初一不等式习题及答案汇编
七年级不等式试题及答案
七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。
答案:>2. 若y < -2,则-2y _______ 4。
答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。
证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。
2. 若x > y,且x < 0,y < 0,求证:-x > -y。
证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。
四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。
已知生产了n件产品,求工厂的总利润。
解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。
2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。
问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。
初一不等式试题及答案
初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。
答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。
然后将两边同时除以2,得到 \(x < 4\)。
因此,\(x\) 的取值范围是\(x < 4\)。
2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。
答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。
根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。
3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。
接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。
因此,不等式组的解集为 \(-2 < x \leq 3\)。
4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。
答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。
然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。
因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。
5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。
答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。
然后将两边同时除以5,得到 \(x \geq 2\)。
因此,\(x\) 的取值范围是 \(x \geq 2\)。
6. 判断不等式 \(-3x + 4 > 0\) 是否有解。
(完整版)初一不等式难题-经典题训练(附答案)
初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。
不等式练习题及答案
不等式练习题及答案一、单项选择题1. 若 x > -3,下列不等式成立的是:A) x > 2 B) x < -2 C) x < 3 D) x > -1答案:D) x > -12. 若 2x + 5 < 13,下列不等式成立的是:A) x < 4 B) x < 3 C) x < 6 D) x < -4答案:C) x < 63. 若 -2x + 3 > -7,下列不等式成立的是:A) x > 2 B) x < -2 C) x > 5 D) x < -3答案:A) x > 2二、填空题1. 若 -4x + 5 < -3,解得 x > ______。
答案:-2/32. 若 2x - 7 > 13,解得 x > _______。
答案:103. 若 3x + 2 < -4,解得 x < _______。
答案:-2三、证明题证明:对于任意实数 x,都成立 x + 7 > x + 3。
解答:假设 x 为任意实数。
我们需要证明当 x + 7 > x + 3。
首先,将 x + 7 和 x + 3 分别展开,得到:x + 7 > x + 3由于两边都有 x,我们可以将其消去,得到:7 > 3由于 7 大于 3,所以原不等式成立。
证毕。
四、应用题若某数与它的倒数的和大于5/2,求这个数的取值范围。
解答:假设该数为 x。
根据题意,我们有不等式:x + 1/x > 5/2为了处理分式,我们可以先将不等式转化为二次方程的形式,即:2x^2 + 2 - 5x > 0化简后得到:2x^2 - 5x + 2 > 0为了求解该二次不等式,我们需要找到其根的位置。
通过求解 x 的二次方程 2x^2 - 5x + 2 = 0,得到两个根 x = 1/2 和 x = 2。
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
完整版)初中数学不等式精选典型试题及答案
完整版)初中数学不等式精选典型试题及答案1.不等式组的整数解是指所有不等式同时成立时,所有变量取整数的解集。
2.解不等式2x-7<5-2x的正整数解有1个。
3.已知关于x的不等式组为x-30,则整数解共有6个,a的取值范围为-4≤a≤2.4.不等式x>2的解集为{x|x>2},不等式-3x>23的解集为{x|x<-7}。
5.不等式组{x+1>2x。
x-32},不等式组{x-5>x-5.5-x>6-2x}的解集为{x|x<1}。
6.不等式组{2x>x+16.5-x>mx+1/x+3}的解集为{x|x<16/3},则m值为-1.7.如果不等式5-2m>0,即m-3的解是正数,m所能取的最小整数是3.8.如果k=1,则{x+y=2.x-y=4}的解为{x=3.y=-1},满足x>1且y<1,因此k=1时成立。
9.不等式2<|x-4|<3的解集为{x|6<x<7}。
10.已知a,b和c满足a≤2,b≤2,c≤2,且a+b+c=6,则abc的最大值为8.11.已知a是自然数,关于x的不等式组{3x-4≥a。
x-2>a}的解集是{x|x≥(a+4)/3},因此a=(3x-4)-2x= x-4.12.如果关于x的不等式组{2x+7≥3x-1.x-2≤5}的解集为{x|x≥-6},则关于x的不等式组{3x-4≥a。
x-2>a}的解集为{x|x≥(a+4)/3},因此a=3(-6)-4=-22.13.不等式(2a-b)x+3a-4b4,则不等式(a-9/4b)x+2a-3b>0的解是x<9/4.14.不等式|x|+|y|<100的整数解有9901组。
15.钝角三角形的三边a,a+1,a+2满足a+2>a+1>a,且a+2>a,因此a的取值范围为1≤a≤3.16.不等式组{5x-3≥2x。
初一不等式难题-经典题训练(附答案)
初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。
初一不等式的试题及答案
初一不等式的试题及答案一、选择题1. 下列不等式中,不正确的是()A. 3x - 5 > 2x + 1B. 2x + 3 > 2x + 1C. 5x < 3x + 2D. 4x - 6 > 2x + 3答案:C2. 如果a > b,那么下列不等式中正确的是()A. a - 2 > b - 2B. 2a < 2bC. -a < -bD. a/2 < b/2答案:A3. 若x > 0,y < 0,则下列不等式中正确的是()A. x + y > 0B. xy > 0C. x - y > 0D. x/y > 0答案:C4. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. ab > 0C. a - b > 0D. a/b < 0答案:C5. 若m < 0,n > 0,则下列不等式中正确的是()A. m + n > 0B. mn > 0C. m - n < 0D. m/n < 0答案:D二、填空题6. 若不等式2x - 3 < 5的解集为x < 4,则不等式2x - 3 > 5的解集为x _______ 4。
答案:>7. 若不等式3x + 2 > 11的解集为x > 3,则不等式3x + 2 < 11的解集为x _______ 3。
答案:<8. 若不等式5x - 7 ≥ 13的解集为x ≥ 4,则不等式5x - 7 < 13的解集为x _______ 4。
答案:<9. 若不等式-2x + 4 ≤ 0的解集为x ≥ 2,则不等式-2x + 4 > 0的解集为x _______ 2。
答案:<10. 若不等式4x - 6 > 2x + 8的解集为x > 7,则不等式4x - 6 < 2x + 8的解集为x _______ 7。
(完整版)初一不等式习题及答案
(2)x一个整数解也没有.
38.
关于x的不等式组
x a 0,
的整数解共有5个,求a的取值范围.
3 2x 1
39.(类型相同)k取哪些整数时,关于x的方程5x + 4 = 16k— x的根大于2且小于10?
40.(类型相同)已知关于x, y的方程组x y:m;,的解为正数,求m的取值范围.
13.若关于x的方程5x-2 m=-4- x解在1和10之间,则m的取值为.
14.不等式|x|>3的解集为.
三、解答题:(各题的分值见题后,共78分)
15.解列不等式,并把解集在数轴上表示出来。(每小题5分,共10分)
(1)x1;2(10 x)⑵g5;1-心
27234
16.解下列不粤
侦式组
(每小题6分,共
初一数学不等式习题
一、填空:(每小题2分,共32分)
1.若a<0,下列式子不成立的是
A.-a+2<3-aB.a+2<a+3C.-
2.若a、b、c是三角形三边的长,则代数式
A.大于0 B.小于0
3.若方程7x+2m=5+x的解在-1
a<-aD.2a>3a
23
a2+ b2— c2— 2ab的值
C.大于或等于0 D.
3
0.4x 0.9
0.03 0.02.x
x 5
0.5
0.03
2
2
4x
3x
7
28.解不等式组
6x
3
5x
4,
三、解不等式组
3x
7
2x
3
23.
4x0.
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)
初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
(完整版)初中数学不等式精选典型试题及答案
初中数学不等式精选典型试题 1。
不等式组的整数解是_________________.2。
不等式2x -7〈5-2x 的正整数解有( )个3。
已知关于x 的不等式组的整数解共有6个,则a 的取值范围是 .4、不等式122x >的解集是: ;不等式133x ->的解集是: ;5、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 。
6、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 。
7.如果不等式33131++>+x mx 的解集为x 〉5,则m 值为___________. 8.关于x 的不等式(5 – 2m)x 〉 —3的解是正数,那么m 所能取的最小整数是__________。
9. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.10.不等式2〈|x — 4| 〈3的解集为_____________。
11.已知a ,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。
12.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,则a =-—-————-———-—--—.13.已知a ,b 是实数,若不等式(2a — b )x + 3a – 4b <0的解是94>x ,则不等式(a – 4b )x + 2a – 3b 〉0的解是__________。
14.不等式|x | + |y| 〈 100有_________组整数解.15.设a , a + 1, a + 2为钝角三角形的三边,那么a 的取值范围是______________。
16。
532(1)314(2)2x x x -≥⎧⎪⎨-<⎪⎩ 17。
初中不等式经典例题
初中不等式经典例题一、例题11. 若不等式3x - a ≤ 0的正整数解是1、2、3,求a的取值范围。
这题啊,可有点小绕呢。
首先我们来解这个不等式3x - a ≤ 0,把它变形一下就得到x ≤ a/3。
正整数解是1、2、3,那就是说3肯定是满足这个不等式的,所以3 ≤ a/3,这就得出a ≥ 9。
但是呢,4就不满足这个不等式了,要是4满足的话正整数解就不止1、2、3了,所以4 > a/3,也就是a < 12。
所以啊,a的取值范围就是9 ≤ a < 12。
2. 已知关于x的不等式组{x - a > 0,1 - x > 0}的整数解共有3个,求a的取值范围。
先看这个不等式组,x - a > 0,那就是x > a;1 - x > 0,变形一下就是x < 1。
这个不等式组的解集就是a < x < 1。
它的整数解共有3个,那这三个整数解肯定是 - 2, - 1,0啊。
所以 - 3 ≤ a < - 2。
为什么呢?要是a < - 3的话,整数解就不止3个了,要是a ≥ - 2的话,整数解就没3个了,是不是很有趣呢?二、例题21. 解不等式2(x - 1) + 5 < 3x。
这题看着简单,可也有不少同学会犯错哦。
我们先把括号展开,2x - 2 + 5 < 3x,然后把含有x的项移到一边,常数项移到另一边,就得到2x - 3x < 2 - 5,也就是 - x < - 3。
两边同时除以 - 1,注意哦,除以一个负数的时候,不等式要变号,所以x > 3。
2. 若不等式组{x + 8 < 4x - 1,x > m}的解集是x > 3,求m 的取值范围。
先解x + 8 < 4x - 1,移项得到x - 4x < - 1 - 8, - 3x < - 9,x > 3。
这个不等式组的解集是x > 3,还有个x > m,那m肯定是小于等于3的。
初一不等式试题及答案
初一不等式试题及答案一、选择题1. 如果a > b,且c < 0,那么下列不等式中正确的是:A. ac > bcB. ac < bcC. a + c > b + cD. a - c < b - c答案:A2. 对于任意实数x,下列不等式一定成立的是:A. x + 1 > xB. x - 1 < xC. x × 1 = xD. x ÷ 1 = x答案:C二、填空题1. 如果x > 5,那么-3x _______ -15。
答案:<2. 已知2x - 3 < 7,解得x _______ 5。
答案:<三、解答题1. 已知不等式3x + 5 > 14,求x的取值范围。
解:首先将不等式两边同时减去5,得到3x > 9。
然后将不等式两边同时除以3,得到x > 3。
所以x的取值范围是x > 3。
2. 如果一个数的一半加上3等于这个数减去4,求这个数。
解:设这个数为x,根据题意可得:\( \frac{x}{2} + 3 = x - 4 \)将等式两边同时乘以2,得到:\( x + 6 = 2x - 8 \)将等式两边同时减去x,得到:\( 6 = x - 8 \)将等式两边同时加上8,得到:\( x = 14 \)所以这个数是14。
四、应用题1. 某工厂计划在一个月内生产至少100件产品,已知每天可以生产10件产品,问至少需要多少天完成生产计划?解:设需要x天完成生产计划。
根据题意,每天生产10件产品,至少需要生产100件产品,可以得到不等式:\( 10x \geq 100 \)将不等式两边同时除以10,得到:\( x \geq 10 \)所以至少需要10天完成生产计划。
结束语:通过本试题的练习,同学们应该对不等式的概念、性质以及解法有了更深入的理解。
希望同学们能够通过不断的练习,提高解决实际问题的能力。
初中不等式试题及答案
初中不等式试题及答案一、选择题1. 若不等式2x - 5 > 0成立,则x的取值范围是()。
A. x > 2.5B. x < 2.5C. x > -2.5D. x < -2.5答案:A2. 已知x + 3 > 0,那么以下哪个不等式一定成立?()A. x > -3B. x < -3C. x ≥ -3D. x ≤ -3答案:A二、填空题1. 解不等式3x - 7 < 0,得到x的解集是 x < \frac{7}{3} 。
2. 若不等式组\left\{\begin{matrix}x+2>0\\ 3x-4\leq5\end{matrix}\right. 的解集为x > -2,x ≤ 3,那么x的取值范围是 -2 < x ≤ 3。
三、解答题1. 解不等式2x + 3 > 5,并写出解集。
解:首先将不等式2x + 3 > 5化简,得到2x > 2,然后除以2得到x > 1。
因此,解集为x > 1。
2. 已知不等式组\left\{\begin{matrix}2x-1>3\\x+4<7\end{matrix}\right.,求x的取值范围。
解:首先解第一个不等式2x - 1 > 3,得到x > 2。
然后解第二个不等式x + 4 < 7,得到x < 3。
因此,x的取值范围是2 < x < 3。
四、应用题1. 某商店为了促销,规定购买商品金额超过100元即可享受8折优惠。
小华购买了一些商品,实际支付了80元,请问他购买的商品原价是多少?解:设小华购买的商品原价为x元,则根据题意有0.8x = 80。
解得x = 100。
所以,小华购买的商品原价是100元。
初中数学不等式专题练习及答案
不等式(组)专项练习(含答案)A 组 基础题组一、选择题 1.不等式x 2-x -13≤1的解集是( )A.x≤4B.x≥4C.x≤-1D.x≥-12.函数y=√3x +6中自变量x 的取值范围在数轴上表示正确的是( )3.不等式组{3x <2x +4,3-x 3≥2的解集在数轴上表示正确的是( )4.对于不等式组{12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是-3,-2,-1D.此不等式组的解集是-52<x≤25.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为 ( ) A.1 B.2 C.3 D.4 二、填空题 6.不等式3x+134>x 3+2的解集是 .7.不等式组{x -3(x -2)>4,2x -15≤x+12的解集为 .8.不等式组{x >-1,x <m有3个整数解,则m 的取值范围是 .9.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x 满足0<x<3,则b 的取值范围为 .三、解答题10.解不等式组{2x ≥-9-x ,5x -1>3(x +1),并把解集在数轴上表示出来.11. x 取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x 都成立?12.解不等式组{x -23<1,2x +16>14.B 组 提升题组一、选择题1.关于x 的不等式x-b>0只有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-22.不等式组{1-2x <3,x+12≤2的正整数解的个数是( )A.5B.4C.3D.2 二、填空题3.不等式组{x +1>0,1-12x ≥0的最小整数解是 .三、解答题 4.解不等式:x -22≤7-x 3.5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的价格和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果价格(元/千克) 1525 30 千克数404020(1)求该什锦糖的价格;(2)为了使什锦糖每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克.不等式(组)培优训练一、选择题1.同时满足不等式x4-2<1-x2和6x-1≥3x -3的整数x 是 ( ) A.1,2,3 B.0,1,2,3C.1,2,3,4D.0,1,2,3,42.若三个连续正奇数的和不大于27,则这样的奇数组有( ) A.3组 B.4组 C.5组 D.6组3.在数轴上表示不等式2(1-x)<4的解集,正确的是( )4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.x>9 B.x≥9 C.x<9 D.x≤95.如图,直线y=kx+b 经过A(1,2),B(-2,-1)两点,则12x<kx+b<2的解集为( )A.12<x<2 B.12<x<1C.-2<x<1D.-12<x<16.关于x 的不等式组{2x <3(x -3)+1,3x+24>x +a 有四个整数解,则a 的取值范围是( )A.-114<a≤-52 B.-114≤a<-52 C.-114≤a≤-52 D.-114<a<-527.(2017浙江温州)不等式组{x +1>2,x -1≤2的解集是( )A.x<1B.x≥3C.1≤x<3D.1<x≤38.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y<0时,x 的取值范围是( )A.x<-1B.-1<x<0C.0<x<2D.-1<x<29.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张票,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少需要( ) A.12 120元 B.12 140元 C.12 160元 D.12 200元10.某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最后他又以a+b 2元的单价把肉全部卖掉,结果赔了钱,原因是( )A.a>bB.a<bC.a=bD.与a 和b 的大小无关11.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A.至少为20B.至多为20C.至少为21D.至多为21 二、填空题 12.若代数式t+15-t -12的值不小于-3,则t 的取值范围是 .13.若不等式3x-k≤0的正整数解是1,2,3,则k 的取值范围是 . 14.若(x+2)(x-3)>0,则x 的取值范围是 . 15.若a<b,则2a a+b(填“>”或“<”).16.若不等式组{2x -a <1,x -2b >3的解集为-1<x<1,则(a-3)(b+3)的值为 .17.函数y 1=-5x+12,y 2=12x+1,使y 1<y 2的最小整数x 是 .三、解答题 18.解不等式:3x -25≥2x+13-1.19.若关于x 的方程3(x+4)=2a+5的解大于关于x 的方程(4a+1)x 4=a (3x -4)3的解,求a 的取值范围.20.有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球.”试问这个班共有多少位学生.21.随着教育改革的不断深入,素质教育的全面推进,某市利用假期参加社会实践活动的中学生越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16 000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.参考答案A组基础题组一、选择题1.A 去分母,得3x-2(x-1)≤6, 去括号,得3x-2x+2≤6,移项、合并同类项,得x≤4,故选A.2.A 根据二次根式的非负性得3x+6≥0,解得x≥-2,表示在数轴上如图所示,故选A.3.A 由3x<2x+4得x<4; 由3-x 3≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A. 4.B {12x -1≤7-32x ,①5x +2>3(x -1),②解①得x≤4,解②得x>-52, 所以不等式组的解集为-52<x≤4,所以不等式组的整数解为-2,-1,0,1,2,3,4. 故选B.5.C {4x -3>2x -6,①25-x ≥-35,② 解不等式①得,x>-32,解不等式②得,x≤1,所以不等式组的解集是-32<x≤1,所以不等式组的整数解为-1、0、1,共3个.故选C. 二、填空题 6.答案 x>-3解析 去分母,得3(3x+13)>4x+24, 去括号,得9x+39>4x+24, 移项,得9x-4x>24-39, 合并同类项,得5x>-15, 系数化为1,得x>-3, 故原不等式的解集是x>-3.7.答案 -7≤x<1解析 解不等式x-3(x-2)>4得x<1;解不等式2x -15≤x+12得x≥-7,所以不等式组的解集为-7≤x<1. 8.答案 2<m≤3解析 由题意得不等式组的整数解是0,1,2,则m 的取值范围是2<m≤3. 9.答案 -4≤b≤-2解析 根据题意可画大致图象如下:则{0<-b2<3,-2×0-b ≥2,2×3+b ≥2,解得-4≤b≤-2. 三、解答题10.解析 {2x ≥-9-x ,①5x -1>3(x +1),②解①得x≥-3,解②得x>2,∴原不等式组的解集为x>2,其解集在数轴上表示如下:11.解析 根据题意解不等式组{5x +2>3(x -1),①12x ≤2-32x ,② 解不等式①,得x>-52, 解不等式②,得x≤1, ∴-52<x≤1,故满足条件的x 的整数值有-2、-1、0、1. 12.解析 解x -23<1,得x<5,解2x+16>14,得x>-1,在数轴上表示两个不等式的解集如下图:故不等式组的解集为-1<x<5.B组提升题组一、选择题1.D 由x-b>0,解得x>b,∵不等式只有两个负整数解,∴-3≤b<-2,故选D.2.C 解不等式1-2x<3,得x>-1,解不等式x+1≤2,得x≤3,2则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1,2,3这3个,故选C.二、填空题3.答案0解析解不等式x+1>0,得x>-1,解不等式1-1x≥0,得x≤2,2则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为0.三、解答题4.解析3(x-2)≤2(7-x),整理得3x-6≤14-2x,3x+2x≤14+6,5x≤20,x≤4.∴不等式的解集为x≤4.5.解析(1)根据题意,得该什锦糖的价格为15×40+25×40+30×20=22(元/千克).100答:该什锦糖的价格是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x)千克,根据题意得30x+15(100-x )+22×100200≤20,解得x≤20.答:最多可加入丙种糖果20千克.不等式(组)培优训练一、选择题1.B 由题意得{x 4-2<1-12x ,6x -1≥3x -3,解得-23≤x<4,所以整数x 的取值为0,1,2,3.2.B 设三个连续正奇数中间的一个数为x,则(x-2)+x+(x+2)≤27,解得x≤9,所以x-2≤7.所以x-2只能分别取1,3,5,7.故这样的奇数组有4组.3.A 去括号,得2-2x<4.移项,得-2x<4-2.合并同类项,得-2x<2.系数化为1,得x>-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选A.4.B 由题意可得2x+5≤3x -4,解得x≥9,所以x 的取值范围是x≥9.5.C 根据题图可得,12x<kx+b<2的解集为-2<x<1.故选C.6.B 不等式组{2x <3(x -3)+1,3x+24>x +a 的解集为8<x<2-4a. 因为不等式组有四个整数解,所以12<2-4a≤13,解得-114≤a<-52.7.D 解不等式x+1>2得x>1;解不等式x-1≤2得x≤3.所以不等式组的解集是1<x≤3.8.C9.C 设票价为60元的票数为x 张,票价为100元的票数为y 张,故{x +y =140,y ≥2x ,可得x≤4623.由题意可知x,y 为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12 160(元).故选C.10.A 根据题意得20a+10b 30-a+b 2=23a+13b-12a-b 2=16a-16b=16(a-b), 当a>b,即a-b>0时,该商人赔钱,故选A.11.C 设这个小区的住户数为x.则1 000x>10 000+500x,解得x>20.∵x 是整数,∴这个小区的住户数至少为21.故选C.二、填空题12.答案 t≤373解析 由题意得t+15-t -12≥-3,解得t≤373. 13.答案 9≤k<12解析 不等式3x-k≤0的解集为x≤k 3.因为不等式3x-k≤0的正整数解是1,2,3,所以3≤k 3<4,所以9≤k<12.14.答案 x>3或x<-2解析 由题意得{x +2>0,x -3>0①或 {x +2<0,x -3<0,② 解不等式组①得x>3,解不等式组②得x<-2.所以x 的取值范围是x>3或x<-2.15.答案 <解析 因为a<b,所以a+a<a+b,即2a<a+b.16.答案 -2解析 不等式组{2x -a <1,x -2b >3的解集为3+2b<x<a+12.由题意得{3+2b =-1,a+12=1,解得{a =1,b =-2. 所以(a-3)(b+3)=(1-3)×(-2+3)=-2.17.答案 0解析 根据题意得-5x+12<12x+1,解得x>-111,所以使y 1<y 2的最小整数x 是0. 三、解答题18.解析 去分母,得3(3x-2)≥5(2x+1)-15. 去括号,得9x-6≥10x+5-15.移项、合并同类项,得-x≥-4.系数化为1,得x≤4.19.解析 因为关于x 的方程3(x+4)=2a+5的解为x=2a -73, 关于x 的方程(4a+1)x 4=a (3x -4)3的解为x=-163a. 由题意得2a -73>-163a,解得a>718. 故a 的取值范围为a>718.20.解析 设该班共有x 位学生,则x-(x 2+x 4+x 7)<6. ∴328x<6.∴x<56.又∵x,x 2,x 4,x 7都是正整数,则x 是2,4,7的公倍数.∴x=28.故这个班共有28位学生.21.解析 设下个月的产量为x 件,根据题意,得{2x ≤192×200,20x ≤(60+300)×1 000,x ≥16 000,解得16 000≤x≤18 000.即下个月的产量不少于16 000件,不多于18 000件.。
七年级数学不等式练习题及标准答案
七年级数学不等式练习题及标准答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.选择题(共20小题)1.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A .ab>0B.a+b<0C.<1D.a﹣b<02.据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A .t<17B.t>25C.t=21D.17≤t≤253.若x>y,则下列式子错误的是()A .x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.4.如果a<b<0,下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<05.如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A .a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A .1个B.2个C.3个D.4个7.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A .B.C.D.8.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A .x<4 B.x<2 C.2<x<4 D.x>29.不等式>1的解集是()A .x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣10.不等式2x>3﹣x的解集是()A .x>3 B.x<3 C.x>1 D.x<111.不等式2x﹣7<5﹣2x正整数解有()A1个B2个C3个D4个....12.不等式12﹣4x≥13的正整数解的个数是()A .0个B.1个C.2个D.3个13.“x的2倍与3的差不大于8”列出的不等式是()A .2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>814.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A .a=b>c B.b>a>c C.a>c>b D.c>b>a15.根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A .a<c B.a<b C.a>c D.b<c16.不等式组的解集在数轴上表示正确的是()A .B.C.D.17.不等式组的解集在数轴上表示正确的是()A .B.C.D.18.不等式组的整数解共有()A .3个B.4个C.5个D.6个19.不等式组的正整数解的个数是()A .1个B.2个C.3个D.4个20.若使代数式的值在﹣1和2之间,x可以取的整数有()A .1个B.2个C.3个D.4个二.填空题(共2小题)21.关于x的不等式组的解集是x>﹣1,则m=_________.22.若不等式组的解集是﹣1<x<1,则(a+b)2009=_________.三.解答题(共8小题)23.解不等式组把解集表示在数轴上,并求出不等式组的整数解.24.解不等式组,并写出不等式组的整数解.25.解不等式组,并求其整数解.28.解不等式组:,并判断是否满足该不等式组.30.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲 45乙 752014年06月01日49的初中数学组卷参考答案与试题解析一.选择题(共20小题)1.(2009?枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<0考点:不等式的定义;实数与数轴.分析:先根据数轴上点的特点确定a、b的符号和大小,再逐一进行判断即可求解.解答:解:由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,A、∵a<b<0,∴ab>0,故选项正确;B、∵a<b<0,∴a+b<0,故选项正确;C、∵a<b<0,∴>1,故选项错误;D、∵a<b<0,∴a﹣b<0,故选项正确.故选C.点评:本题考查的知识点为:两数相乘,同号得正;同号两数相加,取相同的符号;两数相除,同号得正.确定符号为正后,绝对值大的数除以绝对值小的数一定大于1较小的数减较大的数一定小于0.2.(2005?丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A .t<17 B.t>25 C.t=21 D.17≤t≤25考点:不等式的定义.分析:读懂题意,找到最高气温和最低气温即可.解答:解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故选D.点评:解答此题要知道,t包括17℃和25℃,符号是≤,≥.3.(2009?临沂)若x>y,则下列式子错误的是()A .x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2008?恩施州)如果a<b<0,下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<0考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.点评:利用特殊值法验证一些式子错误是有效的方法.5.(2006?镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A .a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.专题:压轴题.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A .1个B.2个C.3个D.4个考点:不等式的解集.分析:分别解不等式就可以得到不等式的解集,就可以判断各个选项是否成立.解答:解:①不等式2x﹣1<0的解集是x<包括0,正确;②不等式3x﹣1>0的解集是x>不包括,正确;③不等式﹣2x+1<0的解集是x>,不正确;④不等式组的解集是x>2,故不正确;故选B.点评:解答此题的关键是分别解出各不等式或不等式组的解集,再与已知相比较即可得到答案正确与否,解不等式是解决本题的关键.7.(2009?河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A .B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(2007?武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A .x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2008?无锡)不等式>1的解集是()A .x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时乘以﹣2,不等号的方向改变.得到不等式的解集为:x<﹣2.解答:解:不等式3x+2≥5得,3x≥3,解得x≥1.故选C.点评:本题考查不等式的性质3,在不等式的两边乘以﹣2,不等号要改变方向.此题容易错解选B.10.(2007?双柏县)不等式2x>3﹣x的解集是()A .x>3 B.x<3 C.x>1 D.x<1考点:解一元一次不等式.专题:计算题.分析:由一元一次不等式的解法知:解此不等式只需移项,系数化1两步即可得解集.解答:解:不等式2x>3﹣x移项得,2x+x>3,即3x>3,系数化1得;x>1.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.(2007?枣庄)不等式2x﹣7<5﹣2x正整数解有()A .1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式12﹣4x≥13的正整数解的个数是()A .0个B.1个C.2个D.3个考点:一元一次不等式的整数解.分析:首先确定不等式组的解集,然后再找出不等式的特殊解.解答:解:移项得:﹣4x≥13﹣12,合并同类项得:﹣4x≥1,系数化为1得:x≤﹣,所以不等式12﹣4x≥13没有正整数解.故选A.点评:正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.13.“x的2倍与3的差不大于8”列出的不等式是()A .2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>8考点:由实际问题抽象出一元一次不等式.分析:理解:不大于8,即是小于或等于8.解答:解:根据题意,得2x﹣3≤8.故选A.点评:应注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.14.(2008?赤峰)用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A .a=b>c B.b>a>c C.a>c>b D.c>b>a考点:一元一次不等式的应用.专题:压轴题.分析:根据图示三种物体的质量列出不等关系式是关键.解答:解:依据第二个图得到a+c=b+c?a=b,依图一得:a+c+c<a+b+c,则b>c,则a=b>c;故选A.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.(2009?鄂州)根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A .a<c B.a<b C.a>c D.b<c考点:一元一次不等式的应用.分析:找出不等关系是解决本题的关键.解答:解:由第一图可知:3a=2b,b>a;由第二图可知:3b=2c,c>b,故a<b<c.∴A、B、D选项都正确,C选项错误.故选C.点评:解决问题的关键是读懂图意,进而列出正确的不等式.16.(2012?呼伦贝尔)不等式组的解集在数轴上表示正确的是()A .B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集再求出其公共解集.解答:解:该不等式组的解集为1<x≤2,故选C.点评:本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.17.(2010?东阳市)不等式组的解集在数轴上表示正确的是()A .B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:不等式可化为:.∴在数轴上可表示为.故选A.点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(2009?崇左)不等式组的整数解共有()A .3个B.4个C.5个D.6个考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到整数解.解答:解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(2005?泰州)不等式组的正整数解的个数是()A .1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组的解集,在取值范围内可以找到正整数解.解答:解:解①得x>0解②得x≤3∴不等式组的解集为0<x≤3∴所求不等式组的整数解为1,2,3.共3个.故选C.点评:本题考查不等式的解法及整数解的确定.解不等式组应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.20.(2005?菏泽)若使代数式的值在﹣1和2之间,x可以取的整数有()A .1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.专题:计算题.分析:由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.解答:解:由题意可得,由(1)x>﹣,由(2)得x<,所以不等式组的解集为﹣<x<,则x可以取的整数有0,1共2个.故选B.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.填空题(共2小题)21.(2009?孝感)关于x的不等式组的解集是x>﹣1,则m=﹣3.考点:解一元一次不等式组.分析:易得m+2>m﹣1.那么不等式组的解集为x>m+2,根据所给的解集即可判断m的取值.解答:解:根据“同大取大”确定x的范围x>m+2,∵解集是x>﹣1,∴m+2=﹣1,m=﹣3.点评:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.22.(2009?凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009=﹣1.考点:解一元一次不等式组;代数式求值.专题:计算题;压轴题.分析:解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.解答:解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.三.解答题(共8小题)23.(2007?滨州)解不等式组把解集表示在数轴上,并求出不等式组的整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.解答:解:由①得由②得x<3∴原不等式组的解集为≤x<3数轴表示:不等式组的整数解是﹣1,0,1,2.点评:本题考查不等式组的解法,需要注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.24.(2005?南京)解不等式组,并写出不等式组的整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:解不等式①得x≥1解不等式②得x<3∴原不等式组的解集是1≤x<3∴原不等式组的整数解是1,2.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.25.(2002?潍坊)解不等式组,并求其整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:不等式组可化成,解不等式①得x>解不等式②得x≤4,∴不等式组的解集<x≤4,整数解为4,3.点评:此题考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.26.(2010?楚雄州)某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题;方案型.分析:先设甲种货车为x辆,则乙种货车为(10﹣x)列出一元一次不等式组.再根据答案设计出方案.解答:解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,由题意得:,解得5≤x≤7,又因为x是整数,所以x=5或6或7,方案:方案一:安排甲种货车5辆,乙种货车5辆;方案二:安排甲种货车6辆,乙种货车4辆;方案三:安排甲种货车7辆,乙种货车3辆.(2)在方案一中果农应付运输费:5×2000+5×1300=16500(元)在方案二中果农应付运输费:6×2000+4×1300=17 200(元)在方案三中果农应付运输费:7×2000+3×1300=17 900(元)答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.27.(2008?自贡)解不等式组.考点:解一元一次不等式组.专题:计算题.分析:分别求出两个不等式的解集,求其公共解.解答:解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.28.(2008?苏州)解不等式组:,并判断是否满足该不等式组.考点:解一元一次不等式组;估算无理数的大小.分析:首先分别解出两不等式的解集,再求其公共解即可得到不等式组的解集,然后利用无理数的估算即可解集问题.解答:解:不等式组可化成,由①得:x>﹣3.由②得:x≤1.∴原不等式组的解集是:﹣3<x≤1.∴满足该不等式组.点评:此题主要考查求不等式组的解集即无理数的估算,解题时应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.29.(2009?天津)解不等式组考点:解一元一次不等式组.分析:先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取较大”来求不等式组的解集.解答:解:∵,由①得,x>2,由②得,x>﹣.∴原不等式组的解集为x>2.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取较大,同小取小,大小小大中间找,大大小小找不到(无解).30.(2009?太原)某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲 45乙 75考点:一元一次不等式组的应用.专题:方案型;图表型.分析:设计划生产甲产品x件,生产乙产品(20﹣x)件,直接根据“1150<w<1200”列出不等式组求解即可.解答:解:设计划生产甲产品x件,则生产乙产品(20﹣x)件.根据题意,得,解得.∵x为整数,∴x=11,此时,20﹣x=9(件).答:公司应安排生产甲产品11件,乙产品9件.点评:本题属于基础题,解决本题的关键是找到相等及不等关系列出方程或不等式.注意本题的不等关系为:1150<w<1200.。
不等式经典题型专题练习(含答案)-
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
更多精品文档初一数学不等式习题一、填空:(每小题2分,共32分)1.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 2. 若a 、b 、c 是三角形三边的长,则代数式a2+ b 2—c 2—2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于0 3.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ()A.3>m>12 B.3>m>-12 C.112>m>-12 D.12>m>-112 4.若方程35x a -=26b x-的解是非负数,则a 与b 的关系是 ( )A.a ≤56bB.a ≥56bC.a ≥-56bD.a ≥528b5.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( )A. 1+22x -≥3x B. 722x - -23x -≥2(x+1) C. 3x -2(2)3x -≤6 D.1-13x -≤12x-6.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ()A.m ≤-1B.m<-1C.m ≥1D.m>1.7.若方程组3133x y k x y +=+⎧⎨+=⎩ 的解、满足01x y <+<,则k 的取值范围是 ( )A .40k-<< B. 10k -<< C.08k << D. 4k >-8.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( ).A. M = PB. M > PC. M < PD. 不确定二、填空:(每小题2.5分,共40分)9.若不等式2123x a x b -<⎧⎨->⎩ 的解集为 11x -<<,那么(3)(3)a b -+的值等于 .10. 不等式5121216415x x x-+->- 的负整数解的积是 . 11. 代数式|x-1|-|x+4|- 5 的最大值为 . 12. 不等式3(x +1)≥5 x -2,则|2x -5| =________.13. 若关于x 的方程5x -2m =-4-x 解在1和10之间,则m 的取值为___________. 14. 不等式|x |>3的解集为_______________. 三、解答题:(各题的分值见题后,共78分)15.解列不等式,并把解集在数轴上表示出来。
(每小题5分,共10分) (1)3812x x --+≥2(10)7x - (2)5723x x --≥1- 354x -16.解下列不等式组(每小题6分,共12分)(1)111232(3)3(2)0x x x x ⎧->-⎪⎨⎪---<⎩ (2)2(3)35(2)121132x x x x +≤--⎧⎪++⎨-<⎪⎩17.当m 取何值时,关于x 的方程3m-73mx-(2m+1)x=m(x-3)+7的解是负数? (本题10分)18.解不等组:216233312384y yy y-+⎧<⎪⎪⎨+-⎪+≥-⎪⎩并求其整数解。
(本题7分)19.已知方程713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数,求a的取值范围。
(本题9分)20.晓华上午10时以每小时8千米的速度从甲地步行到乙地,到达乙地时已经过了下午2点但不到2点30 分,你知道甲乙两地距离在什么范围内吗?(8分)21.有人问一位老师,他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学英语,七分之一的学生在学音乐,还剩不足六位同学在操场上踢足球。
”试问这个班有多少学生。
(本题10分)22.某校为了奖励获奖的学生,买了若干本课外读物,如果每人送3本,还余8本;如果前面第人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖,试解(1)用含x的代数式表示;(2)求出获奖人数及所买课外读物的本数。
不等式和不等式组提高练习一、选择题1.如果a、b表示两个负数,且a<b,则( ).(A)1>ba(B)ba<1 (C)ba11<(D)ab<12.a、b是有理数,下列各式中成立的是( ).(A)若a>b,则a2>b2(B)若a2>b2,则a>b(C)若a≠b,则|a|≠|b| (D)若|a|≠|b|,则a≠b3.|a|+a的值一定是( ).(A)大于零(B)小于零(C)不大于零(D)不小于零4.若由x<y可得到ax>ay,应满足的条件是( ).(A)a≥0 (B)a≤0 (C)a>0 (D)a<05.若不等式(a+1)x>a+1的解集是x<1,则a必满足( ).(A)a<0 (B)a>-1 (C)a<-1 (D)a<16.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人(B)3人(C)4人(D)5人7.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x的最大值是( ).(A)11 (B)8 (C)7 (D)58.若不等式组⎩⎨⎧>≤<kxx,21有解,则k的取值范围是( ).(A)k<2 (B)k≥2 (C)k<1 (D)1≤k<2更多精品文档更多精品文档9.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y . 12.若x 是非负数,则5231x-≤-的解集是______.13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______. 17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.二、解下列不等式18. 2(2x -3)<5(x -1). 10-3(x +6)≤1. 19. ⋅-->+22531x x⋅-≥--+612131y y y20. 3[x -2(x -7)]≤4x ..17)10(2383+-≤--y y y21..151)13(21+<--y y y.15)2(22537313-+≤--+x x x 22. ).1(32)]1(21[21-<---x x x x ⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组 23. ⎩⎨⎧≥-≥-.04,012x x⎩⎨⎧>+≤-.074,03x x24.⎪⎩⎪⎨⎧+>-<-.3342,121x x x x -5<6-2x <3.25. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx26. ⎪⎩⎪⎨⎧+>-≤+).2(28,142x x x.234512x x x -≤-≤-更多精品文档27.⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x28.解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习29. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n . 30. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.31. 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.32. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有. 33. 当310)3(2k k-<-时,求关于x 的不等式k x x k ->-4)5(的解集.34. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.35.(类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.更多精品文档36. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.37.38. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.39.40. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.41.42. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?43. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.。