高斯小学奥数五年级上册含答案_直线形计算中的比例关系
高斯小学奥数五年级上册含答案_分数应用题
22第十六讲 分数应用题在三、四年级的时候, 同学们学习了 “和差倍”问题.在这一讲,继续来学习 “和差倍” 问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样, “分 数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了 20 个苹果, 10 个桔子,容易知道,卡莉娅买的苹果数量是桔子的 2 倍,那桔子是苹果的几倍 11 呢?同样的,用一个除法算式来计算: 10 20 ,即桔子的数量是苹果的 倍,或者桔22 11子的数量是苹果的 1 .我们把分数倍,比如前面的“ 1 ”,称为 分率 .221注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的 1 ,在这里,分211率“ 1 ”所对应的总量是苹果总数, “ 1 ”表示的是苹果总数的一半.如果我们将苹果的数量设为“ 1”份,那桔子的数量就为“ 1”份.通常,将分率所对应的总量设为“1”份,2也就是此分率所对应的单位“ 1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“ 1”.当知道单位“ 1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20 个苹果,11她的桔子数量是苹果数量的,那卡莉娅就拥有20 10 个桔子.那知道了分率的对应22量,如何来求单位“ 1”呢?请熟记公式:单位“1”= 分率对应量分率2 例如,小高有30 张动物卡,他的动物卡是植物卡数量的2,那么他的植物卡有多少张52呢?列算式计算:30 2 75张,即小高有75 张植物卡.一般来说,每一个分率都会有一5个数量和它对应(包括单位“ 1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.(1)小高有100个梨,他把其中的21送给了墨莫,那么小高送给了墨莫 __________ 个梨.(2)卡莉娅有20 个苹果,她把其中的4送给了萱萱,那么卡莉娅送给了萱萱5_______ 个苹果.(3)小高有高思积分360 分,是墨莫的积分的3,则墨莫有高思积分___________分.(4)卡莉娅今年10 岁,是小山羊的2,那么小山羊今年____________ 岁.54例题 1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨 23莫吃了全部巧克力的 2 ,卡莉娅吃了全部巧克力的 3 ,小高吃了 9 块.请问小高一共买来5 10多少块巧克力?「分析」 小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的 1 ,黄球占总球数的 1,绿34 球有 50 个.口袋里一共有几个球?在例题 1 中,容易找到分率与数量的对应. 但有的题目并不直接给出分率所对应的数量, 那就需要同学们仔细寻找和计算,完成量率对应.11例题 2.有一堆砖,搬走总数的 1 后又运来 306 块.这时这堆砖比最开始还多了 1.这堆砖 45 原来有多少块?「分析」 这道题中只有一个具体的量: 306 块砖,那么我们就应该去寻找它所对应的分率.1小言在练毛笔字.第 1 个小时结束的时候,还差 1才完成练字计划.第 2 个小时,小31言又写了 84 个毛笔字, 结果总的练字数超过了练字计划的 1.那么小言计划写多少个字?五年级原来有学生325人,新学期男生增加25人,女生减少了1,结果总人数增加了16 人.请「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“ 1”这个分率是20相对于哪个单位“ 1”来说的?它对应的又是哪个量呢?上届校运动会共有250 名同学报名参加.本届校运动会的报名统计显示,男生减少了1人,而总人数却增加了 4 人,原因是女生增加了1.那么本届校运动会有多少女同学报名?20在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?甲、乙两城相距多少千米?22分析」第二天走的“ 2”是全部路程的2吗?如果不是,它应该是全部路程的几分之几?33小明看一本书,第一天看了全书的1,第二天看了剩下的2,还剩下144页没有看.问35这本书共有多少页?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的5是其它两种水果总数的5,梨有26 个.这些水果一共有多少个?163 ;玩了若干局后,阿5 呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的7.请问:11,桔子的数目6阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统阿呆此时一共5多少张牌?「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“ 1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.丢番图的墓志铭古希腊的大数学家丢番图。
高斯小学奥数五年级上册含答案_比例应用题
第十七讲比例应用题在研究两个量之间的关系时, 经常用到和的关系、 差的关系以及倍数关系. 之前我们学 过的和差倍问题就是关于这些关系的. 而倍数关系还有一种比较常见的表现形式, 就是比的 关系.比如,甲有 3个苹果,乙有 2个苹果,我们可以说甲的苹果是乙的 1.5 倍,也可以说甲 和乙的苹果数之比是 3:2,读作 3 比 2.如果甲有 6 个苹果,乙有 4 个苹果,甲的苹果仍然 是乙的 1.5倍,甲和乙的苹果数之比是 6:4.我们发现, 比的关系和倍数关系可以如下转化:比的关系 由此可见, 比的概念与除法的概念密切相关, 我们定义: 两个数相除又叫做这两个数的比.在两个数的比中, 比号前面的数叫做比的 除以比的后项所得的商叫做 比值 .例如:倍数关系 3 2 1.53:2 1.5倍6:4 6 4 1.51.5倍前项 ,比号后面的数叫做比的 后项 ,比的前项比的前项 比的后项3: 7 3 7 比值 比值通常用分数表示,也可以用小数或整数表示.比号请你想一想: 比的前项、 后项和比值分别相当于除法算式和分数中的什么? 以是 0 吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数( 变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2 比的后项可0 除外),比值不像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们 的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项, 分别是两个 内项 和两个 外项 .在 3:4=9:12 中,其中 3 与 12 叫做比例的 外项 , 4与 9叫做比例的 内项.比例的四个数均不能为 0.在任意一个比例中, 两个外项的积等 于两个内项的积.即:1. 求比值:2:5 = _____ ;7:3 = ____ ;10:4= _____2.把比化成最简整数比:6:15 = _____ ;8:12= ______ ;0.2:0.5 = ____ .3.如果3a 4b ,那么a:b=():();4.我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128 厘米,则长是_______厘米.在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234 个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5 份,哈密瓜有4 份.(1)卡莉娅和萱萱一共买了50 块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200 克的草,那么小山羊吃了多少克的草?例题 2.红旗小学共有师生 1081 人.其中老师与学生的人数之比为数之比为 5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」 如何通过师生的人数比求出学生的总人数?又如何利用男、各有多少?把这两个问题搞清楚了,本题也就解决了.512 名士兵分成龙、 虎两个营, 将龙营分成甲、 乙两个连, 再将乙连分成 A 、B 两个排. 如 果每次都按 5:3 的人数比来分,那么 A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系, 还可以表示多个量之间的倍数关系. 我们把 两个数之间的比称为 简单比 ,多个数的比称为 连比 .简单比与连比之间可以互相转化.如果甲 :乙=2:3,乙 :丙=5:4 ,那么甲 :乙:丙是多少? 甲乙丙2 : 35 : 4甲:乙 :丙=10:15:1210 : 15 : 12 例题 3.机器人制造厂一月份与二月份生产机器人的个数比为 4:5.后来改进生产技术,三 月份生产的机器人的个数与二月份的产量之比为 5:3.(1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了 78 个机器人. 请问, 这家工厂第一季度共生产多少个机 器人?「分析」 题目中给出了两个比, 这两个比之间存在什么样的关系呢?你能通过这两个比求出 一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是 与第三批的人数比是 3:2.已知第一批的人数比第二、三批的总和少 55 人.请问: 育才小学2:45,男生与女生的人 女比例,求出男、女生5:4,第二批五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题, 我们通常要从题中找到不变量, 根据它来统一份数.我们来看看下 面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题 4.慢羊羊村长开了一间学校, 招了好多小羊和小狼, 上学期小羊和小狼的数量比为 1:3, 新学期时又转来了 20只小羊, 导致开学的时候小羊和小狼的数量比变为 3:5,那么开学时一共有多少只小羊?「分析」 题目中也给出了两个比, 这两个比之间存在什么样的关系?我们能像例 1 那样, 把 上学期的小羊和小狼设成 1 份和 3 份,这学期的设成 3 份和 5 份吗?史蒂文森高中去年男生和女生的人数比为 5:3,今年转来了 200 名男生,使得女生和男 生的人数比变为 1:2,那么今年史蒂文森高中一共有多少名学生?例题 5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是水面上、下的长度之比为 3:1,乙木棒在水面上、下的长度之比为下的长度之比为 2:3.请问:水深是多少厘米?「分析」 题目中的三个比涉及到了甲、 乙、 丙三根木棒的水上部分和水下部分, 它们之间有360 厘米.甲木棒在 4:3,丙木棒在水面上、公共的量吗?例题6.甲、乙两包糖的重量比是5:3 ,如果从甲包取出10 克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10 克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
高斯小学奥数五年级上册含答案_解方程与解方程组
第七讲解方程与解方程组L 23.4.5.6.7.&9章章章章章章章足章章 田米分广功输不程股 方粟衰少商均盈方勾方程迪个茗词,區©见于虫国占代算粘农九■皐算术蓟韦屮所有的數乍问履被分为九 a 分别是消田丄二・w知瓠少广■尅功氛均输孤盈人疋4加冲.勾脸魚壽…=T中和T WMoll靑N N4中行O IIIII I MIII 右仃川—=>中汙o仙I左轩三冊mi =nr左中若O 0 II =o lllll ir =o 1 i Mil =m =>左 行 o O lirr inn中行o lll 是 ・育幷列、井排之竜口■方程"就足潮e若林武子 (肛“枉“)片排地列出.由 此可见."方穿”在古语中更 多地是青方程绳"in o Os S 石 17 O IIIlllll II I I=1111 =nr書川o o勿电行0^^葺与方程有关的知识和方法.相信同学们已经会解简单的一元一次方程. 下面我们先对相关的概念做一个简要的复习.我们将用等号“=”连接,表示相等关系的式子,叫做等式•而方程就是含有未知数的等式.等式有两个基本性质:等式性质 1 :等式两边加上或减去「-个数,结果仍相等.如果a b,那么a c b等式性质2:等式两边乘上一个数,或除以一个不为0的数,结果仍相等如果a b,那么a c b如果a b,那么-bc0 .c c利用等式的性质我们可以解一些简单的方程•首先我们来看一下一元一次方程. 所谓一元一次方程就是只含有一种未知数且未知数的最高次数是1的方程.在解一元一次方程的时候,我们需要将含有未知数的项一起算,也就是合并同类项. 有的时候,当含有未知数的项不在等式同一侧时,我们还需要将这样的项从等式的一侧移动到另一侧,也就是所谓的移项. 注意方程中的每一项都包括数值与符号两部分,移项的时候要改变符号.例题1.解下列方程:(1)4x 3 3x 8 ; (2) 15 3x 19 4x ; (3) 12 3x 7x 18 .【分析】移项的时候记得要变号哦.有的时候,方程如果含有括号,我们要先去括号.去括号的时候特别要注意的是,如果括号前面是减号,去掉括号后,原有的项要変号.方程这个词,最早见于我国古代算书《九章算术》•可见人们在很早以前就已经掌握了3x ; (2) 5 6x 17 9x; (3) 10 2x 5x 11 .例题 2.解下列方程:(1)5x3(19 x 65 ; (2) 7x (3x 2)22 .【分析】去括号的时候也要注意符号(1) 16 2( x 4) 3x ;( 2)18 (3x 6) x .对于更为复杂的一元一次方程,还可能含有分母,这个时候我们要先去分母.例题3.解下列方程:【分析】以第一个方程为例,等号左边的分母是 2,要去掉它需要左右两边都乘 2或2的倍 数•而要消掉右边的分母需要左右两边都乘3或3的倍数,那只需要都乘多少就可以了?通过前面的练习,相信同学们对于一元一次方程有了进一步认识. 下面我们总结一下一元一次方程的一般解法:(1) 去分母(如果有分母):等号两边同时乘以各分母的最小公倍数; (2) 去括号(如果有括号):由内向外去括号; (3)移项:把含有未知数的项移到等号的一边(通常是左边) ,已知数移到等号的另一边;(4)合并同类项:把方程两边分别合并,化简成 axb a 0的形式;(5) 系数化1:在方程两边同除以未知数系数 a ,得到方程的解x b;a(6 )把得到的解代回原方程检验.一元一次方程我们已经会解了, 在解决实际问题的过程中我们还会遇到需要设两个未知(1)3x 5 27x 53x 1 8x 2(2)(1)数的情形.也就是可能要解二元一次方程.所谓二元一次方程就是方程中含有两种未知数,且未知数的次数是1•解决二元一次方程的关键就是将两个未知数变为一个未知数,也就是所谓的消元.加减消元法是比较常用的消元方法•该方法的步骤和要点可总结如下:1.若有某个未知数,它前面的系数在两个方程中恰好相反或者相同, 个数,将其凑出可以加减消元的形式;【分析】熟练掌握一元一次方程的解法,向更高的难度进发吧!就可以通过把两个方程相加或者相减的方法消去该未知数; 如果没有上述特点,可以通过等式两边同乘以一2. 解消元后得到的一元一次方程;3. 把得到的解带入原方程中,求出另一个未知数;4. 代回原方程检验.注意:最后方程的解要写成a的形式. b例题4.解下列方程组:x 2y 3 x (1) ; (2)3x 4y 29 2x 2y5y 16【分析】加减消元法掌握好了吗?解下列方程组:(1)2x 3y5y 32(2)x 3y 72x 7y 15例题5.解方程: (1) 2y4y; (2)笔13 : (3) x2 3x 5 x x 228例题6. 解下列方程组:【分析】解二元一次方程组最基本的想法就是“消元” ,想想看,对于这两个题目是消x 还是消 y 更好做?应用方程和方程组可以解决应用题、 几何、数论等各种类型的题目, 同学们在后续的学 习中就会体会到方程的强大威力.1)9x 2y 20 3x 5y 12)5x 2y 16 2x 3y 13方程的来历方程这个名词,最早见于我国古代算书《九章算术》•《九章算术》是在我国东汉初年编 定的一部现有传本的、 最古老的中国数学经典著作. 书中收集了 246个应用问题和其他问题的解法,分为九章,方程”是其中的一章•这一章里的所谓“方程”,是指一次方程组•其中有一个问题实际上就是求解三元一次方程组:3x 2y z 39 ① 2x 3y z 34 ②x 2y 3z 26 ③古代是将它用算筹布置起来解的•如下图所示,图中各列由上而下列出的算筹表示X 、y 、z 的系数与常数项.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程.三川1 =TTT1上述方程的概念,在世界上要数 《九章算术》中的“方程”章最早出现•其中解方程组 的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.这一成就进一步证明:中华民族是一个充满智慧和才干的伟大民族.作业1. 求下列方程的解: (1) x 6 15; (2) 3x 5 17 •作业2. 求下列方程的解: (1) 5x 8 3x 20 ; (2) 6 5x 8x 20 • 作业3. 求下列方程的解: (1) 3x 2(15 x ) 45; (2) 9x 2(2x 2) 19 作业4.解方程:3x 76x 745作业5.解下列方程组: (1)x 4y 0/ 、 5x 4y 33• (2) J•3x y 265x 3y 19右行lll H I中行H 川!左行 I第七讲解方程与解方程组答案:(1) 5; (2) 4; (3) 3.答案:(1) 4; (2) 5.答案:(1) 5; (2) 6.答案:(1) X 2 ; (2) x :. y 2 y 2答案:(1) 7 ; (2) 4; (3) 5.3“宀x 2 x 2答案:(1) ; (2) .y 1 y 3答案:(1) 2; (2) 4; (3) 3.答案:(1)8; (2) 6.答案:(1)9; (2) 1.答案:(1)X 11x 4(2)y 2y 1例题1.例题2.例题3.例题4.例题5.例题6.练习1.练习2.练习3.练习4.作业1. 答案:(1) 21;(2) 4.作业2. 答案:(1) 6;(2) 2 简答:提示,注意移项的时候要改变符号.作业3. 答案:(1) 15;(2) 3 简答:提示,去括号的时候注意括号前面是减号,去掉括号要变号.作业 4. 答案: 7 简答:首先要去分母,方程两边同时乘以 20 即可.简答:提示,第一个方程组采用代入消元法较为方便,第二个方 程组采用加减消元法较为方便.作业5. 答案:(1)x。
高斯小学奥数五年级上册含答案_第12讲_几何计数
第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。
旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。
分割田地大概有3条横线、4条竖线左右,可适当增减。
人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。
后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。
高斯小学奥数五年级上册含答案_列方程解应用题
第二十四讲 列方程解应用题章 童童s 章章章足e 章 田米分广功输不程股 方粟裒少商均盈方勾 **■■¥«■♦■-12 34 5 6 7 89T5L T R1]^^W45«扎HJfJmSE 帀有带野学口u 播寸为n 大 H , ^jfis方三氐覃工皐.負井氐少广韋-貝期章.更*章、屋宀足瓠丹匹“.爼应星.吾:J1s W 11*厅□■!1F咅WIDW!"申祁T TV・0t£n 11■理.J1■昭时■求A 晰歼皈于"而•方*曲事• i . 4::刊"-31 .. e ■w UWBM 干中氏于 (S1 -#■ I ffi K3JB. ■方■"在古话中炉 冬曲星H 力艸母.中6:I Taf l■■1+#o m— K u<JCW M—+A o IWtO NII W頁O B1I中打c w o n£_n D£f f w11 so w —«■生产中的很多实际问题•其思想如图所示:列方程解应用题的方法和步骤步骤要求要注意的问题审题读懂题目、弄清题意、找出能够表示应用题全部含义的相等关系,分清已知数和未知数审题是分析解题的过程,解题程序中不用体现出来设元①设未知数②把所求的量用未知数表示③把各个量用含未知数的式子表示出来①设未知数一般是冋什么,就直接设什么,即直接设元②直接设兀有困难,可以间接设兀③设未知数时,必须写清未知数的单位列方程根据等量关系列出方程方程两边所用的单位需一致解方程解出这个方程的解,求出未知数的值如果是间接设元,求出的未知数还需要利用其他算式得到所求的量检验把方程的解代入方程检验,或根据实际问题进行检验检验的步骤在解题程序中不用写出来方程的解要符合实际情况,否则无解作答写出答案,作出结论这一步在列方程解应用题中必不可少,是一种规范要求方程是分析和解决问题的一种很有用的数学工具, 利用方程我们可以解决生活、学习和练一练F来我们就来看看如何用一元一次方程解应用题.例题1.一次考试,小高比萱萱高6分,但是比卡莉娅低3分,他们3人的平均分为91分.请问: 小高考了多少分?「分析」列方程的第一步是设未知数,本题中应该设什么为x?练习1.甲数比乙数的3倍还少6,两数的平均数是43.那么乙数是多少?例题2.阿范和阿统吃饺子,阿范一共要吃90个,而阿统一共要吃100个.如果阿范每分钟吃3个饺子,阿统每分钟吃5 个饺子,经过若干分钟后,阿范剩下的饺子数比阿统剩下的饺子数的2 倍少5 个.请问:这时阿范和阿统各吃了多少个饺子?「分析」如果设吃的饺子数为x,方程就会很不好列.不妨换个角度,设经过的时间为x分钟.练习2.箱子里有红、白两种玻璃球,红球数比白球数的3 倍多2 只.每次从箱子里取出7 只白球和1 5只红球.经过若干次以后,箱子里剩下3只白球和53只红球.那么箱子里原有红、白球各多少个?例题3.给某班分苹果,第一组每人3 个,第二组每人4 个,第三组每人5个,第四组每人6 个.已知第二组和第三组共有22 人,第一组人数是第二组的2 倍,第三组和第四组人数相等,总共分出去230个苹果.问该班一共有多少人?「分析」刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂. 题目中虽然有四个组,但这四组人数之间有很多联系. 如果某一组的人数知道了,其他各组的人数也就知道了. 根据这一点,我们可以设出其中一组的人数,列方程求解.练习3.司机小王身上带有1 元、2 元、5 元、10 元四种面值的纸币共82 元,其中1 元与2 元纸币共22张,5 元和10元纸币共7张,2元纸币的张数是5元纸币张数的2.5倍.问:小王身上有多少张10元纸币?看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会: 原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少. 只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.有些应用题中,如果只设一个未知数,有些未知量要表示出来就会比较困难. 这时就需要设两个未知数,列二元一次方程组来解题.例题4.墨莫去超市里买了一些士力架和德芙,共重266克,共花了30元•已知士力架每块3元,德芙每块2元.每块士力架35克,每块德芙14克.那么墨莫各买了多少块士力架和德芙?「分析」假设买了x块士力架,y块德芙,那么这两个未知数满足哪些等量关系?练习4.王老师抓了一群外星人,其中火星人有2个头3个脚,金星人有3个头5个脚,王老师数了数,发现总共有34个头、54个脚.那么请问王老师分别抓了多少个火星人和金星人?例题5.一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1,那5么原分数是多少?「分析」设原来的分子是x,那原来的分母就是122 x •再由另外一个已知条件,不难列出方程求解.例题6.如下图的短除式所示,一个自然数被8除余1,所得的商被8除也余1,第二次所得的商被8除后余7,最后得到的商是a.同时这个自然数被17除余4,所得的商被17除余15,最后得到的商是a的2倍.求这个自然数.「分析」所求的自然数8 .. 、山-•、、/ 第一次商这是一个带余除法的问题,蕴含着等量关系:所求的自然数……余417 入第次商——……余152a被除数=除数商+余数.利用这一等量关系以及图中的两个短除式, 式). 不难用字母a表示出原来的自然数(有两种不同表示方多送几份牛奶最近,动物们流行喝鲜奶,都在鲜奶公司定了份牛奶,鲜奶公司每天派小狗早早和巧巧送鲜奶到东西大街,早早负责送东边的住户,巧巧负责送西边的住户,两边住户数目一样多。
高斯小学奥数五年级上册含答案_比例应用题
第十七讲比例应用题在研究两个量之间的关系时,经常用到和的关系、差的关系以及倍数关系.之前我们学过的和差倍问题就是关于这些关系的.而倍数关系还有一种比较常见的表现形式,就是比的关系.比如,甲有3个苹果,乙有2个苹果,我们可以说甲的苹果是乙的1.5倍,也可以说甲和乙的苹果数之比是3:2,读作3比2.如果甲有6个苹果,乙有4个苹果,甲的苹果仍然是乙的1.5倍,甲和乙的苹果数之比是6:4.我们发现,比的关系和倍数关系可以如下转化:由此可见,比的概念与除法的概念密切相关,我们定义:两个数相除又叫做这两个数的比.在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以比的后项所得的商叫做比值.例如:请你想一想:比的前项、后项和比值分别相当于除法算式和分数中的什么?比的后项可以是0吗?与除法和分数一样,比的前项和后项同时乘或除以相同的数(0除外),比值不变.利用这个性质,我们可以像约分一样,将比化简.比如6:4=3:2.像这种表示两个比相等的式子叫做比例(式).要判断两个比是否成比例,就要看它们的比值是否相等.两个比的比值相等,这两个比能组成比例,否则不能组成比例.比例有四个项,分别是两个内项和两个外项.在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.在任意一个比例中,两个外项的积等于两个内项的积.即:3:7比的后项比号比的前项比值3377=÷=比值通常用分数表示,也可以用小数或整数表示.比的关系 3:2 6:4倍数关系 1.5倍 1.5倍64 1.5÷=在表示两个量之间的关系时,可以用到和的关系、差的关系、倍数关系和分数倍关系.除了这些之外,比例也可以用来表示两个量之间的倍数关系.知道了两个量之间的比,我们可以方便的按照比例将两个对象的数量分配好,这也是本讲要重点学习的:按比例分配.例题1.(1)水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?(2)阿呆和阿瓜一起去买包子,两人买的包子数之比是13:6.又知道阿呆比阿瓜多买了21个包子,那么两人一共买了多少个包子?「分析」根据比例设份数,比如西瓜和哈密瓜的个数比是5:4,那么可设西瓜有5份,哈密瓜有4份.(1)卡莉娅和萱萱一共买了50块巧克力,卡莉娅的巧克力块数和萱萱的比是7:3,那么卡莉娅比萱萱多多少块巧克力?(2)小山羊和老山羊去吃草,小山羊和老山羊吃的草量比为5:9,并且老山羊比小山羊多吃了200克的草,那么小山羊吃了多少克的草?1. 求比值:2:5 =________;7:3 =________;10:4=________.2. 把比化成最简整数比:6:15 =________;8:12=________;0.2:0.5 =________.3. 如果34a b ,那么a :b =( ):( );4. 我国《国旗法》规定,国旗长宽之比为3:2,若国旗宽是128厘米,则长是________厘米.练一 练例题2.红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?「分析」如何通过师生的人数比求出学生的总人数?又如何利用男、女比例,求出男、女生各有多少?把这两个问题搞清楚了,本题也就解决了.512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?比例除了可以表示两个量之间的倍数关系,还可以表示多个量之间的倍数关系.我们把两个数之间的比称为简单比,多个数的比称为连比.简单比与连比之间可以互相转化.如果甲:乙=2:3,乙:丙=5:4,那么甲:乙:丙是多少?例题3.机器人制造厂一月份与二月份生产机器人的个数比为4:5.后来改进生产技术,三月份生产的机器人的个数与二月份的产量之比为5:3. (1)请写出三个月的产量的连比;(2)如果三月份比一月份多生产了78个机器人.请问,这家工厂第一季度共生产多少个机器人?「分析」题目中给出了两个比,这两个比之间存在什么样的关系呢?你能通过这两个比求出一月份、二月份和三月份这三个月产量的连比吗?育才小学五年级学生分成三批去参观博物馆.第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学甲 乙 丙 2 : 35 : 410 : 15 : 12甲:乙:丙=10:15:12五年级一共有多少人?对于数量发生变化的题,题目中比的每一份的含义往往也是不一样的,不能直接来计算.那么对于这类问题,我们通常要从题中找到不变量,根据它来统一份数.我们来看看下面这道题,题中的量是如何变化的?你能找到其中的不变量吗?例题4.慢羊羊村长开了一间学校,招了好多小羊和小狼,上学期小羊和小狼的数量比为1:3,新学期时又转来了20只小羊,导致开学的时候小羊和小狼的数量比变为3:5,那么开学时一共有多少只小羊?「分析」题目中也给出了两个比,这两个比之间存在什么样的关系?我们能像例1那样,把上学期的小羊和小狼设成1份和3份,这学期的设成3份和5份吗?史蒂文森高中去年男生和女生的人数比为5:3,今年转来了200名男生,使得女生和男生的人数比变为1:2,那么今年史蒂文森高中一共有多少名学生?例题5.如下图,甲、乙、丙三根木棒插在水池中,它们的长度之和是360厘米.甲木棒在水面上、下的长度之比为3:1,乙木棒在水面上、下的长度之比为4:3,丙木棒在水面上、下的长度之比为2:3.请问:水深是多少厘米?甲乙丙水面水深「分析」题目中的三个比涉及到了甲、乙、丙三根木棒的水上部分和水下部分,它们之间有公共的量吗?例题6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?「分析」甲包少了10克,乙包多了10克.什么没有变呢?黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
高斯小学奥数五年级上册含答案_直线形计算中的比例关系
第十八讲直线形计算中的比例关系-------------------------------------------------------------------------------------------、在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系,下面我们复习一下其中的基本结论.当两个三角形同高或等高的时候,它们面积的比等于对应底之比.如 图 所 示 , 对 于 三 角 形 ABD 与 三 角 形 BDC , 它 们 有 共 同 的 高 BH , 可 知三角形ABD 的面积 AD=三角形BDC 的面积 DC.BAH DC例题 1.如图,AE:EB=3:2,CD:DB=7:5,三角形 ABC 的面积是 60,求三角形 AED 的面积.「分析」图中是否有等高的三角形?AECD B练习 1.如图,CE : AE = 2:5 , C D : DB = 7:5 三角形 ABC 面积为 120,求三角形 AED 的面 积.ABDEC- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的漫画中我们认识了“小黎飞镖”.把“飞镖”立起来(如图),标好字母,会发现两个三角形:三角形 ADE 与三角形 ABC .这两个三角形有一个公共的角 A ,并且A角 A 的两边 AD 、AE 分别在 AB AC上.对于符合这种情况的三角形 ADE 与三角形 ABC , E我们称之为“共角三角形”.DBC在“小黎飞镖”中,有三角形ADE的面积练习2.三角形ABC中,BD的长度是AB的1,AE的长度是AC的.三角形AED的面对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:AD AE=⨯三角形ABC的面积AB AC.(同学们,可以想一想如何来证明这个结论.提示:连结四边形BDEC的一条对角线)例如:如果在“小黎飞镖”中,D点是AB上靠近B的3等分点,E点是AC上靠近A的3等分点,那么212⨯=.339AD2AE1=,=,那么三角形ADE的面积就是三角形ABC面积的AB3AC3有了这个结论,在解决一些问题时,就方便很多了.请看下面的问题.--------------------------------------------------------------------例题2.如图,在三角形A BC中,AD的长度是BD的3倍,AC的长度是EC的3倍.三角形AED的面积是10,那么三角形ABC的面积是多少?「分析」△ADE占△ABC的几分之几?应该怎么利用鸟头模型来计算?AD EB C积是8,那么三角形ABC的面积是多少?143AEDB例题3.如图,已知长方形ADEF的面积是16,BE=3BD,CE=CF.请问:三角形BEC的C面积是多少?AD B F C E「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -练习 3.如图,长方形 A BCD 的面积是 48,BE:CE=3:5,DF:CF=1:2.三角形 CFE 的面积是多少?A DFEB- - - - - - - - - - - - - - - - - - - - -接着,我们来看一看在任意四边形中三角形之间的面积关系.如图,对于一个任意的四边形 ABCD ,连结对角线 AC 和 BD ,将整个四边形分成 4 个小三角形,由等高三角形的基本结论,我们可以得到如下关系:DCAS 1S 2OS 4S 3BO S S S + S= 1 = 4 = 1 4DO S S S + S 2 3 2 3AO S S S + S= 1 = 2 = 1 2 CO S S S + S4 3 4 3BCS ⨯ S = S ⨯ S1 3 24- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题 4.如图,某公园的外轮廓是四边形 A BCD ,被对角线 AC 、BD 分成 4 个部分.三角形 BOC 的面积是 2 平方千米,三角形 COD 的面积是 3 平方千米,三角形 AOB 的面积是 1 平 方千米.如果公园由大小为 6.9 平方千米的陆地和一块人工湖组成,那么人工湖的面积是多 少平方千米?「分析」△BOC 、△COD 和△AOB 的面积都知道了,那么△AOC 的面积是多少呢?CBODA练习 4.四边形 ABCD 中,AC 、BD 两条对角线交于 O 点,三角形 ABO 的面积为 6,三角 形 AOD 的面积为 8,三角形 BOC 的面积是 15,那么四边形 ABCD 的面积是多少?DAOBC例题5.如图,△ABC的面积是36,并且AE=111AC,CD=BC,BF=AB,试求△DEF 345的面积.AEFB D「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?C例题6.图中四边形ABCD的对角线AC和BD交于O点,如果△ABD的面积是30平方厘△米,ABC的面积是48平方厘米,△BCD的面积是50平方厘米.请问:△BOC的面积是多少?「分析」题目中给出了3个大三角形的面积,能不能找出四个小三角形之间的面积关系呢?BC OAD三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.1.如图,△ABC中,BD的长度是AB的23,如果△ABC的面积为15,那么A△ADC的面积是多少?DB CA2.如图,AE:EB=4:3,CD:DB=3:1,三角形ABC的面积是84,三角形AED的面积是多少?EC 3.如图,AD:DB=1:4,AE:EC=1:5,如果△ABC的面积是120,那么△DBBADE的面积是多少?DA E CA D4.如图所示,在长方形ABCD中,DE=CE,C F=2B F,如果长方形ABCD的面积为18,那么阴影部分的面积是多少?EB F C5.如图,四边形ABCD中,AC、BD两条对角线交于O点,△ADO A的面积为△30,ABO的面积为6,△DOC的面积是20,那么四边形ABCD的面积是多少?BOD C详解:AD 是 AB 的 3,AE 是 AC 的 .根据鸟头模型,有△ ADE 面积是△ABC 面积的⨯ = .那么△ ABC 的面积是 20. 详解:连结 ,根据鸟头模型,可知△DF BCE 面积是△DEF 面积的 ⨯ =.那么△BCE 的面积是16 ⨯ ⨯ = 3 .= 36 ⨯ ⨯ = , S = 36 ⨯ ⨯ = , 5 3 5 5 4 5= 36 ⨯ ⨯ = 6 , S = 36 - - - 6 = 15 . 4 3 5 5第十八讲 直线形计算中的比例关系例题1. 答案:15详解:因为三角形 ACD 与三角形 ADB 同高,所以 S∆ACD: S∆ADB=CD : DB = 7 :5 ,所以三 角 形 ADB 面 积 为 25 ; 同 理 , 三 角 形 AED 与 三 角 形 BED 等 高 , 所 以S∆AED: S∆BED= AE : EB = 3: 2 ,所以三角形 AED 面积为 15.例题2. 答案:202 4 33 2 14 3 2例题3. 答案:33 1 34 2 81 32 8例题4. 答案:0.6详解:由题意,S∆BOC: S∆COD=BO : OD = S ∆BOA: S∆DOA,三角形 BOC 面积为 2 平方千米,三角形 COD 面积为 3 平方千米,三角形 BOA 面积为 1 平方千米,则三角形 AOD 面积是 1.5 平方千米,陆地总面积 6.9 平方千米,则人工湖面积为 2 + 3 + 1 + 1.5 - 6.9 = 0.6 平 方千米.例题5. 答案:15详解:由鸟头模型可得, S∆AEF 41 48 1 3 27 ∆BFDS ∆CDE 12 48 27 ∆DEF例题6. 答案:30详解: AO : CO = S∆ABD: S∆BCD=3: 5 ,所以 S ∆BOC= S∆ABC 5⨯ = 30 平方厘米. 8练习1. 答案:50简答:△ACD 的面积是120 ÷ (7 + 5)⨯ 7 = 70 ,△AED 的面积是 70 ÷ (2 + 5)⨯ 5 = 50 .练习2. 答案:32简答: 8 ÷ ⨯ ⎪ = 32 . 角形 BCD 的 ⨯ = ,那么阴影部分的面积是 9 ⨯(1 - )= 6 .简答: 48 ⨯ ⨯ ⨯ = 10 .得 AD: AB = 1:3 ,那么三角形 ADC 的面积为 15⨯ 6 ,⎛ 3 1 ⎫ ⎝ 4 3 ⎭练习3. 答案:101 5 22 8 3练习4. 答案:49简答:△COD 的面积是 8 ⨯15 ÷ 6 = 20 ,四边形 ABCD 的面积为 6 + 8 + 15 + 20 = 49 .作业1. 答案:5简答:由 BD 的长度是 AB 的 2 1= 5 .3 3作业2. 答案:12简答:由于 CD : DB = 3:1 ,三角形 ABC 的面积是 84,可知三角形 ADB 的面积为 84 ÷ (3 + 1) = 21 ,又由于 AE : EB = 4:3 ,可知三角形 AED 的面积为 21 ÷ (4 + 3) ⨯ 4 = 12 .作业3. 答案:4简答:由已知条件得 AD : AB = 1:5 , AE : AC = 1: 6 ,利用“共角三角形”得三角形 AED1 1的面积是120⨯ ⨯ = 4 .5 6作业4. 答案:6简答:由于长方形 ABCD 的面积为 18,可知三角形 BCD 的面积为 9,三角形 CEF 为三1 2 1 12 3 3 3作业5. 答案:60简答:利用任意四边形的结论得三角形 B OC 的面积是: ⨯ 20 ÷ 30 = 4 所以四边形 ABCD 的面积是 6 + 20 + 30 + 4 = 60 .。
高斯小学奥数五年级上册含答案_直线形计算中的比例关系
第十八讲直线形计算中的比例关系- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系,下面我们复习一下其中的基本结论.如图所示,对于三角形ABD 与三角形BDC ,它们有共同的高BH ,可知ABD ADBDC DC=三角形的面积三角形的面积.例题1.如图,AE :EB =3:2,CD :DB =7:5,三角形ABC 的面积是60,求三角形AED 的面积. 「分析」图中是否有等高的三角形?练习1.如图,:2:5CE AE =,:7:5CD DB =三角形ABC 面积为120,求三角形AED 的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的漫画中我们认识了“小黎飞镖”.把“飞镖”立起来(如图),标好字母,会发现两个三角形:三角形ADE 与三角形ABC .这两个三角形有一个公共的角A ,并且角A 的两边AD 、AE 分别在AB 、AC 上.对于符合这种情况的三角形ADE 与三角形ABC ,我们称之为“共角三角形”.AB B对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有ADE AD AEABC AB AC=⨯三角形的面积三角形的面积.(同学们,可以想一想如何来证明这个结论.提示:连结四边形BDEC 的一条对角线)例如:如果在“小黎飞镖”中,D 点是AB 上靠近B 的3等分点,E 点是AC 上靠近A 的3等分点,那么23AD AB =,13AE AC =,那么三角形ADE 的面积就是三角形ABC 面积的212339⨯=. 有了这个结论,在解决一些问题时,就方便很多了.请看下面的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.如图,在三角形ABC 中,AD 的长度是BD 的3倍,AC 的长度是EC 的3倍.三角形AED 的面积是10,那么三角形ABC 的面积是多少?「分析」△ADE 占△ABC 的几分之几?应该怎么利用鸟头模型来计算?练习2.三角形ABC 中,BD 的长度是AB 的14,AE 的长度是AC 的13.三角形AED 的面积是8,那么三角形ABC 的面积是多少?例题3.如图,已知长方形ADEF 的面积是16,BE =3BD ,CE =CF .请问:三角形BEC 的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?CCF练习3.如图,长方形ABCD 的面积是48,BE :CE =3:5,DF :CF =1:2.三角形CFE 的面积是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -接着,我们来看一看在任意四边形中三角形之间的面积关系.如图,对于一个任意的四边形ABCD ,连结对角线AC 和BD ,将整个四边形分成4个小三角形,由等高三角形的基本结论,我们可以得到如下关系:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形COD 的面积是3平方千米,三角形AOB 的面积是1平方千米.如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?「分析」△BOC 、△COD 和△AOB 的面积都知道了,那么△AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于O 点,三角形ABO 的面积为6,三角形AOD 的面积为8,三角形BOC 的面积是15,那么四边形ABCD 的面积是多少?ABCDO S 1S 2 S 3S 414142323S S S S BO DO S S S S +===+ 12124343S S S S AO CO S S S S +===+ 1324S S S S ⨯=⨯A B CD E FA例题5.如图,△ABC 的面积是36,并且13AE AC =,14CD BC =,15BF AB =,试求△DEF 的面积.「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6.图中四边形ABCD 的对角线AC 和BD 交于O 点,如果△ABD 的面积是30平方厘米,△ABC 的面积是48平方厘米,△BCD 的面积是50平方厘米.请问:△BOC 的面积是多少? 「分析」题目中给出了3个大三角形的面积,能不能找出四个小三角形之间的面积关系呢?A B CDE F C DAOB三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.1. 如图,△ABC 中,BD 的长度是AB 的23,如果△ABC 的面积为15,那么△ADC 的面积是多少?2. 如图,:4:3AE EB =,:3:1CD DB =,三角形ABC 的面积是84,三角形AED 的面积是多少?3. 如图,:1:4AD DB =,:1:5AE EC =,如果△ABC 的面积是120,那么△ADE 的面积是多少?4. 如图所示,在长方形ABCD 中,DE CE =,2CF BF =,如果长方形ABCD 的面积为18,那么阴影部分的面积是多少?5. 如图,四边形ABCD 中,AC 、BD 两条对角线交于O 点,△ADO的面积为30,△ABO 的面积为6,△DOC 的面积是20,那么四边形ABCD 的面积是多少?C第十八讲 直线形计算中的比例关系例题1. 答案:15详解:因为三角形ACD 与三角形ADB 同高,所以::7:5ACD ADB S S CD DB ∆∆==,所以三角形ADB 面积为25;同理,三角形AED 与三角形BED 等高,所以::3:2AED BED S S AE EB ∆∆==,所以三角形AED 面积为15.例题2. 答案:20详解:AD 是AB 的34,AE 是AC 的23.根据鸟头模型,有△ADE 面积是△ABC 面积的321432⨯=.那么△ABC 的面积是20.例题3. 答案:3详解:连结DF ,根据鸟头模型,可知△BCE 面积是△DEF 面积的313428⨯=.那么△BCE 的面积是1316328⨯⨯=.例题4. 答案:0.6详解:由题意,:::BOC COD BOA DOA S S BO OD S S ∆∆∆∆==,三角形BOC 面积为2平方千米,三角形COD 面积为3平方千米,三角形BOA 面积为1平方千米,则三角形AOD 面积是1.5平方千米,陆地总面积6.9平方千米,则人工湖面积为231 1.5 6.90.6+++-=平方千米.例题5. 答案:15详解:由鸟头模型可得,414836535AEF S ∆=⨯⨯=,132736545BFD S ∆=⨯⨯=,1236643CDE S ∆=⨯⨯=,48273661555DEF S ∆=---=.例题6. 答案:30详解:::3:5ABD BCD AO CO S S ∆∆==,所以5308BOC ABC S S ∆∆=⨯=平方厘米.练习1. 答案:50简答:△ACD 的面积是()12075770÷+⨯=,△AED 的面积是()7025550÷+⨯=.练习2. 答案:32简答:3183243⎛⎫÷⨯=⎪⎝⎭.练习3.答案:10简答:1524810283⨯⨯⨯=.练习4.答案:49简答:△COD的面积是815620⨯÷=,四边形ABCD的面积为68152049+++=.作业1.答案:5简答:由BD的长度是AB的23得:1:3AD AB=,那么三角形ADC的面积为11553⨯=.作业2.答案:12简答:由于:3:1CD DB=,三角形ABC的面积是84,可知三角形ADB的面积为84(31)21÷+=,又由于:4:3AE EB=,可知三角形AED的面积为21(43)412÷+⨯=.作业3.答案:4简答:由已知条件得:1:5,:1:6AD AB AE AC==,利用“共角三角形”得三角形AED的面积是11 120456⨯⨯=.作业4.答案:6简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三角形BCD的121233⨯=,那么阴影部分的面积是19163⨯-=().作业5.答案:60简答:利用任意四边形的结论得三角形BOC的面积是:620304⨯÷=,所以四边形ABCD 的面积是62030460+++=.。
高斯小学奥数五年级上册含答案_第12讲_几何计数
第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。
旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。
分割田地大概有3条横线、4条竖线左右,可适当增减。
人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。
后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。
高思奥数导引小学五年级含详解答案第20讲:直线型计算三
第20讲 直线形计算三内容概述学习直线形中的各类比例关系,重点是与三角形相关的、与平行线相关的比例关系;学习勾股定理并能简单运用。
典型问题兴趣篇1.如图20-1,在三角形ABC 中,AD 的长度是AB 的34,AE 的长度是AC 的23。
请问:三角形AED 的面积是三角形ABC 面积的几分之几?2.如图20-2,AC 的长度是AD 的45,且三角形AED 的面积是三角形ABC 面积的一半。
请问:AE 是AB 的几分之几?3.如图20-3,深20厘米的长方形水箱装满水放在平台上。
(1)当水箱像图20-4这样倾斜,水箱中水流出15,这时AB 长多少厘米?(2)如图20-5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图20-6,这时水箱中水的深度是多少厘米?图20-1BD CE A图20-2BEDCABA B A~~~~~~~~~~~~~~~~~~~~图20-6图20-5图20-4图20-34.如图20-7,某公园的外轮廓是四边形ABCD ,被对角线AC BD 、分成4个部分。
三角形AOB 的面积是2平方千米,三角形BOC 的面积是3平方千米,三角形COD 的面积是1平方千米。
如果公园由大小为6.9万平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?5.如图20-8,在梯形ABCD 中,三角形ABO 的面积是6平方厘米,且BC 的长是AD 的2倍。
请问:梯形ABCD 的面积是多少平方厘米?6.如图20-9,已知平行四边形ABCD 的面积为72,E 点是BC 上靠近B 点的三等分点,求图中阴影部分的面积。
图20-7ODABC图20-8CDBAO图20-97.图20-10中的两个正方形的边长分别为6分米和8分米,求阴影部分的面积。
8.如图20-11,梯形ABCD 的对角线相互垂直。
三角形AOB 的面积是12,OD 的长是4,求OC 的长。
9.在图20-12中,正方形ABCD 的边长为5厘米,且三角形CEF 的面积比三角形ADF 的面积大5平方厘米,求CE 的长。
高斯小学奥数五年级上册含答案_工程问题
第二十三讲工程问题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -我们这一讲要学习的问题叫做工程问题.先来看下面的这个例子,假设一条地铁线有15千米长,工程队每个月可以修3千米,同学们肯定马上就能看出,共需要5个月的时间修好整条地铁.在这个例子中,总长度15千米叫做这个工程问题的工作总量,5个月即为工作时间,而工程队每个月修3千米就叫做工作效率.同学们,你们能看出来这和我们以前学过的哪一类应用题很类似吗?没错,就是行程问题!上面的例子很容易转化成这样一个行程问题:两地相距15千米,某人行走的速度为每小时3千米,那么从一地走到另一地需要5小时.虽然工程问题看起来和行程问题很类似,但工程问题有它自己独特的解法.在工程问题中,经常无法从题目中找到工作总量,此时可以把工作总量设为单位“1”.例如:一个工程队5天修完一段公路,我们就可以把修这段公路的工作总量设为单位“1”,那么工程队每天就能修完公路的15,那么每天完成的工作量就是“15”,而“15”就是这个工程队的工作效率.如同速度在行程问题中的核心地位,工程问题中工作效率、工作时间和工作总量这三个量中最为关键的量也是工作效率.因此,如何求出每一个工作者的工作效率,是同学们分析问题时的重点.练一练:1.李师傅要完成一批零件,他预计用6个小时完成了整个工作.则以这批零件的总量为单位“1”,李师傅的工作效率是_______,如果李师傅工作了2个小时,那么他完成了全部工作的_____分之_____.2.明明用了10个小时完成了写大字的作业,那么明明3个小时能完成作业的_____分之_____,如果这时他写好了30个大字,那么他总共要写_______个大字.在完成一项工作时,很多时候依靠个人的力量是无法完成的,或者不能完成得很快、很好,这时就需要多个人合作来完成.俗话说:“众人拾柴火焰高”,团队的智慧是远远超过个人的.当多人合作的时候,完成的工作总量就是这些人工作量的总和,“总工效”就是他们每个人的工作效率之和.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1.一条公路,甲队单独去修需要20天完成,乙队单独去修需要30天完成.那么:(1)甲、乙两队一起修,共需要多少天完成?(2)如果甲、乙两队合修若干天之后,乙队停工休息,而甲队继续修了5天才修完,那么乙队一共修了多少天?「分析」题目中已知甲、乙的工作时间,如果我们把工作总量设为单位“1”,那么利用工程问题的基本关系式:工作总量工作时间=工作效率,马上可以求出甲、乙两队的工作效率,那么两人合作的效率是多少?第(2)问中,甲队独修了5天,那么甲队独修的工作量是多少?其余的工作由两人合作完成,那两人还需要合作几天?练习1.有一堆排骨,老虎单独吃需要10分钟,狮子单独吃需要15分钟.那么:(1)老虎和狮子一起互不影响地吃这堆排骨,需要多少分钟吃完?(2)如果老虎和狮子一起吃了3分钟后,老虎就把狮子赶走了,剩下的排骨可以让老虎单独吃几分钟?在例题1中,单独与合作划分得很清楚,单独做的时候只要找那个人对应的工效和工作量,就能算出那个人单独的工作时间,而合作的时候,只要找到工效和与对应的工作量就能求出合作时间.然而有些时候,单独与合作的界线并不是那么清楚,需要我们自己找到.例2.现在要修筑一条公路,如果甲、乙两个工程队同时施工,20天可以完成.如果两队合作15天之后,剩下的全都由乙来完成,则还需要15天才能完成.那么如果这条路全部都由甲队来修,需要多少天才能完成?「分析」实际工作的30天中,前15天是两队合作,后15天是乙队独做,每天的工作效率不一样.那我们可以分别计算前15天与后15天的工作总量,进而计算出甲和乙的工作效率.练2.现在要修筑一条公路,如果乙工程队单独修,需要18天完成.如果两队合作10天之后,剩下的全都由乙来完成,则还需要6天才能完成.那么如果这条路全部都由甲队来修,需要多少天才能完成?例题3.有一条公路,甲队独修需12天,乙队独修需15天.现在让2个队合修,但中间甲队有别的任务离开了,结果从头到尾用了10天才把这条公路修完.请问:甲队参与修路多少天?「分析」我们可以把两队分开来计算.甲队最“懒”,干了几天就走了;乙队最听话,完完整整地做了10天,由此我们可以求出乙队的工作总量,进而求出甲的工作总量和工作时间.练习3.有一堆煤,甲车单独运需要10天运完,乙车单独运需要40天运完.乙车先开始运,若干天后甲车加入,到运完时乙车一共运了12天.那么乙车开始后几天甲车才加入?例题4.有一批待加工的零件,甲单独做需要4天完成,乙单独做需要5天完成,如果两人合作,那么完成任务时甲比乙多做20个零件.这批零件共有多少个?「分析」到完成时甲乙各完成了这批零件的几分之几?20个零件占了这批零件的几分之几?练习4.甲、乙两工程队修一条路,如果让甲队单独修,需要8天完成;如果让乙队单独修,需要6天完成.现在两队合修,修完后,甲队比乙队少修了50米.这条路有多长?在生活当中,有时候会出现“倒班”,也就是几个人轮流工作,而不是同时工作.这种类型的工程问题应该怎么解决呢?例题5.(1)单独完成一项工程,甲需要15天,乙需要10天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?(2)单独完成一项工程,甲需要15天,乙需要6天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?(3)单独完成一项工程,甲需要15天,乙需要12天.现在两人按甲、乙、甲、乙、…的顺序,一人一天轮流工作.那么完成这项工作需要几天?「分析」甲乙轮流工作,以2天为一周期,每个周期完成的工作量都是相同的.到最后完成工作需要几个周期呢?很多大型的工程中,都包含着多个小型的工程.比如中国的南水北调工程就分为东线工程、中线工程和西线工程.在工程问题中,这种整体与部分之间的关系是值得注意的.例题6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.现有两个相同的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙先帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,那么丙帮助甲搬了多少小时?「分析」我们可以把这两个仓库看成一个大的仓库,那么甲乙丙三人在合作搬运这个大仓库的货物,而且是同时开始,同时结束.那么搬运的时间能不能算出来?曼哈顿工程曼哈顿工程是第二次世界大战期间美国陆军自1942年起开发核武器计划的代号。
高斯小学奥数五年级上册含答案_直线形计算中的倍数关系
第六讲直线型计算中的倍数关系迄今为止,同学们已经学会了很多图形计算面积的方法.在计算这些面积的时候,只要知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形的长和宽即可利用长方形的面积=⨯长宽进行计算.但很多时候,题目中并不给出长和宽,那怎么来求面积呢?我们来看下面这个例题.例题1. 如图,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗?对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于它们宽(长)之比.例如:如图所示的长方形ABCD 与长方形BEFC 宽BC 相同,那么ABCD BEFC AB BE =长方形的面积:长方形的面积:.如图,有7个小长方形,其中的5个小长方形的面积分别为20,4,6,8,10平方厘米.求阴影长方形的面积是多少平方厘米?从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异.我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.过三角形一个顶点的直线将三角形分为两个小三角形,则这两个小三角形面积之比等于84620 10A B CDE481216 20该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍.那么三角形ABE 的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC 中,D 为AB 的中点,E 为BC 的中点,F 为BE 中点,如果三角形ABC 的面积是120平方厘米,那么三角形DEF 的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分.比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3. 如图,把三角形DEF 的各边分别向外延长1倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系.但是我们所求的是三角形DEF 的面积,而已知的是三角形ABC 的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?ACBF ED::ABD ADC BD DC 三角形的面积三角形的面积ABDE A DEA B CED F如图,把三角形DEF 的各边分别向外延长1倍、2倍、3倍后得到三角形ABC ,已知三角形DEF 的面积为1,那么三角形ABC 的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4. 如图,E 是AB 上靠近A 点的三等分点,梯形ABCD 的面积是三角形AEC 面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC 的面积是“1”份,那么梯形ABCD 的面积就是“5”份.接着可以看看“E 是AB 上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?DEFA BCBCDEA如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系.例题5. 把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、③三个长方形.其中,③的长和宽分别为4、2,可以求出它的面积.那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6. 如图,直角三角形ABC 套住了一个正方形CDEF ,E 点恰好在AB 边上.又已知直角边AC 长20厘米,BC 长12厘米,那么正方形的边长为多少厘米? 「分析」注意到EF 垂直于AC ,ED 垂直于BC .我们可以连接CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而它们的高相等.我们的目标就是求这个高.A BCDE2ACBEF D欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。
人教版五年级数学上册【详解】5年级第06讲_直线形计算中的倍数关系
第六讲 直线型计算中的倍数关系例题1. 答案:如图所示详解:长方形一边确定,面积的倍数关系与另一邻边的倍数关系相同.例题2. 答案:30详解:△ABD 与△ADC 的面积比是1:1,可求出△ABD 的面积是90平方厘米.△ABE 与△BDE 的面积比是1:2,那么△ABE 的面积是()901230÷+=平方厘米.例题3. 答案:7详解:连结AE 、BF 、CD ,由等高三角形可以推出图中的7个小三角形面积相等.例题4. 答案:3倍详解:设△AEC 的面积是1份,那么有梯形的面积是4份,△ABC 的面积是3份.所以△ACD 的面积是1份.而△ADC 与△ABC 的高相同,所以底的比等于面积的比,即AD :BC =1:3.例题5. 答案:49详解:设正方形边长为a ,则有242450a a ++⨯=,a =7.例题6. 答案:7.5详解:连结CE ,将三角形切成两个小三角,设正方形边长为a 厘米.可列方程()2012220122a a ⨯÷=+÷,a =7.5.AB C E D F1 11 1 1 11练习1. 答案:15简答:先求出面积为6的长方形下面长方形的面积,应该是84612÷⨯=平方厘米.再求阴影部分的面积,20102÷=,()46812215+++÷=.练习2. 答案:15平方厘米简答:因为D 是AB 的中点,可知△BDC 的面积是△ABC 面积的一半,120260÷=.E点是BC 的中点,F 是BE 的中点,那么△DEF 的面积是△BCD 的四分之一,60415÷=.练习3. 答案:18简答:如图所示,连结AF 、BD 和CE .根据等高三角形的性质可以求出其他三角形的面积.练习4. 答案:6简答:如图所示,连结EF ,使得ABEF 是一个长方形.那么长方形CDFE 的面积是长方形ABEF 的两倍,所以EC 是BE 的两倍,BE 长为6.作业1. 答案:5简答:长方形A 的面积是长方形B 的面积的3倍,因此长方形C 的面积也是长方形D 的面积的3倍,因此长方形D 的面积为5. A BCDE F B作业2. 答案:24简答:BD 长度是AD 长度的2倍,因此三角形BCD 面积也是三角形ACD 面积的2倍,因此三角形BCD 面积为24.作业3. 答案:16简答:由D 、E 分别为AB 、BC 边上的三等分点,可求得三角形BCD 面积为48,三角形CDE 面积为16.作业4. 答案:19简答:如图所示,连接AE 、BF 、CD .由2AD DF =,2BE ED =,,可知三角形ADE ,三角形BEF ,三角形CEF 的面积都是2,而三角形ABE 、三角形CBF 、三角形ACD 的面积都是4.三角形ABC 的面积是444222119++++++=.作业5. 答案:288;162 简答:△ABC 的面积是正方形面积的一半,即2242882=平方厘米;△BCD 的面积是△ABC 的34,即32882164⨯=平方厘米;△CDE 的面积是三角形BCD 的34,即32161624⨯=平方厘米. 2CF FE = A B CEDF。
高思竞赛数学导引五年级第八讲直线型计算二学生版
高思竞赛数学导引五年级第八讲直线型计算二学生版第8讲直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图8-2所示(单位:平方米),剩下一块的面积应该是多少平方米?3.如图8-3,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?4.如图8-4,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?5.如图8-5所示,已知三角形BEC的面积等于20平方厘米,E 是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?6.如图8-6,已知平行四边形ABCD的面积为36,三角形AOD 的面积为8.三角形BOC的面积为多少?7.如图8-7,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F 是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?8.如图8-8,将一个长为18的长方形,分成一个三角形和一个梯形,而且梯形的面积是三角形的5倍.三角形ABE的边BE的长是多少?9.如图8-9,把一个正方形的相邻两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?10.如图8-10,四边形ABCD内有一点D,D点到四条边的垂线都是4厘米,四边形的周长是36厘米,四边形的面积是多少平方厘米?拓展篇1.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?2.图8-12中三角形ABC的面积是180平方厘米,D是BC的中点,AD是AE的3倍,三角形ABE的面积是多少平方厘米?3.如图8-13,在四边形ABCD中,已知CD=3DF,AE=3ED,而且三角形BFC的面积为6平方厘米,四边形BEDF的面积为7平方厘米.大四边形ABCD的面积是多少?4.如图8-14,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1.三角形DEF的面积是多少?5.如图8-15,E是AB边上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的5倍.请问:梯形的下底长是上底长的几倍?6.如图8-16,一个长方形被分成4个不同颜色的三角形,红色三角形的面积是9平方厘米,黄色三角形的面积是21平方厘米,绿色三角形的面积是10平方厘米,那么蓝色三角形的面积是多少平方厘米?7.图8-17中,正方形ABCD的面积为1.把每条边都3等分,然后将这8个等分点与正方形内部的某一点P相连接,形成4个阴影的四边形和4个空白的三角形,阴影部分的总面积是多少?8.如图8-18,在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘米,三角形ABD的面积为13平方厘米.三角形BCE的面积为多少平方厘米?9.在图8-19中,正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6和4.三角形ACG和三角形BDF的面积分别是多少?10.图8-20是由边长分别为10厘米、12厘米、8厘米的正方形构成,有一条与AB边平行的直线EF将此图形分成面积相等的两部分,那么BF的长度为多少厘米?11.(1)如8-21中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米(阴影部分).原正方形的面积为多少平方厘米?(2)如8-21中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少了65平方厘米(阴影部分).原正方形的面积为多少平方厘米?12.如图8-22,直角三角形ABC套住了一个正方形CDEF,E点恰好在AB边上,直角边AC长20厘米,BC长12厘米.正方形的边长为多少厘米?超越篇1.如图8-23,三角形ABC的每边长都是96厘米,用折线把这个三角形分割成面积相等的四个三角形.请求出CE和CF的长度之和.2.如图8 -24,把四边形ABCD的各边都延长1倍,得到一个新四边形EFGH.如果ABCD 的面积是5平方厘米,则EFGH的面积是多少平方厘米?3.图8-25中ABCD是正方形,图中数字是各线段的长度(单位:厘米).过,点的线段IM 将五边形EFGHI分成面积相等的两部分.线段BM的长度是多少厘米?4.如图8 -26,在钝角三角形ABC中,M为AB边的中点,MD、EC都垂直于BC边.若三角形BDE的面积是3平方厘米,则三角形ABC的面积是多少?5.在图8 -27中,大正方形面积比小正方形面积大40平方厘米,大正方形面积是多少平方厘米?6.如图8-28,直角三角形ABC的三边长分别为AC= 30(分米),AB=18(分米),BC= 24(分米),ED垂直于AC,且ED=95(厘米).问正方形BFEG的边长是多少厘米?7.菜鸟和大虾在武林大会上相遇,争夺武林盟主的地位,三百回合大战后,两人不分胜负.突然,菜鸟向对手发出一枚飞镖,说时迟,那时快,飞镖已经接近大虾的胸口,只见大虾迅速抽身向左闪开,同时用手中的宝剑向飞镖劈去,只听见“瞠”的一声,飞镖被劈成了两半,如图8-29,菜鸟的飞镖是正六角星的形状,边长为5.被大虾劈开的刀口如虚线所示,那么较小的那部分残片占到整体面积的几分之几?8.如图8-30,将三个边长为l的正方形组合在一起,中间的正方形的两个顶点恰好是另外两个正方形的中心.请问:图中阴影部分的面积是多少?。
小学奥林匹克数学 竞赛数学 五年级 第19讲-+比例关系求解直线形
如图,AC的长度是AD的45,且三角形AED的面积是三角形ABC面积的一半.请问:AE是AB的几分之几?ABCDE 41S∆ABC=5份S∆ADE=2份S∆BD E=3份AE:EB=2:3AEAB=25三角形ABC 并且 试求 。
15BF AB =,11,,34AE AC CD BC ==A B C D EF S DEF S ABC S∆AEF=45×13=415 S∆BD F=15×34=320 S∆DEC =14×23=161−415−320−16=512如图,深20厘米的长方形水箱装满水放在平台上.(1)当水箱像图4-4这样倾斜,水箱中水流出15 ,这时AB 长多少厘米?(2)如图4-5,当水箱这样倾斜到AB 的长度为8厘米后,再把水箱放平,如图4-6,这时水箱中水的深度是多少厘米?(1) 20×(1−25)=12厘米 (2) 20−8÷20=35倒出=310整体 310×20=6 20-6=14厘米如图,已知长方形ADEF 的面积是16,三角形ADB 的面积是2,三角形ACF 的面积是4。
请问:三角形ABC 的面积是多少?C A E BD F S∆ABE =8-2=6 BD:EB=1:3 S∆ACE =8-4=4 BD:EB=1:1 S∆BCE S∆DFE =12×34=38 S∆BCE =38×8=316-2-4-3=7如图,3个相同的正方形拼在一起,每个正方形的边长为6,求三角形ABC的面积.C DA BEF图4-16CB:EB=1:2S∆ABC=13×6×6×2÷2=12图中的四边形土地的总面积是52公顷,两条对角线把它分成了四个小三角形,其中两个小三角形的面积分别是6公顷和7公顷,求四个三角形中最大的一个的面积。
6 7 52÷13×6=24 24-6=1852÷13×7=28 28-7=2118 21图中四边形ABCD 的对角线AC 和BD 交于O 点,如果三角形ABD 的面积是30平方厘米,三角形ABC 的面积是48平方厘米,三角形BCD 的面积是50平方厘米。
【5年级奥数课本(上)】第18讲_直线形计算中的比例关系
小学奥数创新体系5年级(上册授课课本)最 新 讲 义小学奥数第十八讲直线形计算中的比例关系- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系,下面我们复习一下其中的基本结论.当两个三角形同高或等高的时候,它们面积的比等于对应底之比.如图所示,对于三角形ABD 与三角形BDC ,它们有共同的高BH ,可知ABD ADBDC DC=三角形的面积三角形的面积.例题1.如图,AE :EB =3:2,CD :DB =7:5,三角形ABC 的面积是60,求三角形AED 的面积. 「分析」图中是否有等高的三角形?练习1.如图,:2:5CE AE =,:7:5CD DB =三角形ABC 面积为120,求三角形AED 的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在前面的漫画中我们认识了“小黎飞镖”.把“飞镖”立起来(如图),标好字母,会发现两个三角形:三角形ADE 与三角形ABC .这两个三角形有一个公共的角A ,并且角A 的两边AD 、AE 分别在AB 、AC 上.对于符合这种情况的三角形ADE 与三角形ABC ,我们称之为“共角三角形”.BA C DH AB CDEAD C BEA D CBE对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:在“小黎飞镖”中,有ADE AD AEABC AB AC=⨯三角形的面积三角形的面积.(同学们,可以想一想如何来证明这个结论.提示:连结四边形BDEC 的一条对角线)例如:如果在“小黎飞镖”中,D 点是AB 上靠近B 的3等分点,E 点是AC 上靠近A 的3等分点,那么23AD AB =,13AE AC =,那么三角形ADE 的面积就是三角形ABC 面积的212339⨯=. 有了这个结论,在解决一些问题时,就方便很多了.请看下面的问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题2.如图,在三角形ABC 中,AD 的长度是BD 的3倍,AC 的长度是EC 的3倍.三角形AED 的面积是10,那么三角形ABC 的面积是多少?「分析」△ADE 占△ABC 的几分之几?应该怎么利用鸟头模型来计算?练习2.三角形ABC 中,BD 的长度是AB 的14,AE 的长度是AC 的13.三角形AED 的面积是8,那么三角形ABC 的面积是多少?例题3.如图,已知长方形ADEF 的面积是16,BE =3BD ,CE =CF .请问:三角形BEC 的面积是多少?「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?ABCDEA B CD EC A EBD F练习3.如图,长方形ABCD 的面积是48,BE :CE =3:5,DF :CF =1:2.三角形CFE 的面积是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -接着,我们来看一看在任意四边形中三角形之间的面积关系.如图,对于一个任意的四边形ABCD ,连结对角线AC 和BD ,将整个四边形分成4个小三角形,由等高三角形的基本结论,我们可以得到如下关系:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成4个部分.三角形BOC 的面积是2平方千米,三角形COD 的面积是3平方千米,三角形AOB 的面积是1平方千米.如果公园由大小为6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多少平方千米?「分析」△BOC 、△COD 和△AOB 的面积都知道了,那么△AOC 的面积是多少呢?练习4.四边形ABCD 中,AC 、BD 两条对角线交于O 点,三角形ABO 的面积为6,三角形AOD 的面积为8,三角形BOC 的面积是15,那么四边形ABCD 的面积是多少?ABCDO S 1S 2 S 3S 414142323S S S S BO DO S S S S +===+ 12124343S S S S AO CO S S S S +===+ 1324S S S S ⨯=⨯A B CD E FC ABD O AB CDO例题5.如图,△ABC 的面积是36,并且13AE AC =,14CD BC =,15BF AB =,试求△DEF 的面积.「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?例题6.图中四边形ABCD 的对角线AC 和BD 交于O 点,如果△ABD 的面积是30平方厘米,△ABC 的面积是48平方厘米,△BCD 的面积是50平方厘米.请问:△BOC 的面积是多少? 「分析」题目中给出了3个大三角形的面积,能不能找出四个小三角形之间的面积关系呢?AB CDE F C DAOB三角形中的五心重心:三角形各边上的中线交于一点,称为三角形重心;垂心:三角形各边上的高交于一点,称为三角形垂心;外心:三角形各边上的垂直平分线交于一点,称为三角形外心;内心:三角形三内角平分线交于一点,称为三角形内心;旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.1. 如图,△ABC 中,BD 的长度是AB 的23,如果△ABC 的面积为15,那么△ADC 的面积是多少?2. 如图,:4:3AE EB =,:3:1CD DB =,三角形ABC 的面积是84,三角形AED 的面积是多少?3. 如图,:1:4AD DB =,:1:5AE EC =,如果△ABC 的面积是120,那么△ADE 的面积是多少?4. 如图所示,在长方形ABCD 中,DE CE =,2CF BF =,如果长方形ABCD 的面积为18,那么阴影部分的面积是多少?5. 如图,四边形ABCD 中,AC 、BD 两条对角线交于O 点,△ADO的面积为30,△ABO 的面积为6,△DOC 的面积是20,那么四边形ABCD 的面积是多少?ABC DEABCDOADCBECBFAD EABCD。
高斯小学奥数五年级上册含答案_整除问题进阶
第二讲整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有□2 0 O是99的倍数,只能是99 •两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234ab789,两位截断求和1 23 b7 89 160 ba是99 的倍数,只能是198 .所以a=8, b=3.例题3.答案:6详解:利用7的整除特性,口89 59 □30能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|兀帀就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.313913 232323239 f39 f 739626269 999 99999999练习1. 答案:6237简答:两位截断后的和是99 .练习2. 答案:12327678简答:两位截断后的和是198.练习3.答案:5712 或5782简答:利用7的整除特性,右2与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下匚•它是13的倍数, 那么空格中只能填0.作业1.答案:7 的倍数有7315, 58674, 360360; 13 的倍数有325702, 360360简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知和6能被7整除,框中填5满足条件.作业4.答案:9简答:应用三位截断,可知8C 能被7和13整除,即8C 是91的倍数,框中填9 满足条件.作业5.答案:3简答:应用三位截断,可知口3能被7整除,框中填3满足条件.第二讲整除问题进阶厂我只能填在中同、怎样才能保证是11的倍数呢7 /"我翌填在白位和、个位上+怎么填才好呢?墨莫和小高在黑板前玩一个填三位数的游戏.如果填岀的三位数是H的倍数,那么小高就ST, 如果不是11的倍数则墨莫嬴.观察小高和墨英的话,逆冇必胜的策略上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等•现在我们再来学习一些新的判断方法.一、截断作和六位数L_l2003LJ能冋时被9和11整除.这个六位数是多少?皿U 能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数23 能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数123口口678能被99整除,这个八位数是多少?、截断作差阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小咼写一个一位数放在59与89之间辩需一金右佶豹kal I PQ估徂仪金右佶貓■台次朮7敕阵洁白•小直官的貓■具虫/卜:【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数5^[2能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.25个5 25个9变得简短一些.因为 1001是13的倍数,而555555、999999分别是555、999与1001的乘 积,说明它们都是13的倍数.那我们是不是可以去掉这个 51位数上的一些5和9,并仍然 保证它能被13整除?已知多位数[1L 1 {33L 3能被13整除,那么中间方格内的数字是多少?2010 个 12010 个 3【分析】能被6, 7, 8整除的数有什么特点呢?最难把握的在于这个六位数能被 7整除, 我们应该怎样安排数字才能使得它的前三位与后三位的差能被 7整除呢?题目只要求我们 写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】在本题中,55L 35^992L39能被13整除.这个数的位数太多,我们可以想办法使它用数字6, 7, 8各两个,要组成能同时被6, 7, 8整除的六位数.请写出一个满足要求的六位数.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑•我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积•接下来,大家想到该怎么办了吗?枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946〜1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业i1. 在7315, 58674, 325702 , 96723 , 360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33 能同时被9和11整除,这个四位数是多少?3. 四位数2^8能被7整除,那么这个四位数是多少?4. 已知多位数81口154258切2l§8 (2012个258)能同时被7和13整除,方格内的数字是2012 个258多少?5. 已知多位数[1L 1 03L 3能被7整除,那么中间方格内的数字是多少?2011 个1 2011 个3。
高思竞赛数学导引-五年级第八讲-直线型计算二学生版汇编
第8讲直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图8-2所示(单位:平方米),剩下一块的面积应该是多少平方米?3.如图8-3,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?4.如图8-4,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?5.如图8-5所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?6.如图8-6,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?7.如图8-7,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F 是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?8.如图8-8,将一个长为18的长方形,分成一个三角形和一个梯形,而且梯形的面积是三角形的5倍.三角形ABE的边BE的长是多少?9.如图8-9,把一个正方形的相邻两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?10.如图8-10,四边形ABCD内有一点D,D点到四条边的垂线都是4厘米,四边形的周长是36厘米,四边形的面积是多少平方厘米?拓展篇1.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?2.图8-12中三角形ABC的面积是180平方厘米,D是BC的中点,AD是AE的3倍,三角形ABE的面积是多少平方厘米?3.如图8-13,在四边形ABCD中,已知CD=3DF,AE=3ED,而且三角形BFC的面积为6平方厘米,四边形BEDF的面积为7平方厘米.大四边形ABCD的面积是多少?4.如图8-14,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1.三角形DEF的面积是多少?5.如图8-15,E是AB边上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的5倍.请问:梯形的下底长是上底长的几倍?6.如图8-16,一个长方形被分成4个不同颜色的三角形,红色三角形的面积是9平方厘米,黄色三角形的面积是21平方厘米,绿色三角形的面积是10平方厘米,那么蓝色三角形的面积是多少平方厘米?7.图8-17中,正方形ABCD的面积为1.把每条边都3等分,然后将这8个等分点与正方形内部的某一点P相连接,形成4个阴影的四边形和4个空白的三角形,阴影部分的总面积是多少?8.如图8-18,在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘米,三角形ABD的面积为13平方厘米.三角形BCE的面积为多少平方厘米?9.在图8-19中,正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6和4.三角形ACG和三角形BDF的面积分别是多少?10.图8-20是由边长分别为10厘米、12厘米、8厘米的正方形构成,有一条与AB边平行的直线EF将此图形分成面积相等的两部分,那么BF的长度为多少厘米?11.(1)如8-21中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米(阴影部分).原正方形的面积为多少平方厘米?(2)如8-21中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少了65平方厘米(阴影部分).原正方形的面积为多少平方厘米?12.如图8-22,直角三角形ABC套住了一个正方形CDEF,E点恰好在AB边上,直角边AC长20厘米,BC长12厘米.正方形的边长为多少厘米?超越篇1.如图8-23,三角形ABC的每边长都是96厘米,用折线把这个三角形分割成面积相等的四个三角形.请求出CE和CF的长度之和.2.如图8 -24,把四边形ABCD的各边都延长1倍,得到一个新四边形EFGH.如果ABCD 的面积是5平方厘米,则EFGH的面积是多少平方厘米?3.图8-25中ABCD是正方形,图中数字是各线段的长度(单位:厘米).过,点的线段IM 将五边形EFGHI分成面积相等的两部分.线段BM的长度是多少厘米?4.如图8 -26,在钝角三角形ABC中,M为AB边的中点,MD、EC都垂直于BC边.若三角形BDE的面积是3平方厘米,则三角形ABC的面积是多少?5.在图8 -27中,大正方形面积比小正方形面积大40平方厘米,大正方形面积是多少平方厘米?6.如图8-28,直角三角形ABC的三边长分别为AC= 30(分米),AB=18(分米),BC= 24(分米),ED垂直于AC,且ED= 95(厘米).问正方形BFEG的边长是多少厘米?7.菜鸟和大虾在武林大会上相遇,争夺武林盟主的地位,三百回合大战后,两人不分胜负.突然,菜鸟向对手发出一枚飞镖,说时迟,那时快,飞镖已经接近大虾的胸口,只见大虾迅速抽身向左闪开,同时用手中的宝剑向飞镖劈去,只听见“瞠”的一声,飞镖被劈成了两半,如图8-29,菜鸟的飞镖是正六角星的形状,边长为5.被大虾劈开的刀口如虚线所示,那么较小的那部分残片占到整体面积的几分之几?8.如图8-30,将三个边长为l的正方形组合在一起,中间的正方形的两个顶点恰好是另外两个正方形的中心.请问:图中阴影部分的面积是多少?。
五年级高斯奥数之直线形计算二含答案
第14讲直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图8-2所示(单位:平方米),剩下一块的面积应该是多少平方米?3.如图8-3,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?4.如图8-4,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?5.如图8-5所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?6.如图8-6,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?7.如图8-7,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F 是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?8.如图8-8,将一个长为18的长方形,分成一个三角形和一个梯形,而且梯形的面积是三角形的5倍.三角形ABE的边BE的长是多少?9.如图8-9,把一个正方形的相邻两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?10.如图8-10,四边形ABCD内有一点D,D点到四条边的垂线都是4厘米,四边形的周长是36厘米,四边形的面积是多少平方厘米?拓展篇1.如图8-11,有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米.其余4个长方形的面积分别是多少平方米?2.图8-12中三角形ABC的面积是180平方厘米,D是BC的中点,AD是AE的3倍,三角形ABE的面积是多少平方厘米?3.如图8-13,在四边形ABCD中,已知CD=3DF,AE=3ED,而且三角形BFC的面积为6平方厘米,四边形BEDF的面积为7平方厘米.大四边形ABCD的面积是多少?4.如图8-14,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1.三角形DEF的面积是多少?5.如图8-15,E是AB边上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的5倍.请问:梯形的下底长是上底长的几倍?6.如图8-16,一个长方形被分成4个不同颜色的三角形,红色三角形的面积是9平方厘米,黄色三角形的面积是21平方厘米,绿色三角形的面积是10平方厘米,那么蓝色三角形的面积是多少平方厘米?7.图8-17中,正方形ABCD的面积为1.把每条边都3等分,然后将这8个等分点与正方形内部的某一点P相连接,形成4个阴影的四边形和4个空白的三角形,阴影部分的总面积是多少?8.如图8-18,在梯形ABCD中,E是AB的中点.已知梯形ABCD的面积为35平方厘米,三角形ABD的面积为13平方厘米.三角形BCE的面积为多少平方厘米?9.在图8-19中,正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6和4.三角形ACG和三角形BDF的面积分别是多少?10.图8-20是由边长分别为10厘米、12厘米、8厘米的正方形构成,有一条与AB边平行的直线EF将此图形分成面积相等的两部分,那么BF的长度为多少厘米?11.(1)如8-21中左图所示,把一个正方形的相邻两边分别增加2厘米和4厘米,结果面积增加了50平方厘米(阴影部分).原正方形的面积为多少平方厘米?(2)如8-21中右图所示,把一个正方形的相邻两边分别减少3厘米和5厘米,结果面积减少了65平方厘米(阴影部分).原正方形的面积为多少平方厘米?12.如图8-22,直角三角形ABC套住了一个正方形CDEF,E点恰好在AB边上,直角边AC长20厘米,BC长12厘米.正方形的边长为多少厘米?超越篇1.如图8-23,三角形ABC的每边长都是96厘米,用折线把这个三角形分割成面积相等的四个三角形.请求出CE和CF的长度之和.2.如图8 -24,把四边形ABCD的各边都延长1倍,得到一个新四边形EFGH.如果ABCD 的面积是5平方厘米,则EFGH的面积是多少平方厘米?3.图8-25中ABCD是正方形,图中数字是各线段的长度(单位:厘米).过,点的线段IM 将五边形EFGHI分成面积相等的两部分.线段BM的长度是多少厘米?4.如图8 -26,在钝角三角形ABC中,M为AB边的中点,MD、EC都垂直于BC边.若三角形BDE的面积是3平方厘米,则三角形ABC的面积是多少?5.在图8 -27中,大正方形面积比小正方形面积大40平方厘米,大正方形面积是多少平方厘米?6.如图8-28,直角三角形ABC的三边长分别为AC= 30(分米),AB=18(分米),BC= 24(分米),ED垂直于AC,且ED= 95(厘米).问正方形BFEG的边长是多少厘米?7.菜鸟和大虾在武林大会上相遇,争夺武林盟主的地位,三百回合大战后,两人不分胜负.突然,菜鸟向对手发出一枚飞镖,说时迟,那时快,飞镖已经接近大虾的胸口,只见大虾迅速抽身向左闪开,同时用手中的宝剑向飞镖劈去,只听见“瞠”的一声,飞镖被劈成了两半,如图8-29,菜鸟的飞镖是正六角星的形状,边长为5.被大虾劈开的刀口如虚线所示,那么较小的那部分残片占到整体面积的几分之几?8.如图8-30,将三个边长为l的正方形组合在一起,中间的正方形的两个顶点恰好是另外两个正方形的中心.请问:图中阴影部分的面积是多少?第8讲 直线形计算二内容概述进一步学习直线形面积公式酌运用;学会将线段倍数关系与面积倍数关系进行相互转T 七;初步学习添加辅助线酌分析方法.典型问题兴趣篇1.如图8-1,四边形ABCD 是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE 、四边形DEBF 、三角形CDF 的面积相等,阴影三角形DEF 的面积是多少平方厘米?解析:四边形ABCD 的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。
高斯小学奥数五年级上册含答案_直线形计算中的倍数关系
迄今为止,同学们已经学会了很多图形计算面积的方法. 在计算这些面积的时候, 只要 知道相应线段的长度,然后利用公式即可以计算.例如计算长方形的面积,只需知道长方形 的长和宽即可利用长方形的面积 长 宽进行计算•但很多时候,题目中并不给出长和宽, 那怎么来求面积呢?我们来看下面这个例题.例题1.如图,有9个小长方形,其中的 5个小长方形的面积分别为 4、 12、16、20平方米.其余4个长方形的面积分别是多少平方米?「分析」如果两个长方形的一条边相等,我们可以比较它们的另一条边来求它们的面积关系,看看下图,能利用左上角的三块面积求出①的面积吗? 对于长方形,我们总结出:如果两个长方形的长(宽)相等,那么它们的面积的比等于 它们宽(长)之比.例如:如图所示的长方形 ABCD 与长方形BEFC 宽BC 相同,那么 长方形ABCD 的面积:长方形BEFC 的面积 AB: BE .如图,有7个小长方形,其中的 5个小长方形的面积分别为 20, 4, 6, 8,10平方厘米.求阴影长方形的面积是多少平方厘米? 2046 810从上面的例题可以看出,求一个图形的面积不一定要通过公式,有些时候我们也可以利 用图形各部分之间的面积关系进行计算.实际问题中,各图形的形状各异. 我们很难直接看出面积间的关系,更容易发现的是长度之间的倍数关系.本章重点就是长度的倍数关系与面积倍数关系的转化.F rz 丄 r D 20n 8、过三角形一个顶点的直线将三角形分为两个小三角形, 则这两个小三角形面积之比等于该直线分对边所得的两条线段长度之比,这是由两个小三角形有共同的高决定的.例题2. 下图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍.那么三角形ABE的面积是多少平方厘米?「分析」你能从图中发现前面讲过的基本图形吗?如何利用其中的比例关系解题呢?如图,三角形ABC中,D为AB的中点,E为BC的中点,ABC的面积是120平方厘米,那么三角形DEF的面积是多少?在实际问题中,给出的图形结构往往只能满足上述形式的一部分. 比如知道两条线段的长度关系,却找不到合适的图形引出面积关系.此时,我们可以添加适当的辅助线,使得两个图形之间可以找到一个过渡的量,这个量和两个图形都有比较紧密的联系.例题3.如图,把三角形DEF的各边分别向外延长1倍后得到三角形ABC,已知三角形DEF的面积为1,那么三角形ABC的面积是多少?「分析」容易看出,本题也需要通过边长的倍数关系去求三角形面积之间的关系•但是我们所求的是三角形DEF的面积,而已知的是三角形ABC的面积,这两个三角形之间一条直接相连的边也没有.那么我们该怎么办呢?三角形ABD的面积:三角形ADC的面积BD : DCF为BE中点,如果三角形如图,把三角形DEF的各边分别向外延长1倍、2倍、3倍后得到三角形ABC,已知三角形DEF 的面积为1,那么三角形ABC的面积是多少?除了利用图形间的长度关系寻找面积关系外,我们有时候也利用面积的倍数关系反推出长度的倍数关系.例题4.如图,E是AB上靠近A点的三等分点,梯形ABCD的面积是三角形AEC面积的4倍,那么梯形的下底长是上底长的几倍?「分析」本题中我们并不知道图形的具体面积,而只知道面积的倍数关系.需要求的则是长度的倍数关系,所以我们考虑如何利用面积的关系求出长度关系.我们不妨假设三角形AEC的面积是“1”份,那么梯形ABCD的面积就是“5”份•接着可以看看“E是AB上的三等分点”这个条件能得出什么结论,看看怎么利用求出的面积来比较梯形的上下底?如图,将一个长为18的长方形,分成一个三角形和一个梯形,且梯形的面积是三角形的5倍,那么三角形底边 BE 的长是多少?除了利用长度间的倍数关系外,我们有时候也能从公式入手,寻找图形面积的倍数关系. 例题5.把一个正方形的相邻两边分别增加 2厘米和4厘米,结果面积增加了 50平方厘米,那么原正方形的面积为多少平方厘米?「分析」由于阴影部分是一个不规则图形,我们需要把它转化为规则形状,可以将它分割成几块.如图所示,我们将阴影部分分割为①、②、 ③三个长方形•其中,③的长和宽分别为 4、2,可以求出它的面积•那么①和②的面积能求出来吗?关键是找出它们面积的关系.例题6.如图,直角三角形 ABC 套住了一个正方形 CDEF , E 点恰好 在AB 边上.又已知直角边 AC 长20厘米,BC 长12厘米,那么 正方形的边长为多少厘米?「分析」注意到EF 垂直于AC , ED 垂直于BC .我们可以连接 CE ,将三角形ABC 分成两个三角形,这两个三角形的底都给出了长度,而 它们的高相等.我们的目标就是求这个高. ①② ③4欧拉的故事欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J
望 昆大侠 溝了!
这个故事 说起来就久远 了■ ■ ■ ■ 1
■律!
□-5
T L
不打里思与蔡川因为这一战
攀道剑鮒眾翳胡
请1乍亦
第十八讲 直线形计算中的比例关系
很久以前.
青一场n
惊江 鬭的人战.匚 原大侠望昆与 魔救蹌一高手 黎川相约在华 山之昴决斗.
苓苓「这个飞繚是 怎么来的呼
这就是 ■小黎飞镖" 的来由了!
望昆用尽力■击出一 劃”正好打在•小養飞 *JT 上,井在无星不轉 的飞傑
上留下了一道削*
决斗的情况十幷滋 熱.熾后黎川发出了自 己的绝招•小柴飞象, 打向了箋昆.
在前面的讲次中我们已经学习了两个等高三角形之间的倍数关系, 中的基本结论.
当两个三角形同高或等高的时候,它们面积的比等于对应底之比.
如图所示,对于三角形ABD与三角形BDC ,它们有共同的高BH ,可知三角形ABD的面积AD 三角形BDC的面积DC °
例题1.如图,AE:EB=3:2, CD:DB=7:5,三角形ABC的面积是60,求三角形AED的面积.
「分析」图中是否有等高的三角形?
练习1.如图,CE : AE 2:5 , CD : DB 7:5三角形ABC面积为120,求三角形AED的面
积.
在前面的漫画中我们认识了“小黎飞镖” •把“飞镖”立起来(如图),标好字母,A 会发现两个三角形:三角形ADE与三角形ABC •这两个三角形有一个公共的角A,并且
■'
角A的两边AD、AE分别在AB、AC上.对于符合这种情况的三角形ADE与三角形ABC, 我们称之为“共角三角形” . D
F面我们复习一下其
A
B
对于这两个“共角”的三角形,它们的面积之比等于对应两边长度之比的乘积,例如:
在“小黎飞镖”中,有三角形ADE的面积AD AE .(同学们,可以想一想如何来证明这
三角形ABC的面积AB AC
个结论.提示:连结四边形BDEC的一条对角线)
例如:如果在“小黎飞镖”中,D点是AB上靠近B的3等分点,E点是AC上靠近A
AD 2 AE 1
的3等分点,那么,,那么三角形ADE的面积就是三角形ABC面积的AB 3 AC 3
2 1 2
3 3 9 .
有了这个结论,在解决一些问题时,就方便很多了•请看下面的问题.
例题2.如图,在三角形ABC中,AD的长度是BD的3倍,AC的长度是EC的3倍.三角
形AED的面积是10,那么三角形ABC的面积是多少?
「分析」△ ADE占厶ABC的几分之几?应该怎么利用鸟头模型来计算?
练习2. 积是8, 三角形ABC中,BD的长度是AB的丄,AE的长度是AC的1 .三角形AED的面
4
那么三角形ABC的面积是多少?
例题3•如图,已知长方形ADEF的面积是16, BE=3BD, CE=CF .请问:三角形BEC的
面积是多少?
「分析」鸟头模型中有两个共角的三角形,可是在本题中只有一个三角形,另外一个三角形应该怎么构造呢?
练习3 .如图,长方形 ABCD 的面积是48, BE:CE=3:5 , DF:CF=1:2 .三角形CFE 的面积是
接着,我们来看一看在任意四边形中三角形之间的面积关系. 如图,对于一个任意的四
边形ABCD ,连结对角线 AC 和BD ,将整个四边形分成 本结论,我们可以得到如下关系:
例题4.如图,某公园的外轮廓是四边形 ABCD ,被对角线AC 、BD 分成4个部分.三角形
BOC 的面积是2平方千米,三角形 COD 的面积是3平方千米,三角形 AOB 的面积是1平 方千米.如果公园由大小为 6.9平方千米的陆地和一块人工湖组成,那么人工湖的面积是多 少平方千米? 「分析」△ BOC 、A COD 和厶AOB 的面积都知道了,那么△ AOC 的面积是多少呢?
练习4.四边形ABCD 中,AC 、BD 两条对角线交于 O 点,三角形 ABO 的面积为6,三角 形AOD 的面积为8,三角形BOC 的面积是15,那么四边形 ABCD 的面积是多少?
4个小三角形,由等高三角形的基
BO DO
§
S
2 §4 §3
AO S ( S, CO S 4
§3
§i S 4 §2 §3 3 S 2 §1 S 3
§1 S 3
§>
§4
D
「分析」同学们能从图形中发现“共角三角形”吗?如何利用这些三角形来计算呢?
例题6 .图中四边形 ABCD 的对角线AC 和BD 交于0点,如果△ ABD 的面积是30平方厘 米,△ ABC 的面积是48平方厘米,△ BCD 的面积是50平方厘米.请问:△ BOC 的面积是 多少? 「分析」题目中给出了 3个大三角形的面积, 能不能找出四个小三角形之间的面积关系呢?
1
例题5.如图,△ ABC 的面积是36,并且AE AC , CD
3
的面积.
1
BC , BF 】AB ,试求△ DEF 4 5
B
C 0
三角形中的五心
重心:三角形各边上的中线交于一点,称为三角形重心;
垂心:三角形各边上的高交于一点,称为三角形垂心;
外心:三角形各边上的垂直平分线交于一点,称为三角形外心;
内心:三角形三内角平分线交于一点,称为三角形内心;
旁心:三角形一内角平分线和另外两顶点处的外角平分线交于一点,称为三角形旁心.
锐箱三劑形金第三箱形註第三垢形
三角形的垂心
三角形的旁心三角形的内心三朿形附W
2
1.如图,△ ABC 中,BD 的长度是AB 的,如果△ ABC 的面积为15,那么
3
△ ADC 的面积是多少?
如图所示,在长方形 ABCD 中,DE CE , CF 2BF ,如果长方 形ABCD 的面积为18,那么阴影部分的面积是多少?
如图,四边形 ABCD 中,AC 、BD 两条对角线交于 0点,△ ADO
的面积为30, △ ABO 的面积为6,^ DOC 的面积是20,那么四边形 ABCD 的面积是多少?
2. 3. 如图,AE : EB 4:3 , CD : DB 形AED 的面积是多少?
如图,AD:DB 1:4 , AE: EC ADE 的面积是多少?
3:1 ,三角形ABC 的面积是84,
1:5,如果△ ABC 的面积是120, 三角
那么△
4.
5.
B F C
第十八讲直线形计算中的比例关系
例题1.答案:15
详解:因为三角形ACD与三角形ADB同高,所以S ACD :S ADB CD: DB 7:5,所以角形ADB面积为25 ;同理,三角形AED与三角形BED等高,所以
S AED : S BED AE:EB 3: 2,所以三角形AED面积为15.
例题2.答案:20
详解:AD是AB的3, AE是AC的-.根据鸟头模型,有厶ADE面积是△ ABC面积的4 3
3 2 1
.那么△ ABC的面积是20.
4 3 2
例题3.答案:3
详解:连结DF,根据鸟头模型,可知△ BCE面积是△ DEF面积的1 3.那么△
4 2 8
1 3
BCE的面积是16 3 .
2 8
例题4.答案:0.6
详解:由题意,S BOC : S COD BO :OD S BOA : S DOA ,三角形BOC面积为2平方千米,
三角形COD面积为3平方千米,三角形BOA面积为1平方千米,则三角形AOD面积是1.5平方千米,陆地总面积 6.9平方千米,则人工湖面积为 2 3 1 1.5 6.9 0.6平方千米.
例题5.答案:15
详解:由鸟头模型可得,S AEF36 4 148S BFD 36—327
5 35545
124827
S
CDE36 -6, S DEF 36615 .
4355
例题6.答案:30
详解:AO:CO §AB D:S BCD 3:5,所以S BOC S ABC 8 30平万厘米
练习1. 答案:50
简答:△ ACD的面积是1207 5 7 70 ,△ AED的面积是70 2 5 5 50.
练习2. 答案:32
简答:83 - 32 .
4 3
练习3.答案:10
简答:4815 2“10 .
2 8 3
练习4. 答案:49
简答:△ COD的面积是8 15 6 20,四边形ABCD的面积为6 8 15 20 49.
作业1.答案:5
2 1
简答:由BD的长度是AB的—得AD: AB 1:3,那么三角形ADC的面积为15 - 5 .
3 3
作业2. 答案:12
简答:由于CD:DB 3:1,三角形ABC的面积是84,可知三角形ADB的面积为
84 (3 1) 21,又由于AE : EB 4:3,可知三角形AED的面积为21 (4 3) 4 12. 作业3.答案:4
简答:由已知条件得AD : AB 1:5 , AE : AC 1:6,利用“共角三角形”得三角形AED
1 1
的面积是120 - - 4.
5 6
作业4.答案:6
简答:由于长方形ABCD的面积为18,可知三角形BCD的面积为9,三角形CEF为三
12 1 1
角形BCD的--1,那么阴影部分的面积是9 (1 J) 6.
2 3 3 3
作业5. 答案:60
简答:利用任意四边形的结论得三角形BOC的面积是:6 20 30 4,所以四边形ABCD
的面积是6 20 30 4 60.。