三相高压电能计量装置错误接线检查判断步骤
浅谈三相有功电能表接线检查方法及步骤
浅谈三相有功电能表接线检查方法及步骤摘要:在电力系统中,三相电能表的使用十分普遍。
因三相电能表配上互感器时接线复杂,容易出现接线错误。
电能表接线错误,不仅会产生计量差错,还有可能造成电能表损坏或人员伤亡事件。
为及时发现并更正错误接线,确保计量装置接线的正确,及时挽回电量电费损失、降低生产经营风险,对三相电能表进行接线检查十分必要。
本文主要阐述三相三线、三相四线两种有功电能表的正确接线方式、现场检查方法及步骤,通过实例分析,为处理错误接线提供处理建议。
希望能为电能表接线检查工作提供参考与借鉴。
关键词:三相四线、三相三线、有功电能表、接线检查前言:三相电能表应用非常广泛,当三相电能表配上互感器时,接线相对复杂,容易出现接线错误。
本文通过理论结合实例的形式,利用伏安相位表等工具,使用相量图的方法检查错误接线。
正文:一、三相四线有功电能表的正确接法三相四线有功电能表由3组电磁元件组成,正确接入时,接线如图1所示:第1元件接a相电流,a相电压;第2元件接b相电流,b相电压;第3元件接c相电流,c相电压。
在三相负荷均衡时,电能表计量电路的有功功率为:图1二、三相四线电能表接线检查方法使用伏安相位表对低压带电流互感器的三相四线有功电能表进行接线检查分析。
具体方法及步骤如下:1、测量线电压。
使用伏安相位表对三相四线电能表的第1、2、3元件电压端子进行线电压测量。
正常情况下线电压为;;;若非380V需检查电压是否反接、电压接线是否牢固。
2、测量相电压。
使用伏安相位表对电能表的第1、2、3元件电压端子对地端子进行相电压测量。
正常情况下相电压为;;;若出现0V或非全电压则可判断为断相。
3、测量三相对A点电压使用伏安相位表对电能表的第1、2、3元件电压端子对A点进行相电压测量。
正常情况下相电压为;;;测量为0V的元件端子表示接入的为A相。
如果出现两个0V或全为0V或全为380V,则可判断为电压短接。
4、测量相电流使用伏安相位表对电能表第1、2、3元件电流进线端子进行相电流测量。
电能计量装置的错误接线及接线检查方法
电能计量装置的错误接线及接线检查方法摘要:电能计量和电网的运行有着密切的关系,同时也显示了电力企业当前的技术水平,在实际工作中需要加强对电能计量装置接线问题的深入分析,满足准确和可靠的要求,搭建电力企业和用户之间的良好关系,同时还要做好先进技术的融入,对电能计量装置运行情况的全面监督,避免出现损伤利益的行为,以此来提高电能计量装置管理的效果,推动电力企业的稳定发展。
关键词:电能计量装置;接线错误;检查电能计量装置在电力企业中的重要性是非常突出的,满足发电供电用电等不同的需要,但是如果在电能计量装置中出现接线错误的话,那么会导致电能计量装置存在不准确的问题,因此需要相关岗位人员进行规范性的检查以及安装,避免由于接线故障而导致设备无法正常的运行。
从宏观性的角度提出更加科学的优化策略,保证电能计量装置的正确使用,以此来提高最终的经济效益和使用效果。
一、电能计量装置接线错误的原因(一)装置本身1.单相电路有功电能计量错误接线这一现象在实际工作中是比较常见的,主要是由于安装人员在接线过程中存在一定的失误,使得一些线路出现反接的问题,并且在一些线路接线时还会存在较严重的混淆情况,影响设备的正常使用。
与此同时,在电能计量装置接线时,并没有正确地区分进线和出线,在安装时存在盲目性的特点,影响接线水平的提高。
电能计量装置的电流线圈和电源之间的短路情况使得电能表无法正常的运行,这也是出现接线错误的主要原因[1]。
最后在日常工作中由于相关安装人员的疏忽导致电压够连片,并没有正确的连接,不仅会增加电能表日常使用的故障,还会导致后续的工作产生一定的影响。
2.三相四线电路有功电能计量接线错误在电能计量装置管理过程中,需要加强日常检查的重视程度,并且合理的区分好不同的区域,提高最终检查的效果。
在进行线圈连接时,电压线圈会出现断线的问题,以此导致了电能表出现接线错误的问题,同时在电能表正常运行时需要将电流互感器接入到设备中,但是如果相关安装人员并没有加强对设备结构的深入分析,那么也会出现接线错误的问题。
三相三线电能计量装置错误接线的判断和预防
三相三线电能计量装置错误接线的判断和预防【摘要】电能计量装置错误接线会给现场运行的设备带来计量误差,使得统计的数据不准确,影响系统工作。
文章介绍了电能计量装置电能表错误接线产生的原因,同时陈述了如何判断电能表是否存在错误接线,并简单给出了如何预防接线错误。
【关键词】电能计量装置;错误接线;电能表;预防措施1.引言为保证电能计量装置计量数据的准确性,必须保证其中的电能表接线正确。
电能表本身的计量的误差通常只有百分之几,可是一旦其计量回路的接线错误,所造成的误差可能就会激增到百分之几百。
这样,一旦计量出现几分误差,会造成几百几千分的误差量,导致大量的用电量差错,给企业和用户带来极大的经济损失和不便。
因此,对现场电能计量装置等设备的接线问题一定要有足够重视,确保电能表在正常的接线状态下计量电能。
电能表出现接线错误的种类数量很多,通常有:电流、电压互感器接反;电流、电压回路断路或断路;电能表的电流元件、电压元件不是接入对应相别的电流、电压等。
在这里,因为三相三线的高压计量装置是广泛应用于电力用户和电力系统的电能计量装置,因此,这里只分析三相三线电能计量装置错误接线的相关内容。
2.三相三线电能计量装置错误接线的判断方法为保证计量内容的准确性,电能计量装置的接线步骤是关键,必须保证电能计量装置的接线正确,并在其运行前和运行中进行定期检修,保证接线情况良好。
接线检查分为带电检查和停电检查。
以下情况需要停电检查:新装的电流、电压互感器;更换的电流、电压互感器;投入运行前的二次回路电能计量装置。
还有,在无法判断接线是否正确时已经投入使用的电能计量装置或需要进一步核实带电检查的结果时同样需进行停电检查,这里需要检查的内容是:核对电流、电压互感器的极性、变比、接线组别;进行二次电缆的导通和接线端子的检查。
在对计量装置进行停电检查结束后,投入运用时要进行带电检查,同时进行周期检查时也需进行带电检查,从而确保电能计量装置的正确接线。
三相三线电能计量装置错误接线检查作业指导书.doc
三相三线有功电能表错误接线检查作业指导书一、任务要求:1、遵守安全工作规程,正确使用仪表;2、画出向量图,描述故障错误;3、列出各元件功率表达式及总的功率表达式;4、求出更正系数 二、适用范围:电压互感器采用两台单相互感器按V/v 0方式连接,电流互感器采用分开四线制连接方式。
所接负载为一块三相三线有功电能表和一块三相三线(60°)无功电能表、电压回路阻抗对称的感性负载(容性负载的分析方法可类推)功率因数COS Φ>0.5(Φ<60°)。
三、配备工具:一块数字式相位伏安表(仅提供一组电压测试线和一个电流钳)。
四、相关知识:(一)三相三线有功电能表正确接线的相量图(二)正确功率表达式:)30cos(1u u uv I U P ϕ+︒= )30cos(2w w wv I U P ϕ-︒=ϕϕϕcos 3)30cos()30cos(210UI I U I U P P P w w wv u u uv =-︒++︒=+= )090:900:(οοοο≤≤-≤≤ϕϕ容性时感性时(三)电压互感器一次断线、二次断线、二次极性反接情况的电路分析。
1、电压互感器V 型接线一、二次断线时二次侧线电压数值表:下表列出了当一次断和二次断电压时,二次侧各相与相间电压的数值。
序号故障断线情况故障断线接线图(实线为有功电能表,虚线为无功电能表)电压互感器一、二次断线时二次侧电压(V)二次侧不接电能表(空载)二次侧接一只有功电能表二次侧接一只有功电能表和一只无功电能表Uuv Uwv Uwu Uuv Uwv Uwu Uuv Uwv Uwu1 一次侧U相断相0 100 100 0 100 100 50 100 502一次侧V相断相50 50 100 50 50 100 50 50 1003一次侧W相断相100 0 100 100 0 100 100 33 674 二次侧u相断相0 100 0 0 100 100 50 100 505二次侧v相断相0 0 100 50 50 100 67 33 1006二次侧w相断相100 0 0 100 0 100 100 33 672、V .v 接法电压互感器极性接反时的相量图及线电压 序号 极性接反相别接线图向量图二次线电压(V )1U 相极性接反U uv =100 U vw =100 U wu =1732W 相极性接反U uv =100 U vw =100 U wu =173 3 U 、W 相极性都接反U uv =100 U vw =100 U wu =100(四)电流互感器短路、断路、反极性的分析。
高压三相三线错误接线检测及分析
特殊角的三角函数值
简化公式
cos( ) cos cos sin sin
sin a tga cos a
Company Logo
四、基础知识
低压三相四线错误接线检测及分析
六角图
· -Ub
· Ua
· -Uc
· Uc · -Ua
Company Logo
六、应用实例
低压三相四线错误接线检测及分析
例2:某三相四线客户,现场测量U1=43V,U2、U3均在 228V 左 右 , U12=178V,U13=173V,U32=402V , 电 流 I1=1.21A,I2=1.20A,I3=1.20A,负载为感性20°, 测量U2/I1夹角82°,U2/I2夹角为199°,U2/I3夹 角为141°,U3/I3夹角21°,请分析错接线形式, 计算更正系数。
Ua
Uac
3000
Uca
3000 Uc Ubc Ub
Uba
ABC
Ua
BCA
Ua
Uc
CAB
Ua
Ub
逆相序
Uca 600 Uba Uac 600 Ubc Uc Ucb Ub Uc Ub Uc Uab 600
BAC
Ub
ACB
CBA
Company Logo
四、基础知识
低压三相四线错误接线检测及分析
Company Logo
六、应用实例
低压三相四线错误接线检测及分析
更正系数K计算的方法:
K P P
3UI cos UaIacos( 180 ) UcIbcos( 120 ) UbIccos( 120 ) 3 2
P3 UcIc cosc
高供高计三相三线接线错误检查及分析
高供高计三相三线 接线错误分析 测量演示 —— 测量U12与U31的相位角
保持“φ ”档位。 将电流钳插头拔出。 以U12为基准,红夹夹U1, 黑夹夹U2,用另一对电压笔, 红笔点U3,黑笔点U1。
在接线盒测量U12与U31的相 位角。
高供高计三相三线 确定接B相线错误分析
模拟屏接线: 以三相四线的接线方式,通过后台控制 输入电压、电流参数,可模拟三相三线 接线和三相四线接线。
如果考试现场贴有指定测量 点,则在指定的地方测量; 无指定说明可在电能表表脚 或接线盒操作测量。
高供高计三相三线 计量基础知识 高供高计三相三线计量的正确接线
表脚接线:
第一元件: 第二元件:
UAB,IA UCB,IC
正确计接线量功率基表达础式 知识
.
UAB
P = P1 + P2
= Uab·Ia cos(30°+φ )+ Ucb·Ic cos(30°-φ )
= UI(cos30°cosφ –sin30°sinφ )
.
UCB
+ UI(cos30°cosφ +sin30°sinφ )
= 2UIcos30°cosφ
.
Ic
课程内容目录
1 高供高计三相三线计量基础知识 2 数字双钳相位伏安表的使用 3 高供高计三相三线接线错误分析
数字双钳相位伏安 知识表点 的使用
数字双钳相位伏安表简介 测量电压 测量电流 测量电压与电压的相位角 测量电压与电流的相位角
数字双钳相位伏安 表的使用 数字双钳相位伏安表简介
数字双钳相位伏安 测量表电压的使用
测量电压值时可 使用“U1”或“U2” 插孔,注意电压 笔红插红,黑插 黑,并将档位打 到对应位置,高 供高计三相三线 接线正常电压 100V,量程使用 “200V”。 (如题目没标明 电压,电压档位 选择更高的那个)
三相三线电能表错误接线的判断方法分析
三相三线电能表错误接线的判断方法分析摘要:电能计量的准确性直接关系到供电企业和广大电力用户的经济利益。
文章简述了三相三线电能表错误接线的判断原理,然后进一步分析三相三线电能表错误接线的判断方法。
以三相三线制两元件有功电能表、电压互感器 V/V 接线B相接地为例,介绍了测量和判断的方法,通过现场测量接入电能表的电压、电流及其相互间的相位、相序,即可判断出电能表的接线方式。
关键词:三相三线电能表;接线错误;判断方法电能计量装置的正常运作是供电企业抄核收工作开展的前提,能否科学精准地进行电能计量,在一定程度上影响到抄核收工作的质量。
对于高压线路的高供高计用户来说计量装置选择的是三相三线电能表,然而在实际计量中经常出现错接线问题,影响电能计量装置的精准计量,且三相三线电能表错误接线问题不易被察觉,对此有必要掌握科学的计量技术和方法。
只有掌握科学的技术和方法,根据电能表错误接线的具体情况进行科学地预测、判断,才能确保及时发现问题,纠正计量表的错误接线。
1.三相三线电能表错误接线的判断原理确保相关电能计量工作开展的目的在于三相三线电能表需处于正常的接线状态,但由于电能表接线较为复杂,若工作人员专业性不强、操作能力较低,则出现错误接线的可能性极大,不利于相关电能计量工作的高效、顺利开展,故需对其错误接线的判断方法进行研究。
三相三线有功电能表存在三种电压,即Ua 、Ub 、Uc ,共有六种对应的接线方法。
可见,在日常工作中相三线电能表出现错误接线的几率大、种类多,对电能计量效果造成严重影响,而对错误接线的判断具体可从以下几点入手:通过电压测试的方式对电压相序、PT极性等是否存在反接现象进行明确;通过电流测试的方式对CT极性是否存在反接现象进行明确;通过相角与功率测试可得出电流与电压之间的夹角,并对二者之间的矢量相别进行明确,以最终明确得出电能表不同构件在实际运行中其电压与电流的相别。
(1)若利用相位表进行角度测量,则电能表电压Ua 、Ub 、Uc ,所对应的电流分别为 I1 、 I3 ,若是逆相序,相位角则呈逆时针旋转;若利用功率表进行功率测量,得出 I1 、 I3 ,再结合电能表电压端的相别,参照Coscp的数值和电流值,可准确确定I1 、 I3 的相别。
阐述三相三线电能表错误接线的检测方法
避 免错误 接 线的措 施
关键词 : 三相 三线 ; 电能表 ; 测技 术 检 电 能 表 的 电 压 端 钮 ,如 有两 午 对 地 电 压 为 H 10 , 对地 电 为 0 为 0一相定 为 B 相 , 0 V 一相 , 即两台电 互感器 VV接线 , B 丰 接地。 / 住 l { 3 3 录测量 电流 。 . 3 用卡钳卡住电流进出 线 分别 测m各相 电流的大小 。 3 根据相化角确定电压丰 序 A } 1 川 黑表笔接触 B相 电 , 红表笔接触 另 一 相 电压 , 卡钳 卡住一相 电流 , H 相位 角 , 测 ; 卡钳 不变, B相 电 不变 , 红表笔换 一 电压 相 , 出 测 靠 、 、 定运行 , 安全 稳 不仅需要高质量 、 度的 高精 相电流的另一角度 , 两次测量结果 比较 , 角 讨 表 汁, 量 更需要提倡科学 的检测和分 析手段 , 度小 的一 组对应电压 为 U b a ,角度 大的一组对 通过测 量 、 分析 和判 断 , 时纠正错 误接线 , 及 使 应 电压 U 。根据 U I 存表尾所处位 置 , 1 即 电能计量装置存系统运行 巾发挥最佳效能 。 定 电压 相 序 。 2选择检杏和分 析的方 法 3 . 5作罔 存电力系统和大 1业 电力 J 户中 , 量装 f j 计 根 据 已矢 电 十 序 测 卡 何 。测 出 U I 丌 H H ; 置的接线方式绝大多数为 三丰 线制 , H 采用三 I U J; J的角度。 U ; 在六角 罔上1 时针 出 f f 顷 相两元件电能表计量 电能 。 I l 根据 l I ,, , 上 的位 置 , 确定接 入电能表 使用相位表法带 电检查 电能表接线具体做 的实际 电流 。 根据实测结果 , 图上标 明第 ~组 存 一 法是 , 根据相位 表测 Ⅲ的电压 、 电流 、 相位 角联 元件接入 的电雁 、 电流及其相位 角 , 二组 元件 第 合绘 出六角罔 , 判断电能表错误 的拨线形式 , 接人 的电 、 及其相位 角。最 后 , 电流 根据各元 原理 是 : 一 电压 为参 考相 量 可测Ⅲ 三相 电 件所l 电 、电流硬其相位 角分别 写出功率表 用 个 』 』 口 流相量 , 或用 一个 电流参考相量测 出三相 电压 达式 、 总功率表达 式 、 计算斧 错 电量 , 并将错 误 十量 , 月 知道 了三相电压 、 电流相量 , 也就确 定 了 接线更正 。 鼍 电压 、 相 电流相 序。 相位表法可 以直接 凄 电 4榆测与分析过程 _注意事项 十 J 压与 电流之 间的l 角行I 卡 H 在六角罔纸 卜 ,而凡 41安 全问题 . 操作 简 、 辅助设 备少 , 冀方法 准确 , 易掌 测 容 电II ̄ I I电检查是 工作 互感 器二次 回路 握 ,通过多年 的现场实践 , 解决 了许多技术难 上 , 必须严格遵守《 电业安仝 一作规 》 I 的规定 , 题, 至今一直被推 J运用 。 一 特别 是要 泮意 电流互 感器 二 次 叫路 不 允许 开 3检测与分析 路 ,j l为电流互感 器是在短路状态 下一作 的 , 大 [ 一 3 正确使片测量:具 . 1 】 旦二次开路 , 则二次电流 的去磁作门不 复存 在 , j 以使片 M 2 0 j G 0 0型相 位表 为例 ,根 掘 自 这样二次线圈感应 的电势非 常商 , S 对人 身和设 己的工作 经验 , 具体 做法是 : 量 电压 , 测 将旋 钮 备造 成极 大危 险 .电压 互感器二次 路 不允许 开关 选择 “ ”电压线 插入标 有 “ 的捕孔 , u, U” 并 短 路 ,因为有 时继电保护 与计量共刖一绀 电压 注意黑 、 红笔的颜色与相位表插-x 应 ; 钮开 fq 旋 L 感 器 , 旦 电压互感器二次短路 , 一 一 不仅会损 坏 关选择 “ 测量 电流 , 电流卡钳连线 插入标 有 儿感器本 身 , 会使保护装置 误动 , l ” 将 还 造成严重后 “’ I的插孔 , 种组合使 得测量 相位 “” 以电 果 。 这 ‘时 p 压为参 考量。如果使用 “ I组 合形式 则以电 u” “” 4 . 握关弛 点 2把 流为参考量 , 测量电压 、 电流应选择与被测量相 4 . B相 电压 为公共端 测量卡 位 、 .1以 2 H 定 对应的档位 ,测电流时注意流入卡钳 的极性 和 电脎牛 序 ,黑表笔必须 接触判 明的 l H H {卡 电压 , 使电流线处于卡钳中间 ,以减少 工具带来 的 红表笔依 次接触 另外 两干电 测相位 ;这样得 日 误差。 出的电压埘应 U ( u ) 或( 。 或 、 , U ) u 3 . 2测黾 的选择 4. .2确定 电压相序的依据。以某~相 电流 2 现场运行 的计量装置 ,为了便丁对 电能表 进仃 }试 与维护 , { l ! l J 互感 器二次侧与 电能表之 间 是通过各种 试验接线端子( 或转 接线盒 ) 构成 网 路, 如果选枉试验接线端 子测量 , 当互感器二次 到接线端 子的连线正确 ,而接线端子剑 电能表 接线错 误, 这样测量便没有 意义 , l 到真实 为r 得 可信 的测量结 果 , 量点选 存电能表表尾处 , 测 效 果更佳。 3 _ 3测量 的 3 . 记 录测昔 电 . 别测量 电能表端钮 .1 3 . 分
高压计量装置的错误接线检查方法
高压计量装置的错误接线检查方法摘要:随着人们对电量要求的增多,人们对高压计量装置的研究也投入了极大的重视,高压计量装置的数量也随之增多。
高压计量装置在运行和使用到的过程当中,倘若因为考虑不周或者操作失误等原因引起接线错误的情况下,会导致其他危险的产生,所以,需要说明一下比较常见的高压计量装置的接线错误方式,同时,对这些接线错误进行深入的探究以及分析,并给出科学、合理的解决措施。
关键词:高压计量装置;错误接线;检查方法导言:电能计量装置在电力系统中,起到记录电力用户用电实际情况,维护电力用户合法权益,避免漏电、偷电等问题发生的重要装置。
电力计量装置安装,应该认真检查、核对,观察互感器、电能表常见的问题,确保其能够稳定、安全运行。
仔细调整电能表、互感器的倍率。
要保证其二次负载在额定范围内。
在选择接线方式的时候,必须要综合考虑到线路的整体情况,确保接线方法的准确性,这样才能保证安装质量。
1 电能计量装置接线错误检查随着社会经济的快速发展,人们对电能的需求量也在不断提升,在这样的背景下,我国电力企业获得了巨大发展,所以市面上的电能计量装置种类也在不断增多。
一般来说,电能计量装置会出现装置损坏、装置异常两种情况,装置异常分为回路异常、表内异常、计量柜异常,工作人员需要结合计量装置的特点,来对其异常原因进行排查。
通过电能表现场校验仪来检查电能计量装置的接线错误,在电力计量装置种类不断增多的背景下,该检测方法的准确性也在不断降低。
因此,在电能计量装置错误检查中,还需要用电源辅助检查的方式来进行检验。
目前,常见的接线错误有48种,而一般的检测技术也只能检测出这48种错误。
所以,必须要对电能计量装置接线错误有足够的重视,对其检测方法进行创新,这样才能保证电能计量装置的检测效果。
2 电能计量装置接线错误种类2.1 单相接线错误单相接线错误的表现形式较多,其主要原因是因为电能表电流线圈接线错误,从而导致电能表在运行过程中不能朝着正确的方向运转,而在断开电压连接片之后,电能表则无法正常转动。
电能计量装置错误接线检查
检查步骤
8、计算更正系数K=P/ P′,|K|>1,表 慢,反之,表快。K>0,表正转,K<0, 表反转。若P′=0,则表不走,无更正系 数。 9、计算退补电量△W=(|K|-1)×|W|, 其中W为将相位伏安表置于U1U2处, 按默认的ABC顺序将红色导线接入A相电 压接线端子,黑色和白色导线相连接入B 相电压接线端子,黄色导线接入C相电压 接线端子,测得相位角为300°为正相序, 若为60°则为反相序。
检查步骤
3、找b点:将伏安相位表的档位置于电 压量程的相应档位,测各电压接线端子 与接地点之间的电压,寻找等电位点。 若哪相的电压值接近零,测为b点。然后 确定电压的接入顺序,并确定两个元件 接入的线电压。
检查步骤
4、测相位角:将相位伏安表的档位置于U1I2 处,将电压测试导线红色导线接在A相电压端 子,黑线接在B 相端子上,电流卡钳I2极性端 向下卡入第一元件的电流进线,测出接入第一 元件的电压和电流之间的相位角,记录;同理 将红色导线接在C相电压接线端子上,黑色不 动,I2卡入第二元件的电流进线,测出接入第 二元件的电压和电流之间的相位角,记录。
检查步骤
5、作出相量图:先作出相电压矢量图, 然后分别作出接入第一元件和第二元件 的线电压矢量,从第一元件的线电压矢 量开始沿顺时针方向旋转,据测得的相 位角作出接入第一元件的电流矢量,同 理作出第二元件的电流矢量。确定接入 第一元件和第二元件的电流。
检查步骤
6、画出错误接线图:根据相量图作出错 误接线图。 7、写出错误的功率表达式:根据测得的 两元件的线电压和电流及电压和电流之 间的相位角,写出功率表式P′=P1+P2
电能计量装置错误接线检查
李昌慧
BY1995双钳相位伏安表的简介
带电检查电能高压计量箱装置接线的方法和步骤资料
带电检查电能高压计量箱装置接线的方法和步骤电能计量装置中单相电能表只有一组电磁元件,接线较为简单,出现接线错误时容易发现。
三相四线电能表可以看成由三只单相电能表所组成。
采用分相法即可检查接线的正确与否。
经电流互感器(TA)、电压互感器(TV)接入的三相三线电能表误接线的种类和几率较多,特别是当前农网改造中更换此类表计较多的实际情况,出现接线错误,往往不易判断,而且由于该类表计所计量的电量大,其影响和后果也严重。
现以此类电能表为例浅析接线检查的方法和步骤。
1 电压回路的接线检查(1)测量各二次回路的线电压:在测量Uab、Ubc、Uca时,其值应接近相等且为110V。
测量过程中如发现三组电压不相等,且数值相差较大时,说明TV有一、二次侧断线、熔丝烧断或绕组反接等情况。
①对于采用V/V接线的TV,如线电压中有0V、50V等情况出现时,可能是一次或二次断线。
有一组电压为170V时,说明有一台TV绕组极性反接。
②对于Yyn接线的TV,当测量线电压的值中有58V出现时,说明有一次断线或一台TV绕组极性反接现象。
③带有表计等负载进行测量时,出现二次断线时不论采用何种方式接线的TV,没断的两相之间电压值总为100V其它两组电压按负载阻抗分配。
(2)检查接地点确定相别,用一只电压表一端接地,另一端依次接电能表三个电压端钮,可以判断TV的接地情况。
①电压表三次均指100V,说明TV二次侧回路没有接地,构不成回路.②两次为100V,一次为0,说明可能是两台单相互感器V形连接,也可能是三只单相TV或一台三相五柱TV为Y形连接。
以上三种均可断定B相接地,为0的一相即为B相,根据相序可以定出A相和C相.③三次均指100/ V,说明TV是Y形连接且中性点接地,这种情况一时还不能定相别。
(3)测量三相电压的相序:它应符合接线图规定。
如测出的是逆相序,有功表虽然正转,但因有相序误差,除正弦无功表外,其它无功表都将反转,接线时要把它改为正相序。
电能计量装置错误接线判断分析与处理
电能计量装置错误接线判断分析与处理【摘要】三相三线错误接线判断原理、三相三线测量数据、错误的相量图、更正系数、追退电量、错误接线图、三相四线测量数据、三相四线的错误向量图及更正系数和错误接线图、【关键词】元件、相别、相电压、线电压、电流、夹角、参考点、相量图、更正系数、接线图前言:电能计量装置准确与否直接关系企业的经济效益和社会的效益,掌握电能计量装置接线检测是每个计量工作者必须具备技能,掌握错误接线判断分析、以便计算更正系数,追退电量,维护企业和用电户的合法权益。
1、三相三线错误接线判断处理1.1三相三线错误接线判断原理三相三线电能计量装置电能表二元件构造正常接线第一元件:电压、电流为 Uab Ia第二元件:电压、电流为 Ucb Ic判断错误接线需测量数据,一般用,元件指的表尾一般用1、2、3来表示,表示接入的位置,所以,测量数据元件表示:第一元件:电压、电流为 U12 I1第二元件:电压、电流为 U32 I3这样画向量图时就可以把元件和相分开、元件指的表尾一般用1、2、3来表示,相别用A B C来表示1.2、三相三线需要测量数据(1)测量赋值-伏安相位仪测量:测量电压、电流的大小,能够判断是否存在断线问题U12 = U32= U31= I1= I3=U1-地= U2-地= U3-地=(2)需要测量相位:∠U12U32=∠U12I1 =、∠U32I3=、∠I1I2 =(3)相序判断∠U12U32= 300° 表示正相序 abc、bcc cab∠U12U32= 60°表示逆相序acb bac cba(4)三相三线需要找参考点用伏安相位仪电压测量黑笔按电能表装置上Ub(零)电压参考点红笔分别接电能表尾三元件U1 U2 U3哪个与Ub(零)参考电压为零,则表示该元件为Ub 例如:1 2 30(B)1.3、根据电压相别绘电压向量图(1)可以先以相别定坐标,建立坐标系,然后根据电压相序标注元件电压,电压 Ua Ub Uc注意因是矢量,所以应点点(3)根据前面判断的电压相序,以及接地相,判断第一、第二元件接入的电压,然后在相量图上标出U1 U2 U3 ,再画出U12 U32 。
三相三线电能计量装置错误接线判断分析
三相三线电能计量装置错误接线判断分析发表时间:2019-01-15T15:58:55.030Z 来源:《基层建设》2018年第34期作者:项国钢[导读] 摘要:电能计量装置错误接线不仅会导致现场运行设备产生计量误差,而且还会导致统计数据失真,从而对整个电力系统的正常运行产生不利影响。
广东电网有限责任公司阳江阳西供电局广东阳江 529500摘要:电能计量装置错误接线不仅会导致现场运行设备产生计量误差,而且还会导致统计数据失真,从而对整个电力系统的正常运行产生不利影响。
本文将会对三相三线电能计量装置错误接线的判断方法进行介绍,为具体工作开展提供参考。
关键词:三相三线电能计量装置;错误接线;判断方法;预防措施对于电力系统而言,为了确保电能计量装置计量数据的真实性、准确性,就需要保证电能表接线正确。
通常情况下,电能表本身计量误差仅有百分之几,但是如果计量回路的接线出现差错,将会导致计量误差增到百分之几百,不仅会诱发大量的用电量差错,而且还会影响用户及电力企业的经济效益。
因此,要对电能计量装置错误接线问题给予高度的重视,以确保电能表可以在正常的接线状态下对电能进行计量。
实际上,电能计量装置错误接线种类比较多,常见的有电压、电流互感器接反;电能表的电压元件、电流元件未接入对应相别的电压、电流;电压、电流回路断路等,这些都会对电能计量结果产生影响。
在电力系统和电力用户的电能计量装置中,三相三线高压计量装置得到了广泛的应用,因此对三相三线电能计量装置错误接线问题进行分析,并提出错误接线判断方法至关重要。
1.三相三线电能计量装置错误接线判断措施 1.1有功电能计量装置的计量通常情况下,不管电能表所接负载是感性还是容性,只要其可以正确接线,将会保证有功功率沿着同一个方向进行传输,并使计量表处于正转状态。
然而,电能表处于正转状态并非是判断电能计量装置接线正确的唯一标准。
当然,如果是电能表反转、不转或随着功率因数(cosφ)值的变化时而正转,时而反转,则该电能表可能存在错误接线问题。
电能计量装置错误接线检查分析
目录实例一错误现象为表尾电压正相序WUV;电流相序I u I w 方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线方法三:利用在向量图上对电压电流进行分析,判断错误接线实例二错误现象为表尾电压逆相序VUW;电流相序I u I w;U相电流极性反方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线方法三:采用在相量图上对电压电流进行分析,判断错误接线实例三错误现象为表尾电压正相序WUV;电流相序 I w I u;功率因数为容性方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线方法二:使用相位表,采用不对地测量电压的方法确定V相电压,分析判断错误接线方法三:使用相位表,利用向量图分析判断错误接线实例四错误现象为表尾电压逆相序UWV;电流相序 I u I w;电流W相极性反;功率因数为容性方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线方法二:使用相位表,采用不对地测量电压的方法确定V 相电压,分析判断错误接线方法三:使用相位表,利用向量图分析判断错误接线实例五错误现象为表尾电压正相序VWU;电流相序 I u I w;TV二次侧 U相极性反方法一:使用相位伏安表测量数据,分析 TV二次侧不断相极性反时的错误接线方法二:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线方法三:使用相位伏安表测量数据,利用原理图分析TV二次侧不断相极性反时的错误接线实例六错误现象为表尾电压逆相序UWV;电流相序I w I u;W相电流极性反; TV二次侧 W相极性反方法一:使用相位表测量数据,分析TV二次侧不断相极性反时的错误接线方法二:使用相位表测量数据,分析TV二次侧不断相极性反时的错误接线方法三:使用相位伏安表测量数据,利用原理图分析TV二次侧不断相极性反时的错误接线实例七错误现象为表尾电压正相序VWU;电流相序I u -I w; W 相电流极性反; U相电压断方法一:使用相位表,采用对地测量确定V 相电压的分析方法方法二:使用相位表,采用不对地测量确定V 相电压的分析方法实例八错误现象为表尾电压逆相序WVU;电流相序I w I u; W相电压断方法一:使用相位表,采用对地测量确定V 相电压的分析方法方法二:使用相位表,采用不对地测量确定V 相电压的分析方法附录一常用数学有关公式附录二怎样画向量图实例一错误现象为表尾电压正相序WUV;电流相序 I u I w 方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析错误接线一、测量操作步骤:1.将相位表用于测量电压的红笔和黑笔分别插入U1侧相对应的两个孔中。
电能计量装置错误接线检测步骤及方法研究
电能计量装置错误接线检测步骤及方法研究发表时间:2019-04-08T11:13:19.077Z 来源:《建筑模拟》2019年第3期作者:孙新宇[导读] 电能计量装置接线错误会对电能计量结果产生严重的影响。
采用合理的电能计量装置错误接线检测方法,有利于快速判定错误接线位置,提高电能计量装置线路维修效率。
孙新宇广东电网河源紫金供电局有限责任公司广东河源 517400摘要:电能计量装置接线错误会对电能计量结果产生严重的影响。
采用合理的电能计量装置错误接线检测方法,有利于快速判定错误接线位置,提高电能计量装置线路维修效率。
文章分析了电能计量装置错误接线的类型,并进一步探讨了电能计量装置错误接线的检测步骤及方法,以供相关人员参考。
关键词:电能计量装置;错误接线;检测方法;三相三线电路;三相四线电路现阶段,国家电网及南方电网通过电能计量装置对电力用户的用电量进行测量与统计,并根据该统计结果与用户之间进行电能交易结算,同时这也是供电公司内部考核所需数据的基本来源。
电能计量装置接线的正确性,对计量结果的准确程度有决定性影响。
但从实际情况来看,受各种因素影响,电能计量装置时常出现接线错误。
因此,必须采取合理方法,对电能计量装置的错误接线进行检测检查,以充分保证电力用户的正常用电及计量。
1.电能计量装置错误接线的常见类型1.1电能计量装置单相错误接线单相错误接线有诸多表现形式,其中电能表电流线圈反接是最为常见的错误接线方式。
该错误接线方式会造成电能表出现反转运行状况,将电压连接片断开之后,电能表不能继续转动。
究其原因,有以下几个点:第一点,电力人员操作失误导致相线与零线出现反接现象;第二点,电力人员在安装电能计量装置时,未合理、明确地区分开装置进线与出线;第三点,在接线过程中,电源与电流线圈之间发生短路现象;第四点,在单向接线过程中,电力人员将二次极性错误反接,造成电能计量装置不能继续转动。
1.2电能计量装置三相三线电路错误接线在判断电能计量装置的三相三线错误接线时,电力人员会面临较大困难,如果接线错误出现之后,没有第一时间进行检查处理,将会导致其影响范围进一步扩大。
三相三线错接线操作
一、 高压电能计量装置接线检查1.准备工作1.1设备及工器具错接线仿真模拟装置、相位表、计算器、量角尺、测试导线、螺丝刀、验电笔等。
1.2 注意事项(1)电流互感器二次回路严禁开路。
(2)电压互感器二次回路严禁短路。
2.接线检查步骤(1)测量三相电压。
用带鳄鱼夹的电压测试线接入U 1通道,转换开关打到U 1的500V 位置,测量U 12 =?、U 23=?、U 31=?;测量后取下电能表头上的带鳄鱼夹的电压测试线。
(2)测量三相电流。
将转换开关打到I 2的10A 档的位置,用带钳头的电流测试线接入I 2通道,测量I 1 =?、I 2 =? I 3 =?;若电流小于2A ,则应将钳头离开电能表头,将转换开关打到I 2的2A 档的位置,重新测量I 1 =?、I 2 =? I 3 =?。
(3)测量三相电流与电压U 1的夹角。
将转换开关打到φ的位置,用带鳄鱼夹的电压测试线接入U 1通道,用带钳头的电流测试线接入I 2通道,测量U 12 与I 1的夹角=?、测量U 12 与I 2的夹角=?测量U 12 与I 3的夹角=?(4)测量电压相序。
保留转换开关在φ的位置,将鳄鱼夹的电压测试线接入U 12,在U 2通道接入带探针的电压测试线接入U 32,测量U 12与U 32的夹角,等于300°时为正相序,等于60°时为反相序。
3、根据测量结果画出相量图(1)分析电压相位根据电压相序结果画出U 1、U 2、U 3的位置,根据I 1、I 2是什么电流,就可确定U 1、U 2、U 3是什么电压。
(2)根据Iw 恒定滞后Iu 的角度为240°的电工理论,分析相应的电压相位, Uu 的就近电流应为Iu (Iu 滞后Uu ),Uw 的就近电流为Iw (Iw 滞后Uw )。
(3)重新标注电压、电流相量。
4、错误接线结论判断写出表尾电压接入方式:电流接入方式:表尾电流进出反接相:5、写出错误接线功率表达式并化简2232111221cos cos ϕϕI U I U P P P +='+'='注意:若接入的是反相电流,即a I -或c I -时,其负号不参与运算,(U 为相电压)6计算更正系数(G x ) P P G x '=式中 P —为正确接线期间的功率表达式。
三相三线电能计量装置错接线的判断 林仲硕
三相三线电能计量装置错接线的判断林仲硕摘要:电能计量装置正确接线是保证计量准确的前提,带电检查一般是对于运行中的计量装置进行检查,主要内容是测出其运行时的各类电参数(电流、电压、相位角等),然后根据这些电参数进行分析判断接线正确与否。
而且,电能计量装置错接线的判断在现阶段用电检查、装表接电、电能表校验工等营销技能培训考试中也是要求掌握的技能之一,也是一个难点;因此,不止计量人员,必须熟悉和掌握电能计量装置的带电检查接线的方法,对营销人员也要求掌握。
关键词:三相三线;错误接线;方法;步骤前言三相三线两元件的电能表由于是由A、C两相电流和A、B、C三相电压组合而成,容易由于错接线而造成计量失准,同时也是带电检查、判断错接线的一个难点。
本文根据各种培训教材介绍的方法,结合多年现场测试及室内试验,总结出三相三线电能计量装置错接线的分析方法和步骤。
一、错误接线判断方法对电能表是否为错接线进行判断之前,必须通过带电检查进行初步的分析,以确定互感器二次回路是否存在开路、短路或者极性接反等现象,并可通过初步分析判断出接地点、电压相序以及初步的接线情况判断,为下一步的深入判断提供必要的参考。
1、测量U10、U20、U30的电压值,哪项为0时,表示该项为B相。
当0电压未出现时,表示B相断相。
当出现电压异常时,例如只有几十伏的电压,(此时的电压大小跟表尾的负载有关联)而非相电压时,则为该元件电压断相。
当出现电压断相时,可简单分为两种情况考虑:一是B相断,此时U10、U20、U30皆不为0V;二是B不断,此时可在U1,U2,U3中找到谁为B相,并能判断出是哪一元件电压断相。
此时无法判断的是哪一相电压断,判断方法为测量相电压与2元件电流夹角,假设电流的状态来反推电压,如果能确定已知的相电压是由哪相与B的组成,则断相的是谁也就可以判断了。
电流的状态可以通过测量电压来实现,进而在向量图中确定电流的位置,再根据电流和电压的夹角,来排除错误答案;2、测量I1、I2的值,观察是否有异常现象,如果电流很小,我们需判断电流是否短路或开路,短路和开路在表尾体现的电流都十分小,但仍然有区别,短路在表尾仍然有小电流的存在,但是开路是没有的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相电压相序 正相序
Uu U 1
3、画出错误接线相量图:
⑴根据测定的三相电压相序及三相电流相位作图;
⑵分析判断电流相位;
⑶确定
Iu Iv
、
、
Iw
;
⑷根据电流确定就近的电压相别。
画图错误接线向量图
2
U U
1
(
)
U
I
I 1 (I U )
(I W ) I 3
(
U U
W
=(3-1)×200×50/5 =4000(kWh)
答:应追补电量为4000kWh。
三相四线低压电能计量装置 错误接线检查判断步骤
例题:某客户高供低量电能计量装置
接线错误,其负载平均功率因数为 0.8 L (滞后),错误接线期间电能表计数变化
量为200 kWh( TA变比:300/5 ),请
按照下列步骤进行错误接线检查判断,并
计算退补电量。 (cos =0.8L、 =
36.87°、tg =0.75)
1、测量三相电压值及三相电流值:
U1=225 U2=224 U12=391 I1=2.49 U23=390 I2=2.50
U3=225
U31=391 I3=2.49
2、测定三相电压相序及三相电流相位
U
U、 I
Байду номын сангаас
U2
U3
I1
I2
I3
U1
120° 240° 37° 337° 277°
p
, 3
=UU IU cos =
UV IV cos(180 ) UWIW COS
UI cos
7、计算更正系数:
p0 G= = , p
3UI cos = 3 UI cos
3UI cos p,
8、计算退补电量:
△W = (G-1)W’
)
3
I 2 ( I V )U U
2
(
)
V
4、画出错误接线图 (包括电能表、互感器等):
5、错误接线判断结论:
第一元件: UU , I u ; 第二元件:
UV ,- IV 。
第三元件:
, IW Uw
6、写出错误接线下的功率表达式:
p= p p
, 1+
,
, 2 +