大学物理第三章刚体力学基础习题答案培训课件

合集下载

大学物理课件第3章-刚体

大学物理课件第3章-刚体
究力的平衡和静力问题。
刚体的分类总结
根据是否可以发生平动或转动, 可以将刚体分为可动刚体和固定 刚体两类。不同类型的刚体在研 究力和运动关系时具有不同的应
用场景和特点。
02
刚体的运动
平动
01
02
03
平动定义
刚体在运动过程中,其上 任意两点都保持相对位置 不变的运动。
平动特点
刚体上任意两点在运动过 程中保持相对位置不变, 刚体整体做平行移动,没 有发生旋转。
刚体的稳定性
总结词
刚体的稳定性是指刚体在外力作用下保 持原有平衡状态的能力。
VS
详细描述
刚体的稳定性是指刚体在外力作用下保持 原有平衡状态的能力。如果外力较小,刚 体能够恢复到原来的平衡状态,则称该平 衡状态是稳定的。反之,如果外力较小, 刚体不能恢复到原来的平衡状态,则称该 平衡状态是不稳定的。刚体的稳定性可以 通过对平衡状态的稳定性进行分析来确定 。
刚体的性质总结
刚体的性质包括不发生形变、具有无限大的弹性和重心位 置不变。这些性质使得刚体成为研究力和运动关系的理想 化模型。
刚体的分类
可动刚体
可动刚体是指可以发生平动或转 动的刚体。这类刚体通常用于研 究物体的运动状态和力的作用效
果。
固定刚体
固定刚体是指形状和大小始终不 变的刚体。这类刚体通常用于研
06
刚体的应用
刚体在日常生活中的应用
钟表
钟表内部的齿轮、指针等都是刚 体,其运动规律符合刚体的运动
定理。
ቤተ መጻሕፍቲ ባይዱ
交通工具
自行车、汽车、火车等交通工具中 的轮子、轴承等都是刚体,其运动 规律符合刚体的运动定理。
家居用品
家具如椅子、桌子等,其结构大多 由刚体组成,符合刚体的运动定理 。

大学物理教程课件讲义刚体力学基础

大学物理教程课件讲义刚体力学基础
图3.13 例3.4图
3.2 刚体的定轴转动定律
例3.5 一根长为l,质 量为m的均匀细杆,可绕通过 其一端且与杆垂直的光滑水 平轴转动,如图3.14所示, 将杆由水平位置静止释放, 求它下摆到角度为θ 时
的角加速度和角速度。
图3.14 例3.5图
3.2 刚体的定轴转动定律
3.3 刚体定轴转动的角动量定理 角动量守恒定律
3.4 刚体定轴转动的动能定理
3.4.5
1.刚体定轴转动的功能原理
如果刚体在定轴转动中除受到外力矩外,还受到 保守力矩的作用,而在刚体的定轴转动中,涉及的势 能主要是重力势能。所以,保守力只考虑重力,当系 统取地球和刚体时,式(3-22) 可写为
3.4 刚体定轴转动的动能定理
3.4 刚体定轴转动的动能定理
3.2 刚体的定轴转动定律
图3.12 平行轴定理
3.2 刚体的定轴转动定律
以上例子是根据转动惯量的定义式(3-5)计算规则几 何形状的刚体的转动惯量,对于几何形状较复杂的刚体通 常要用实验测定。表3.1列出几种几何形状简单、规则、密 度均匀的物体对通过质心的不同转轴的转动惯量。
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
3.2.3 力对转轴的力矩
图3.9 转动定律
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
由转动定律的表达式M=Jβ可以看出,在相同的外力矩作 用下,刚体的转动惯量J越大,刚体所获得的角加速度β越小, 则刚体的转动状态不易改变;刚体的转动惯量J越小,刚体所获 得的角加速度β越大,刚体的转动状态容易发生变化。转动惯 量J是和质量m相对应的物理量,物体的质量m是质点的平动惯性 的量度,而刚体的转动惯量J是刚体转动惯性的量度。

《刚体力学基础习题》课件

《刚体力学基础习题》课件

03 刚体的转动惯量
CHAPTER
转动惯量的定义与计算
转动惯量的定义
转动惯量是描述刚体转动惯性大小的物理量,其大小与刚体的质量分布和转轴的 位置有关。
转动惯量的计算
对于给定的刚体,可以通过积分计算其转动惯量,对于规则刚体,也可以通过公 式直接计算。
刚体的动量矩
动量矩的定义
动量矩是描述刚体转动动量的物理量 ,其大小等于刚体的动量与转动轴到 质心距离的乘积。
转动惯量与动量矩习题解析
转动惯量
01
描述物体转动惯性大小的物理量,与物体的质量分布和旋转轴
的位置有关。
动量矩
02
描述物体转动动量大小的物理量,等于物体质量与速度矢量的
乘积。
动量矩守恒
03
在没有外力矩作用的情况下,物体的动量矩保持不变。
谢谢
THANKS
04 刚体的动力学应用
CHAPTER
刚体的平动与转动
刚体的平动
刚体在空间中沿某一确定直线作等距离的移动,这种运动称为刚体的平动。
刚体的转动
刚体绕某一定点转动,这种运动称为刚体的转动。
刚体的定点运动
01
刚体的定点运动是指刚体绕通过 某一定点的转轴转动,其上任意 一点都绕该转轴作圆周运动。
02
刚体的定点运动可以分为定轴转 动、定平面转动和定点转动三种 类型。
转动动力学方程
T=Iβ(其中T为扭矩,I为转动惯量,β为角加速度)
复合运动动力学方程
需要将平动和转动动力学方程联立求解。
02 刚体转动的基本定理
CHAPTER
角动量定理
总结词
描述刚体转动时,力矩与角动量变化 量之间的关系。
详细描述

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。

(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。

3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。

其中a ,b 为矩形板的长,宽。

证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。

解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

第三章刚体力学基础[1]PPT课件

第三章刚体力学基础[1]PPT课件

注意: F应该理解为外力在转动平面内的分力
如果有几个外力矩作用在刚体上,则合力矩等于
各个力矩的代数和
Mi riFi
i
i
力是引起质点运动状态变化的原因,而力矩是引起
转动物体运动状态变化的原因
二 刚体绕定轴的转动定律
刚体转动定律可由牛顿第二定律直接导出
F ifi m iai
外力的合力
内力的合力
假设 Fi和fi 都是位于质
点i所在的转动平面内
得到:
质点i的加速度 Z Mz
df
dF
Odr
dm
dF
F i fi m ia i m ir i
转动平面
dFn
转动定律
将力分解为作用在质量元△m上
的切向力和法向力
Z Mz
Fifim iai
dF df
Finfinmiain
将切向分量式两边同乘r,
例1、求质量为m、半径为R的均匀圆环的转动惯量。 轴与圆环平面垂直并通过圆心。
解: J r2dm
Z
R 2dm R 2 dm m2R O
J是可加的,所以若为薄圆筒 (不计厚度)结果相同。
R dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转动 惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
•转轴的位置
布,与转轴的位置结合决定转
•刚体的形状
轴到每个质元的矢径。
单个质点的转动惯量 J miri2 n
质点系的转动惯量 J (miri2)
i1
质量连续分布的刚 体的转动惯量
J r2dm m
国际单位制中转动惯量的单位为千克·米2(kg·m2)
转动惯量的定义及物理意义

大学物理 第3章刚体力学基础(完全版)课件

大学物理 第3章刚体力学基础(完全版)课件

(3)均质圆盘(m,R)绕中心轴转
动时,可将圆盘划分为若干个半
径r、宽dr的圆环积分 :
Jc
R
r2
m
0 R
2
2rdr
1 mR 2 2
R
d m
r dr
图5-7
学习交流PPT
25
例题5-3 以20N.m的恒力矩作用在有固定轴的 转轮上,在10s内该轮的转速均匀地由零增大到 100rev/min。此时撤去该力矩,转轮经100s而停止。 试推算此转轮对该轴的转动惯量。
实际问题中,当物体的形变很小可忽略时,就将物体
视为刚体。
刚体的特征:
(a)刚体上各质点之间的距离保持不变。
无论所受外力多大,不论转动多快,刚体的形 状都始终保持不变。
(b)刚体有确定的形状和大小。
(c)刚体可看作是由许多质点(质元)组成的质点系。
学习交流PPT
3
§5-1 刚体运动 学 一.刚体的平动和转动
学习交流PPT
19
二.转动惯量的计算
(1)质量离散分布刚体
J=Δmi ri2
(5-5)
即:刚体的转动惯量等于刚体上各质点的质量乘
以它到转轴距离的平方的总和。
(2)质量连续分布刚体
J r2dm (5-6)
式中: r为刚体上的质元dm到转轴的距离。
学习交流PPT
20
三.平行轴定理
Jo=Jc+Md2
第5章
Dynamics of Rigid
Bod刚y 体力学基础
(6)
学习交流PPT
1
本章的主要内容是研究刚体的转动,尤其是定轴 转动。
核心内容: • 定轴转动的转动定理 • 刚体的转动惯量 • 定轴转动的角动量守恒

大学物理第3章习题解答1ppt课件

大学物理第3章习题解答1ppt课件
m m v m v 1 ( 1 )
又由机械能守恒定律,有:
1 2m2 v1 2m m v1 21 2k2x (2 )
由式(1)(2)可得:
x kmmmmv 最新课件
19
3-30 以质量为m的弹丸,穿过如图所示的摆锤后,速率由v减 少到 v 2。已知摆锤的质量为m ,摆线长度为l ,如果摆锤能
(A) 动量守恒,机械能守恒
(B) 动量不守恒,机械能守恒
C
D
(C) 动量不守恒,机械能不守恒
A
B
(D) 动量守恒,机械能不一定守恒
最新课件
3
3-5 如图所示,子弹射入放在水平光滑地面上静止的木块后 而
C 穿出。以地面为参考系,下列说法中正确的说法是( ) (A)子弹减少的动能转变为木块的动能
(B)子弹—木块系统的机械能守恒
最新课件
14
3-20 一人从10.0m深的井中提水,起始桶中装有10.0kg的水, 由于水桶漏水,每升高1.0m要漏去0.20kg的水。求水桶被匀速 地从井中提到井口,人所作的功。
解:水桶在匀速上提过程中,a=0, 拉力与水桶重力平衡,有:
FP0 在图示所取坐标下,水桶重力随位 置的变化关系为:
Pm g0.2gy
F
F0F0 Lx,则在x Nhomakorabea0到x=L过程中作功,
W 0 LFd 0 x L F 0F L 0x d xF 2 0L
由动能定理有:W 1mv2 0
2
得x=L处的质点速率为:v F0L m
此处也可用牛顿定律求质点速率,即:
F0F L0xmddvtmd dvxv
分离变量后,两边积分也可得同样结果。
(C) 只有 (2) 是正确的
(D) 只有 (3) 是正确的

大学物理课件第3章刚体力学

大学物理课件第3章刚体力学

d dt
3
二. 刚体的定轴转动 1.力矩
力F 对o点的力矩定义为:
M=r×F 力矩的大小: M=Frsin =Fd 方向: r F 右手螺旋 注意: 对定轴转动, (1)只有 在垂直于转轴平面内的力才会 产生力矩; 平行于转轴的力是 不会产生力矩的。 (2)力矩的方向沿转轴。
2
T2
m: mg-T2= ma
a=R1= r2 , 2=2ah
求解联立方程,代入数据,可得
m mg
=2m/s, T1=50N, T2=60N。
17
例题1.6 均匀细棒(m、长l)AB可绕o轴转 动,Ao= l/3。求棒从水平位置静止开始转过 角 时的角加速度和角速度。 解 重力集中在质心,其力矩为
即一对内力的力矩的矢量和为零。 也可以从力矩大小对应于平行四边形面积的角 度来看。 两个平行四边形底和高都相等,故而面积相同; 两力矩大小相等,方向相反,于是矢量和为零。 任意质点系的合内力矩都为零。
6
三. 转动惯量
1.转动惯量的物理意义
M I F ma
质量m—物体平动惯性大小的量度。

2
1

2
t1
26
例题2.1 一质点的质量为m,位矢为: r =acos t i+bsin t j (式中a、b、 均为常量); 求质点的角动量及它所受的力矩。 z dr k 解 asinti bcostj j o dt
i x L r ( m ) mr m(acosti bsintj ) ( asinti bcostj ) 2 2 mabsin tk mabcos tk
25

大学物理第三章刚体力学基础1课件

大学物理第三章刚体力学基础1课件
外力矩 内力矩
Oi r i
fi f it
Fit Fi
mi
对所有质元的同样的式子求和: ∑Fit ri +∑fit ri = ∑miri2 一对内力的力矩之和为零,所以有
对于转轴的转动惯量 用M表示∑Fit ri (合外力矩) 则有 M=J
∑Fit ri = (∑miri2) 令J= ∑miri2 J为刚体
o′
·
o′
·
Δ Δ
· o
o
3-1 刚体运动的描述 一、描述刚体转动的物理量 角位置:
转动正方向
(t )
角位移
刚体运动方程
r
(参考方向)
转动平面
(t t ) (t )
d 角速度: dt
d d 2 角加速度 dt dt 2
在刚体作匀加速转动时:
1 xc l cos 2

2 0
1 M mgl cos 2

2 0
mg
dmg
l l A Md mg cosd mg 2 2 刚体的重力势能: E p mg hc 如果刚体在运动过程中
1 l mg J 2 2
2
3g l
只有保守力作功,则此 系统的机械能守恒。
F2
M r1 F1 sin 1 r2 F2 sin 2
M 0 M 0 则M的方向和转轴的正方向一致 则M的方向和转轴的正方向相反
二、刚体定轴转动的转动定律 对mi用牛顿第二定律:
F i f i mi a i
切向分量式为:
z
Fit+fit= miait= miri 两边乘以ri ,有: Fit ri +fit ri = miri2

大学物理 第3章 刚体力学基础

大学物理 第3章 刚体力学基础


2 1
Jd

1 2
J22

1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF

大学物理课件第3章-刚体

大学物理课件第3章-刚体
F
T
m
o
x
例4. 质量为M =16 kg的实心滑轮,半径为R = 0.15 m。 一根细绳绕在滑轮上,一端挂一质量为m的物体。
求(1)由静止开始1秒钟后,物体下降的距离。(2) 绳子的张力。
解: TR
a
1 2
MR
2
a R
T
1 2
Ma
2
mg T ma
M
T
mg mM 2
注: 可以用质点动力学 的方法来处理刚体 的平动问题。
转动:
刚体上所有质点都绕同一直线作圆 周运动。这种运动称为刚体的转动。这 条直线称为转轴。
定轴转动:
转轴固定不动的转动。
刚体的转动动能
mn
rn
o
r1
m1
r2
m2

I mi ri
i
2
kg m
2
I 为刚体对 z 轴的转动惯量。
结论: 刚体的转动惯量与刚体的形状、大小、质量 的分布以及转轴的位置有关。 对于质量连续分布的刚体:
2
2
( mi ri )
Ek
1 2
J
2
设在外力矩 M 的作用下,刚体绕定轴发生角位移d 元功:
dA Md
A I
d dt
A
由转动定律 有
d dt
d I d
1 2 1 2
dA I

2
1
I d

I 2 -
2
I 1
2
刚体绕定轴转动的动能定理 :合外力矩对刚体所 做的功等于刚体转动动能的增量。
l a v
o
30°
机械能守恒:
11 l 2 2 2 Ml ma mga1 cos 30 Mg 1 cos 30 23 2

大学物理第三章刚体力学PPT课件

大学物理第三章刚体力学PPT课件

精选
7
F is iin fis iin m ir i
两边同乘ri,得
F ir i siin fir i siin m ir i2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
F ir is ii n fir is ii n ( m ir i 2 )
密度为,则dm=dx,有:
Ox
dx
l
J0r2dm ll2 2x2dx1l32 1 1m 22 l
(2)当转轴通过棒的一端A并与棒垂直时:
JAr2dm0 lx2dx3 l31 3m2l
精选
12
例2 求质量为m、半径为R、厚 为h的均质圆盘对通过盘心并与 盘面垂直的轴的转动惯量。
解:如图所示,将圆盘看成许多薄圆环组成。取任一 半径为r,宽度为dr的薄圆环,它的转动惯量为:
转动惯量与刚体的大小形状、质量分布以及转
轴的位置等有关。
精选
9
一般的情况下刚体质量是连 续分布的,把它分割成无限多个 微小部分,其中质量为dm的小块 到转轴的垂直距离为r,则它对该 转轴的转动惯量为
dJr2dm
r dm
积分得到整个刚体对相应转轴的转动惯量为
J r2dm
精选
10
常见刚体的转动惯量
MF 2dF 2rsin
精选
5
若F位于转动平面内,则上式简化为
MFd Fsri n
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
M rF

第3章 大学物理刚体力学ppt课件

第3章 大学物理刚体力学ppt课件
M2 0
z F // M1 M r d
A
M2 F 2
F
对定轴转动,力矩用正负表示方向。 F1
F
M 1 0
3.合力矩
M M M M 1 2 3
M 对同一定轴的合力矩等于各分力矩的代数和 M i
与正方向相同的力矩取 正值,相反的取负值.
若力对刚体的转动状态有影响,称该力有力矩。若两个 力对刚体的转动状态影响相同,称为力矩相同。
力矩的影响因素分析,请选择: 1力矩与哪些因素有关? A 力的大小; B 力的方向; C 力的大小和方向; D力的大小、力的方向、力的作用点; 2 如果一个垂直于门面的力分别作用在门的中心①与边 缘② ,两种方式中哪个更容易推动一个静止的门? A ①容易;
3.1.2 角速度和角加速度
圆周运动,因此前面关于质点圆周运动的全套描述方 法,此处全部可用。此处注意方向性。 角速度的正负表示方向. 定轴转动: 可沿转轴设正方向,
dω z 2 角加速度: α 方向:右手螺旋拇指方向.
3 角量与线量的关系 2 法向加速度 an r 切向加速度
dt
3若 t 2 ,圆盘半径为r,其边缘加速度为 (E) 2 r(2 t)2r (F)
2r
(G) r(2t )
2
2 r e ( 2 t )r e (H) 2 t n
力矩为零的情况: 对定轴:
当力的作用线与轴平行或相交时, 该力对刚体转动状态不影响,相对于该 轴的力矩为零。
F1
F2
z 方向沿转轴
dv 0 0 r a t dt


A


v ωr
v
r

第三章刚体力学基础(大学物理)

第三章刚体力学基础(大学物理)

2
兰州城市学院
证: 两平行转轴间距d,C为刚体的质心,X轴垂直 ' 相交两转轴,质元到两转轴的距离为ri和ri 。
2 ri
z
m i
ri

'2 ri
d
2
' ' 2dri cos i
ri'2 d 2 2dxi'
相对质心C的X坐标值
J
m
'
' ri

i
n
m i ri2
o x i
兰州城市学院
例1: 一飞轮在时间t内转过角度 a bt 2 ct 3,式a,b,c中都 是常量。 求: 它的角速度和角加速度 解: 将角度式对时间求一阶导数,即得飞轮的角速度为
d 2 3 2 (a bt ct ) 2bt 3ct dt
由角加速度定义得
d d 2 (2bt 3ct ) 2b 6ct dt dt
d m 2r d r
由公式直接得
J r dm 2 r d r
2 3 0
R
R 4
2
1 mR 2 2
兰州城市学院
3.3 力矩 转动定律 3.3.1 力矩 力 改变质点的运动状态 力矩 改变刚体的转动状态 (1) 力 F 在转 动平面内 大小:
Z M z
兰州城市学院
(2)转动惯量——量度转动惯性大小的物理量
定轴转动动能的计算公式 1 1 2 2 2 Ek (mi ri ) I 单位:千克· 2 ,kg ·m2 米 2 2
J z mi ri 2
i 1 n
J z r 2 dm
质量连续分布

大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答

第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

最新大学物理第3章-刚体力学基础课件ppt

最新大学物理第3章-刚体力学基础课件ppt
对所有质元的同样的式子求和:
∑Fi risini+ ∑ fi rsi ini = (∑ mi ri2 )
一对内力的力矩之和为零,所以有
∑ Fi ri sini = (∑mi ri2)
只与刚体的形状、质量分布和转轴位置有关
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
令J= ∑mi ri2 J为刚体对于定转轴的转动惯量
对平动的刚体列出牛顿第二定律方程,对定轴转动的刚体 列出定轴转动定律方程;
注意利用角量与线量的关系。
大学物理学A
第一篇 力学基础
第3章 刚体力学基础
例5: 已知光滑桌面,滑轮半径R,质量为Mc,两物体质 量分别为m1 m2 ,求两物体的加速度和绳的张力.
m2
a
m1
g
m1 解:
m1 m 2
T m 1m 2 g
1 3
mLL2
Jo
2 5
mo
R2
mO
J L 2 J 0 m 0 d 2 J 0 m 0 ( L R ) 2
J1 3m L L 25 2m oR 2m o(L R )2
大学物理学A
第一篇 力学基础
大学物理学A
匀质矩形薄板
转轴通过中
心垂直板面
I=
m 12
(a2 + b2
)
匀质细圆环
转轴通过中 心垂直环面
FT 1mAa
m BgF T2 m Ba
RTF 2 RTF 1 J
a R
FN
PmAAO
FT1
x
第3章 刚体力学基础
FT1
FC
PC
FT 2
FT 2
O
mB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 )
t2
下次上课内容:
§5-1 简谐运动 §5-2 旋转矢量表示法 §5-3 单摆和复摆 §5-4 振动的能量
角动量定理
t2 Mdt
t1
J2
J1
角动量守恒 M 0, J 恒矢量
力的功
W
r F
drr
力矩的功 W Md
动 能 1 mv2
2
动能定理
W
1 2
mv22
1 2
mv12
转动动能 1 J 2
2
转动动能定理W
1 2
J22
1 2
J12
习 题 课 (三)
3-1 一轻绳绕在有水平轴的定滑轮上,绳下端挂一
的角加速度 =
。从开始制动到 =1/3 0所经过
的时间t = 。
M k2 J
k 2 k02
J 9J
k2 J d
dt
t k dt
0J
1 3
0
d
0
2
t 2J
k0
3-6 一长为L的轻质细杆,两端分别固定有质量为
m 和2m 的小球,此系统在铅直平面内可绕过中心点
O且与杆垂直的水平固定轴转动。开始时杆与水平成
方向上,正对着杆的一端以相同的速率v相向运动,
如图所示。当两小球同时与杆的两端发生完全非弹性
碰撞后,就与杆粘在一起转动,则这一系统碰撞后的
转动角速度为
m
(A) 2v
4v (B)
v
3L
✓(C)
6v 7L
5L (D) 8v
9L
(E) 12v v m
o
7L
2mvL 1 mL2 2mL2
3
6v
7L
3-4 半径为r=1.5m的飞轮,初角速度=10rad/s,角
2mR m0R
质点运动与刚体定轴转动对照表
质点运动
刚体定轴转动
质量
m

F
第二定律
F
ma
动 量 pr mvr
r F
dpr
dt
转动惯量
J r 2dm m
力矩
M Frsin
转动定律 M J M dL
dt
角动量 L J
动量定理
动量守恒
Ft1t2 F0d, tmvmv恒2 矢m量v1
2
2
2
又: J 1 M 2l2 1 Ml2
12
3
联立可得: v M 3m u
M 3m
6mu
M 3m
l
3-18 M k J J d
dt
t
0
k J
dt
0
2
0
d
t J ln 2 k
3-19 设子弹射入后圆盘的角速度为ω,由角动量守恒得
mv0
R
(mR2
1 2
m0 R 2
)
2mv0
60°角, 处于静止状态。无初转速地释放后,杆球
系统绕O轴转动。杆与两小球为一刚体,绕O 轴的转
动惯量J =
。释放后,当杆转到水平位置时,
刚体受到的合外力矩M =
,角加速度 = 。
J m( L)2 2m( L)2 3 mL2
2
24
M 2mg L mg L mg L
22
2
60°
O
mg 2mg
3
竖直下垂。有一质量为m的子弹以水平速度v射入杆
上A点,并嵌在杆中,OA= 2 l ,则子弹射入后瞬间
杆的角速度 为多大?
3
解:子弹和杆相对于过O点的轴角动量守恒!!
mv 2 l [m( 2 l)2 1 M l 2 ]
3
33
6mv
(4m 3M ) l
o
2l
3
m
v
A
3-9 电风扇在开启电源后,经过t1时间到达了额定
课后题 答 案
3-2 (1)
J1 2m(
2a )2 m( 2
2a)2 3ma 2
(2) J 2 2ma 2 m( 2a)2 4ma 2
3-4 M M f J 1
M f J 2
1
0
t1
2
0
t2
M
J (1
2)
J
0
(
1 t1
1 )
t2
4.12 N m
3-9 (1) mg T ma
转速,此时相应的角速度为 0。当关闭电源后,经
过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。
解: 设电机的电磁力矩为M,摩擦力矩为Mf
M M f J 1 M f J 2
1
0
t1
2
0
t2
M
J (1 )
J
0
(
1 t1
M 2g
J 3L
3-7 一质量为M = 15kg、半径R = 0.30m的圆柱体, 可绕与其几何轴重合的水平固定轴转动(转动惯量 J 1 MR2 )。现用一根不能伸长的轻绳绕于柱面,
2
而绳的下端悬一质量m = 8.0kg的物体。不计圆柱体 与轴之间的摩擦,求:
(1)物体自静止下落,5s内下降的距离; (2)绳中的张力。
解:
mg T ma
T R J 1 MR2 a
2
R
a 2mg 5.06m s2 M 2m
T 1 Ma 2
h 1 at2 63.2m 2
T m(g a) 37.9N
3-8 长为l,质量为M的匀质杆可绕通过杆一端O的
水平光滑固定轴转动,转动惯量为 1 Ml2 ,开始时杆
T mg sin 30o ma
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
a g m/s2 4
方向竖直向下
T1
T2 N 2
1 mg
mg
J k m r2
联立求解得:
a
g
22
k
方向竖直向下
3-15 由角动量守恒得 mul J mvl
因弹性碰撞,系统机械能守恒: 1 mu2 1 mv2 1 J2
物体,物体所受重力为P,滑轮的角加速度为,若将
物体去掉而以与P相等的力直接向下拉绳子,则滑轮
的角加速度 将
(A)不变。
(B)变小。
✓(C)变大。
(D)无法确定。
o
TP
P
3-2 一轻绳跨过一具有水平光滑轴、质量为M的定
滑轮,绳的两端分别悬有质量为m1和m2的物体(m1< m2),如图所示。绳与轮之间无相对滑动。若某时刻 滑轮沿逆时针方向转动,则绳中的张力
(A)处处相等。 (B)左边大于右边。
✓(C)右边大于左边。
(D)无法判断。
o
T1 a1
m1
T2 a2
m2
3-3 光滑的水平桌面上,有一长为2L、质量为m的
匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定
轴o自由转动,其转动惯量为1/3mL2, 起初杆静止。
桌面上有两个质量均为m的小球,各自在垂直于杆的
加速度=5rad/s2,则在t =
时角位移为零,而
此时边缘上点的线速度v =

t 1 t2 0
2
t 4s
t t 10 rad/s
v r 15m/s
3-5 一飞轮的转动惯量为J,在t = 0时角速度为 0, 此后飞轮经历制动过程,阻力矩M的大小与角速度
的平方成正比,比例系数k > 0。当 =1/3 0时,飞轮
相关文档
最新文档