数学物理方程总结材料

合集下载

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳数学和物理是息息相关的学科,数学在物理中起着重要的作用,许多物理规律都可以用数学方程式表达。

在学习物理时,掌握数学方程式是必不可少的,以下是数学物理方程知识点的归纳。

1.牛顿第一定律牛顿第一定律又称为惯性定律,它表明物体保持运动状态的惯性,只有外力才能改变物体的运动状态。

牛顿第一定律的数学表达式为F=ma,即力等于质量乘以加速度。

2.牛顿第二定律牛顿第二定律是物理学中最重要的定律之一,它描述了物体的运动状态和所受的力之间的关系。

牛顿第二定律的数学表达式为a=F/m,即加速度等于力除以质量。

3.牛顿第三定律牛顿第三定律又称为作用与反作用定律,它表明对于每一个作用力,都存在一个相等而反向的反作用力。

牛顿第三定律的数学表达式为F1=-F2,即作用力等于反作用力的相反数。

4.万有引力定律万有引力定律是描述物体之间万有引力作用的定律,它表明两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

万有引力定律的数学表达式为F=Gm1m2/d2,即引力等于万有引力常数乘以两个物体的质量除以它们之间的距离的平方。

5.波动方程波动方程是描述波动现象的方程,它可以用来描述声波、光波等波动现象。

波动方程的数学表达式为y(x,t)=Asin(kx-ωt+φ),即位移等于振幅乘以正弦函数,其中k是波数,ω是角频率,φ是初相位。

6.热传导方程热传导方程是描述热传导现象的方程,它可以用来描述物体内部的温度分布随时间的变化。

热传导方程的数学表达式为∂u/∂t=k∇2u,即温度变化率等于热扩散系数乘以温度梯度的二阶导数。

7.量子力学方程量子力学方程是描述微观粒子运动的方程,它可以用来描述电子、质子等粒子的运动和相互作用。

量子力学方程的数学表达式为Hψ=Eψ,即哈密顿算符作用于波函数等于能量乘以波函数。

8.电动力学方程电动力学方程是描述电场和磁场相互作用的方程,它可以用来描述电磁波、电荷运动等现象。

数学物理方程归纳总结

数学物理方程归纳总结

数学物理方程归纳总结数学和物理方程是科学研究中的重要工具,广泛应用于各个领域。

本文将对一些常见的数学物理方程进行归纳总结,分析其数学意义和物理应用,并探讨其背后的原理和推导过程。

1. 一维运动方程一维运动是物理学中最简单的情形之一,其运动状态只涉及一个方向的变化。

常见的一维运动方程有:- 位移公式:$S = V_0t + \frac{1}{2}at^2$- 速度公式:$V = V_0 + at$- 速度与位移的关系:$V^2 = V_0^2 + 2aS$这些方程描述了质点在匀加速度下的运动规律,其中$S$ 表示位移,$V_0$ 表示初始速度,$a$ 表示加速度,$t$ 表示时间,$V$ 表示末速度。

这些方程在解决一维运动问题时具有重要的应用价值,可以帮助我们计算物体的位移、速度和加速度等物理量。

2. 牛顿力学方程牛顿力学是经典力学的基础理论,在描述宏观物体运动和相互作用时非常重要。

牛顿三定律是牛顿力学的核心,其表述为:- 第一定律(惯性定律):物体在不受外力作用时保持静止或匀速直线运动。

- 第二定律(运动定律):物体受到的合力等于质量乘以加速度,即 $F = ma$。

- 第三定律(作用与反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。

根据牛顿第二定律,我们可以推导出一些重要的等式,用于解决各种力学问题。

例如,结合万有引力定律,我们可以得到开普勒第三定律 $T^2 = \frac{4\pi^2}{GM}r^3$,其中 $T$ 是行星公转周期,$G$ 是引力常数,$M$ 是太阳的质量,$r$ 是行星与太阳的平均距离。

3. 麦克斯韦方程组麦克斯韦方程组是电磁学的基础方程,描述了电磁场的产生和传播规律。

麦克斯韦方程组包括四个方程:- 高斯定律:$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$- 安培定律:$\nabla \cdot B = 0$- 法拉第电磁感应定律:$\nabla \times E = -\frac{\partial B}{\partial t}$- 完整的麦克斯韦方程:$\nabla \times B =\mu_0J+\mu_0\varepsilon_0\frac{\partial E}{\partial t}$其中,$E$ 和 $B$ 分别表示电场和磁场,$\rho$ 表示电荷密度,$J$ 表示电流密度,$\varepsilon_0$ 是真空中的介电常数,$\mu_0$ 是真空中的磁导率。

数学物理方程复习资料

数学物理方程复习资料

∞ n=1
bn
sin= nπl x (x ∈ C), 其中 bn
2= l f (x) sin nπ xdx (n 1, 2,3, ).
l0
l
∑ ∫ 当 f (x) 为偶函数时, f (x) = a20 + n∞=1 an cos= nπl x (x ∈ C), 其中 an
2= l f (x) cos nπ xdx (n
的常微分方程,并由齐边值条件可得固 有值问题。
二阶线常性微齐分次方微程分方程→
特征方程为 r2 + λ =0
求解固有值问题,即解出固有值以及固 有函数
结合定解条件讨论 λ 的取值范围
确定系数,由选定的固有值来求 T (t) ,
进而得到一系列特解,然后利用叠加原 理叠加特解得到一个无穷级数解,并由 初始条件确定无穷级数的系数。 M2 积分变换法 根据自变量的变化范围以及定解条件 的具体情况,选取适当的积分变换。然 后对方程两端取变换,把一个含两个自 变量的偏微分方程化为含一个参变量 的常微分方程。
(1) 固定端(第一边值条件= ): u = x 0= 0, u =x l 0, t ≥ 0
(2) (3)
自由端(第二边值条件= ): ∂∂ux = x 0= 0, ∂∂ux=x l 0, t ≥ 0
弹性支承端(第三边值条件= ): (∂∂ux + σ u) x 0= =0, (∂∂ux + σ u) x l =0, t ≥ 0 ,其中σ = k / T 。
1.偏微分方程&数学物理方程:含有未知多元函数及其偏导数(也可仅含有偏导数)的方程称为偏微分方程; 描述物理规律的偏微分方程称为数学物理方程。 2.方程的阶:偏微分方程中未知函数的偏导数的最高阶数;

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳
数学和物理是紧密相关的学科,数学物理方程是两个学科的交叉点。

下面将对数学物理方程的知识点进行归纳。

1. 微积分
微积分是数学物理方程中最基础的知识点之一。

微积分包括微分和积分两个部分。

微分是研究函数变化率的工具,积分是研究曲线下面积的工具。

微积分在物理学中有着广泛的应用,例如牛顿第二定律、万有引力定律等。

2. 偏微分方程
偏微分方程是数学物理方程中的重要知识点。

偏微分方程是描述物理现象的数学模型,例如热传导方程、波动方程等。

偏微分方程的求解需要使用到数学分析和数值计算等方法。

3. 矩阵和线性代数
矩阵和线性代数是数学物理方程中的另一个重要知识点。

矩阵是一种数学工具,可以用来表示线性方程组。

线性代数是研究向量空间和线性变换的学科。

矩阵和线性代数在物理学中有着广泛的应用,例如量子力学中的哈密顿算符等。

4. 微分方程
微分方程是数学物理方程中的重要知识点。

微分方程是描述物理现象的数学模型,例如运动方程、电路方程等。

微分方程的求解需要使用到微积分和数值计算等方法。

5. 概率论和统计学
概率论和统计学是数学物理方程中的另一个重要知识点。

概率论是研究随机事件的学科,统计学是研究数据分析和推断的学科。

概率论和统计学在物理学中有着广泛的应用,例如热力学中的熵等。

以上是数学物理方程的知识点归纳,这些知识点是物理学家和数学家研究物理现象和数学问题的基础。

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。

本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。

一、微积分微积分是数学和物理学中非常重要的一个分支。

其中,微分和积分是微积分的两个基本概念。

微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。

微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。

二、向量向量是几何学和物理学中非常重要的概念。

向量具有大小和方向两个属性,可以表示物理量的大小和方向。

向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。

三、力学力学是物理学中研究物体运动和相互作用的学科。

其中,牛顿三大定律是力学的基础。

牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。

四、热力学热力学是物理学中研究热量和能量转化的学科。

其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。

热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。

五、波动波动是物理学中研究波的传播和相互作用的学科。

其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。

波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。

数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。

这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。

数学物理方程知识点汇总

数学物理方程知识点汇总

数学物理方程是研究自然现象和科学问题的基础工具,下面是数学物理方程的一些知识点汇总:
微积分:微积分是研究函数变化的数学分支,包括导数、积分等概念。

在物理学中,微积分广泛应用于描述运动和力学、电磁学等领域。

偏微分方程:偏微分方程是对多元函数的偏导数进行求解的方程式,被广泛用于描述物理现象和自然现象,如流体力学、传热学、量子力学等。

黎曼几何:黎曼几何是研究非欧几何的数学分支,对一些物理问题的描述非常重要,如广义相对论、引力场、宇宙学等。

矩阵论:矩阵论是代数学的一个分支,用于处理线性方程组、向量空间、特征值和特征向量等,被广泛应用于物理建模和计算机图形学等领域。

哈密顿力学:哈密顿力学是一种基于能量守恒原理和拉格朗日力学的数学方法,被广泛应用于量子力学、统计物理学、天体物理学等领域。

泛函分析:泛函分析是研究无限维空间和函数空间上的变化的数学分支,被广泛应用于量子力学、波动力学、概率论等领域。

数学物理方程是研究自然现象和科学问题的基础工具,涉及到多个数学分支和物理学领域。

不同的数学物理方程可以描述不同的自然现象和科学问题,对于学习和理解这些知识点非常重要。

数学物理方程总结

数学物理方程总结

试证:圆锥形枢轴的纵振动方程为2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ其中h 为圆锥的高。

并求通解及它的初值问题:0:(),()ut u x x tϕψ∂===∂的解。

(1)证明:在圆锥形枢轴内取出],[x x x ∆+一小段来研究。

端面丛向位移为),(t x u [,][(,),(,)]x x x u x t u x x t +∆→+∆ 在时刻t,端面的相对延伸为),(t x u 与),(t x x u ∆+根据胡克定律为),(t x ESux-及),(t x x ESu x ∆+由牛顿第二定律有合力为:),(t x x ESu x ∆+),(t x ESu x -x Su tt ∆=ρ又因为 2222[()t a n ]()()S r h x h x t a nππαπα==-=- 2[()tan ](,)x E h x x u x x t πα--∆+∆),(]tan )[(2t x u x h E x απ--x u x h tt∆-=2]tan )[(αρπttx u x h xu x h E 22)()(-=∂-∂ρππ tt x u x h x u x h E 22)()(-=∂-∂ρ 即:2222222222[(1)](1)1[(1)](1)E ()x u x uE x h x h t x u x u x h x a h t a ρρ∂∂∂-=-∂∂∂∂∂∂-=-∂∂∂=令。

(5分)(2)设(,)()(,)v x t h x u x t =-(5分) 2()()x x v h x v u h x -+=-2222222[(1)]()1[(1)](1)()x x ux h x v h x v x x ux h h x a h t ∂∂-∂∂-+∂∂=-=-∂-∂ 2222221()()v u h x h x x a t ∂∂-=-∂∂ ∴ 2222221[()][()]h x u h x u x a t∂∂-=-∂∂ (5分) 即:222221v v x a t∂∂=∂∂, 或22222v v a t x ∂∂=∂∂则其通解为:()()()h x u v F x at G x at -==-++ (5分)2.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x u a t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0) 所以 F(x)=)2(x ψ-G(0). G (x )=)2(x ϕ-F(0). 且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2at x ++)2(atx -ψ-).0(ϕ 即为古尔沙问题的解。

(整理)数学物理方程小结

(整理)数学物理方程小结

数学物理方程小结 第七章 数学物理定解问题数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。

§7.1数学物理方程的导出一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。

(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。

(一) 三类典型的数学物理方程(1)波动方程: 0:),(:),(:22222222==∂∂-∂∂=∆-∂∂→f 当无外力时t x f xua t u 一维t r f u a tu 三维 此方程 适用于各类波动问题。

(特别是微小振动情况.)(2)输运方程: 0:).(:),(:2222==∂∂-∂∂=∆-∂∂→f 无外源时t x f xu a t u 一维t r f u a tu 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程:.0(:0:).程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==∆=∆→稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。

§7.2定解条件定解条件包含初始条件与边界条件。

(1) 初始条件的个数等于方程中对时间最高次导数的次数。

例如波动方程应有二个初始条件, 一般选初始位移u (x,o )和初始速度u t (x,0)。

而输运方程只有一个初始条件选为初始分布u (x,o ),而Laplace 方程没有初始条件。

(2) 三类边界条件第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3二阶线性偏微分方程分类判别式 ,,0,,0,,0221121222112122211212抛物型a a a 椭圆型a a a 双曲型a a a =-=∆<-=∆>-=∆ 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的.7.4 达朗贝尔公式对一维无界的波动方程,当不考虑外力时,定解问题为()()()()()()()[]()⎰+-+++-====∂∂-∂∂atx at x t d aat x at x t x u 解为x x u x x u x u a t u ξξψϕϕψϕ2121,:0,0,022222对半无界问题作延拓处理:对第一类齐次边界条件作奇延拓,而对第二类齐次边界条件作偶延拓.第八章 分离变量法8.1分离变量法主要步骤:1.边界条件齐次化,对非齐次边界条件首先把它化为齐次的. •2.分离变量 u(x,t) =X(x) T(t) (1) [以后对三维问题也是如此]•3. 将(1)式代入原方程得出含任意常数λ的常微分方程, (称为本征方程) 而λ为本征值.•4.由齐次边界条件确定本征值,并求出本征方程.(得出的解为本征函数)•5.根据迭加原理把所有满足方程的线性无关解迭加后,就能得通解. •6.再由初始条件确定系数.一维波动方程在第一类齐次边界条件下的()()()()()()()()()4,sin 2:3,sin 22,sin 0,:1,sinsin cos ,:0011ξπξξψπξπξξϕϕππππd ln a n b 同样d ln l a x l xn a x u 代入边入边界l x n l at n b l at n a t x u 通解ln ln n n n n n ⎰⎰∑∑====⎪⎭⎫ ⎝⎛+=∞=∞=一维波动方程在第二类齐次边界条件下的通解:()()()()()()()()7.cos 2,cos 26.1,15,cossin cos .000000100ξπξξψπξπξξϕξξψξξϕπππd ln a n B d l n l A d l B d l A l x n l at n B l at n A t B A t x u ln ln ll n n n ⎰⎰⎰⎰∑====⎪⎭⎫ ⎝⎛+++=∞=一维输运方程在第一类齐次边界条件下的通解:()()()()9,sin 28,sin ,012⎰∑==⎪⎭⎫⎝⎛-∞=ln t l a n n n d ln l c lx n ec t x u ξπξξϕππ一维输运方程在第二类齐次边界条件下的通解:()()()()()11,cos 2,110,cos ,00002⎰⎰∑===⎪⎭⎫ ⎝⎛-∞=ln lt l a n n n d ln l c d l c lx n ec t x u ξπξξϕξξϕππ对其他的齐次边界条件,如本征函数已知也可直接求解,而对本征函数不熟则只能用分离变量法来求解. 8.2 非齐次边界条件的处理 常用方法有 1) 直线法 :对边界条件为: u(0,t)=g(t), u(L,t)=h(t) .令 ()()()()()x Lt g t h t g t x u t x v ---=,, ,可把边界条件化为齐次,但一般情况下方程变为非齐次. •只有当g,h 为常数时,方程才不变. 2) 特解法•把 u 化为两部分,令 u=v+w 使v 满足齐次边界条件与齐次方程,而使w 满足齐次方程与非齐次边界条件.下面通过实例来介绍此方法. • 例题 求解下列定解问题• U tt -a 2 U xx = 0 • U|x=0 =0, U|x=L = ASin ωt • U|t=0 = 0 , U t ∣t=0 = 0 •( 其中A 、ω为常数, 0<x <L , 0< t )•解:令 u=v+w ,使w 满足波动方程与非齐次边界条件,•得出()altaxA t x w ωωωsinsin sin,第九章 二阶常微分方程的级数解法 本征值问题一.拉普拉斯方程与亥姆霍斯方程在球坐标与柱坐标下分 离变量结果.1. 拉普拉斯方程在球坐标下的通解:()()()1,,1,,,1ϕϑϕϑim m l l L l l Y r B r A r u ∑⎪⎭⎫ ⎝⎛+=+其中Ylm为球函数,拉普拉斯方程在球坐标下的解不依赖于边界条件. 在轴对称时(1)式退化为()()()∑∞=+⎪⎭⎫⎝⎛+=012,cos ,l l l l l l P r B r A r u θθ2. 拉普拉斯方程在柱坐标下:()()()()()()()()()()()()()()()()()()..55.0:4,,0,ln :4;:3,04.01.3.022,1,0,sin cos 1.,,222222222''2程为m 阶Bessel方R m x dxdR x dx R d x 式为今x m F E R 式解为Bz A z Z 的解为R m d dR d R d Z Z m m m b m a z Z r R z u =-++==+=+===⎪⎪⎭⎫ ⎝⎛-++=-==+=ΦΦ=ρμρμρμρρρμλϕϕϕϕϕρ(5)式其解为m 阶Bessel 函数,解依赖于边界条件,当上下底为边界条件是齐次时, μ<0.对应的解是虚贝塞尔函数.3) 亥姆霍斯方程在球坐标与柱坐标下分离变量结果.在球坐标下:()()()ϕϑϕϑ,,,Y r R r u =其中Y 为球函数,R 为球贝塞尔函数.在柱坐标下:.()()()()()()()()()()()()()5.0:4,;4.01.3.022,1,0,sin cos 1.,,22222222222222''2=-++=-==⎪⎪⎭⎫ ⎝⎛--++=+==+=ΦΦ=R m x dxdR x dx R d x 式为今x k 令R m k d dR d R d Z Z m m m b m a z Z r R z u ρμνμρνρρρνλϕϕϕϕϕρ (5)式其解为m 阶Bessel 函数, 二、常微分方程的级数解法1. 掌握常点邻域的级数解法.2. 掌握正则奇点邻域的级数解法.3.知道无穷级数退化为多项式的方法. 三. 知道Sturm-Livouville 本征值问题的共同性质•当k(x),q(x)和ρ(x)都只取非负的值(≥0), Sturm-Livouville 方程共同性质为:•1)当k(x),k ’(x)和q(x)连续且x=a 和x=b 最多为一阶极点时,存在无限多个本征值及对应的本征函数:()()()()x y x y x y x y k k 321321,,≤≤≤≤≤λλλλ2)所有本征值λn ≥03)对应于不同本征值的本征函数带权正交()()()()m n dx x x y x y banm≠=⎰,0ρ4)本征函数族构成完备系()()∑∞==1n n n x y f x f第十章 球函数1. 轴对称的球函数当物理问题绕某一轴转动不变时,选此轴为z 轴这时物理量u 就与φ无关,m=0.此时球函数Y(θ,φ)就为L 阶勒让德多项式.即Y=P l (cos θ) 1) 勒让德多项式1. 勒让德多项式级数形式:()()()()()()1.!2!2!!22121202∑-=-----=l 或l n nl lnl x n l n l n n l x P 2. 勒让德多项式微分形式:()()()2.1!212l ll l l x dxd l x P -= 3.前几项为:P 0(x)= 1, P 1(x) =x=cos θ, •P 2(x)=(3x 2-1)/2, ….•一般勒让德多项式的幂次取决L•当L 为偶数时都为偶次幂项,L 为奇数时都为奇次幂项. 对特殊点x=1,0.()()()()()()()()(),!!2!!1210,00,1,11212n n P P x P x P P nn n l ll l --==-=-=-•4.勒让德多项式正交关系()lk l k l N dx x P x P δ211)(=⎰- (3) •5.勒让德多项式的模 122,1222+=+=l N l N l l (4) 6.广义傅里叶级数 :当f(x)在[-1,1]连续可导,且在x=-1与1有限时.()()()(),212111⎰∑-∞=+==dx x P x f l f x P f x f l l l l l (5) •7.在球坐标下Laplace 方程: △u= 0的通解为:轴对称()()()()()∑∑∑∞=+∞=-=+⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+=01017,cos 6,,l l l l l l l ll m lm l l l l P r B r A u Y r B r A r u θϕθθ (6)式有两系数需要两条件来确定,对球坐标有两自然边界条件,r=0与r →∞,球内解包含r=0,•u 有限, ()∑∞===0cos ,0l l ll l P r A u B θ (7)•而A l 由球面的边界条件确定,同样对球外区域两系数由球面的边界条件与r →∞, 两个条件确定. 8. 母函数()∑∞==+-02cos cos 211l l l P r r r θθ (8)9. 递推公式()()()()()()()0.12.2,112'1'1''1'111>-=+-+=++=+-+-++-l P P P l xP P P P x P l x lP x xP l l l l l l l l l l l二.连带勒让德函数•在一般情况下,物理量u 与φ有关,故球函数Y 是连带勒让德函数与周期函数的乘积. 1. 连带勒让德函数()[]()x P xm l m 221-=Θ (1)2.连带勒让德函数的微分表示()().1!21222lml m l lmml x dxd l x P --=++ (2) 从(2)可得当L 一定时,m 的取值为 m=0,1,2…L.共有L+1个值.而三角形式球函数Y (θ,φ)中,cosm φ,sinm φ为不同态,共有2L+1个态.3.正交关系()()()()()!!1223.2211m l m l l 模平方NN dx x P x P mllk ml m k m l -++==⎰-δ 4. 球函数Y 的两种表示形式. 第十一章 柱函数 一、 掌握三类柱函数的基本性质一般我们称Bessel 函数Jm(x)为第一类柱函数. 而把Neumann 函数Nm(x)称为第二类柱函数 . 1)对于第一类柱函数与第二类柱函数的线性组合.()()()()()()x iN x J x H x iN x J x H m m mm m m-=+=21称为第一种与第二种汉克尔函数.而汉克尔函数称为第三类柱函数2) x →0和x →∞时的行为()()()()()()()()()()()⎪⎭⎫⎝⎛---∞→⎪⎭⎫⎝⎛--∞→∞→∞→-→→→→==⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--=∞→∞→〉==4224210002lim ,2lim 42sin 2lim ,42cos 2lim lim ,lim 0.0lim ,1lim ππππππππππππm x i m x m x i m x m x m x m x m x m x x e xx H e xx H m x x x N m x x x J x J x N m x J x J3) 递推公式()()()()()()()[]()()()()()()()()()()()()4.3.212.1.211!21211!11'1'110122022x J xx J m x J x J x x J m x J 展开与把x J x x J x dxdxx J x k m k k x k m k dx d x J dx d m m m m m m m m m m mm k k k m k k kk m km m -+-+∞=-+∞=+=+-=-=-=⎪⎭⎫⎝⎛++Γ-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++Γ-=⎥⎦⎤⎢⎣⎡∑∑4) 贝塞尔函数的零点对m 阶贝塞尔方程()()()()()()()()()()0)(::1.0.,0.00'222222====〉==-++ρμρμρμρμρμμρmm nm n m nmmJx 本征值x 记JJ R 件对柱侧面的齐次边界条时当x R m xdx dRxdx Rdx对第一类齐次边界条件 得出第n 个零点对第二类齐次边界条件 二.贝塞尔函数的正交关系 .• 对于不同本征值的同阶贝塞尔函数在区间 • [0,ρ0]上带权重ρ正交.• ()()()()()()1.][20nk m nm kmm nmNd J J δρρρμρμρ=⎰•• 2)广义傅里叶- 贝塞尔级数•()()()()()[]()()()()3.12.021ρρρμρρμρρd J f Nf J f f m nmm nn m n mn n ⎰∑==∞=• 3)Laplace 在柱坐标下的通解 • 轴对称m=0,柱内解为• 在侧面为第一类齐次边界条件时•()()()()()()()()()()2.,1.,101110000100⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=∑∑∞=∞=ρρρρR x J z R x sh B z Rx ch A z B A z u 条件时侧面为第二类齐次边界R x J z R x ch B z Rx sh A z u n n n n nn n n n n nn• 其中系数An,Bn 由上下底边界条件确定.• 在上下底为齐次边界条件时, μ≤ 0,R 的解为虚宗量贝塞尔函数.记为I m (x)• 同样可得Laplace 方程在柱内解 • 当轴对称时m=0• 上下底满足第一类齐次边界条件时解为•()()()()3.cos,:2.sin ,0001H z n H n I A z u 对第二类齐次边界条件H z n H n I A z u n n n n ππρρππρρ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=∑∑∞=∞=• 输运方程与波动方程在柱坐标下的解 • 1) 解的形式: u(r ,t)=T(t)v(r ) • V 满足亥姆霍兹方程.在侧面与上下底齐次边界条件下能完全确定本征值,例如上下底满足第一类齐次边界条件. 在轴对称情况下m=0 对输运方程柱内的解:上下底满足第一类齐次边界条件()()1.sin ,,2221,1000t H l x al n n nl n eH zl x J a t z u ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-∞==∑⎪⎪⎭⎫ ⎝⎛=πρπρρρ波动方程在柱内的解:• 在上下底满足第一类齐次边界条件下•()[]()2002000000)(2.sin sin cos ,,⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=∑∞ρπρρπρnnl n nlnl nl nl nl x H l k x J H z l at k b at k a t z u• 二维极坐标下的解: •• 侧面满足第一类齐次边界条件 ••()[]()∑∞=+=10000sin cos ,n n n n n n k J at k d at k c t u ρρ (3) •• 侧面满足第二类齐次边界条件•()[]()()4.sincos,1111ρρnnnnnnkJatkdatkct batu∑∞=+++=••第十二章积分变换法•一、傅里叶变换法••1。

数理方程总结复习及练习要点报告

数理方程总结复习及练习要点报告
➢ 约束物理量的特定条件可以使符合共性物理规律的 物理量确定,或者说,也能够使满足泛定方程的解 确定下来,这些特定条件都可以称为定解条件。我 们研究数理方程的目的就是为了确定方程的解,进 而研究特定条件下物理量确定值或变化情况。
4
数理方程基本知识
➢ 我们研究的这些定解条件或者约束物理量的特定条 件大体可以分为两大类,一类关乎于环境对物理量 发展过程的约束,这类约束主要体现于物理环境周 围边界的物理状况,即边界条件。另一类关乎于物 理量发展的历史状况,或者说这个物理量之前是什 么样的,这类约束主要体现于时间上我们人为定义 从何时开始针对于物理量的研究,或者说这个物理 量研究初始时的状况,即初始条件。
➢ 数学物理方程研究一些物理量在某些特定条件下 按照物理规律变化的情况。这些物理量所满足的 物理规律具有共性,它反映的是同一类物理现象的 共同规律。物理量受某些特定条件约束,所产生 的物理问题又各具有自身的特殊性,即个性。
3
数理方程基本知识
➢ 具有共性的物理规律可以用偏微分方程的形式描述 ,这些方程在不附加个性条件的情况下称为泛定方 程。
➢ 数学上边界条件和初始条件也统称为定解条件。
5
数理方程基本知识
➢ 由泛定方程、定解条件构成的研究数学物理方程的 问题称为数学物理定解问题,准确地说就是在给定 定解条件下求解数学物理方程。
➢ 偏微分方程的基本概念
-偏微分方程的阶数 最高的求导次数 -偏微分方程的齐次与非齐次 不含有研究函数的非零项 -偏微分方程的线性与非线性
12
数理方程基本知识
➢ Gauss定理
v
v
v
v
对于一般的矢量场 a P(M )i Q(M ) j R(M )k
vv

数学物理方程公式总结

数学物理方程公式总结

===================== 无限长弦的一般强迫振动定解问题200(,)(,0)()()tt xx t t t u a u f x t x R t u x u x ϕψ==⎧=+∈>⎪=⎨⎪=⎩ 解()()().().0()111(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττϕϕψξξατατ++----⎡⎤=++-++⎡⎤⎣⎦⎢⎥⎣⎦⎰⎰⎰ 三维空间的自由振动的波动方程定解问题()2222222220001,,,,0(,,)(,,)t t u uu a x y z t t x y z u x y z u x y z t ϕϕ==⎧⎛⎫∂∂∂∂=++-∞<<+∞>⎪ ⎪∂∂∂∂⎝⎭⎪⎪=⎨⎪∂⎪=∂⎪⎩在球坐标变换sin cos sin sin (0,02,0)cos x r y r r z r θϕθϕϕπθπθ=⎧⎪=≤<+∞≤≤≤≤⎨⎪=⎩21()1()(,)44M Mat r S S M M u M t dS dS a t r a rϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰(r=at)221()1()(,)44M Mat atS S M M u M t dS dS a t t a tϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰无界三维空间自由振动的泊松公式()sin cos ()sin sin (02,0)()cos x x at y y at z z at θϕθϕϕπθπθ'=+⎧⎪'=+≤≤≤≤⎨⎪'=+⎩2()sin dS at d d θθϕ=二维空间的自由振动的波动方程定解问题()222222200,,,0(,)(,)t t u uu a x y t t x y u u x y x y t ϕψ==⎧⎛⎫∂∂∂=+-∞<<+∞>⎪ ⎪⎪∂∂∂⎝⎭⎨∂⎪==⎪∂⎩22at at ππ⎡⎤⎡⎤======================= 傅立叶变换1()()2i x f x f e d λλλπ+∞-∞=⎰基本性质[]1212[][]F f f F f F f αβαβ+=+ 1212[][][]F f f F f F f *=12121[][][]2F f f F f F f π=* [][]F f i F f λ'= ()[]()[]k k F f i F f λ= [][]d F f F ixf d λ=- 1[()]d i x f F f d λλ--= 00[()][()]i x F f x x e F f x λ--=00[()]()i x F e f x f λλλ=- ..1[()][()]x F f d F f x i ξξλ-∞=⎰.0.[)]1i xi xx F x x edx eλλδδ∞--=-∞===⎰(() ()()..[]i x i F x x e dx e λλξδξδξ∞---∞-=-=⎰1[()]()F f ax f a aλ=若[()]()F f x g λ=则 [()]2()F g x f πλ=-[]12()F πδλ= 22242ax aF e e λπ--⎛⎫⎡⎤= ⎪⎣⎦⎝⎭1cos ()21sin ()2ia iaia ia a e e a e e i --=+=- cos sin cos sin ia ia e a i a e a i a -=+=-2x edx +∞--∞=⎰()()i x f f x e dx λλ+∞--∞=⎰========================= 拉普拉斯变换()()sx f s f x e dx +∞-=⎰[]Re Re ax cL ce p a p a=>-21[]L x s=21[]()x L e x s ββ-⋅=+[]22sin kL kt s k=+ []22cos sL kt s k==+ []22[]2ax ax e e aL shax L s a --==- Re Re s a > []22[]2ax ax e e sL chax L s a -+==+ Re Re s a >基本性质[]1212[][]L f f L f L f αβαβ+=+ 1111212[][]L f f L f L f αβαβ---⎡⎤+=+⎣⎦[()][()],0s L f x e L f x τττ--=≥[()](),Re()ax L e f x f s a s a σ=--> 1[()](),(0)sL f cx f c c c=> ()12(1)[][](0)(0)(0)n n n n n L f s L f s f s f f ---'=----..01[()][()]x L f d L f x sττ=⎰ [][()]nn n d L f L x f ds=- ..()[]pf x fs ds L x∞=⎰() 1212[][][]L f f L f F f *= 0[()]()1sx L x x e dx δδ+∞-==⎰====================== 三个格林公式 高斯公式:设空间区域V 是由分片光滑的闭曲面S 所围成,函数P ,Q,R 在V 上具有一阶连续偏导数,则:V SP Q R dV Pdydz Qdzdx Rdxdy x y z ⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()()()cos ,cos ,cos ,V SP Q R dV P n x Q n y R n z dS x y z ⎛⎫∂∂∂++=++⎡⎤ ⎪⎣⎦∂∂∂⎝⎭⎰⎰⎰⎰⎰ 第一格林公式设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:SVVu v dS u vdV u vdV ∇⋅=∇⋅∇+∆⎰⎰⎰⎰⎰⎰⎰⎰第二格林公式设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:()()SVu v v u dS u v v u dV ∇-∇⋅=∆-∆⎰⎰⎰⎰⎰第三格林公式设M 0,M 是V 中的点,v(M)=1/r MM0, u(x,y,z)满足第一格林公式条件,则有:000011111()44MM MM MM S V u u M u dS u dV r n n r r ππ⎡⎤⎛⎫⎛⎫∂∂=--∆⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 定理1:泊松方程洛平问题(,,),(,,)(,,),((,,),(xx yy zz SS S u u u u f x y z x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续) 的解为: 011111()()()()44S V u M M M dS f M dV r n r r ψϕππ⎡∂⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 推论1:拉氏方程洛平问题0,(,,)(,,),((,,),(xx yy zz SS S u u u u x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续)的解为: 0111()()()4S u M M M dS r n r ψϕπ⎡∂⎤⎛⎫=- ⎪⎢⎥∂⎝⎭⎣⎦⎰⎰ ============================调和函数1、定义:如果函数u(x,y,z)满足:(1) 在V S 具有二阶连续偏导数;(2) 0u ∆= 称u 为V 上的调和函数。

数学物理方程公式总结

数学物理方程公式总结

数学物理方程公式总结数学和物理是自然科学的两个重要分支,它们在研究自然界的规律时不可分割。

在数学和物理的学习过程中,我们经常会遇到大量的方程和公式。

这些方程和公式帮助我们理解和解决问题,归纳总结这些方程和公式有助于我们更好地掌握它们。

下面是一些数学物理方程公式的总结。

1.牛顿力学相关方程:- 运动方程: F = ma,其中 F 表示作用力,m 表示物体的质量,a 表示物体的加速度。

-牛顿第一定律:F=0,一个物体若无外力作用,则物体保持静止或匀速直线运动。

- 牛顿第二定律: F = ma,物体的加速度与作用力成正比,与物体的质量成反比。

-牛顿第三定律:F12=-F21,两个物体之间的作用力大小相等,方向相反。

2.热力学相关方程:-热力学第一定律:ΔU=Q-W,系统内部能量的变化等于吸热减去对外界做功。

-热力学第二定律:ΔS≥0,隔离系统内部的熵不会减少,或者说熵的增加不可逆。

-热力学第三定律:绝对零度时,熵为零。

3.电磁学相关方程:-库仑定律:F=k*(Q1*Q2)/r^2,两个点电荷之间的力与电荷大小成正比,与距离的平方成反比。

-高斯定律:Φ=E*A=Q/ε0,电场通过任意闭合曲面的通量与该曲面内的电荷成正比。

-法拉第电磁感应定律:ε=-ΔΦ/Δt,电磁感应产生的电动势与磁通量的变化率成正比。

4.波动与光学相关方程:-波速公式:v=λ*f,波速等于波长乘以频率。

- 光的折射定律: n1 * sin(θ1) = n2 * sin(θ2),光线从一种介质进入另一种介质时,入射角和折射角与两种介质的折射率成正比。

5.直流电路相关方程:-欧姆定律:V=I*R,电压与电流和电阻的关系。

- 串联电阻的总电阻: R_total = R1 + R2 + ...,串联电阻的总电阻等于各个电阻之和。

- 并联电阻的总电阻: 1/R_total = 1/R1 + 1/R2 + ...,并联电阻的倒数总电阻等于各个电阻的倒数之和。

数学物理方程总结

数学物理方程总结

浙江理工大学数学系第一章:偏微分方程的基本概念偏微分方程的一般形式:2211(,,,,,,)0n uu u F x u x x x ∂∂∂=∂∂∂ 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。

二阶线性PDE 的分类(两个自变量情形):2221112222220u u u u u a a a a b cu x x y y x y∂∂∂∂∂+++++=∂∂∂∂∂∂ (一般形式 记为 PDE (1))目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类(,)(,)x y x y ξξηη=⎧⎨=⎩ 非奇异0x yx yξξηη≠根据复合求导公式最终可得到:2221112222220u u u u u A A A A B Cu ξξηηξη∂∂∂∂∂+++++=∂∂∂∂∂∂其中:考虑22111222()2()0z z z za a a x x y y∂∂∂∂++=∂∂∂∂如果能找到两个相互独立的解 那么就做变换(,)(,)x y x y ξφηψ=⎧⎨=⎩从而有11220A A ==在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222()2()0z z z za a a x x y y∂∂∂∂++=∂∂∂∂ (1)的特解,则关系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。

引理2:假设(,)x y C φ=是常微分方程(2)的一般积分,则函数(,)z x y φ=是(1)的特解。

由此可知,要求方程(1)的解,只须求出常微分方程(2)的一般积分。

常微分方程(2)为PDE (1)的特征方程,(1)的积分曲线为PDE (1)的特征曲线。

数学物理方程知识点总结

数学物理方程知识点总结

数学物理方程知识点总结一、牛顿运动定律牛顿的运动定律是经典物理力学的基础,它描述了物体在力的作用下的运动规律。

牛顿的三大运动定律分别是:1. 第一定律:一个物体如果受力作用,将保持静止或匀速直线运动,直到受到外力的作用而改变其状态。

2. 第二定律:物体的加速度与作用力成正比,与质量成反比。

即F=ma。

3. 第三定律:作用力与反作用力大小相等,方向相反,且在同一直线上。

这三个定律描述了物体在受力作用下的运动规律,它们被广泛应用于物体的运动研究和工程设计中。

二、电磁场方程电磁场方程描述了电荷和电磁场之间的相互作用。

其中,麦克斯韦方程组是最基本的电磁场方程,它包括了电荷产生的电场和电流产生的磁场,并描述了它们随时间和空间的变化规律。

麦克斯韦方程组包括了4个方程,分别是:1. 静电场高斯定律:描述电荷产生的静电场。

2. 静磁场高斯定律:描述磁场的产生和分布。

3. 安培定律:描述电流产生的磁场。

4. 法拉第电磁感应定律:描述磁场的变化产生感应电场。

这些方程组成了电磁场的基本描述,它们被广泛应用于电磁场的研究和工程技术中。

三、热传导方程热传导方程描述了物体内部的热传导过程。

热传导方程可以描述物体内部温度分布和热量的传导规律。

通常情况下,热传导方程是一个偏微分方程,它描述了温度场随时间和空间的变化规律。

热传导方程一般形式为:δT/δt = αΔT其中,T表示温度场,t表示时间,α为热传导系数,ΔT为温度梯度。

这个方程被广泛应用于热传导问题的研究和工程设计中。

四、波动方程波动方程描述了机械波和电磁波在空间中的传播规律。

波动方程是一个偏微分方程,它描述了波动场随时间和空间的变化规律。

波动方程的一般形式为:∂^2ψ/∂t^2 = v^2∇^2ψ其中,ψ表示波动场,t表示时间,v为波速,∇^2为拉普拉斯算符。

波动方程描述了波动在空间中的传播和幅度变化规律,它被广泛应用于波动现象的研究和工程设计中。

总之,数学与物理方程是自然科学研究和工程技术发展的基础。

数学物理方程学习总结

数学物理方程学习总结

数学物理方程学习总结
数学物理方程,总体来说,我觉得是一门挺深奥的学科,难度较大。

它主要讲的就是三大方程(波动方程,热传导方程,调和方程)的推导,初边值问题的解及其性质(存在性,唯一性,稳定性)的讨论。

波动方程,对于非齐次线性方程组初值问题的解利用叠加原理,分为方程齐次和初值问题齐次,方程齐次利用的方法为行波法(达朗贝尔公式),初值齐次利用的是齐次化原理。

初边值问题—变量分离法,对于高维波动方程初值问题—泊松公式,性质讨论—能量不等式。

热传导方程,边值问题基本上与波动方程类似,初值问题—傅里叶变换。

性质讨论主要用到的就是极值原理。

调和方程,不存在柯西问题,它只有边值问题,分为狄利克雷内外问题。

主要方法为格林函数法,静电源像法,解决问题也比较单一,有球面,半空间,圆。

性质讨论—极值原理和先验估计均可。

方程有关知识点总结

方程有关知识点总结

方程有关知识点总结一、方程的概念方程是数学中的一个重要概念。

在数学中,方程是用来描述数学关系的一种数学陈述,通常用符号表示。

一个方程包含一个或多个未知数,它表示了这些未知数之间的相等关系。

方程的一般形式是:F(x) = G(x)其中,F(x)和G(x)是包含未知数x的表达式,方程的解就是满足这个等式的未知数的值。

在数学中,方程可以分为线性方程、二次方程、多项式方程、三角函数方程、指数方程和对数方程等类型。

这些方程在不同领域有着广泛的应用,比如在几何学中,方程可以用来描述几何图形之间的关系;在物理学中,方程可以用来描述物体的运动规律;在经济学中,方程可以用来描述不同经济变量之间的关系等。

二、方程的基本类型1. 线性方程线性方程是数学中最简单的一类方程,它表示为ax + b = 0,其中a和b是已知的常数。

线性方程的解可以通过简单的代数运算得到,比如通过移项、合并同类项等方法求解。

2. 二次方程二次方程是数学中最常见的一类方程,它表示为ax^2 + bx + c = 0,其中a、b、c是已知的常数且a≠0。

二次方程的解可以通过求根公式或配方法等方式求解。

3. 多项式方程多项式方程是一种包含了一个或多个未知数以及它们的幂的方程。

多项式方程的求解方法可以通过因式分解、降次、代换等方法求解。

4. 三角函数方程三角函数方程包含了三角函数的表达式,它可以通过周期性、性质等方法求解。

5. 指数方程和对数方程指数方程和对数方程是一类特殊的方程,可以通过对数换底、幂函数性质等方法求解。

这些是数学中常见的方程类型,每种类型的方程都有着自己的特点和求解方法。

三、方程的解的方法解方程是数学中的一个基本问题,通常通过一些代数方法或者数值方法来求解。

下面是常见的解方程的方法:1. 代入法:将一个式子代入到方程中去,然后通过代入的式子来解出方程中的未知数。

2. 因式分解:将方程进行因式分解,然后找出每个因式为零时的解。

3. 完全平方公式:将一个二次方程化为一个完全平方的形式,然后求解。

数学与物理公式总结归纳

数学与物理公式总结归纳

数学与物理公式总结归纳在学习数学和物理的过程中,我们常常会遇到各种各样的公式。

这些公式是解题和计算的基石,可以帮助我们理解和应用各种数学和物理概念。

在本文中,我们将总结归纳一些常见且重要的数学和物理公式,希望能够帮助大家更好地掌握和应用这些知识。

一、代数公式1. 一次方程公式:一次方程公式可以表示为:ax + b = 0,其中a和b是已知的常数,x是未知数。

2. 二次方程公式:二次方程公式可以表示为:ax^2 + bx + c = 0,其中a、b和c是已知的常数,x是未知数。

解二次方程的方法有配方法、求根公式等。

3. 指数公式:指数公式可以表示为:a^m * a^n = a^(m+n),其中a是底数,m和n是指数。

4. 对数公式:对数公式可以表示为:loga(M*N) = logaM + logaN,其中a是底数,M和N是实数。

二、几何公式1. 长度公式:- 直线段的长度公式:AB = |B - A|,其中A和B是直线段的两个端点坐标。

- 三角形边长关系公式:c^2 = a^2 + b^2 - 2ab * cos(C),其中a、b和c分别是三角形的三边长度,C是夹角的度数。

2. 面积公式:- 矩形的面积公式:A = length * width,其中length和width分别是矩形的长和宽。

- 三角形的面积公式:A = 1/2 * base * height,其中base是三角形的底边长,height是相应的高。

3. 体积公式:- 立方体的体积公式:V = side^3,其中side是立方体的边长。

- 圆柱体的体积公式:V = πr^2h,其中r是圆柱体的半径,h是高度。

三、物理公式1. 运动公式:- 速度公式:v = Δs / Δt,其中v是速度,Δs是位移,Δt是时间。

- 加速度公式:a = Δv / Δt,其中a是加速度,Δv是速度变化,Δt是时间。

2. 力学公式:- 牛顿第二定律公式:F = ma,其中F是物体受到的力,m是物体的质量,a是物体的加速度。

方程知识点总结整理

方程知识点总结整理

方程知识点总结整理一、方程的基本概念1. 代数式与方程式代数式是由数字、字母、符号和常数通过加、减、乘、除等数学运算符号组成的数学表达式。

在代数式中,字母通常代表未知数,可以表示未知数之间的关系。

而方程式是指两个代数式之间相等的关系,通常用符号“=”连接。

2. 方程的种类根据方程中未知数的次数和方程的类型, 方程可以分为一元一次方程、一元二次方程、二元一次方程、二元二次方程、多元多次方程等。

3. 等式、同解与方程在数学中,等式是两个表达式相等的关系,即左边的表达式和右边的表达式代表相同的数值。

而同解则是在某一条件下,两个方程的解相同。

通常通过联立方程组的方法来求解同解。

二、一元一次方程1. 一元一次方程的基本表达式一元一次方程是指只有一个未知数,且未知数的最高次数为一的方程。

一般形式为ax + b = c,其中a、b、c为已知数,且a≠0。

2. 一元一次方程的求解方法解一元一次方程的基本方法是通过变形和化简逐步求解出未知数的值。

常用的方法有等式两边同时加减同一个数,等式两边同时乘除同一个数等。

3. 一元一次方程的应用一元一次方程可以用来描述很多实际问题,如物品的购买、人员的分配、距离的计算等。

通过建立方程模型,可以将实际问题转化为数学问题进行求解。

三、一元二次方程1. 一元二次方程的基本表达式一元二次方程是指只有一个未知数,且未知数的最高次数为二的方程。

一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,且a≠0。

2. 一元二次方程的求解方法解一元二次方程的基本方法是通过配方法、公式法、因式分解等方法进行求解。

对于无理方程,可以通过图像法进行求解。

3. 一元二次方程的应用一元二次方程在物理、经济、工程等领域有着广泛的应用。

如抛物线的运动规律、质点运动的轨迹、炮弹的飞行轨迹等都可以用一元二次方程来表示。

四、二元一次方程1. 二元一次方程的基本表达式二元一次方程是指有两个未知数,且未知数的次数为一的方程。

数学物理方程小结

数学物理方程小结

解 法 二 : Fourier Fourier 法
数学物理方程小结
1.6‘定解问题
utt − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), ut ( x, 0) = 0 (−∞ < x < +∞)
utt (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % Fourier变换 % Fourier % % 定解问题: u (λ , 0) = ϕ (λ ), ut (λ , 0) = 0 %
方程具有傅立叶正弦级数解
nπ x u ( x, t ) = ∑ Tn (t ) sin l n =1

nπ at nπ at nπ x u ( x, t ) = ∑ An cos + Bn sin sin l l l n =1

数学物理方程小结
1.2定解问题
utt − a 2u xx = 0 u x (0, t ) = 0, u x (l , t ) = 0 (t > 0) u ( x, 0) = ϕ ( x), u ( x, 0) = ψ ( x) (0 < x < l ) t
数学物理方程小结
解 法 二 : Fourier Fourier 变 换 法 2.6’定解问题
ut − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), (−∞ < x < +∞)
Fourier 定解问题 解 Fourier
ut (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % % % % u (λ , 0) = ϕ (λ ),

(完整word版)数学物理方法总结(改)(word文档良心出品)

(完整word版)数学物理方法总结(改)(word文档良心出品)

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理工大学数学系第一章:偏微分方程的基本概念偏微分方程的一般形式:2211(,,,,,,)0n u u uF x u x x x ∂∂∂=∂∂∂L L其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。

二阶线性PDE 的分类(两个自变量情形):2221112222220u u u u u a a a a b cu x x y y x y∂∂∂∂∂+++++=∂∂∂∂∂∂ (一般形式 记为 PDE (1))目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类(,)(,)x y x y ξξηη=⎧⎨=⎩非奇异 0x yx yξξηη≠根据复合求导公式最终可得到:2221112222220u u u u u A A A A B Cu ξξηηξη∂∂∂∂∂+++++=∂∂∂∂∂∂其中: 2211111222121112222222111222()2()()()2()A a a a x x y y A a a a x x x y x y y y A a a a x x y y ξξξξξηξηηξξηηηηη⎧∂∂∂∂=++⎪∂∂∂∂⎪⎪∂∂∂∂∂∂∂∂=+++⎨∂∂∂∂∂∂∂∂⎪⎪∂∂∂∂=++⎪∂∂∂∂⎩考虑22111222()2()0z z z z a a a x x y y∂∂∂∂++=∂∂∂∂如果能找到两个相互独立的解 (,)z x y φ= (,)z x y ψ=那么就做变换(,)(,)x y x y ξφηψ=⎧⎨=⎩从而有11220A A ==在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222()2()0z z z za a a x x y y∂∂∂∂++=∂∂∂∂ (1)的特解,则关主部系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。

引理2:假设(,)x y C φ=是常微分方程(2)的一般积分,则函数(,)z x y φ=是(1)的特解。

由此可知,要求方程(1)的解,只须求出常微分方程(2)的一般积分。

常微分方程(2)为PDE (1)的特征方程,(1)的积分曲线为PDE (1)的特征曲线。

22111222()2()0a dy a dxdy a dx -+=11dydx= 记2121122(,)x y a a a ∆=- 则:22222222222(,)0PDE (,)=0PDE (,)0PDE u u ux y x y x y ux y xu ux y x y⎧∂∂∂∆>=Φ-=Φ⎪∂∂∂∂⎪⎪∂⎪∆=Φ⎨∂⎪⎪∂∂∆<+=Φ⎪∂∂⎪⎩(双曲型) 或(抛物型) (椭圆形)一维的波动方程:22222(,)(0,0)u u a f x t x L t t x ∂∂=+<<>∂∂一维的热传导方程222(,)(0,0)u u a f x t x L t t x∂∂=+<<>∂∂高维的情况只需要把22ux∂∂改为laplace 的形式即可。

数学物理方程(泛定方程)加上相应的定解条件就构成了定界问题。

根据定解条件的不同,又可以把定解问题分为三类: 初值问题(Dirichlet ):定解条件仅有初值条件 边值问题(Neumann ):定解条件仅有边值条件 混合问题(Rbin BC ):定解条件有初值条件也有边值条件数学物理方程的解:如果一个函数在某一自变量的取值区域有所需要的各界连续的导函数,并且带入数学物理方程使方程成为等式,称此函数为在该取值区域方程的解。

定界问题的适定性:如果一个定解为题的解存在,唯一且稳定,就称这个定界问题是适定的;反之,若有一个性质不满足,则称这个定界问题是不适定的。

所谓界存在,是指定解问题至少有一个解。

如果一个定界问题的解不存在,这个问题就完全失去了意义,但定界问题反应的是客观物理实际,在实际问题中解释存在的。

若定解问题的解不存在,说明所建立的定界问题是错误的,可能是在推导过程中有非次要因素被忽略掉了,导致泛定方程错误,还有可能定解条件给错了等。

这就需要重新考虑定解问题的提法。

解的唯一性从物理意义上讲是显然的,如果解存在但不唯一,将无法确定所求解是否是所需要的,当然也无法求近似解。

这表明问题的提法还不够确切,需要进一步分析。

所谓解的稳定性,是指当定解问题有微小变动时,解是否相应地有微小的变动,如果是这样,该解就是稳定的解;否则所得的解就没有实用价值,因为定解条件通常是利用实验方法所获得的,因而所得到的结果有一定的误差,如果因此导致解的变动很大,那么这种解显然不符合客观实际的要求。

而我们多学的定解问题都是经典问题,他们的适定性都是经过证明了的。

第二章:分离变量法分离变量法的主要思想:1、将方程中含有各个变量的项分离开来,从而原方程拆分成多个更简单的只含1个自变量的常微分方程;2、运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程;3、利用高数知识、级数求解知识、以及其他巧妙方法,求出各个方程的通解;4、最后将这些通解“组装”起来。

分离变量法是求解偏微分方程最基本最常用的方法。

主要根据的理论依据是线性方程的叠加原理和Sturm-Liouville 理论。

最核心的思想是将偏微分方程的求解化为对常微分方程的求解。

下面就有界弦的自由振动的定解问题讨论222220000,00,0,0(),(),0x x l t t u u a x l t x u u t u u x x x l t φψ====⎧∂∂-=<<⎪∂∂⎪⎪==>⎨⎪∂⎪==<<⎪∂⎩观察注意其特点是: 方程齐次, 边界齐次.端点会引起波的反射,弦有限长,波在两端点之间往返反射。

两列反向行进的同频率的波形成驻波。

驻波的特点: (1) 没有波形的传播,即各点振动相位与位置无关,按同一方式随时间振动,可统一表示为()T t (2) 各点振幅随点而异,而与时间无关,用 X(x) 表示,所以驻波可用 ()()X x T t 表示设(,)()()u x t X x T t =且(,)u x t 不恒为零,带入方程和边界条件中得到''2''0XT a X T -=⋯⋯⋯⋯⋯⋯(1)由于(,)u x t 不恒为零,有:''''2()()()()X x T t X x a T t λ==-''()()0X x X x λ+=L L L L (2) 2''()()0................T t a T t λ+=(3)利用边界条件:(0)()0()()0X T t X l T t =⎧⋯⋯⋯⋯⋯⋯⎨=⎩(4) (4)(0)0,()0X X l ⇔==成立''0(0)0,()0X X X X l λ⎧+=⋯⋯⋯⋯⋯⋯⎨==⎩(5) 参数λ成为特征值。

函数()X x 成为特征函数下面分三种情况讨论特征值问题 (i )0λ<方程的通解为12()X x C C e=+由边值条件得12120C C C C e +=⎧⎪⎨+=⎪⎩C1 =C 2=0 从而 ()0,0X x λ≡<无意义(ii )=0λ方程的通解12()X x C x C =+同样的到()0X x ≡,=0λ无意义(iii )0λ>时,通解12()X x C C =+由边值条件得1200C C =⎧⎪⎨=⎪⎩ 得到20,C ≠从而0l =n π= 即222,12,3,n n lπλ==⋯⋯,而由于2()sin,1,2,n πX x C x n l==L 再求T :22"22()()0nn n T t a T t lπ+= 其解为:()cos sin n at n atn n n l l T t A B ππ=+所以(,)(cossin )sin 1,2,3,n atn at n xn n n l l l u x t A B n πππ=+=⋯根据叠加原理可以得到:1(,)(cos sin )sin n at n at n xn n l l l n u x t A B πππ∞==+∑ 定解问题的解是Fourier 正弦级数,这是在 x =0 和 x=l 处的第一类齐次边界条件决定的。

2020()sin ()sin l n nn l l ln l n n na na l A d B d πξπξππφφξξψψξξ⎧==⎪⎨⎪==⎩⎰⎰ 解的物理意义(,)(cos sin )sin na t na t n xn n n l l l u x t A B πππ=+sin()sin n xn n n l N t S πω=+1(,)(,)n n u x t u x t ∞==∑u(x,t )是由无穷多个振幅、频率、初位相各不相同的驻波叠加而成。

n =1的驻波称为基波,n>1的驻波叫做n 次谐波.注意:分离变量法适用围:偏微分方程是线性齐次的,并且边界条件也是齐次的。

其求解的关键步骤:确定特征函数和运用叠加原理。

对于不同类型的定解条件做了如下总结齐次化原理:(Duhamel )设3{(,,):0,0}x t R x t τπτ∈<<>>上的函数(,,)U x t τ关于自变量x ,t 二次可微(,,)U x t τ连同关于x 和t 的一阶和二阶偏导数都对(,,)x t τ在3{(,,)x t R τ∈:0,0}x t πτ<<>>上连续,且(,,)U x t τ满足:222220(,,)(,,)0,0,(,,)0,(,,)0,0,(,,)00(,,)(,),0x x t U x t U x t a x t t x U x t U x t x t U x x U x t f x x t πτττπτττπτττπττπ===⎧∂∂-=<<>⎪∂∂⎪==<<>⎪⎪⎨=<<⎪⎪∂=<<⎪∂⎪⎩则函数0(,)(,,)tu x t U x t d ττ=⎰是下面方程的解:2222200(,)(,)(,),0,(,,)0,(,)0,0,(,0)00(,)0,0x x t u x t u x t a f x t x t t x u x t u x t x t u x x u x t x t ππτπτππ===⎧∂∂-=<<>⎪∂∂⎪==<<>⎪⎪⎨=<<⎪⎪∂=<<⎪∂⎪⎩1、圆域上的laplace 方程定界问题20 (0, 02)u r a φπ∆=<<<< 边界条件(,)() (02)u a f φφφπ=≤≤想法是把空间柱面坐标退化为二维的极坐标。

相关文档
最新文档