立体几何垂直证明题常见模型及方法
立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。
平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。
在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。
本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。
一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。
要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。
通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。
2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。
这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。
3. 平行线的性质:在平面几何中,平行线具有很多性质。
常见的平行线定理包括等角定理、同位角定理、内错角定理等。
通过运用这些性质,可以证明两条直线平行。
二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。
根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。
2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。
这一方法常用于证明两条直线垂直的情况。
通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。
3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。
两条直线垂直时,其错角是互相垂直的。
通过构建直线的错角,可以证明所求的两条直线垂直关系。
三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。
通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。
2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。
立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
初一数学证明题解题技巧总结

初一数学证明题解题技巧总结数学立体几何证明解题技巧1平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
立体几何四个重要模型

立体几何四个重要模型广州市第六十五中学朱星如模型1:在棱长为a 的正面体ABCD 中:1.求证它是一个正三棱锥。
证明:即证顶点A 在底面BCD 的中心H 的连线与底面垂直。
取BC 的中点E,BD 的中点F,连CF,DE 相交于点H,则H 是三角形BCD 的中心,且H 是CF,DE 的一个三等分点,连AH,由BC ⊥DE,BC ⊥AE,AE 交DE=E,AE,DE 的平面AED 内,得BC ⊥平面AED,由此得BC ⊥AH,即AH ⊥BC。
(1)同理:AH ⊥BD。
(2)由BC 交BD=B,BC,BD 在平面BCD 内及(1)(2)得:AH ⊥平面BCD。
所以四面体ABCD 是正三棱锥。
2.设E、F、S、T 分别是BC、BD、AD、AC 的中点,求证:四边形EFST 是正方形。
证明:由于E、F、S、T 分别是BC、BD、AD、AC 的中点,故有ST 12DC EF,ST EF,所四边形EFST 是平行四边形。
同理:SF 12AB TE ,DC=AB ,所以四边形EFST 是菱形。
仿题1可证DC ⊥平面ABH,故DC ⊥AB,故有四边形EFST 是正方形。
注;由此可得到相对的两棱所成角为90o 。
3.设E、S 分别是BC、AD 的中点,求证:ES ⊥BC,ES ⊥AD,并求ES 的长。
证明:可证BC ⊥平面AED,从而BC ⊥ES;可得AD ⊥平面BCS,从而AD ⊥ES。
在直角三角形SBE 中,SB=32a,BE=12a,从而,2222ES SB BE =-=4.求任何一条棱与它相交的面所成角的正弦值。
解:只要求AB 与平面BCD 所成的角。
AH ⊥平面BCD,∴AB 与平面BCD 所成的角是ABH ∠。
22333323BH DE ==⨯=,在直角三角形ABH 中,2263AH AB BH =-=,故6sin 3AH ABH AB ∠==。
5.求相邻两个面的夹角的余弦值。
解:只要求二面角A-BD-C 的平面的余弦值。
第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
专题20立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。
2020年高中数学03 立体几何大题解题模板(原卷版)

专题03 立体几何大题解题模板一、证明平行或垂直的主要方法:1、证明线线平行的方法:(1)利用直线平行的传递性:31//l l ,32//l l ⇒21//l l ;(2)利用垂直于同一平面的两条直线平行:α⊥1l ,α⊥2l ⇒21//l l ;(3)中位线法:选中点,连接形成中位线;(4)平行四边形法:构造平行四边形;(5)利用线面平行推线线平行:2l =βα ,β⊂1l ,α//1l ⇒21//l l ;(6)建系:),,(1111z y x l =,),,(2222z y x l =,21l l λ=⇒21//l l 。
2、证明线面平行的方法:(1)利用线面平行的判定定理(主要方法):α⊄1l ,α⊂2l ,21//l l ⇒α//1l ;(2)利用面面平行的性质定理:βα//,β⊂1l ⇒α//1l ;(3)利用面面平行的性质:βα//,α⊄1l ,β//1l ⇒α//1l 。
(4)建系:),,(1111z y x l =,平面α的法向量),,(222z y x n =,01=⋅n l ⇒α//1l 。
3、证明面面平行的方法:(1)利用面面平行的判定定理(主要方法:证明两个平面内的两组相交直线相互平行):31//l l ,42//l l ,A l l =21 ,B l l =43 ,α⊂21l l 、,β⊂43l l 、⇒βα//;(2)利用垂直于同一条直线的两平面平行(客观题可用):α⊥1l ,β⊥1l ⇒βα//;(3)利用平面平行的传递性:γα//,γβ//⇒βα//。
(4)建系:平面α的法向量),,(1111z y x n =,平面α的法向量),,(2222z y x n =,21n n λ=⇒βα//。
4、证明线线垂直的方法:(1)利用平行直线的性质:31l l ⊥,32//l l ⇒21l l ⊥;(2)利用直面垂直的推理:α⊥1l ,α⊂2l ⇒21l l ⊥;(3)中线法:等腰三角形中选中点,三线合一;(4)利用勾股定理的逆定理:若222c b a +=,则ABC ∆是直角三角形;(5)建系:),,(1111z y x l =,),,(2222z y x l =,021=⋅l l ⇒21l l ⊥。
立体几何中的垂直、二面角、点面距三连问问题解法举例

立体几何中的垂直、二面角、点面距三连问问题解法举例在立体几何命题中,第一问证明垂直(线线垂直,线面垂直或者面面垂直)、第二问求二面角大小或某种三角函数值、第三问点面距,这种连续三问的几何题学生求解起来往往感到比较吃力,费时较多,需要加强研究训练,现在举例说明这类问题常见的解法.例1:如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的平面角的正弦值; (Ⅲ)求点C 到平面1A BD 的距离. 解法一(几何法):(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥,1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF , 由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF又112AG AB ==sin AG AFG AF∴==∠ABC D1A 1C1BO F所以二面角1A A D B --(Ⅲ)1A BD △中,111A BD BD A D A B S ===△1BCD S =△. 在正三棱柱中,1A 到平面11BCC B设点C 到平面1A BD 的距离为d .由11A BCD C A BD V V --=,得11133BCD A BD S S d △△,1A BDd ∴==△∴点C 到平面1A BD解法二(坐标法):(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,1(120)B ,,,1(12AB ∴= ,,(210)BD =-,,,1(12BA =- . 12200AB BD =-++= ,111430AB BA =-+-= , 1AB BD ∴ ⊥,11AB BA⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =- ,,1(020)AA = ,,. AD ⊥n ,1AA⊥n , 100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(=,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n,111AB AB AB >==n n∴二面角1A A D B --的大小为(Ⅲ)由(Ⅱ),1AB为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD的距离11BC AB d AB =本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2:如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中2,AB =PA =(1)求证:11PA B D ⊥;(2)求平面PAD 与平面11BDD B 所成的锐二面角θ的余弦值; (3)求1B 到平面PAD 的距离解法一(坐标法)以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 (1)设E 是BD 的中点, P —ABCD 是正四棱锥,∴ABCDPE ⊥又2,AB PA ==, ∴2=PE∴)4,1,1(P ∴ 11(2,2,0),(1,1,2)B D AP =-=, ∴ 110B D AP ⋅=, 即11PA B D ⊥.(2)设平面PAD 的法向量是(,,)m xy z =,(0,2,0),(1,1,2)AD AP ==∴ 02,0=+=z x y 取1=z 得(2,0,1)m =-,又平面11BDD B 的法向量是(1,1,0)n =∴cos ,m n m n m n⋅<>==,∴cos θ=.(3)1(2,0,2)B A =-, ∴1B 到平面PAD的距离1B A m d m ⋅==解法二(几何法):(1)设AC 与BD 交点为O ,连PO ;∵P —ABCD 是正四棱锥,∴PO ⊥面ABCD ,∴AO 为PA 在平面ABCD 上的射影, 又ABCD 为正方形, ∴AO ⊥BD ,由三垂线定理知PA ⊥BD ,而BD ∥B 1D 1,∴11PA B D ⊥. (2)由题意知平面PAD 与平面11BDD B 所成的锐二面角为二面角A -PD -B ;∵AO ⊥面PBD ,过O 作OE 垂直PD 于E ,连AE , 则由三垂线定理知∠AEO 为二面角A -PD -B 的平面角;可以计算得,cos 5θ=(3)设B 1C 1与BC 的中点分别为M 、N ;则1B 到平面PAD 的距离为M 到平面PAD 的距离;由V M -PAD =V P -ADM 求得556=d .。
2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
立体几何线面垂直-题型全归纳(解析版)

立体几何线面垂直-题型全归纳题型一利用等腰三角形“三线合一”例题1、如图,在正三棱锥P-ABC中,E,F,G分别为线段PA,PB,BC的中点,证明:BC⊥平面PAG。
证明:在正三棱锥P-ABC中,AB=AC,G是BC的中点,∴AG⊥BC,又 PB=PC,G是BC的中点,∴PG⊥BC,PG⋂AG=G,PG,AG⊂平面PAG,∴BC⊥平面PAG,解题步骤(1)根据线段的中点,找出相应的等腰三角形;(2)格式“因为D是BC的中点,且AB=AC,所以AD⊥BC”;(3)依据“三线合一”得到线线垂直。
变式训练1、已知四面体ABCD中,AB=AC,BD=CD,E为棱BC的中点,求证:AD⊥BC证明:连接DE,AB=AC,E是BC的中点,∴AE⊥BC,又 BD=CD,E是BC的中点,∴DE⊥BC,AE⋂DE=E,AE,DE⊂平面ADE,∴BC⊥平面ADE,AD⊂平面ADE,∴AD⊥BC变式训练2、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.求证:PC AB ⊥证明:取AB的中点O,连接OP,OC, AP=BP,O是AB的中点,∴PE⊥AB,又 AC=BC,O是AB的中点,∴OC⊥AB,PO⋂CO=O,PO,CO⊂平面POC,∴AB⊥平面POC,PC⊂平面POC,∴AB⊥PC。
变式训练3、如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,E为CD的中点,060=∠ABC ,求证:AB⊥平面PAE。
证明: 底面ABCD是菱形,060=∠ABC ,∴AE⊥CD,又 AB//CD,∴AB⊥AE,又PA⊥平面ABCD,AB⊂平面ABCD,∴AB⊥PA,AP⋂AE=A,AP,AE⊂平面PAE,∴AB⊥平面PAE。
A CB P题型二利用勾股定理逆定理例题2、如图,在正方体1111D C B A ABCD -中,M 为棱1CC 的中点,AC 交BD 于点O ,求证:BDM1平面⊥O A 证明:连接OM,M A 1,11C A ,设正方体的棱长为2,则6222222121=+=+=AO A A O A 32122222=+=+=OC CM OM 91)22(222121121=+=+=M C C A M A 21221M A OM O A =+∴即:OM⊥OA 1又 在正方体1111D CB A ABCD -中,∴BD⊥OA 1 OM,BD⊂平面BDM,∴BDM1平面⊥O A 解题步骤(1)根据题干给出的线段长度(没有长度的可以假设),标示在图形上,找出相应的三角形;(2)把线段的长度分别求平方,判断能否构成“222c b a =+”;(3)根据平方关系得到线线垂直。
6.立体几何垂直证明题常见模型及方法

类型一:线线垂直证明(共面垂直、异面垂直)
共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)
1 、等腰(等边)三角形中的中线 2、 菱形(正方形)的对角线互相垂直 3、勾股定理中的三角形 4 、 1:1:2 的直角梯形中 5 利用相似或全等证明直角。
类型三、面面垂直的证明。 (本质上是证明线面垂直)
B EABiblioteka C FD类型四、探索性问题
异面垂直 (利用线面垂直来证明,高考中的意图)
类型二:线面垂直证明
方法1 利用线面垂直的判断定理
A
D O B E
C
2 利用面面垂直的性质定理 (方法点拨:此种情形,条件中含有面面垂直。)
例3、在四棱锥P-ABCD,底面ABCD是正方形,侧 面PAB是等腰三角形,且平面PAB⊥面ABCD,求证 BC⊥面PAB
立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
立体几何平行垂直的证明方法

• (1)证明 如图,设AC与BD交于点G,则G为AC 的中点.连接EG,GH,由于H为BC的中点, • 故GH=(1/2)AB. • 又EF=(1/2)AB ,∴EF=GH. • 又EF∥AB GH∥AB ∴EF ∥ GH • ∴四边形EFHG为平行四边形. • ∴EG∥FH. • 而EG⊂平面EDB,FH⊄平面EDB, • ∴FH∥平面EDB.
3、如果一条直线和一个平面内的两条相交直线垂直,那么
这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于
1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。
四、线线垂直的证明方法:
1、勾股定理。 2、等腰三角形,三线合一
3、菱形对角线,等几何图形
4、直径所对的圆周角是直角。 5、点在线上的射影。
6、如果一条直线和一个平面垂直,那么这条直线就和这个
平面内任意的直线都垂直。
7、如果两条平行线中的一条垂直于一条直线,则另一条也
垂直于这条直线。
五、线面垂直的证明方法:
3.利用线面平行的性质定理: 如果一条直线平行于一个平面,经过这条直线的
平面和这个平面相交,则这条直线和交线平行 4.利用面面平行的性质定理: 如果两个平行平面同时和第三个平面相 交,那么它们的交线平行, 5.利用线面垂直的性质定理: 垂直于同一个平面的两条直线平行
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行
立体几何中平行与垂直证明方法归纳

a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b
立体几何中平行和垂直问题的证明

摇生"攵浬化知识篇科学备考新指向高考数学2021年2月立"#何%&行直问题的证明■江苏省华罗庚中学李普红平行与垂直关系的证明是高考考查立体几何的高频考点,大部分问题都可以用传统的几何方法解决,有一部分问题需要建立空间直角坐标系利用空间向量解决。
用传统法解题时,应注重线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直等问题的性质定理和判定定理的灵活应用。
用向量法解题时,应建立恰当的空间直角坐标系,准确表示各点与相关向量的坐标。
考向一:证明线面平行!!如图1,已知空间几何体BACDE中,&BCD与&CDE均是边长为2的等边三角形,&ABC是腰长为3,底边为BC的等腰三角形,平面CDE丄平面BCD,平面ABC丄平面BCD"(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积。
解析:(1)如图2所示,取DC的中点为N,BD的中点为/,连接MN,则MN即为所求。
连接EM,EN,取BC的中点4,连接AH"因为&ABC是腰长为3的等腰三角形,H为BC的中点,所以AH丄BC。
又平面ABC丄平面BCD,平面ABC'平面BCD$BC,AH U平面ABC,所以AH 丄平面BCD"同理可证EN丄平面BCD"所以EN/AH"因为EN1平面ABC,AH U平面ABC,所以EN/平面ABC"又M,N分别为BD,DC的中点,所以MN/BC"因为MN1平面ABC,BC U平面ABC,所以MN/平面ABC"又MN'EN$N,MN U平面EMN,EN U平面EMN,所以平面EMN/平面ABC"又EF U平面EMN,所以EF/平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行°(2)连接DH,取CH的中点为G,连接NG,则NG/DH"由(1)可知EN/平面ABC,所以点E到平面ABC的距离与点N到平面ABC的距离相等°又&BCD是边长为2的等边三角形,所以DH丄BC。
立体几何垂直证明

立体几何垂直证明方法技巧类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:掌握几种模型①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形⑤利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面(2) 异面垂直(利用线面垂直来证明)例1 在正四面体ABCD 中, 求证:AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,DE DF折起,使,A C两点重合于'A.求证:'A D EF⊥;变式3如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC类型二:直线与平面垂直证明BE'ADFG方法○1利用线面垂直的判断定理例:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的P中点,2,CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,FADPEE是PC的中点.⊥;(2)证明PD⊥平面ABE;(1)证明CD AE变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60ABC,E、F分别是棱CC′与BB′上的点,=︒且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;类型三:平面与平面垂直证明1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,求证:平面PAM⊥平面PBM2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。
如何总结高一数学的立体几何证明方法与技巧

如何总结高一数学的立体几何证明方法与技巧在高一数学的学习中,立体几何是一个重要且具有一定难度的部分。
对于许多同学来说,掌握立体几何的证明方法与技巧并非易事。
然而,通过系统的总结和练习,我们能够逐渐理清思路,提高解题能力。
接下来,让我们一起深入探讨如何总结高一数学立体几何的证明方法与技巧。
一、基础知识的巩固在总结证明方法与技巧之前,扎实的基础知识是必不可少的。
我们需要对立体几何中的基本概念,如点、线、面、体,以及它们之间的位置关系,如平行、垂直、相交等有清晰的理解。
1、点线面的关系点在直线上:表示点是直线的一部分。
点在平面内:点属于平面。
直线在平面内:直线上的所有点都在平面内。
2、线线关系平行:在同一平面内,不相交的两条直线互相平行。
相交:两条直线有且只有一个公共点。
异面:不同在任何一个平面内,没有公共点。
3、线面关系线面平行:直线与平面没有公共点。
线面相交:直线与平面有且只有一个公共点。
线在面内:直线上的所有点都在平面内。
4、面面关系面面平行:两个平面没有公共点。
面面相交:两个平面有一条公共直线。
二、常见的证明方法1、综合法综合法是从已知条件出发,通过一系列的推理和运算,最终得出要证明的结论。
这需要我们对基本定理和公式有熟练的运用。
例如,要证明直线 a 平行于平面α,已知平面α 内有一条直线 b 平行于直线 a,且直线 a 不在平面α 内,根据线面平行的判定定理,就可以得出直线 a 平行于平面α。
2、分析法分析法是从要证明的结论出发,逐步寻求使结论成立的充分条件,直到最后归结为已知条件或已经成立的定理。
比如,要证明平面α 平行于平面β,我们可以先假设平面α 与平面β 不平行,然后推出矛盾,从而证明平面α 平行于平面β。
3、反证法当直接证明比较困难时,可以采用反证法。
先假设结论不成立,然后通过推理得出矛盾,从而证明原结论成立。
例如,证明两条异面直线不平行,我们可以先假设它们平行,然后推出与已知条件矛盾的结果。
证明两线互相垂直的常用方法

证明两线互相垂直的常用方法我们学习了平面与直线垂直的定义、判定定理和性质定理,大家可以体会线线垂直在证明线面垂直时的重要性,将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法.在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”,同学们下面欣赏常见的线面垂直证明方法.一、利用定义垂直的定义:如果两条直线相交成直角,那么这两条直线互相垂直。
从定义可以看出,只要说明两条直线相交的角是直角,就可以说明两条直线互相垂直。
例1:如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.求证:PC是⊙O的切线;分析:因为点C在圆上,只要说明OC⊥CP即可。
解:∵OA=OC,∴∠A=∠ACO∵∠COB=2∠ A ,∠COB=2∠PCB∴∠A=∠ACO=∠PCB∵AB是⊙O的直径∴∠ACO+∠OCB=90°∴∠PCB+∠OCB=90°,即OC⊥CP∵OC是⊙O的半径∴PC是⊙O的切线例2:(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连结BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.分析:线段之间的垂直,只要说明∠BFD=90°,直接计算不出来,通过三角形全等,间接证明角度为90°。
证明:在△ACD和△BCE中,AC=BC,∠DCA=∠ECB=90°,DC=EC,∴ △ACD≌△BCE(SAS)∴ ∠DAC=∠EBC.∵ ∠ADC=∠BDF,∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.∴ ∠BFD=90°∴ AF⊥BE.(2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连结BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.分析:题目同(1)类似,类比(1)思路,这里△ACD和△BCE,显然不全等,考虑相似即可。