高中数学解题的思想方法

合集下载

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

中学数学思想与逻辑:11种数学思想方法总结与例题讲解中学数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟识化原则,即将生疏的问题转化为熟识的问题;2、简洁化原则,即将困难问题转化为简洁问题;3、直观化原则,即将抽象总是详细化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,假如从下面入手思维受阻,不妨从它的正面动身,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,状况困难,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简洁多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较困难的数学问题却须要从总体上去把握事物,不纠缠细微环节,从系统中去分析问题,不单打独斗.例2:一个四面体全部棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,简洁出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培育学问迁移实力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相像性,奇妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种状况探讨(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种状况探讨:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满意1x4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.于是可以知道解本题必需分类探讨,其划分点为.小结:分类探讨的一般步骤:(1)明确探讨对象及对象的范围P.(即对哪一个参数进行探讨);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级探讨.;(3)逐类探讨,获得阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

高中数学常见解题思想方法——思想篇(高三适用)七、方程思想含解析

高中数学常见解题思想方法——思想篇(高三适用)七、方程思想含解析

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

题型涉及选择题、填空题、解答题,难度有大有小,且试题中的大部分压轴题都与函数方程有关。

本讲讲述其中的方程思想.可以说所有的习题中,凡是需要列等式来求解未知量的值,都需要方程,方程思想是一个宏观、抽象的思维,几乎遍布所有需要计算的习题中,接下来我们主要来看看,在高中数学习题中方程思想的应用.一、什么是方程思想方程的思想,就是从问题的数量关系入手,分析数学问题中变量间的等量关系,建立方程、方程组,或者构造方程,通过解方程或方程组,或运用方程的根等性质去解决问题。

函数思想是动态的变量关系,方程思想则是静态的等量关系,是动中求静,两者密切联系.体现方程思想的方法,主要包括待定系数法、换元法、转换法和构造方程等四个方面.二、方程思想在解题中的应用主要表现在四个层面: 1。

解方程,主要是指解一次、二次方程,指数、对数方程,三角方程,复数方程等;2.对含参数方程的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用;3。

转化为对方程的研究,如直线与二次曲线的位置关系等;4。

构造方程求解问题.例如一个常用的基本方法待定系数法,它的实质就是方程思想的应用.三、以下通过几种常见的问题,看一下方程思想的应用:1。

利用方程思想解决函数问题,函数式y=f(x)可以看做二元方程y-f(x)=0;对于函数y=f(x),求f(x)的零点,就相当于求方程f(x)=0的根;求两个函数图象的交点,可以通过联立方程组来求解.2。

利用方程思想来求函数的反函数,判别式法求函数的值域。

3.利用方程思想处理解析几何问题,例如直线和二次曲线的位置关系,需要通过联立方程组,化成一元二次方程,通过方程的根的个数,得到直线和二次曲线的位置关系.4.用于解决数列问题,例如已知等差数列的除首项外的某两项的值,可以利用通项公式列出关于首项和公差的方程组,来求解等差数列的相关问题.例:已知实数a,b,c成等差数列,a+1,b+1,c+4成等比数列,且a+b+c=15,求a,b,c.故1=cb=a或.=bca=11,=,8,5,5=,2-经验算,上述两组数符合题意。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

高中数学19种答题方法+6种解题思想

高中数学19种答题方法+6种解题思想

高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用三合一定理。

2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。

A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。

A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。

A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。

A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

高中数学思想的方法与运用

高中数学思想的方法与运用

谈高中数学思想的方法与运用一、数学思想方法的几种形式1、数学化归的思想方法。

数学化归的实质是把未知转化成已知的问题来解决,把复杂问题转变为简单问题来解决,这是处理数学问题时的一种基本思路。

在基本运算中,将减法化成加法,除法化成乘法;在方程中,化未知为已知、化复杂为简单是解方程和方程组的基本思想,具体表现为把“多元”变成“一元” ,“高次”变为“低次”,把复杂图形转变为基本图形,把立体几何问题转变为平面几何问题等等。

2、数形结合的思想方法。

数形结合是从感知向思维过渡的中间环节,是帮助学生理解掌握教材的重要手段。

集中体现为两个方面,一是对直观图形赋予代数意义,要求学生能根据直观图形将实际问题抽象为数学问题;二是对抽象的数学问题赋予直观图形的意义,以形帮数。

3、概括归纳的思想方法。

概括是在思维中将同一种类型的对象共同的本质属性集中起来,结合为一般类型的属性。

归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性。

一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用、定积分在经济生活中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等。

4、演绎的思想方法。

演绎推理是培养学生逻辑思维能力的主要内容。

数学问题不仅要解决“是什么”的问题,更重要的是要解决“是怎样想到的”。

要进一步引导学生对概念定义的结构特征加以分析,在此基础上再启发诱导学生演绎推理出其基本性质、应用范围,利用定义解题、证题,进而发展学生的思维能力。

二、掌握渗透数学思想方法的途径,提高数学素养1、在知识的形成过程中渗透。

课程标准明确指出:“数学教学不仅要教给学生数学知识,而且还要揭示获取知识的思维过程。

”这一思维过程就是科学家对数学知识和方法形成的规律性的理性认识的过程。

任何一个概念,都经历着由感性到理性的抽象概括过程;任何一个规律,都经历着由特殊到一般的归纳过程。

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。

高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。

第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

高中数学解题思想方法-有限与无限思想

高中数学解题思想方法-有限与无限思想

从感性到理性、从具体到抽象————谈谈有限与无限思想导语:有限与无限思想揭示了变量与常量,有限与无限的对立统一的关系。

借助有限与无限思想,人们可以从有限认识无限,从不变认识变,从量变认识质变,从近似认识精确。

在初等微积分的学习中应抓住基本概念,突出内在的联系,贯穿基本思想方法。

具体说来,以数列极限为基础,突出微分、积分及其内在联系。

极限、微分、积分概念、极限方法、运动辩证思想和数学观念的培养,贯穿了微积分的全部内容。

从进入高二阶段学习的学生的认知水平上来看,已开始摆脱具体事物的形式,进入抽象、概括、分析、综合、演绎、归纳等一般化理论思维阶段,开始向更高级的思维——辩证思维形式发展。

其本质问题是对无限的认识,让学生从感性材料中去感受和体验。

提炼和概括,逐步上升到理性认识,感受抽象思维的过程和辩证思维的体现。

《新课标》倡导数学课程“强调本质,注意适度形式化”。

高中数学课程的讲授应注意数学概念、法则、结论的发展过程和本质,由于极限概念本身牵涉到“无穷大”、“任意小”、“无限逼近”等数学术语,这些词语都比较抽象。

因此在极限的概念教学过程中,我们应该注意从实际问题引入将抽象具体化从而使学生更好地理解极限。

内容:微积分的很多方法在中学数学的很多问题上能够以简驭繁,尤其在证明不等式、恒等式及恒等变形;求极值;研究函数的变化上,可以使解法简化,并能使问题的研究更为深入全面。

以下重点阐述不等式的证明中有限与无限思想:在研究变化过程变量之间相互制约关系时,更多的是对不等式的研究,从某种意义上来说,不等式的证明方法多种多样,没有较为统一的方法,初等数学中经常通过恒等变形、数学归纳法、二次型等方法解决,或运用已有的基本不等式来证明,往往需要恒等变形,而运用微积分的知识和方法,如函数单调性、极值判定法,可以简化不等式的证明过程,降低技巧性。

例题已知函数1()ln 1x f x x+=-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求证:当(0,1)x ∈时,3()2()3x f x x >+; (Ⅲ)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值. 分析:本题主要考查对数函数的性质和导数公式,复合函数的求导法则,考查导数的几何意义,导数的正负和函数单调性的关系。

十大数学思想方法

十大数学思想方法

十大数学思想方法数学思想是数学研究活动中解决问题的根本方法,是数学的灵魂和生命力。

因此,在教学过程中,要重视数学思想的提炼、渗透。

分析近几年的高考试题,高考中重点考察学生函数与方程思想、分类讨论思想、数形结合思想、转化或化归思想。

在不等式解题中,若能恰当地运用这些思想方法,可使许多复杂问题化难为易,化繁为简,从而达到优化解题过程,提高思维能力的目的。

一、函数与方程思想函数与方程是高中数学内容之重点,应用广泛,是解决数学问题的有力工具,在高考中占据非常重要的地位。

因此,在教学中要培养学生如何建立函数关系或构造函数,运用函数的图像、性质去分析问题,解决问题。

例1已知某∈(0,+∞),求证: 根据不等式的结构特征,恰当地构造辅助函数,此时,若均值不等式取最值时等号不成立,常常考虑利用函数的单调性来解决。

二、分类讨论思想分类讨论是数学能力培养的一个重要组成部分,在解某些数学问题时,当在整个范围内不易解决时,往往可以将这个大范围划分成若干个小范围来讨论研究。

分类讨论只能确定一个标准,必须坚持不重不漏的原则。

例2.设a为实数,函数f(某)=2某2+(某-a)|某-a|。

(1)求f(某)的最小值; (2)设函数h(某)=f(某),某∈(a,+∞)解不等式h(某)≥1评注:分类讨论的关键是要根据问题实际找到分类的标准,本题函数解析式中含有绝对值,所以首先必须分类讨论去绝对值,其次在解不等式中必须对判别式△进行讨论,当△>0时还需讨论根的大小。

分类时标准的确定须使任何两类交集为空集且并集为全集,这样才能在解题过程中,做到分类合理,并力求最简。

三、数形结合思想数与形是现实世界中客观事物的抽象与具体的反映。

数形结合思想,其实质是将代数式的精确刻划与几何图形的直观描述有机结合起来,通过对图形的处理,实现代数问题几何化,几何问题代数化。

解题时要充分进行数形转换,借助数的逻辑推演与形的直观特性求解,既直观又深刻。

例3.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。

高中数学的思想方法

高中数学的思想方法

高中数学的思想方法数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握状况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变幻法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.2方法一:函数与方程的思想函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来合计问题,研究问题和解决问题。

所谓方程的思想就是特别研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数和方程、不等式是通过函数值等于零、大于零或小于零而互相关联的,它们之间既有区别又有联系。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

3方法二:分类与整合思想解题时,我们经常碰到这样一种状况,解到某一步之后,不能再以统一方法,统一的式子持续进行了,因为这时被研究的问题包涵了多种状况,这就必须在条件所给出的总区域内,正确划分假设干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。

有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题必须要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q1两种状况,对数函数的单调性就分为a1,04方法三:转化与化归思想转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。

高中数学大题的解题技巧及解题思想

高中数学大题的解题技巧及解题思想

高中数学大题的解题技巧及解题思想高中数学大题是数学中最复杂的题型之一,需要学生具备一定的解题技巧和解题思想。

本文将详细介绍高中数学大题的解题技巧及解题思想。

一、解题思想1. 看清题意高中数学大题通常都是长篇大论,首先需要看清题意,理解题目中要求的内容。

对于需要画图的题目,需要仔细画出图形,标注出所需要的信息。

2. 分析问题针对每个问题都需要分析,并制定合适的解决方法。

如果是应用题,要考虑特定的情形,从而使问题更加具体化。

3. 线性思维高中数学大题需要学生具备线性思维能力,能够将复杂的问题解析成易于理解的多个问题。

针对每个子问题,运用相应的解决方法逐一解决。

二、解题技巧1. 掌握基本知识点高中数学大题的题目难度较高,但是都离不开一些基本的知识点,因此需要掌握良好的数学基础。

扎实的基础将帮助你更好地解析和应对题目。

2. 深入理解公式高中数学大题涉及到很多公式和定理,学生需要深入理解这些公式和定理的意义和用法。

这样才能灵活运用,更好地解决问题。

3. 学会运用数学工具高中数学大题可以通过相应的数学工具来解决问题。

学生需要了解并掌握这些数学工具的用法,如图像变换和函数,矩阵运算和行列式,三角函数等。

4. 精细化计算高中数学大题解题时需要精细化计算,掌握计算技巧和方法。

保持适当的计算简便,尽可能地利用已知和已经得到的数据,从而以最短时间内求得题目的正确解答。

总之,高中数学大题需要学生在深刻理解知识的基础上掌握数学工具和计算方法,具有线性思维能力,运用分析问题的方法逐一解决问题,才能在短时间内高效解决题目。

希望本文的介绍能够帮助到高中学生们更好地掌握高中数学大题的解题方法和技巧。

高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析

高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析

分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。

一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。

二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。

三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。

2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。

由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。

由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。

5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。

由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。

高中数学解题思想方法-主元法

高中数学解题思想方法-主元法

主元法所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用. 有些看似复杂的问题,如果选取适当的字母作为主元,往往可以起到化难为易的作用。

下面举例说明:例1.一次函数的保号性对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 分析:此类问题常因思维定势,学生易把它看成关于x 的二次函数进行讨论,后续步骤比较繁琐;但是若变换一个角度,以m 为变量,使g(m)=x 2+(m -4)x +4-2m 则问题转化为求一次函数(或常数函数)g(m)的值在[-1,1]内恒为正时,参数x 应满足的条件——“换位”思考优势明显.解析:由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4, 令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,所以22(1)(2)(1)440(1)(2)1440g x x x g x x x ⎧-=--+-+>⎪⎨=-⋅+-+>⎪⎩解得x <1或x >3. 故当x <1或x >3时,对任意的m ∈[-1,1],函数f (x )的值恒大于零. 总结:一般地,已知存在范围的量为变量,而待求范围的量为参数. 例2. 二次函数有解问题如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关,炮的射程是指炮弹落地点的横坐标。

(1)求炮的最大射程;(2)设在第一象限有一个飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?说明理由。

高中数学解题思想方法全部内容.

高中数学解题思想方法全部内容.

高中数学解题思想方法全部内容第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方” 的技巧, 通过配方找到已知和未知的联系,从而化繁为简。

何时配方, 需要我们适当预测,并且合理运用“裂项”与“添项” 、“配”与“凑”的技巧,从而完成配方。

有时也将其称为“凑配法” 。

最常见的配方是进行恒等变形, 使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺 xy 项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式 (a+b =a + 2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a +b =(a+b -2ab =(a-b +2ab ;a +ab +b =(a+b -ab =(a-b +3ab =(a+ +(b ; a +b +c +ab +bc +ca =[(a+b +(b+c +(c+a ]a +b +c =(a+b +c -2(ab+bc +ca =(a+b -c -2(ab-bc -ca =…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sin αcos α=(sin α+cos α ;x +=(x+ -2=(x- +2;…… 等等。

Ⅰ、再现性题组:1. 在正项等比数列 {a}中, a ?a +2a?a +a?a =25,则 a +a = _______。

2. 方程 x +y -4kx -2y +5k =0表示圆的充要条件是 _____。

A. <k<1B. k<或k>1C. k ∈ R D. k =或 k =13. 已知sin α+cos α=1,则sin α+cos α的值为 ______。

A. 1B. -1C. 1或-1D. 04.函数 y =log (-2x +5x +3 的单调递增区间是 _____。

高中数学的“四大思想”和“六大法则”

高中数学的“四大思想”和“六大法则”

高中数学的“四大思想”和“六大法则”想要学好高中数学,需要树立正确的解题思想与提高解题能力,下面将向大伙介绍高中数学的四大思想和六大法则,让大家来学会运用这部分容易见到的思想和法则,进而形成正确的数学解题思维,帮提高高中数学成绩。

高中数学容易见到的六大法则1、配办法所谓的公式是用变换分析方程的同构办法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。

通过配方解决数学问题的公式。

其中,用的最多的是配成完全平方法。

匹配办法是数学中不断变形的要紧办法,其应用很广泛,在分解,简化根,它一般用于求解方程,证明方程和不等式,找到函数的极值和分析表达式。

2、因式分解法因式分解是将多项式转换为几个积分商品的乘积。

分解是恒定变形的基础。

除去引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有大量办法可以进行因式分解。

还有一些项目,如拆除物品的用,根分解,替换,未确定的系数等等。

3、换元法替代办法是数学中一个尤为重要和广泛用的解决问题的办法。

大家一般称未知或变元。

用新的参数替换原始公式的一部分或重新构建原始公式可以更容易,更容易解决。

4、判别式法与韦达定理一元二次方程 ax2+ bx+ c=0根的判别, = b2-4 ac,不只用来确定根的性质,还作为一个问题解决办法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何与三角函数都有很广泛的应用。

吠陀定理除去知晓二次方程的根外,还找到另一根;分析到两个数的和和乘积的容易应用并探寻这两个数,也可以找到根的对称函数并量化二次方程根的符号。

求解对称方程并解决一些与二次曲线有关的问题等,具备很广泛的应用。

5、待定系数法在解决数学问题时,假如大家第一判断大家所探寻的结果具备肯定的形式,其中包含某些未决的系数,然后依据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这部分待定系数之间的关系。

为知道决数学问题,这种问题解决办法被叫做待定系数法。

高中数学解题技巧方法总结

高中数学解题技巧方法总结

高中数学解题技巧方法总结高中数学解题技巧方法总结总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能够给人努力工作的动力,快快来写一份总结吧。

总结怎么写才不会千篇一律呢?下面是小编整理的高中数学解题技巧方法总结,仅供参考,大家一起来看看吧。

高中数学常考题型答题技巧与方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式;选择用公式;十字相乘法;分组分解法;拆项添项法;3、配方法。

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法。

解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法。

待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式。

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式。

基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解高中数学的七大基本思想方法是:分类讨论法、递推法、画图法、符号法、假设法、构造法和倒推法。

第一,分类讨论法。

分类讨论法是指将问题中的条件按照具有共同特征的情况分别讨论,从而对问题进行全面深入的解析。

通过逐个分类讨论,找出各个情况的共性和特点,以及不同情况下的不同解决方法。

这种方法可以将复杂的问题变得简单明了,易于理解与解答。

举个例子,假设有一道题目要求求解方程2x+3=5的解集。

我们可以将其分为两类:当x为正数时,方程有且仅有一个解;当x为负数时,方程无解。

通过将问题进行分类讨论,我们可以得到方程的解集为{x,x=1}。

第二,递推法。

递推法是指通过已知的初始值或者关系式来推导出未知项的计算方法。

这一方法常常用于求解数列中的其中一项或一些项,以及解决一些逻辑推理问题。

在递推的过程中,可以发现规律,从而推导出一般项、通项、边界条件等重要信息。

以求解斐波那契数列为例,斐波那契数列的前两项为1,从第三项开始,每一项都是前两项的和。

我们可以利用这个关系式进行递推:F(n)=F(n-1)+F(n-2)。

通过递推,我们可以得到斐波那契数列的通项公式。

第三,画图法。

画图法是通过绘制几何图形的方法,对问题进行可视化的处理。

它可以使抽象的数学问题变得具体明了,通过观察图形的性质和特点,可以得到问题的解。

举个例子,假设要求解一个三角形的内角和。

我们可以通过画一个三角形,并在其中一点做垂线,将三角形划分为若干个小三角形。

通过观察这些小三角形,我们可以发现它们的内角和等于一个直角。

然后,我们可以用这个结论推导出原始三角形的内角和。

第四,符号法。

符号法是指通过引入合适的符号和代数运算,将实际问题抽象成为可以用代数式描述的数学问题。

通过对符号及其运算规则的运用,可以更加简洁地表达数学问题,进而进行求解。

比如,假设有一道题目要求求两个数的和,可以用符号法表示为a+b=x。

通过引入符号a、b和运算符号+,我们将实际问题抽象成了一个代数问题。

高中数学难题解题思路的“大道至简”

高中数学难题解题思路的“大道至简”

高中数学难题解题思路的“大道至简”高中数学难题的解题思路可以概括为“化繁为简,灵活运用”。

熟练掌握数学思想:例如,函数思想是解决“数学型”问题中的一种思维策略。

通过建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题和解决问题。

此外,函数方程的思想,归纳演绎的思想、数形结合、符合化思想、整体思想(不仅仅在物理中使用).......。

例如,遇到一个函数同构比大小的证明问题,优先观察题目给出的特点,先尝试同构,而不是惯性思维直接做差进行比较。

数学语言的语义训练:对于数学高考题目的难点就在于分析和转化,分析要求大家读懂题目,不是简单的认识字,而是要联系学过的知识,清楚有多少种解答的方法。

转化也是非常考验解题能力,怎样转化(高考数学题核心转化一般在4步以内),通常在难题解答时,也就是说换种说法,马上就有了解题思路,这也是日常训练中对于数学的语义做重点训练的原因。

注意特殊与普通意义的联系:一些命题在普遍意义上成立时,在个别情况下一定也成立。

根据这个标准,可以确定选、填题中的正确答案。

注意:特殊、极限的情况同样适用于探求主观题的解题思路,很有效(先假设后证明)。

例如,x属于实数,那么特殊值肯定符合,在抽象函数中体现的尤为明显。

用极限计算法则思考题目:对要求的未知量,先设想一个与它有关的变量,确认变量通过无限过程的结果就是所求的未知量,构造函数或数列,并利用极限计算法则得出结果,或者利用图形的极限位置计算出结果。

善用分类讨论法解题:解数学题时,通常到某一个步骤时,不能用统一的方法和公式继续下去,因为被研究的对象包含了多种可能。

此时,用分类讨论法来考虑多种可能性,全面地解决问题。

例如,含参问题解决的优先方法是分离参数,在分类讨论。

注意:分类讨论高考有轮换考的趋势,例如今年考了,隔年考的概率很大。

逆向思维:从问题的反面或侧面思考可能会有意想不到的收获。

以待求量作为已知量进行缺步解答,对于一些疑难问题,如果无法一次性解决,可以将其划分为一个个子问题或一系列的步骤,逐个解决。

更高更妙的高中数学思想与方法

更高更妙的高中数学思想与方法

更高更妙的高中数学思想与方法冲刺复习期间,要有针对性地进行知识复习,尽量多做历年中考真题。

选择课外习题或学习卷不是越多越好,而是要针对自己薄弱点进行针对性训练。

在做完一套真题试卷后,要及时核对答案,看看哪些题目丢分,弄清丢分原因。

通过选择性地做中考真题,与复习配套的习题要注意精选,特别典型性、通用性,能举一反三,不轻易重复训练做,通过适当训练可了解中考命题范围、题目深浅以及相关题型。

同时,平常反复易错的习题有目的地通过复印、剪贴的方式汇总,专门誊写在专用的错题本上,或用红笔做上记号,便于下一次复习。

2高中数学思想与方法一解法多样化:以其他学科比较,"一题多解'的现象在数学中表现特别,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。

经常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。

这个特色在高中数学中已经得到充分的显露。

因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中经常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。

因此,数形结合与形数分开的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

3高中数学思想与方法二换个方式看例题〔拓展〕思维空间:那些看课本和课本例题一看就懂,一做题就懵的高三同学一定要看这条!不少高三同学看书和看例题,往往看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。

所以,提醒各位高三同学,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

多从思维的高度审阅知识结构:高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解题的思想方法(经典)美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。

而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。

高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。

我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

高考试题主要从以下几个方面对数学思想方法进行考查:① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。

数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。

为了帮助大家掌握解题的金钥匙,掌握解题的思想方法,咱们就先介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。

最后谈谈解题中的有关策略和高考中的几个热点问题。

在每一个方法,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。

再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。

巩固性题组旨在检查学习的效果,起到巩固的作用。

每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

一、配方法从而化繁为简。

何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。

有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a+b) =a +2ab+b ,将这个公式灵活运用,可得到各种基本配方形式,如:a +b =(a+b) -2ab=(a-b) +2ab;a +ab+b =(a+b) -ab=(a-b) +3ab=(a+) +(b);a +b +c +ab+bc+ca=[(a+b) +(b+c) +(c+a) ]a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα);x +=(x+) -2=(x-) +2 ;…… 等等。

二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。

通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。

局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

例如解不等式:4 +2 -2≥0,先变形为设2 =t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。

如求函数y=+的值域时,易发现x∈[0,1],设x=sin α ,α∈[0, ],问题变成了熟悉的求三角函数值域。

为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。

如变量x、y适合条件x +y =r (r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。

均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。

如上几例中的t>0和α∈[0, ]。

三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x) g(x)的充要条件是:对于一个任意的a值,都有f(a) g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

四、定义法所谓定义法,就是直接用数学定义解题。

数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。

定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。

定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。

简单地说,定义是基本概念对数学实体的高度抽象。

用定义法解题,是最直接的方法,本讲让我们回到定义中去。

五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。

它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n≥n 且n∈N)结论都正确”。

由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。

运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。

直线与二次曲线的参数方程都是用参数法解题的例证。

换元法也是引入参数的典型例子。

辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。

参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。

参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。

运用参数法解题已经比较普遍。

参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。

七、反证法与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。

法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。

具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。

反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。

相关文档
最新文档