定信号的功率谱密度 当确定信号x (t ) (-∞< t <+∞)满足Fourier 积分定理中的条件时,可以对它作频谱分析,即可求得x (t ) (-∞< t <+∞)的频谱函数()()d ,i ωt x F ωx t e t +∞−−∞=∫其中1()()d .2i ωtx x t F ωe ωπ+∞−∞=∫ 上式表明,信号x (t )可表示为谐波分量1()d 2i ωt x F ωe ωπ的无限叠加,其中为圆频率,谐波分量的振幅为1()d 2x F ωωπ.以f 表示频率,由ω =2πf 可知,谐波分量又可表示为2(2)d i πf t x F πf e f ,相应的振幅为(2)d x F πf f .由频谱分析理论知,谐波分量在频带[f , f + d f ]中的能量为2(2)d x F πf f .若2()d x t t +∞−∞<∞∫,则Parseval 等式(能量积分公式)221()d ()d 2xx t t F ωωπ+∞+∞−∞−∞=∫∫ 成立.Parseval 等式表明:若信号的总能量有穷,则它等于各谐波分量能量的叠加.故Parseval 等式又称为信号总能量的谱表示式.式中的2()x F ω称为信号x (t )的能量谱密度.但在实际应用中,例如周期信号,其总能量为无穷大.此时,我们转而考虑信号x (t ) 在(-∞, +∞)上的平均功率:21lim()d ,2T TT x t t T +−→∞∫因为它往往是有穷的.令(),||,()0,||.T x t t T x t t T ≤⎧=⎨>⎩显然,x T (t )也满足Fourier 积分定理的条件,故其频谱(;)()d ()d .T i ωt i ωt x T TF ωT x t e t x t e t +∞+−−−∞−==∫∫另外,因为22()d ()d T T Tx t t x t t +∞+−∞−=<∞∫∫,所以对x T (t )及其频谱F x (ω; T )成立Parseval 等式221()d (;)d ,2Txx t t F ωT ωπ+∞+∞−∞−∞=∫∫ 由此可得222111lim()d lim(;)d 22211lim (;)d .22Tx T T T xT x t t F ωT ωTπTF ωT ωπT++∞−−∞→∞→∞+∞−∞→∞==∫∫∫相应于能量谱密度,称上述等式右端的被积函数21lim (;)2x T F ωT T→∞ 为信号x (t )的功率谱密度. 2. 平稳随机信号的功率谱密度 现在,我们把上面讨论的方法及其结果转到平稳过程的场合中来,有22111()d (;)d .222T T X t t F ωT ωT πT++∞−−∞=∫∫X在上式两端取期望,并令T →∞,得22111lim ()d lim (;)d 222T TT T E X t t E F ωT ωTπT ++∞−−∞→∞→∞⎡⎤⎡⎤=⎢⎥⎣⎦⎣⎦∫∫X (4.3.9) 上式左端为平稳随机信号X (t ) (-∞< t <+∞)的平均功率. 记21()lim(;),ˆ2T S ωE F ωT T→∞⎡⎤=⎣⎦X (4.3.10)称S (ω)为X (t )的功率谱密度.根据均方积分的性质并注意到2()(0)E X t R ⎡⎤=⎣⎦X ,则(4.3.9)式的左端为21lim()d (0),2TT T E Xt t R T +−→∞⎡⎤=⎣⎦∫X从而有1(0)()d .2R S ωωπ+∞−∞=∫X(4.3.11)由此可知R X (0)为平稳随机信号的平均功率. 3.功率谱密度S (ω)与谱密度S X (ω)的关系设相关函数R X (τ)绝对可积,即()d R ττ+∞−∞<∞∫X ,由上一段讨论可知,存在谱密度S X (ω),且有()()d .i ωτS ωR τe τ+∞−−∞=∫X X另一方面,把(;)()d T i ωt TF ωT X t e t +−−=∫X 代入(4.3.10)式,得21212211()21121()lim ()d ()d 21lim ()d d 2T T i ωt i ωt T T T T Ti ωt t T TT S ωE X t et X t e t T R t t e t t T ++−−−→∞++−−−−→∞⎡⎤=⎢⎥⎣⎦=−∫∫∫∫X对二重积分作变量替换:112221,τt t τt t =+=−,变量替换的Jaccobi 行列式为111212221212(,)1.ˆ(,)2t t ττt t J t t ττττ∂∂∂∂∂===∂∂∂∂∂ 积分区域的变换见图4.3.1.得212()2112212()d d ()||d d TTi ωt t TTi ωτDR t t et t R τe J ττ++−−−−−−=∫∫∫∫XX{}2222022221221220002()d d ()d d T τT T τi ωτi ωτT R τe ττR τe ττ+−−−−⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦∫∫∫∫X X()2222222||()d Ti ωτTT τR τe τ−−=−∫X 因而()2222222222221()lim2||()d 2||lim 1()d .2Ti ωτTT Ti ωτT T S ωT τRτe τTτR τe τT −−→∞−−→∞=−⎛⎞=−⎜⎟⎝⎠∫∫XX令||1(),||2,()20,||2.TτR ττT R τT τT ⎧⎛⎞−≤⎪⎜⎟=⎝⎠⎨⎪>⎩X X 则222()lim ()d i ωτTT S ωR τe τ+∞−−∞→∞=∫Xτ1显然,lim ()()|()|d TT R τR τR ττ+∞−∞→∞=<∞∫X X X ,且因,故有()lim ()d lim ()d ()d ().Ti ωτT T i ωτT i ωτS ωR τe τR τe τR τe τS ω+∞−−∞→∞+∞−−∞→∞+∞−−∞====∫∫∫X X X X由此可见,从物理学角度引入的功率谱密度与从数学角度引入的谱密度是相同的,故以后统一用S X (ω)表示平稳过程的(功率)谱密度.4.3.3 谱密度与互谱密度的性质设平稳过程{ X (t ), -∞< t <+∞}的相关函数为R X (τ).我们知道,当R X (τ)绝对可积时,平稳过程的谱密度(有时也称之为自谱密度)S X (ω)为()()d .i ωτS ωR τe τ+∞−−∞=∫X X自谱密度S X (ω)是实的、非负的偶函数.这是因为()()cos()d ()sin()d 2()cos()d .S ωR τωττi R τωττR τωττ+∞+∞−∞−∞+∞−∞=−=∫∫∫X X X X所以S X (ω)是实的偶函数.又因()()()S ωFωF ω′=X ,而是单调非降的,故S X (ω)是非负的. 需要指出,用功率谱密度的定义式((4.3.10)式)也能方便地推证谱密度的上述性质.设平稳过程X = { X (t ), -∞< t < +∞}与平稳过程Y = { Y (t ), -∞< t < +∞}是平稳相关的,其互相关函数为R X Y (τ),类似于自谱密度的数学定义,当互相关函数绝对可积时,记()()d ,,ˆi ωτS ωR τe τω+∞−−∞=−∞<<+∞∫X Y X Y(4.3.12)称S X Y (ω)为X 与Y 的互谱密度.仿照功率谱密度的定义方法,同样可以把互谱密度定义为[]1()lim(;)(;).ˆ2T S ωE F ωT F ωT T→∞=−X Y X Y (4.3.13)互谱密度通常是ω的复函数,它不像自谱密度那样有鲜明的物理意义.引入互谱密度的目的在于从频率角度来刻画两个平稳过程的平稳相关性. 互谱密度具有下列性质:(1) ()()S ωS ω−=X Y X Y (共轭对称性), ()()S ωS ω=X Y Y X .(2) Re[S X Y (ω)]与Re[S Y X (ω)]为偶函数,Im[S X Y (ω)]与Im[S Y X (ω)]为奇函数.(3) ()S ω≤X Y .证 (1)()()()d ()d ()d ().i ωτi ωτi ωτS ωR τe τR τe τR τe τS ω+∞−−−∞+∞−∞+∞−−∞−====∫∫∫X Y XY XY XY X Y()()d ()d ()d ().i ωτττi ωτi ωτS ωR τe τR τe τR τe τS ω+∞−∞=−+∞−−∞+∞−−∞==−==∫∫∫X Y XY XY Y X Y X(2) 由()()cos()d ()sin()d ,S ωR τωττi R τωττ+∞+∞−∞−∞=−∫∫XY XY XY得Re ()()cos()d ,Im ()()sin()d .S ωR τωττS ωR τωττ+∞−∞+∞−∞⎡⎤=⎣⎦⎡⎤=−⎣⎦∫∫XY XY XY XY故Re[S X Y (ω)]为偶函数,Im[S X Y (ω)]为奇函数.再由(1)知,Re[S Y X (ω)]=Re[S X Y (ω)],Im[S Y X (ω)] = -Im[S X Y (ω)],这就证明了性质(2). (3) 注意到互谱密度的另一种表达式[]1()lim(;)(;),ˆ2T S ωE F ωT F ωT T→∞=−X Y X Y由Cauchy-Schwarz 不等式可得.==□4.3.4 相关函数与谱密度之间的变换从前面的讨论中得知,在一定条件下,相关函数R X (τ)与谱密度S X (ω)构成Fourier 变换对:[][]1()()d (),ˆ1()()d ().ˆ2i ωτi ωτS ωR τe τR τR τS ωe ωS ωπ+∞−−∞+∞−−∞====∫∫X X X X X X F F(相应地,互相关函数R X Y (τ)与互谱密度S X Y (ω)也构成Fourier 变换对.)因而,它们之间的相互转换一般有两种计算方法:其一,利用Fourier 变换表,结合Fourier 变换的性质,通过查表的方式来计算.其二,直接计算积分((4.3.5)或(4.3.6)式),此时,会遇到复值函数的积分,在某些条件下,可利用留数定理来进行计算. 1. 查表计算法 表4.3.1给出了最常用的相关函数和谱密度之间的变换.因其中出现R X (τ)或S X (ω)是δ函数,故先简单介绍δ函数及其广义Fourier 变换. 若δ(x -x 0)满足以下条件000,,(1)()0,.x x δx x x x ∞=⎧−=⎨≠⎩0(2)()d 1.δx x x +∞−∞−=∫则称δ(x -x 0)是在x = x 0的δ函数. 上述定义最初是由著名的物理学家狄拉克(Dirac )引入的,因而这种函数也称为狄拉克函数.δ函数不是通常意义下的函数.因为按照古典积分理论,定义中的两个条件是彼此矛盾的,所以不存在一个普通的实函数能同时满足这些条件.实际上,δ函数是一种广义函数,在广义函数论中,它被定义为某基本函数空间上的连续线性泛函.因其中涉及到的数学理论已远远超出本课程所讨论的范围,故不予展开.这里仅介绍δ函数的一条重要性质(筛选性). 若f (x )为无穷次可微函数,则有00()()d ().δx x f x x f x +∞−∞−=∫(4.3.14)工程上,称δ(x )为单位脉冲函数.根据δ函数的筛选性,形式上有[]0()()d 1.i ωτi ωττδτδτe τe +∞−−=−∞===∫F亦即,时域上的单位脉冲函数δ(·)与频域上的常数1构成了一对(广义)Fourier 变换. 同理,形式上有[]1111()()d .222i ωτi ωτωδωδωe ωe πππ+∞−−∞====∫F频域上的单位脉冲函数δ(·)与频域上的常数1/(2π)构成了一对(广义)Fourier 变换. 例4.3.4 已知平稳过程的谱密度为242(),32ωS ωωω=++X 求该平稳过程的相关函数. 解 S X (ω)在(-∞, +∞)上绝对可积,且有2221().21S ωωω=−++X由Fourier变换的线性性质及表4.3.1,得[]11122|||()()21211.2ττRτSωωωe−−−−=⎡⎤⎡⎤=−⎢⎥⎢⎥++⎣⎦⎣⎦=−X XFF F□例4.3.5求平稳随机电报信号(见例4.2.5)的谱密度.解已知平稳随机电报信号的相关函数为2||()λτRτe−=X,其中λ> 0为常数.2||λτe−在区间(-∞, +∞)上是绝对可积的,故[]2||224()()4λτλSωRτeωλ−⎡⎤===⎣⎦+X XF F.□例4.3.6设随机过程{}00cos()sin(),Aωt Bωt t=+−∞<<+∞X,其中ω0为常数,A与B为相互独立的随机变量且都服从正态分布N(0, σ 2 ).(1) 证明X是平稳过程;(2) 求X的谱密度.解(1) 因对任意的,t−∞<<+∞有[]0000()cos()sin()()cos()()sin()0.m t E Aωt BωtE Aωt E Bωt=+=+=X又[]22002(,)()()()cos()()sin()()0cos(),R t tτE X t X tτE Aωt E Bωt E ABσωτ+=+=+==X()不依赖于t,故X是平稳过程,且其相关函数为2()cos()Rτσωτ=X.(2) 由2()cos()Rτσωτ=X,查表4.3.1,得[][][]2200()()cos()()().SωRτσωtσπδωωδωω===−++X XFF□需要指出,本题中的相关函数2cos()σωτ不满足绝对可积条件,因而不能保证可对它施行通常意义下的Fourier变换,但在引入δ函数及其(广义)Fourier变换之后,因为cos()ωτ与[]00()()πδωωδωω−++构成一对(广义)Fourier变换,所以可求得2()cos()XRτσωτ=的(广义)Fourier 变换.这表明,δ函数及其(广义)Fourier 变换的引进大大拓宽了可施行Fourier 变换的函数类,它对工程技术中许多重要函数的频谱分析带来极大的便利. 例4.3.7 设平稳过程的谱密度为2(),,S ωσω=−∞<<+∞X求该过程的相关函数.解 []1122()()()R τS ωσσδτ−−⎡⎤===⎣⎦X X FF.□通常把均值为零而谱密度为常数的平稳过程称为白噪声过程(简称白噪声).这个名称来自白光可分解成各种频率的光谱,且其功率频是均匀分布的.2. 直接计算积分法有时需要通过直接计算(4.3.5)或(4.3.6)式,来进行相关函数与谱密度之间的转换. 例4.3.8 设平稳过程的谱密度为200,||,()0,||.σωωS ωωω⎧≤=⎨>⎩X 求该过程的相关函数.解 因为()(,)S ω−∞+∞X 在上绝对可积,所以0022000201()()d 21d 2sin(),0,,0.i ωτωi ωτωR τS ωe ωπσe ωπσωωττπωτσωτπ+∞−∞+−==⎧≠⎪⎪=⎨⎪=⎪⎩∫∫X X□本例中的平稳过程称为低通白噪声.利用复变函数围道积分及留数概念,可以计算形如()d ,(0)i a x f x e x a +∞−∞>∫的积分,其中f (·)为有理函数,分母比分子至少高一次幂,f (·)在实轴上无奇点.此时,上述积分存在,记z k 为f (z )在上半平面内的奇点,由留数定理知,()d 2Res (),.i a x iazk kf x e x πi f z e z +∞−∞⎡⎤=⎣⎦∑∫(4.3.15)例4.3.9 用直接积分法,求例4.3.4中的R X (τ).解 当τ > 0时,2()i τz τR τ+∞−==⎤=⎥⎦==X 故当τ > 0时,有()τR τ−=X (4.3.16)另一方面,当τ < 0时,-τ > 0,把-τ代入上式,得()τR τ−=X 再由相关函数的性质知,R X (·)是偶函数,故当τ < 0时,有()()τR τR τ=−=X X (4.3.17)结合(4.3.16)、(4.3.17)两式,可得|||()0.ττR ττ−=≠X最后,当τ = 0时,2(0)1.22R +∞∞====−X于是,|||().ττR ττ−=−∞<<∞X □表4.3.1。
04 平稳随机过程 070924
则称
{X (t ), t T } 为广义平稳随机过程。 (弱平稳随机过程)
3、广义平稳与狭义平稳
当 E[ X (t )]
2
时, 狭义平稳 广义平稳
当X(t)为高斯过程时,
狭义平稳 广义平稳
广义平稳和狭义平稳并没有必然的
因果关系。
例2.2-1
设随机过程 X t At ,A为均匀分布于
同理
C ( ) C ( )
2、 在零点处达最大值
用公式表示:
同理可证:
(练习)
R(0) | R( ) |
C (0) C ( )
证明:E{[ X (t ) X (t )]2 } 0
即E[ X 2 (t ) 2 X (t ) X (t ) X 2 (t )] 0 而E[ X 2 (t )] E[ X 2 (t )] R(0) 故2 R(0) 2 R( ) 0 R(0) | R( ) |
1
1 2
1 2 0 ... n
或:
2
...
1 2 n RX t k , t m 0 ... n
狭义平稳随机过程的条件过于严格,
往往难于实现。 弱化条件,在二阶矩范围内(一阶 矩、二阶矩)满足平稳性,已经可 以满足实际中的分析要求。
2、广义平稳随机过程的定义
设 { X (t ), t T } 是一随机过程, E[ X 2 (t )] 且有:
(1) E[ X (t )] mx 常数 一阶矩 (2) R(t1 , t2 ) E[ X (t1 ) X (t2 )] R( ) 二阶矩
4平稳随机过程
4.平稳相关与互相关函数
(1)定义: 设{X(t)},{Y(t)},t∈T为两个平稳过程, 定义 如果它们的互相关函数RXY(t,t+τ)只是τ 的函数,即 RXY(t,t+τ)=E[X(t)Y(t+τ)]= RXY(τ),则称{X(t)},{Y(t)} 是平稳相关的,或称{X(t)}与{Y(t)}是联合平稳过程. 并称 RXY(τ)=E[X(t)Y(t+τ)] 为{X(t)}与{Y(t)}的互相关函数。
3.自相关函数的性质
性质1.Rx(0)≥0; 证: Rx(0)=E[X2(t)]≥0
R(τ)
0
τ
性质2. Rx(τ)为偶函数,即Rx(-τ)=Rx(τ) 证: Rx(-τ)=E[X(t)X(t-τ)]= E[X(t-τ)X(t)]= Rx(τ) 性质3.|Rx(τ)|≤ Rx(0) 证:由柯西-施瓦兹不等式
且E[Xn]=0,D(Xn)=σ2>0,讨论其平稳性. 解: 因为E[Xn]=0,
σ 2 E[ X n X m ] = 0 n=m n≠m
故其均值函数µX(n)=0为常数,其自相关函数 RX(n,m)只 与m-n有关,所以它是平稳时间序列。
例2:随机相位正弦波X(t)=acos(ω0t+Θ) ,a, ω0为常数,
例2: 设X(t)=Asin(ωt+Θ),Y(t)=Bsin(ωt+Θ-Φ),A,B,
Φ, ω为常数,Θ在(0,2π)上服从均匀分布,求RXY(τ)。 解: X(t),Y(t)均为平稳过程.
R XY (τ ) = E[ X ( t )Y ( t + τ )]
= E [ A sin(ω t + Θ ) B sin(ω t + ω τ + Θ − Φ )]
(解答)《随机过程》第四章习题
(2)如果 X ~ N (0,1) ,问过程 (t) 是否均方可微?说明理由。
解:计算随机过程 (t) 的相关函数:
R (s,t) E{ (s) (t)} E{( X cos 2s Y sin 2s)(X cos 2t Y sin 2t)} cos 2s cos 2tE{X 2} sin 2s sin 2tE{Y 2} [cos 2s sin 2t sin 2s cos 2t]E{XY}
4、 设有随机过程 X (t) 2Z sin(t ) , t ,其中 Z 、 是相互独立的随机 变量,Z ~ N (0,1) ,P( / 4) P( / 4) 1/ 2 。问过程 X (t) 是否均方可积
过程?说明理由。
解:由 Z 、 的相互独立性,计算随机过程 X (t) 的均值函数和相关函数: E{X (t)} E{2Z sin(t )} 2E{Z}E{sin(t )} 0
Y (t) 2X (t) 1, t 0 。试求过程{Y (t), t 0} 的相关函数 RY (s,t) 。
解:由相关函数的定义,有:
RY (s,t) E{Y (s)Y (t)} E{(2X (s) 1)(2X (t) 1)} 4E{X (s) X (t)} 2E{X (s)} 2E{X (t)} 1 4E{X (s) X (t)} 4 1
0
T 2 T T E{X (s) X (u)}dsdu m2 00
T 2
T 0
T 0
R
X
(
s
u
)dsdu
m
2
T 2
T 0
T 0
[C
第四章平稳随机过程的非线性变换
第四章平稳随机过程的非线性变换引言:在前几章中,我们已经学习了平稳随机过程的基本概念和性质,以及一些线性变换对平稳过程的影响。
在本章中,我们将进一步研究平稳随机过程的非线性变换,并分析其对平稳过程的影响。
一、非线性变换的基本概念和性质1.非线性变换的定义:非线性变换是指将一个随机变量或随机过程通过非线性函数进行变换的过程。
一般而言,非线性变换会使得原始随机过程的统计特性发生变化。
2.非线性变换的性质:(1)非线性变换可逆性:与线性变换不同,非线性变换并不保证可逆性,即经过非线性变换之后,难以从变换后的结果恢复出原始的随机过程。
(2)非线性变换的稳定性:与线性变换类似,非线性变换也有稳定性的概念。
如果对于任意的平稳随机过程,通过非线性变换得到的随机过程仍然是平稳的,则称该非线性变换为稳定的非线性变换。
(3)非线性变换的矩特性:非线性变换会改变随机过程的矩特性,即均值、方差等统计特性会发生变化。
因此,通过非线性变换可以得到更多的统计信息。
二、非线性变换对平稳随机过程的影响1.非线性变换的影响:(1)直观影响:非线性变换通常会使得随机过程的波形更为复杂,振幅变化更大,同时也可能改变波形的周期性。
(2)统计特性的变化:非线性变换会改变平稳过程的矩特性,如均值、方差等统计特性将发生变化。
此外,非线性变换也可能增加过程的相关性,使之更接近于高斯分布。
(3)动力学特性的变化:非线性变换可能改变平稳随机过程的动力学行为,使之呈现更加复杂的行为,包括分岔、混沌等现象。
这些变化对于描述实际系统的行为非常重要。
2.非线性变换的实际应用:(1)数据压缩与表示:非线性变换可以对数据进行压缩和表示,通过保留数据的重要特征,可以减小数据的维度,提高数据处理的效率。
(2)信号处理与滤波:非线性变换可以改变信号的频谱特性和功率分布,并通过滤波等操作来实现信号处理的目标。
(3)图像处理与识别:非线性变换可以提取图像中的纹理、形状、边缘等特征,并用于图像识别、分类等应用。
第四章平稳过程课件
第13页共45页
随机过程(西电版) 4.3 平稳过程的各态历经性
第4章 平稳过程
_______
X (t) X (t ) l i m
1
T ______
X (t) X (t )dt
l i m 1
T
a
2
T
cos(t
2T T
) cos(t
)dt
T 2T T
a2 l i m 1
4.1 平稳过程的概念
第4章 平稳过程
(1) mX (t) m (常数)
(2) RX (s,t) RX ( ), t s
则称 {X (t),t T }为宽平稳过程。
显然,一个严平稳过程如果存在二阶矩,则必为宽平稳过 程。以后平稳过程均指宽平稳过程。
例1、设 { X n , n 1,2, }是不相关的随机变量序列,且
1
2
a cos(t )d 0
2 0
RX (t1,t2 ) E[ X (t1) X (t2 )]
E[a cos(t1 )a cos(t2 )]
a2 2
cos
, 其 中
t2
t1.
2024年6月19日星期三
机动 目录 上页 下页 返回 结束
第3页共45页
随机过程(西电版) 4.2 平稳过程相关函数的性质 第4章 平稳过程
2024年6月19日星期三
机动 目录 上页 下页 返回 结束
第14页共45页
随机过程(西电版) 4.3 平稳过程的各态历经性
第4章 平稳过程
lim
T
证明:E[
1 2T
X (t
)
22TT1
2T
] E[l i
C
随机过程平稳性遍历性正交性不相关性和独立性
随机过程的遍历性
1 a x(t ) lim T T
T 2
T 2
x(t ) dt
1 T2 R( ) x(t ) x(t ) lim x(t ) x(t )dt T T T 2
如果平稳过程使下式成立
a a R( ) R( )
随机过程
1 2
平稳性 遍历性 正交性、不相关性与独立性 正态随机过程的主要性质
3
4
随机过程的平稳性 , f ( x, y, z, t ) f ( x, y, z, t ),当 x x x 的特性不变,就称 f ( x, y, z, t ) 关于 x 函数是平稳的。 平稳性:若一个函数 判断方法: 方法一: 若X(t)为严平稳,k为任意正整数,则 E[ X (t )]与时间t 无关。 方法二:若X(t)为严平稳,则对于任一时刻t0 , X(t0)具有相同的统计特性。 实际意义:
严格平稳
一定
广义平稳
不一定
当随机过程满足高斯分布时,严平稳和宽平稳是等价的。
随机过程的遍历性
• 实际意义: 随机过程的数字特征(均值、相关函数)是对随机过程的所有样本函数的统计 平均,但在实际过程中很难测得大量的样本。因此,我们想在满足一定条件下, 从一次试验中得到一个样本函数来决定平稳过程的数字特征,这就是各态历经 性,又称遍历性。
3.高斯过程有很多与高斯变量类似的统计特征,如:
•
• • • •
高斯过程通过线性系统或高斯过程的线性组合仍为高斯型。
如果高斯过程是广义平稳的,则等价于平稳。 如果高斯过程的时间进程中两个不同时刻的随机变量不相关,则等价于统计独立。 高斯过程的线性积分则为相应的高斯随机变量。 两个高斯分布律的随机变量的卷积是高斯分布律,它的均值和方差是原来两个高斯分 布律的均值和方差的代数和。
精品文档-随机过程——计算与应用(研究生)(冯海林)-平稳过程1
平稳过程的定义 定义 5.1.1 设X={Xt,t∈T}是随机过程,如果对任意的
n 1, t1, t2 , , tn T和实数,当t1 ,t2 , , tn T时,
n维随机变量 (Xt1 , Xt2 , , Xtn )和 (Xt1 , Xt2 , , Xtn ) 有相同的联合分布函数,即
则
mX (t)
xdFt (x)
xdF (x)与t无关,为常数
RX (s,t )
x1x
2d
Fs,t (x1, x2 )
x1
x2
dF0,t
s
(
x1,
x2
),仅与时间间隔有关系
随机过程引论——西安电子科技大学数学与统计学院 冯海林
用定义判断一个过程的严平稳性是困难的. 在理论与应用上多的是宽平稳过程.
Ft1,t2 , ,tn (x1, x2 , , xn ) Ft1 ,t2 , ,tn ( x1, x2 , , xn )
则称X是严平稳过程.
随机过程引论——西安电子科技大学数学与统计学院 冯海林
例5.1.1 设N={Nt,t≥0}是参数为λ 的泊松过程,对任意固定 的常数a>0,令
Xt =Nta Nt ,
例5.1.6 设{An,n=1,2,…N} 和{Bn,n=1,2,…N}是两列实值 随机变量序列.且
E[An ] E[Bn ] 0, E[AnBm ] 0,
E[AnAm ] E[BnBm ] n2mn , 设n >0,定义随机过程:
N
Xt [Ak cos(kt) Bk sin(kt)], t (, ), k 1
2[a 2 min(0, ) min(a, ) min(0, a)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RX ( ) E[ X (t )X (t )] =E[ X (t ) X (t )] RX ( )
R(s, t ) E[ X (s)X (t )] R( )
则称{X(t),t∈T} 为宽(弱、广义)平稳过程,简称宽 平稳过程
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
由于在许多工程技术问题中,常常仅在相关理论(一、二
阶矩)的范围内讨论问题,因此划分出广义平稳随机过程来。
而相关理论之所以重要,是因为在实际中,一、二阶矩能给出 有关平稳随机过程平均功率的几个主要指标,比如,如果随机
过程如果代表噪声电压信号,那么在相关理论范围内就可以给
出直流分量、交流分量,平均功率及功率在频域上的分布(我 们将在后面讨论功率谱密度)等。另外,在电子系统中经常遇
到最多的是正态随机过程,对于正态随机过程而言,它的任意
若令 t 2 ,得
f (t1 , t 2;x1 , x2 ) f (t1 t 2 ,0;x1 , x2 ) f (;x1 , x2 )
其中 同理
t1 t2
二维分布函数也仅与时间差 而与时间起点无关,即
t1 t2
有关,
F (t1 , t 2;x1 , x2 ) F (;x1 , x2 )
j [ l ( t ) k t ] E X X e k l k 1 l 1
bk e jk
k 1
RY ( )
所以, {Y (t ), t }具有平稳性。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
P
k 0
N ( ) 2k
P
k 0
k 0
N ( ) 2k 1
P N ( ) 2k P N ( ) 2k 1
k 0 k 0
k 0
2k
2k !
k 0
解
的密度函数为
所以
1 ,当 0 sin 2 ( t ) x sin 2 txdx 2 R(t , t ) 0 0,当 0 故 X (t ) 是平稳随机序列。
E[ X (t )] sin 2txdx 0
0
1
1, f ( x) 0 ,
维分布都只由它的一、二阶矩来确定,广义平稳的正态随机过 程必定是严格平稳的。因此,在实际中,我们通常只考虑广义 平稳性,今后除特别声明外,平稳性指的是广义平稳。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
说明
当T为整数集 或 { nt ,n=0,1,2,„}时
则称 X (t ) 为
例5
设{ X (t ), t 0}是只取 1两个值的过程,其符号的 改变次数是一参数为的poisson过程 {N (t ), t 0} 且 t 0, P ( X (t ) 1) P ( X (t ) 1) 1/ 2, 试讨 论{ X (t ), t 0}的平稳性。
定理4.2.1
设{X (t ), t 0}是复平稳过程,则RX ( )具有性质:
1 )RX (0) E[ X (t ) ] mX
证
2
2
2
0
2
RX (0) E[ X (t )X (t )] E[ X (t ) ] D[ X (t )] mX mX 0
2
2) RX ( ) RX ( )
严平稳过程的特点 1)
严平稳过程 X (t ) 的一维概率密度 f (t;x) 与 t 无关,
二维概率密度 f (t1 , t2;x1 , x2 ) 仅与时间差 t1 t 2 有关, 而与时间起点无关。
证
一维 对任意的τ,必有
f (t;x) f (t ;x)
f (t;x) f (0;x) f ( x)
xf ( x)dx m
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
R(s, t ) E[ X (s)X (t )]
x1 x2 dF (s, t;x1 , x2 )
x1 x2 dF (0, t s;x1 , x2 )
随机过程可分为平稳和非平稳两大类, 严格地 说, 所有信号都是非平稳的, 但是, 平稳信号的分析 要容易得多, 而且在电子系统中, 如果产生一个随机 过程的主要物理条件在时间的进程中不改变, 或变 化极小, 可以忽略, 则此信号可以认为是平稳的. 如
接收机的噪声电压信号, 刚开机时由于元器件上温
度的变化, 使得噪声电压在开始时有一段暂态过程, 经过一段时间后, 温度变化趋于稳定, 这时的噪声电
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
2)
若严平稳过程存在二阶矩,则
(1)值函数为常数:
m(t ) E[ X (t )] m
(2)相关函数仅是时间差
记 R( )
证 只对连续型的情况
t1 t2 的函数:
R(s, t ) R(t s)
m(t ) E[ X (t )] xf (t;x)dx
例 1
设随机过程X(t)=At,A为标准正态分布的随机变量。
试问X(t)是否平稳?
解、
E{X (t )} E{tA} tE{A} 0
RX (t1, t2 ) E{X (t1 ) X (t2 )} t1t2 E{A2} t1t2
所以X(t)是非平稳的。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
2
bk 0,
bk ,
k 1
令Y (t ) X k e jk t , t ,
k 1
{n , n 1, 2, }是两两不相等的实数序列,试讨 论{Y (t ), t }的平稳性。
解
jk t mY (t ) E[Y (t )] E X k e k 1 = E X k e jk t 0
F (t1, t2 ,, tn;x1, x2 ,, xn )
F (t1 , t2 ,, tn ;x1, x2 ,, xn )
则称{X(t),t∈T} 为严(强、狭义)平稳过程,或称 {X(t),t∈T} 具有严平稳性。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
解
1 1 mX (t ) E[ X (t )] 1 1 0 2 2
RX (t , t ) E[ X (t ) X (t )] P{ X (t ) X (t ) 1} P{ X (t ) X (t ) 1}
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
平稳时间序列
注1
严平稳过程不一定是宽平稳过程。 因为严平稳过程不一定是二阶矩过程。 若严平稳过程存在二阶矩,则它一定是宽平稳过程。
注2
宽平稳过程也不一定是严平稳过程。 因为宽平稳过程只保证一阶矩和二阶矩不随时间推 移而改变,这当然不能保证其有穷维分布不随时间 而推移。
注3
2008年12月
正态过程的严平稳与宽平稳是等价的。(定理4.4.1)
E{[ X (t )X (t )] mE[ X (t )] mE[ X (t )] m2
2 R ( ) m R(t , t ) m
2
C ( )
即表示协方差函数仅依赖于τ,而与t无关,与相关函数 相同。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
第四章 平稳过程
4.1 平稳过程的基本概念 4.2 平稳过程相关函数的性质 4.3 平稳过程的各态历经性 4.4 平稳过程的谱密度 4.5 平稳过程的谱分解 4.6 线性系统中的平稳过程
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
注4
利用均值函数与协方差函数也可讨论随机过程的平稳 性。
因为 均值函数 m(t)=m 协方差函数
C(t , t ) cov[ X (t ), X (t )]
E{[ X (t ) m(t )][ X (t ) m(t )]}
所以, {X n , n 1, 2, }是一个平稳随机序列。
注 在科学和工程中,例中的过程称为“白噪声”,它 是实际中最常用的噪声模型。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
例3
设随机序列{ X (t ) sin 2t , t T },
其中T={1,2,…} ,η是在[0,1]上服从均匀 分布的随机变量, 试讨论随机序列 X (t ) 的平稳性。
1
0 x 1
其它
注
2008年12月
该例中的过程是宽平稳的,但不是严平稳的
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
例4
设{ X n , n 1, 2, }是随机变量序列,E[ X k } 0, E[ X k X l ] 0(k l ),E[ X k X k ] E X k
k 1
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》