3D封装与硅通孔TSV工艺技术解析
3D IC-TSV技术与可靠性研究
3D IC-TSV技术与可靠性研究摘要:对三维(3 Dimension,3D)堆叠集成电路的硅通孔(Through Silicon Via,TSV)互连技术进行了详细的介绍,阐述了TSV的关键技术与工艺,比如对准、键合、晶圆减薄、通孔刻蚀、铜大马士革工艺等。
着重对TSV可靠性分析的重要性、研究现状和热应力分析方面进行了介绍。
以传热分析为例,实现简单TSV模型的热仿真分析和理论计算。
最后介绍了TSV技术市场化动态和未来展望。
关键词: 3D-TSV;通孔;晶圆减薄;键合;热可靠性0 引言随着半导体制作工艺尺寸缩小到深亚微米量级,摩尔定律受到越来越多的挑战。
首先,互连线(尤其是全局互连线)延迟已经远超过门延迟,,这标志着半导体产业已经从“晶体管时代”进入到“互连线时代”。
为此,国际半导体技术路线图组织(ITRS)在 2005 年的技术路线图中提出了“后摩尔定律”的概念。
“后摩尔定律”将发展转向综合创新,而不是耗费巨资追求技术节点的推进。
尤其是基于TSV(Through Silicon Via)互连的三维集成技术,引发了集成电路发展的根本性改变。
三维集成电路(Three-Dimensional Integrated Circuit,3D IC)可以将微机电系统(MEMS)、射频模块(RF module)、内存(Memory)及处理器(Processor)等模块集成在一个系统内[1],,大大提高了系统的集成度,减小了功耗,提高了性能,因此被业界公认为延续摩尔定律最有效的途径之一,成为近年来研究的热点。
目前3D集成技术主要有如下三种:焊线连接(Wire-Bonding)、单片集成(Monolithic Integration)和TSV技术[2]。
焊线连接是一种直接而经济的集成技术,但仅限于不需要太多层间互连的低功率、低频的集成电路。
单片集成是在同一个衬底上制作多层器件的新技术,它的应用受到工艺温度要求很高和晶体管质量较差等约束。
硅通孔技术TSV研究ppt课件
TSV技术面临的难题:
➢在价格与成本之间的极大障碍
➢新技术的不确定性所隐含的风险
➢实际的量产需求
1
概述
发展 状况
TSV 的 应用
GaAs 基TSV 20/03/2020
TSV的研究动态
TSV参数 最小TSV直
径 最小TSV间
3
TSV封装剖面图
概述
发展 状况
TSV 的 应用
TSV的研究动态
TSV的关键技术之一——通孔刻蚀
➢ 前通孔(via first):
在 IC 制 造 过 程 中 制 作 通 孔,分为前道互连和后 道互连
➢ 后通孔(via last) :
制造完成之后制作通孔
GaAs
基TSV 20/03/2020
4
概述
台积电有在28nm以下工艺量产三维LSI的意向。
TSV的 应用
GaAs 基TSV 20/03/2020
以多种尺寸和配置而形成的TSV 和再布线层
12
连接300mm晶圆和半导体芯片的微凸点
TSV的研究动态
概述
2010年12月三星公司采用TSV技术,成功开发出基于该 公司先进的绿色DDR3芯片的8GB RDIMM内存。
感测器
OsmiumTM from Aptina 9
TSV的研究动态
概述
发展 状况
应用TSV的影像感测器实例
2009年3月, 意法半导体推出市场上首款集成扩展景深 (EDoF)功能的1/4英寸光学格式3百万像素Raw Bayer传感器。 意法半导体最新的影像传感器可实现最小6.5 x 6.5mm的相机 模块,而且图像锐利度和使用体验非常出色,同时还兼有尺 寸和成本优势,是一款智能型自动对焦相机解决方案。
tsv的主要工艺步骤及方法
tsv的主要工艺步骤及方法一、制造硅通孔硅通孔(TSV)的制造是TSV技术的核心步骤之一。
在这一步,通过物理或化学方法在芯片上制造出穿透硅片的孔洞,这些孔洞将用于实现芯片间的垂直互连。
有多种方法可以用来制造硅通孔,包括但不限于深反应离子刻蚀(DRIE)、激光钻孔等。
二、填充硅通孔在硅通孔制造完成后,需要对其进行填充,以实现电信号的传输。
填充材料一般选用导电金属,如铜、钨等。
填充硅通孔的方法有化学气相沉积(CVD)、物理气相沉积(PVD)和电镀等。
选择合适的填充方法需要根据实际应用需求和工艺条件来决定。
三、连接硅通孔填充完硅通孔后,需要进行硅通孔间的连接,以实现芯片间的互连。
连接方法可以采用焊接、导电胶等。
在连接过程中,需要确保连接稳定可靠,以防止在后续使用中出现脱落或接触不良等问题。
四、测试与验证在完成硅通孔的制造、填充和连接后,需要进行测试与验证,以确保TSV 技术能够满足实际应用需求。
测试内容包括但不限于:导通性能测试、机械性能测试和可靠性测试等。
通过测试与验证,可以及时发现并解决潜在的问题,提高TSV技术的可靠性和稳定性。
五、封装与集成在TSV技术应用中,封装与集成是关键步骤之一。
通过封装与集成,可以将多个芯片垂直堆叠在一起,实现更小体积、更高性能的电子系统。
在封装与集成过程中,需要考虑到散热、信号传输、电源分配等问题,以确保整个系统的稳定运行。
六、可靠性评估TSV技术的可靠性是评估其性能的重要指标之一。
可靠性评估可以通过多种方法来实现,如加速老化试验、环境适应性试验等。
通过可靠性评估,可以了解TSV技术在不同环境和工作条件下的性能表现,为后续改进和优化提供依据。
七、失效分析失效分析是TSV技术中重要的一环,通过对失效样品的检测和分析,可以了解失效的原因和机制,从而提出相应的改进措施。
失效分析方法包括扫描电子显微镜(SEM)、能谱分析(EDS)等。
通过失效分析,可以提高TSV技术的可靠性和稳定性,为实际应用提供更加可靠的解决方案。
TSV工艺技术
TSV工艺技术TSV(Through Silicon Via)工艺技术是一种用于三维集成电路中的先进封装技术。
这种技术通过在硅片上钻孔,然后在孔中填充金属,实现了不同层次芯片之间的电连接,从而实现了高密度的芯片封装和高速数据传输。
TSV工艺技术具有许多优点。
首先,它可以提供更高的集成密度。
传统的芯片封装技术中,芯片仅能在一个平面上布置,而TSV技术使得芯片的多层堆叠成为可能。
通过将多个芯片垂直堆叠在一起,可以有效地提高芯片的整体集成度。
其次,TSV技术还可以提供更短的信号传输路径,减少信号传输延迟。
因为TSV是直接通过硅片内部传输信号,相比于传统的外部线路,信号的传输路径更短,从而能够提供更高的数据传输速率。
另外,TSV还可以减少芯片之间的串扰,提高电路的稳定性和可靠性。
TSV工艺技术的实现主要包括三个步骤:孔钻孔、金属填充和封装。
首先,通过激光钻孔或机械钻孔的方式,在硅片上形成所需的孔洞。
这一步骤需要高度精确的控制,以避免对芯片造成损伤。
接下来,将金属填充到孔洞中。
填充材料通常选择铜或钨,因为它们具有良好的导电性能。
填充金属可以使用物理气相沉积或浸涂的方法,以确保孔洞充满金属。
最后,将填充完毕的芯片进行封装,以保护芯片和TSV结构。
TSV工艺技术在电子行业中有广泛应用。
首先,它可以提高芯片的性能和功能。
通过TSV技术,不同功能的芯片可以堆叠在一起,并通过TSV连接进行互联,从而实现更复杂的电路功能。
其次,TSV技术可以减小芯片尺寸。
由于芯片堆叠在一起,芯片的整体尺寸可以减小,从而实现更小型化的设备。
此外,TSV技术还可以降低能耗。
由于TSV可以提供更短的信号传输路径,电路的响应速度更快,功耗更低。
最后,TSV 工艺技术为芯片的延伸和升级提供了可能。
当芯片发展到一定阶段,无法再单独升级时,可以通过TSV连接新的芯片层来实现升级,延长设备的使用寿命。
总之,TSV工艺技术是一种用于三维集成电路中的高级封装技术。
TSV技术
TSV技术发布时间:2011-8-25 10:31:47 访问次数:42521.TSV及其技术优势A1280XL-PC84CTSV(through silicon via)技术是穿透硅通孔技术的缩写,一般简称硅通孔技术,是三维集成电路中堆叠芯片实现互连的一种新的技术解决方案。
由于TSV能够使芯片在三维方向堆叠的密度最大、芯片之间的互连线最短、外形尺寸最小,并且大大改善芯片速度和低功耗的性能,成为目前电子封装技术中最引人注目的一种技术。
如图5.5.8所示是4层芯片采用带载封装方法(tape carrier package,TCP)(见图5.5.8(a))和采用TSV 方法(见图5.5.8(b))封装的外形比较。
业内人士将TSV称为继引线键合(wire bonding)、载带键合(TAB)和倒装芯片(FC)乏后的第4代封装技术。
TSV技术的优势:①缩小封装尺寸;②高频特性出色,减小传输延时、降低噪声;③降低芯片功耗,据称,TSV可将硅锗芯片的功耗降低大约40%;④热膨胀可靠性高。
2.TSV的主要技术环节1)通孔的形成晶片上的通孔加工是TSV技术的核心,目前通孔加工的技术主要有两种,一种是深反应离子刻蚀,另一种是激光打孔。
激光技术作为一种不需掩模的工艺,避免了光刻胶涂布、光刻曝光、显影和去胶等工艺步骤,已取得重大进展。
然而,未来当TSV的尺寸通孔降到lOUm以下时,激光钻孔就面临着新的挑战。
目前这两种技术的细节及其选择仍然在探索中,不过一些先期进入的厂商已经推出相应的加工设备。
此外,形成通孔后还有绝缘层、阻挡层和种子层的淀积以及孔金属化等工艺技术。
图5.5.9是6个芯片堆叠采用TSV封装的存储器示意图。
2)晶片减薄如果不用于3D封装,目前0.3~0.4mm的晶片厚度没有问题,但如果晶片用于3D封装则需要减薄,以保证形成通孔的孔径与厚度比例在合理范围,并且最终封装的厚度可以接受。
即使不考虑层堆叠的要求,单是芯片间的通乳互连技术就要求上层芯片的厚度在20~30μm,这是现有等离子开孔及金属沉积技术比较适用的厚度。
半导体tsv工艺
半导体tsv工艺
半导体TSV工艺是一种新型的三维封装技术,它是通过在晶圆上开孔,将芯片内部的电路通过垂直连接器连接到晶圆的另一侧,从而实现芯片内部电路的三维堆叠。
TSV是Through Silicon Via的缩写,意为通过硅通孔。
半导体TSV工艺是一种先进的封装技术,它可以将多个芯片进行堆叠,从而实现更高的性能和更小的封装尺寸。
相比传统的封装技术,半导体TSV工艺具有以下优点:
1.更高的性能:半导体TSV工艺可以将多个芯片堆叠在一起,从而实现更高的性能。
由于芯片之间的距离更近,信号传输速度更快,同时也减少了信号传输的损失。
2.更小的封装尺寸:半导体TSV工艺可以将多个芯片堆叠在一起,从而实现更小的封装尺寸。
这对于移动设备等小型电子产品来说非常有利,可以实现更小巧的设计。
3.更低的功耗:半导体TSV工艺可以实现更短的信号传输路径,从而减少功耗。
这对于需要长时间使用的电子产品来说非常有利。
半导体TSV工艺的制造过程包括以下步骤:
1.晶圆准备:首先需要准备好晶圆,并在晶圆上进行刻蚀和清洗等处理,以便后续的工艺步骤。
2.TSV开孔:在晶圆上开孔,通过硅通孔将芯片内部的电路连接到晶圆的另一侧。
3.金属填充:将金属填充到开孔中,以便后续的连接。
4.封装:将多个芯片堆叠在一起,并进行封装,以保护芯片并提高性能。
半导体TSV工艺是一种非常先进的封装技术,它可以实现更高的性能和更小的封装尺寸。
随着电子产品的不断发展,半导体TSV工艺将会越来越广泛地应用于各种领域。
tsv工艺要求
tsv工艺要求TSV工艺要求TSV(Through-Silicon Via)是一种用于三维集成电路的关键工艺技术,它通过在硅片内部形成垂直的通孔,实现了多个芯片的堆叠和连接。
在TSV工艺中,有一些重要的要求和规范需要遵守,以确保产品的质量和可靠性。
本文将介绍TSV工艺的要求和规范,以及相关的技术细节。
TSV工艺要求在硅片上形成精确的通孔结构。
通孔的直径、深度和间距等参数必须满足严格的要求。
通孔的直径通常在10-100微米之间,深度可以达到数百微米。
通孔之间的间距也需要精确控制,以确保相邻通孔之间没有短路或漏电的问题。
TSV工艺要求在通孔内部形成导电层。
导电层通常采用铜或其他导电材料,通过化学气相沉积或物理气相沉积等工艺将导电材料填充到通孔中。
导电层的厚度和均匀性对于通孔的电性能和可靠性非常重要。
导电层要求具有良好的导电性能和可靠的粘附性,以确保通孔的信号传输和电气连接。
TSV工艺要求在通孔周围形成绝缘层。
绝缘层通常由二氧化硅或其他绝缘材料组成,用于隔离通孔与周围环境的电气联系。
绝缘层需要具有较高的绝缘性能和良好的平整度,以确保通孔之间没有漏电或短路的问题。
绝缘层的厚度和均匀性也需要满足严格的要求,以保证通孔的可靠性和稳定性。
TSV工艺还要求在通孔上形成金属连接。
金属连接通常采用焊接或其他金属接合技术实现,用于连接不同芯片之间的通孔。
金属连接需要具有较高的可靠性和稳定性,以确保通孔之间的信号传输和电气连接。
金属连接的质量和可靠性对于整个TSV结构的性能和可靠性至关重要。
TSV工艺还要求进行严格的工艺控制和品质管理。
在TSV工艺过程中,需要对通孔的形成、导电层的填充、绝缘层的形成和金属连接的制备等关键步骤进行精确控制和监控。
同时,还需要进行严格的品质检查和测试,以确保产品符合规定的要求和标准。
TSV工艺要求在硅片上形成精确的通孔结构,并在通孔内部形成导电层和绝缘层,最后通过金属连接实现芯片之间的连接。
硅通孔(TSV)电学传输特性分析与优化
硅通孔(TSV)电学传输特性分析与优化硅通孔(TSV)电学传输特性分析与优化摘要:硅通孔(TSV)是一种用于芯片内部互联的三维封装技术。
本文通过对TSV电学传输特性的分析与优化,探讨了TSV的制备工艺对其性能的影响,并提出了一些优化措施。
1. 引言随着芯片尺寸的不断减小和集成度的不断提高,二维封装方式逐渐不能满足芯片内部大规模互联的需求。
硅通孔(TSV)作为一种三维封装技术,能够实现芯片内部的垂直互联,为芯片的高集成度提供可能。
TSV的电学传输特性的分析与优化对于实现高性能的三维封装至关重要。
2. TSV的制备工艺TSV的制备通常包括刻蚀、填充和研磨等步骤。
刻蚀是将硅衬底上的孔洞形成的过程,可以采用干法或湿法刻蚀。
填充是将导电材料填充到TSV中,常用的填充材料有铜、银等。
研磨是将填充材料的余量删减至需要的高度,以便与芯片的上下层相连接。
制备工艺的参数设置和优化对于TSV的电学传输特性具有重要影响。
3. TSV的电学传输特性分析TSV的电学传输特性可以通过测试TSV的电阻和电容来进行分析。
电阻是TSV的主要电学性能指标之一,影响着信号传输的速度和功耗。
电阻的大小与TSV的尺寸、填充材料和制备工艺等因素有关。
电容是TSV的另一个重要性能指标,反映了TSV 的电荷传输能力。
电容的大小与TSV的尺寸、绝缘层的厚度等因素相关。
4. TSV的电学传输特性优化为了优化TSV的电学传输特性,可以采取以下措施:4.1 优化制备工艺参数制备工艺参数的优化对于TSV的电学性能具有重要影响。
如刻蚀参数的优化可以改善TSV的表面平整度,减小接触电阻。
填充材料的选择和填充参数的优化可以改善TSV的导电性能。
研磨参数的优化可以减小TSV的表面粗糙度,降低剩余电阻。
4.2 优化填充材料填充材料的选择对TSV的电阻有着重要影响。
铜是一种常用的填充材料,具有较低的电阻和较高的导电性能。
然而,铜容易产生应力,导致TSV的可靠性下降。
硅通孔技术TSV研究ppt课件
GaAs 基TSV 20/03/2020
10μm 引脚间距
8μm厚 1.6μm
3.3μm
5
TSV的研究动态
概述
TSV应用市场预测
发展 状况
TSV的 应用
据法国调查公司Yole Development提供,到2015年,逻辑 和存储器方面的应用占TSV应用的比 例将大于30%,接触式图像传感器、 微机电系统,传感器占30%的市场, 存储器堆叠形成的动态随机存取存储
技术(电镀、化学气相沉积、高分子涂布等); ➢ 工艺流程——先通孔(via first)或后通孔(via 1ast)技术; ➢ 堆叠形式——晶圆到晶圆、芯片到晶圆或芯片到芯片; ➢ 键合方式——直接Cu-Cu键合、粘接、直接熔合、焊接和
混合等; ➢ 超薄晶圆的处理——是否使用载体。
GaAs 基TSV 20/03/2020
TSV的 应用
GaAs 基TSV 20/03/2020
Samsung’s 32-memory stacking (each chip is 20μm thick)
17
概述
发展 状况
TSV的研究动态
2011年10月,意法半导体宣布将TSV技术引入MEMS 芯片量产,在其多款MEMS产品(智能传感器、多轴惯性 模块)内,TSV以垂直短线方式取代传统的芯片互连方法, 在尺寸更小的产品内实现更高的集成度和性能。
3D封装与硅通孔(TSV)技术
3D封装与硅通孔(TSV)技术周健;周绍华【摘要】随着对芯片集成度以及对电性能要求越来越高,近些年来3D封装发展迅速。
其中硅通孔技术(TSV)被认为是实现3D封装的最好选择之一。
因此TSV 工艺逐渐成为微电子领域的热门话题之一,并且促进着微电子行业进一步向前发展。
本文分析了硅通孔技术的优点以及挑战,同时也简单介绍了硅通孔技术的应用。
【期刊名称】《中国新技术新产品》【年(卷),期】2015(000)024【总页数】1页(P13-13)【关键词】硅通孔;三维封装;TSV技术展望【作者】周健;周绍华【作者单位】合肥工业大学,安徽合肥 230009;合肥工业大学,安徽合肥230009【正文语种】中文【中图分类】TN605随着对具有更小外形的先进电子产品的需求不断增长,对优越性能和更低的总体成本的追求推动着半导体行业发展创新,涌现了一系列先进封装技术。
相对于其他各类封装技术,3D封装技术具有良好的电学性能以及较高的可靠性,同时它能实现较高的封装密度,因此目前3D封装技术被广泛应用于各种高速电路以及小型化系统中。
有很多种方式能实现芯片间的互连,一般来说,通常采用引线键合或者倒装芯片焊接将硅圆片集成在一起,如上图所示。
目前,主流的三维封装一般利用硅通孔技术来实现。
硅通孔技术通过在硅圆片上制作出一定布线排序的垂直互连孔,在孔中淀积通孔材料,实现不同芯片层之间的电互连,从而保证了芯片间具有较短的互连线,因此可以获得更好的电性能以及更小的信号延迟。
1 TSV简介区别于传统的芯片封装技术,硅通孔技术在三维层面实现芯片间的电互连,封装密度大大提高,而垂直的互连线也改善了芯片间的信号传输速度,同时在硅通孔技术保证了对电路板空间的集约化利用,降低了芯片的功耗。
另外,一些大型的IDM制造商如IBM和Intel都预测硅通孔技术是微电子制造行业最有前途的技术之一,并且已经开始着手商业化这一技术。
TSV技术的发现得益于印刷电路板(PCB)多层化这一设计思路,它使得多芯片之间实现短垂直互连,取代在2D封装中的长引线互连,因而可以提高性能和减少时间延迟。
三维集成电路(3D IC)中硅通孔(TSV)链路的多场分析
三维集成电路(3D IC)中硅通孔(TSV)链路的多场分析三维集成电路(3D IC)中硅通孔(TSV)链路的多场分析引言:随着电子技术的不断发展,集成电路的功能越来越复杂,对于电路板的布局和连接的要求也越来越高。
传统的2D集成电路已经面临着功耗、散热和信号传输等问题,为了克服这些问题,人们提出了3D集成电路(3D IC)的概念。
3D IC通过垂直堆叠多层芯片来实现更高的集成度和性能。
而硅通孔(TSV)链路作为3D IC中芯片间的关键连接组件,受到了广泛关注。
本文将对TSV链路进行多场分析,探讨其在3D IC中的性能和优化方法。
1. TSV链路的结构与工作原理TSV链路是一种通过在不同芯片间钻孔并填充导电材料的技术,用于实现芯片间的电信号传输和能量供应。
典型的TSV链路结构包括导电填充物、绝缘层以及TSV孔的孔壁。
TSV链路的工作原理是通过导电填充物提供电信号和能量传输的路径,而绝缘层则用于隔离相邻的TSV链路。
2. TSV链路的挑战与问题尽管TSV链路在3D IC中起到了关键的作用,但是它也带来了一些挑战与问题。
首先,TSV孔的填充过程需要解决填充物与孔壁之间的黏附性和填充度的问题。
其次,在高频电信号传输方面,TSV链路可能会引起信号的损耗和噪声,从而影响系统性能。
另外,由于3D IC中芯片的堆叠密度较高,TSV链路的散热问题也不可忽视。
3. TSV链路的多场分析方法为了解决上述问题,人们利用电磁场理论、热传导理论和机械力学理论等多场分析方法对TSV链路进行研究。
在电磁场方面,可以通过研究TSV链路的等效电路模型和传输线理论来分析电信号的传输损失和噪声问题。
在热传导方面,可以通过模拟TSV链路的热传导路径和热源来分析散热性能。
在机械力学方面,可以分析TSV链路在机械应力下的稳定性和可靠性。
4. TSV链路的优化方法为了提高TSV链路的性能,人们提出了一系列的优化方法。
例如,在TSV孔填充过程中可以选择合适的填充材料和填充工艺,以提高填充度和黏附性。
三维集成电路封装的TSV技术
三维集成电路封装的TSV技术1.引言三维集成电路(3D IC)和基于硅介质的2.5D集成电路具有低功耗、性能高、高功能集成度[1–4]等优点,被认为是克服摩尔定律局限性的重要电路。
为实现3D 和2.5D芯片集成,需要几个关键技术,如硅通孔(TSV)、晶片减薄处理以及晶圆/芯片粘接等。
TSV技术具有缩短互连路径和缩小封装尺寸的优点,因此被认为是3D集成的核心。
在3D和2.5D芯片集成过程中,TSV工艺可分为三种类型。
当TSV工艺在CMOS工艺进行之前完成时,工艺进程定义为“通孔优先(via first)”;当TSV工艺在CMOS工艺进行中完成时,CMOS中间工艺和后道工艺只能在TSV工艺完成后制作;当TSV在完成CMOS过程后进行时,工艺进程定义为“通孔收尾(via last)”,在已进行CMOS工艺后的衬底正面或背面进行TSV工艺。
选择TSV作为最终方案是在半导体行业最终应用要求。
TSV技术已被开发用于许多应用领域,如MEMS、移动电话、CMOS图像传感器(CIS)、生物应用程序设备和存储器等。
人们对TSV工艺进行了大量研究。
目前,由于制造成本相对较高,TSV在三维集成电路和先进封装应用中尚未普遍实现[5,6]。
本文将介绍当TSV制作直径较小、纵横比较高时,TSV的相关重要制造过程及相关失效模式。
此外,TSV制备有许多重要过程,包括深层反应离子蚀刻(DRIE)、介电层衬底、阻挡层和种晶层、填充、化学机械抛光(CMP)和Cu暴露过程,上述关键技术将在下面详细介绍。
2.TSV刻蚀技术TSV蚀刻是3D集成技术中的关键制造工艺,而广泛使用的Bosch工艺是深硅蚀刻的首选。
Bosch蚀刻工艺的高蚀刻速率为5~10 μm/min,对光刻胶的刻蚀选择性为50-100,甚至对于氧化层掩膜高达200。
该过程通过以下步骤执行:(1)利用六氟化硫作为等离子体刻蚀剂进行硅刻蚀;(2)与C4F8等离子体气体结合,生成质量良好的钝化膜,以防止下一刻蚀步骤中的横向效应;(3)利用六氟化硫作为等离子体刻蚀剂,对掩蔽层和Si进行进一步的离子轰击定向刻蚀,以形成一个较深的刻蚀深度。
集成电路封装材料-硅通孔相关材料
6.1.3 发展现状及趋势
比如,WLCSP图像传感器封装,要求沉积温度低于200 oC。低温下高 台阶覆盖率绝缘层主要通过TEOS源氧化硅CVD或聚合物材料CVD获得。 使用TEOS源,可以在深宽比达到10:1的孔内,在200 oC以内的温度下, 获得超过15%的台阶覆盖率。 国内TSV-CIS封装,采用聚合物材料作为绝缘层。在高深宽比的TSVCIS封装集成技术中,聚合物绝缘层工艺受到限制,要采用TEOSPECVD方法沉积氧化硅来制造绝缘层,该技术方案处于研发阶段,没 有得到大规模量产。
图6-1 不同元器件在三维方向上基于TSV的堆叠集成
TSV技术涉及的材料:除打孔的硅基体材料和填孔材料等关键主材料外, 在工艺过程中还包含绝缘层、黏附层和种子层材料等相关材料。
图6-2 TSV各层结构示意图
目录
6.1 绝缘层 6.2 黏附层和种子层
6.1 绝缘层
6.1.1 绝缘层在先进封装中的应用 6.1.2 绝缘层材料类别和材料特性 6.1.3 发展现状及趋势 6.1.4 新技术与材料发展ຫໍສະໝຸດ 6.1.4 新技术与材料发展
新型沉积技术 1)高分子聚合气相沉积技术PVPD 将CVD应用于聚合反应是一种新的聚合方法,称为气相沉积聚合。与传统高分子薄膜制 造方法(如湿法工艺)相比优点: (1)不含溶剂、添加剂、引发剂等,纯度高,对衬底不产生损伤。 (2)可以控制薄膜厚度,通过选择适当的沉积速率和时间,可得到所需厚度。 (3)薄膜质量好,膜厚均匀,表面光滑无针孔,且可以沉积在不同形状的表面上,保 形性好。 (4)聚合与成膜工艺合二为一,简化了制造流程。
6.1.3 发展现状及趋势
旋涂工艺相比CVD和喷涂工艺,具有设备成本低等显著优势,但加工超过 5:1深宽比的TSV时具有较大挑战。开发具有旋涂工艺的聚合物材料成为 关键研究方向。 聚合物材料具备低触变性、防流动性和保形涂覆等特点。可围绕材料主体 树脂、功能性纳米填料及关键助剂等展开研究。 中科院深圳先进技术研究所相继推出2:1和3:1适用于旋涂工艺的聚合物材 料,研究5:1。
TSV可靠性综述
0引言三维集成封装技术被公认为是超越摩尔定律的第四代封装技术。
硅通孔(Through Silicon Via ,TSV)技术是三维封装技术的关键[1]。
摩尔定律指出,硅片上的晶体管数量大约每两年翻一番[2]。
然而,由于晶体管的缩放比例和漏电的限制[3],摩尔定律不能永远持续下去。
随着晶体管尺寸越来越小,晶体管数量越来越多,晶体管之间的间距也越来越小。
最终会引起量子隧穿效应,电子会在两根金属线之间隧穿,导致短路[4-5]。
因此,存在一个极限,超过这个极限,摩尔定律将失效。
一种实现突破传统摩尔定律的封装摩尔定律被提出,封装摩尔定律是基于三维集成封装技术提出的[6]。
TSV 技术是指在硅片上进行微通孔加工,在硅片内部填充导电材料,通过TSV 技术实现芯片与芯片之间的垂直互连,是三维封装技术的关键技术[7-8]。
与传统的金丝键合相比,TSV 的优点是节省了外部导体所占的三维空间。
TSV 技术可以使微电子芯片封装实现最紧密的连接和最小的三维结构。
此外,由于芯片之间的互连线长度的缩短,大大降低了互连延迟,从而提高了运行速度。
并且由于互连电阻的降低,电路的功耗也大大降低[9]。
TSV 不仅广泛地应用于信息技术,而且在飞机、汽车和生物医学等新领域都得到了广泛的应用,因为三维大规模集成电路具有很多优势,如高性能、低功耗、多功能、小体积[10]。
TSV 是一种颠覆性技术,被认为是实现“超越摩尔定律”的有效途径,在未来主流器件的设计和生产中会得到广泛应用。
1TSV 可靠性概述随着三维集成封装技术的发展,TSV 技术已成为三维堆叠封装中最关键的技术之一。
作为芯片与芯片之间重要的物理连接和电气连接,TSV 的可靠性无疑是决定TSV 可靠性综述王硕1,马奎1,2,杨发顺1,2(1.贵州大学大数据与信息工程学院,贵州贵阳550025;2.半导体功率器件可靠性教育部工程研究中心,贵州贵阳550025)摘要:对硅通孔(Through Silicon Via ,TSV)技术的可靠性进行了综述,主要分为三个方面:热应力,工艺和压阻效应。
TSV技术的发展
TSV技术的发展、挑战和展望,3D IC 技术的一体化、3D硅技术的一体化摘要:3D集成技术包括3D IC集成,3D IC封装和3D 硅集成技术。
这三者是不同的技术,并且硅通孔技术将3D IC封装技术与3D IC集成技术、3D IC硅集成技术区分开来,因为后二者使用了该技术而3D IC封装没有。
硅通孔技术(TSV)是3D IC集成技术、3D 硅集成技术的核心。
也是研究的热点。
3D集成技术起源于当代,当然,3D IC/硅集成技术的革新、挑战与展望已是讨论的热点,还有它的蓝图。
最后,通用的、更低能耗的、加强热控制的3D IC集成封装系统相继被提出。
关键词:硅通孔技术,3D IC集成技术,3D 硅集成技术,活泼的、消极的互边导电物,C2W和W2W。
说明:电子产业自从1996年以来已成为世界上最大的产业。
截止2011年底已经创造了一万五千亿美元的价值。
其中电子工业最大的发明便是电子管(1947年),这也使得John Bardeen,Walter Brattain 和William赢得了1956年的诺贝尔物理学奖。
1958年Jack Kilby发明了集成电路(也使他获得了诺贝尔奖),六个月后Robert Noyce(他因在1990年去世而未能与Jack kilby分享诺贝尔奖)首创IC集成技术。
由戈登·摩尔在1965年提出的每二年便要在电路板上将晶体管的数量翻一倍的理论(也叫摩尔定律,为了更低的能耗),在过去的46年中已成为发展微电子产业最有力的指导。
这条定律强调可以通过单片集成系统(SOC)将平面技术和所有功能的集成(在2D层面)放到单片芯片中。
另一方面,这里所有功能的集成能通过3D集成技术例如3D IC封装,3D IC 集成[1],[2],[4]-[143],[168]-[201]和3D 硅集成[1],[2],[144]-[167],[168]-[201]得到实现,这些都会在1、2小节中提及。
硅通孔(TSV)工艺学习报告
1. 引言............................................................................................................................ 2 2. 分类............................................................................................................................ 2 3. 优点............................................................................................................................ 2 4. 硅通孔的发展历程.................................................................................................... 3 5. 工艺流程.................................................................................................................... 3
详解TSV(硅通孔技术)封装技术
详解TSV(硅通孔技术)封装技术硅通孔技术(Through Silicon Via,TSV)技术是一项高密度封装技术,正在逐渐取代目前工艺比较成熟的引线键合技术,被认为是第四代封装技术。
TSV 技术通过铜、钨、多晶硅等导电物质的填充,实现硅通孔的垂直电气互连。
硅通孔技术可以通过垂直互连减小互联长度,减小信号延迟,降低电容/ 电感,实现芯片间的低功耗,高速通讯,增加宽带和实现器件集成的小型化。
基于TSV 技术的3D 封装主要有以下几个方面优势:1)更好的电气互连性能,2)更宽的带宽,3)更高的互连密度,4)更低的功耗,5)更小的尺寸,6)更轻的质量。
TSV 工艺主要包括深硅刻蚀形成微孔,绝缘层/阻挡层/种子层的沉积,深孔填充,化学机械抛光,减薄、pad 的制备及再分布线制备等工艺技术。
主要工艺包括几个部分:(1)通孔的形成;(2)绝缘层、阻挡层和种子层的淀积;(3)铜的填充(电镀)、去除和再分布引线(RDL)电镀;(4)晶圆减薄;(5)晶圆/芯片对准、键合与切片。
TSV 深孔的填充技术是3D 集成的关键技术,也是难度较大的一个环节,TSV 填充效果直接关系到集成技术的可靠性和良率等问题,而高的可靠性和良率对于3D TSV 堆叠集成实用化是至关重要的。
另外一个方面为在基片减薄过程中保持良好的完整性,避免裂纹扩展是TSV 工艺过程中的另一个难点。
目前主要的技术难点分为几个方面:(1)通孔的刻蚀激光刻蚀、深反应离子刻蚀;(2)通孔的填充材料(多晶硅、铜、钨和高分子导体等)和技术(电镀、化学气相沉积、高分子涂布等);(3)工艺流程先通孔或后通孔技术;(4)堆叠形式晶圆到晶圆、芯片到晶圆或芯片到芯片;(5)键合方式直接Cu-Cu 键合、粘接、直接熔合、焊接和混合等;(6)超薄晶圆的处理是否使用载体。
目前,3D-TSV 系统封装技术主要应用于表1 TSV 三维封装应用领域经过数年研发,目前形成具有高良率、不同深宽比结构、高密度微孔、高导通率的3D 封装硅基转接板,可以广泛应用于射频、存储等芯片的三维封装领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通孔的形成
光辅助电化学刻蚀
电化学刻蚀是一种采用液态腐蚀剂的湿法腐蚀工艺,它属于湿法刻蚀技 术,必须有空穴的参与才能实现硅溶解的过程,为了实现定点刻蚀,通 过光生空穴并控制空穴的输运过程将空穴输送到反应点,这就是所谓的 光辅助电化学刻蚀技术。
此方面主要利用光生载流子效应产生空穴,且产生的空穴具有可控性, 因此,采用该方法能够实现较高的深宽比,理论上通常可以达到 200 以上。
总结
TSV被许多半导体厂和研究机构认为是最有前途的封装方法, 世界上50% 以上的厂商都参与3DTSV互连相关方面的研究。 Yole预测, 2015年前将有数以百万计的3D-TSV晶圆出货, 这将造成 25%的存储器行业受到相当的冲击, 除去存储器装置使用的数量, 3D-TSV 晶圆将占有总晶圆数的6%。
一体机示意图(东京精密PG200/300)
芯片减薄
存在的问题:
•机械研磨和化学机械抛光还可能会在硅晶圆表面产生严重的内应力,这些应力 会引发弯曲和翘曲。同时,由于是先用铜将 TSV填满后进行 CMP工艺这样在过 程中铜和硅容易发生扩散而且破坏绝缘层,从而破坏 TSV互连。
•针对以上问题,袁娇娇等人研究通过对硅晶圆进行局部减薄来实现的局部减薄, 即将硅晶圆的大部分减薄 利用没有减薄的部分支撑硅晶圆完成表面微加工工艺 局部减薄是通过对硅晶圆局部刻蚀一定深度以达到局部减薄的目的。
3D封装形式
填埋型即将元器件填埋在基板多层布线内或填埋、制作在基板内部。 有源基板型是用硅圆片集成( wafer scale integra-tion, WSI) 技术做基板 时, 先采用一般半导体IC制作方法作一次元器件集成化, 形成有源基板, 然后 再实施多层布线, 顶层再安装各种其他IC芯片或元器件, 实现3D封装。这一方 法是人们最终追求并力求实现的一种3D封装方法。 叠层型是将两个或多个裸芯片或封装芯片在垂直芯片方向上互连形成3D结构。
3、后续工艺
电镀完成后就可以进行凸点制作、表面微加工、重新分布层、平坦化和集成等工艺。
芯片减薄
制作超薄芯片的过程原理示意图
TSV键合技术
TSV键合技术
TSV键合采用工艺有金属—金属键合技术和高分子粘结键合等。 金属—金属键合技术是一种趋势,因为这种技术可以同时实现机械和电学的 接触界面。如铜-铜键合在350℃~400℃温度下施加压力超过30min,接着 在350℃~400℃下的氮气气氛退火30min~60min完成。这种技术使用金 属对TSV进行封帽,之后采用氧化物和金属同步CMP进行平坦化,经过专利保 护的表面处理技术,可使用标准的键合/对准机在大气环境下1min~2min实 现芯片或者晶圆的键合。在350℃温度下施加压力,在低CoO键合操作下可 以获得单一的金属界面。
TSV技术简介
TSV作为新一代封装技术,是通过在芯片和芯片之间,晶圆和晶圆之间制 造垂直导通,实现芯片之间互连的最新技术,能够在三维方向使得堆叠密 度最大,而外形尺寸最小,大大改善了芯片速度和低功耗性能。 硅通孔技术(TSV)是通过在芯片和芯片之间、晶圆和晶圆之间制作垂直导 通,实现芯片之间互连的最新技术(见下图所示)。与以往的IC封装键合和 使用凸点的叠加技术不同,TSV能够使芯片在三维方向堆叠的密度最大, 外形尺寸最小,并且大大改善芯片速度和降低功耗的性能。
• 封装内的裸片堆叠(图a) • 封装内的封装堆叠或称封装堆叠 (图b)
图a
图b
TSV技术简介
3D封装按照封装堆叠及IC裸芯片焊接(键合)技术近二十年来经历着三个重要 阶段,如下图所示。
有人将TSV技术称之为第四代封装技术。是基于微电子装联键合技术从软铅 焊、丝焊和芯片凸点倒装焊到通孔互连技术的不断进步发展而言。
3D封装与TSV工艺技术
目录
1
2 3
TSV技术简介
通孔的形成 晶片减薄
4
5
TSV 键合 总结
TSV技术简介
3D封装
叠层芯片封装技术,简称3D封装,是指在不改变封装体尺寸的前提下,在同 一个封装体内于垂直方向叠放两个以上芯片的封装技术,它起源于快闪存储 -器(NOIUNAND)及SDRAM的叠层封装。
超薄化工艺的主要问题有两方面:
(1)磨片工艺产生的损伤层的去除及应力的减小; (2)磨片工艺到划片膜张贴工艺之间各工序间硅片的传运。
芯片减薄
目前业界的主流解决方案是采用东京精密公司所率先倡导的一体机思路,将硅 片的磨削、抛光、保护膜去除、划片膜粘贴等工序集合在一台设备内,通过独 创的机械式搬送系统使硅片从磨片一直到粘贴划片膜为止始终被吸在真空吸盘 上,始终保持平整状态。当硅片被粘贴到划片膜上后,比划片膜厚还薄的硅片 会顺从膜的形状而保持平整,不再发生翘曲、下垂等问题,从而解决了搬送的 难题。
TSV的主要技术环节:
通孔的形成
晶片减薄 TSV 键合
TSV技术简介
TSV技术特点
由于TSV工艺的内连接长度可能是最短的,可以减小信号传输过程中 的寄生损失和缩短时间延迟。TSV的发展将受到很多便携式消费类电 子产品的有力推动,这些产品需要更长的电池寿命和更小的波形系数。 TSV技术可以连接两块芯片内的不同核心,还能将处理器和内存等不同 芯片堆叠是各种不同类型的电路互相混合的最佳手段,例如将存储器 部件连在一起,并通过数千个微小的连线传输数据,比如在硅锗芯片中, 直接堆叠在逻辑器件上方。 通过钻出许多细微的孔洞并以钨材料填充,就能得到TSV。
TSV技术简介
TSV互连尚待解决的关键技术难题和挑战: (1)通孔的刻蚀——激光VS.深反应离子刻蚀(DRIE); (2)通孔的填充——材料(多晶硅、铜、钨和高分子导体等)和技术(电镀、 化学气相沉积、高分子涂布等); (3)工艺流程——先通孔(via-first)或后通孔(via-last)技术; (4)堆叠形式——晶圆到晶圆、芯片到晶圆或芯片到芯片; (5)键合方式——直接Cu-Cu键合、粘接、直接熔合、焊接和混合等; (6)超薄晶圆的处理——是否使用载体。
芯片减薄
减薄技术面临的首要挑战就是超薄化工艺所要求的<50μm的减薄能力。传
统上,减薄工艺仅仅需要将硅片从晶圆加工完成时的原始厚度减薄到300~ 400μm。在这个厚度上,硅片仍然具有相当的厚度来容忍减薄工程中的磨削 对硅片的损伤及内在应力,同时其刚性也足以使硅片保持原有的平整状态。 另外,随着微电子工业的迅猛发展,圆片直径越来越大,当150mm、 200mm甚至300mm圆片被减薄到150μm以下时,圆片翘曲和边缘损伤问 题变得尤为严重。Βιβλιοθήκη 芯片减薄芯片减薄背景
无论堆叠形式和连线方式如何改变,在封装整体厚度不变甚至有所降低的趋势 下,堆叠中所用各层芯片的厚度就不可避免的需要被减薄。
一般来说,较为先进的多层封装使用的芯片厚度都在100μm以下。
长远来说,根据目前的路线图在2010年左右,芯片厚度将达到25μm左右的近 乎极限厚度,堆叠的层数达到10层以上。即使不考虑多层堆叠的要求,单是芯 片间的通孔互连技术就要求上层芯片的厚度在20~30μm,这是现有等离子开 孔及金属沉积技术所比较适用的厚度,同时也几乎仅仅是整个器件层的厚度。 因此,硅片的超薄化工艺(<50μm)将在封装技术中扮演越来越重要的角色,其 应用范围也会越来越广泛。
TSV技术简介
TSV技术
TSV (through silicon via)穿透硅通孔技术,简称硅通孔技术。TSV是利 用垂直硅通孔完成芯片间互连的方法, 由于连接距离更短、强度更高, 它能 实现更小更薄而性能更好、密度更高、尺寸和重量明显减小的封装, 同时还 能用于异种芯片之间的互连。
图1所示是4层芯片采用载带封装方法 (图 1(a))和采用TSV方法(图1(b)) 封装的外形比较。
硅通孔技术(TSV)示意图
TSV技术简介
TSV技术被看做是一个必然的互连解决方案,是目前倒装芯片和引线键合型 叠层芯片解决方案的很好补充。许多封装专家认为TSV是互连技术的下一阶段。 实际上,TSV可以很好取代引线键合。 TSV能够使芯片在三维方向堆叠的密度最大,外形尺寸最小,并且大大改善 芯片速度和低功耗的性能。因此,业内人士将TSV称为继引线键合 (WireBonding)、TAB(载带自动焊)和倒装芯片(FC)之后的第四代封装技 术。
芯片减薄
1、刻蚀减薄
干法刻蚀:干法刻蚀用来刻蚀的气体流量容易控制,刻蚀速度和刻蚀深度可以计算, 且侧壁近似垂直状。 湿法腐蚀:湿法腐蚀由于溶液的浓度会随着反应的进行不断变化反应速率不易控制。 但湿法腐蚀成本低廉 ,而且对于同一个图形的硅晶圆在同样浓度溶液中的腐蚀过程是 可以重复的。
2、电镀填孔
将硅晶圆表面的光刻胶洗掉后,利用热氧化的方法在硅晶圆表面和孔壁上生长绝缘层。 然后在硅晶圆正面利用溅射方法先后沉积钛层和铜层。之后利用自下而上的电镀工艺 填满小孔。
目前的芯片大多使用总线(bus)通道传输数据,容易造成堵塞、影响效率。 更加节能也是TSV的特色之一。据称,TSV可将硅锗芯片的功耗降低大 约40%。 由于改用垂直方式堆叠成3D芯片,TSV还能大大节约主板空间。尽管目 前也有垂直堆叠芯片,但都是通过总线互连,因此不具备TSV的高带宽优 势,因为TSV是直接连接项部芯片和底部芯片的。
通孔的形成
激光钻孔
由于激光具有高能量,高聚焦等特性,依据光热烧蚀和光化学裂蚀原理形成。 目前常用的两种激光钻孔方式:CO2 激光钻孔, UV 激光钻孔。 CO2 激光钻孔是由光热烧蚀机理在极短的时间以波大于 760nm 的红外 光将有机板材予以强热熔化或汽化,使之被持续移除而成孔。 UV 激光钻孔利用光化学裂蚀机理,通过发射位于紫外线区的,激光波长 小于 400nm 的高能量光子,使基板材料中长分子链高分子有机化合物的 化学键撕裂,在众多碎粒体积增大和外力抽吸下,使基材被快速移除,从而 形成微孔。 UV激光钻孔不需要烧蚀的盲孔进行除胶渣工序,但是其加工方式为单孔逐 次加工,在加工效率方面大大落后于 CO2 激光钻孔,一般 CO2 激光钻孔 的速率是 UV 激光的 4~5 倍。