中考最全 最值问题复习题

合集下载

中考复习线段和差的最大值与最小值(拔高)

中考复习线段和差的最大值与最小值(拔高)

中考二轮复习之线段和(差)的最值问题一、两条线段和的最小值。

填空题:1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是.2.如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则P A+PC的最小值是.3.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.4.如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.5.已知A(-2,3),B(3,1),P点在x轴上,若P A+PB长度最小,则最小值为.若P A—PB长度最大,则最大值为.6.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为.7、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为8、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值为.综合题:1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.第1题第2题第3题第4题2.如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0),N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m =______,n = ______(不必写解答过程);若不存在,请说明理由.中考赏析:1.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=P A +PB ,图(2)是方案二的示意图(点A 关于直线X 的对称点是A',连接BA'交直线X 于点P ),P 到A 、B 的距离之和S 2=P A +PB . (1)求S 1、S 2,并比较它们的大小; (2)请你说明S 2=P A +PB 的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.2.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.3、在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC 绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.4.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.5、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)1.直线2x-y-4=0上有一点P ,它与两定点A (4,-1)、B (3,4)的距离之差最大,则P 点的坐标是 .2.已知A 、B 两个村庄的坐标分别为(2,2),(7,4),一辆汽车(看成点P )在x 轴上行驶.试确定下列情况下汽车(点P )的位置:(1)求直线AB 的解析式,且确定汽车行驶到什么点时到A 、B 两村距离之差最大? (2)汽车行驶到什么点时,到A 、B 两村距离相等?3. 如图,抛物线y =-14x 2-x +2的顶点为A ,与y 轴交于点B .(1)求点A 、点B 的坐标;(2)若点P 是x 轴上任意一点,求证:P A -PB ≤AB ; (3)当P A -PB 最大时,求点P 的坐标.4. 如图,已知直线y =21x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =21x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B (1)求该抛物线的解析式;(3)在抛物线的对称轴上找一点M ,使|AM -MC |大,求出点M 的坐标.5. 如图,直线y =-3x +2与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,⊙A 经过点B 和点O ,直线BC 交⊙A 于点D . (1)求点D 的坐标;(2)过O ,C ,D 三点作抛物线,在抛物线的对称轴上是否存在一点P ,使线段PO 与PD 之差的值最大?若存在,请求出这个最大值和点P 的坐标.若不存在,请说明理由.好题赏析:原型:已知:P 是边长为1的正方形ABCD 内的一点,求P A +PB +PC 的最小值.例题:如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; (3)当AM +BM +CM 的最小值为3+1时,求正方形的边长.变式:如图四边形ABCD 是菱形,且∠ABC =60,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若菱形ABCD 的边长为1,则AM +CM 的最小值1; ②△AMB ≌△ENB ;③S 四边形AMBE =S 四边形ADCM ;④连接AN ,则AN ⊥BE ;⑤当AM +BM +CM 的最小值为23时,菱形ABCD 的边长为2. A .①②③ B .②④⑤ C .①②⑤三、其它非基本图形类线段和差最值问题1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差。

2024年中考 数学总复习 题型训练四 几何最值问题

2024年中考 数学总复习  题型训练四 几何最值问题

题型四几何最值问题类型一利用“垂线段最短”解决最值问题1. 如图,在△ABC中,AC=BC=6,AB=8,点D在AC边上,连接BD,以AD,BD为邻边作▱ADBE,连接DE,则DE的最小值为________.第1题图2. 如图,在△ABC中,AC=BC=6,S△ABC=12,点D为AB的中点,点M,N分别是CD 和BC上的动点,则BM+MN的最小值是________.第2题图3. 如图,四边形ABCD是菱形,对角线AC,BD相交于点O,点P是BD上一动点,点E 是BC上一动点,若AC=6,BD=63,则PC+PE的最小值为________.第3题图4. 如图,在△OAB中,已知∠AOB=35°,点P是边AB上一点,点M,N分别是射线OA,OB上异于点O的动点,连接PO,PM,MN,若∠BOP=10°,OP=6,则PM+MN的最小值为________.第4题图类型二 利用“两点之间线段最短”解决最值问题1. 如图,在矩形ABCD 中,AB =6,AD =8,点P 是矩形ABCD 内一点,记a =S △APB +S △CPD ,b =P A +PB +PC +PD ,则a +b 的最小值为________.第1题图2. 如图,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,AB =1,AD =2,M ,N 分别为BC ,CD 边上的动点,则△AMN 周长的最小值为________.第2题图3. 如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,BC =43 ,点D 为边BC 上的动点,点E 为边AB 的中点,连接DE ,DA ,则线段DE +DA 的最小值为________.第3题图4. 如图,在等腰Rt △ABC 中,AB =AC =22 ,∠A =90°,点P 是△ABC 内部一点,且满足S △BCP =12S △ABC ,则PB +PC 的最小值为________.第4题图5. 如图,二次函数y =-23 x 2-43x +2的图象与x 轴分别交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点P 是其对称轴上一点,连接PB ,PC ,BC ,则△PBC 的周长最小为________.第5题图类型三 利用“二次函数性质”解决最值问题(2021.9)1. 我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c, 记p =a +b +c 2,则其面积S =p (p -a )(p -b )(p -c ) .这个公式也被称为海伦-秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( )A. 5B. 4C. 25D. 52. 如图,在矩形ABCD 中,AB =2,AD =3,P 是BC 上的任意一点(P 与B ,C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E ,连接AE ,在点P 的运动过程中,线段CE 的最大值为________.第2题图3. 如图,在等腰△ABC 中,AC =BC =4,∠C =120°,点P 是AC 上一动点,PD ∥AB ,交BC 于点D ,连接AD ,则点P 在运动过程中,△APD 的面积的最大值为________.第3题图4. 如图,矩形ABCD中,AB=6,BC=4,点E,F分别为边AB,CD上的动点,且AE=CF,将线段EF绕点F逆时针旋转90°得到线段FG,连接DG.(1)当点E为AB的中点时,线段DG的长是________;(2)当点E在边AB上运动时,线段DG的最小值是________.第4题图类型四利用“辅助圆”解决最值问题(8年3考:2021.10、17,2020.17)1. 如图,在矩形ABCD中,AB=6,AD=25,E是边CD上一点,将△ADE沿直线AE 折叠得到△AFE,BF的延长线交边CD于点G,则DG长的最大值为________.第1题图2. 如图,在正方形ABCD中,E,F分别是AB,BC边上的动点(不与正方形的顶点重合),且AE=BF,CE,DF交于点M,连接BM,若AB=2,则BM的最小值为________.第2题图3.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,E,F分别是AC,BC边上的动点,且EF=AC,P是EF的中点,连接AP,BP,则△APB面积的最小值为________.第3题图4. 如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转a(0°<a<120°),得到线段AD,连接CD,点E为CD上一点,且DE=2CE.连接BE,则BE的最小值为________.第4题图5. 如图,在△ABC中,∠C=45°,∠B=60°,BC=3+1,P为边AB上一动点,过点P 作PD⊥BC于点D,PE⊥AC于点E,连接DE,则DE的最小值为________.第5题图题型四 几何最值问题类型一 利用“垂线段最短”解决最值问题 1. 853【解析】如解图,设DE 与AB 交于点O ,∵四边形ADBE 是平行四边形,∴OB =OA ,DE =2OD ,∴当OD ⊥AC 时,DO 的值最小,即DE 的值最小,过点B 作BH ⊥AC 于点H ,则∠BHD =∠EDH =90°,易知AD ∥BE ,即AC ∥BE ,∴∠EBH =90°,∴四边形BHDE 是矩形,∴DE =BH ,∵AC =BC =6,AB =8,∴设CH =x ,则AH =6-x ,∵BA 2-AH 2=BH 2=BC 2-CH 2,即82-(6-x )2=62-x 2,解得x =23 ,∴CH =23,∴DE =BH =BC 2-CH 2 =853 .∴DE 的最小值为853.第1题解图2. 4 【解析】如解图,作点N 关于DC 的对称点N ′.∵AC =BC ,点D 为AB 的中点,∴点N ′在AC 上,连接MN ′,BN ′,∴BM +MN =BM +MN ′≥BN ′,∴当B ,M ,N ′三点共线,且BN ′⊥AC 时,BM +MN 取得最小值.∵AC =6,S △ABC =12,∴△ABC 中AC 边上的高为4,∴BM +MN 的最小值是4.第2题解图3. 33 【解析】如解图,作点E 关于BD 的对称点E ′,连接PE ′,∵四边形ABCD 是菱形,∴BA 与BC 关于BD 对称,∴点E ′位于BA 上,由对称的性质可知,PE =PE ′,∴当C ,P ,E ′三点重合,且CE ′⊥BA 时,PC +PE 的值最小,即为CE ′的长,∵四边形ABCD 是菱形,∴AO =CO =12 AC =3,BO =DO =12BD =33 ,AC ⊥BD ,AB =BC ,∴在Rt △BOC 中,BC =BO 2+CO 2 =6,tan ∠BCO =BO CO=3 ,∴∠BCO =60°,∴△ABC 是等边三角形,∴CE ′=BC ·sin 60°=33 ,∴PC +PE 的最小值为33 .第3题解图 4. 33 【解析】如解图,作点P 关于OA 的对称点P ′,连接OP ′,过点P ′作OB 的垂线交OA 于点M ,交OB 于点N ,此时PM +MN 的值最小,最小值为线段P ′N 的长.∵∠AOB =35°,∠BOP =10°,点P ′与点P 关于OA 对称,∴∠POA =∠P ′OA =25°,∴∠BOP ′=60°,OP ′=OP =6,在Rt △P ′ON 中,P ′N =OP ′·sin 60°=6×32=33 ,∴PM +MN 的最小值为33 .第4题解图类型二 利用“两点之间线段最短”解决最值问题1. 44 【解析】如解图,过点P 作EF ⊥AB ,分别交AB ,CD 于点E ,F ,连接AC ,BD ,则EF =AD =8,∵四边形ABCD 是矩形,∴∠ABC =90°,AB =CD =6,AD =BC =8,∴AC=AB 2+BC 2 =62+82 =10,∴BD =AC =10,∵S △APB +S △CPD =12 AB ·PE +12 CD ·PF =12AB ·EF =12×6×8=24,P A +PC ≥AC ,PB +PD ≥BD ,∴当A ,P ,C 三点共线,B ,P ,D 三点也共线时,P A +PB +PC +PD 有最小值,最小值为AC +BD =20,∴a +b 的最小值为24+20=44.第1题解图2. 27 【解析】如解图,分别作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于点M ,交CD 于点N ,则A ′A ″即为△AMN 的周长最小值,作A ′H ⊥DA 交DA 的延长线于点H ,∴AA ′=2AB =2,AA ″=2AD =4,∵∠BAD =120°,∴∠HAA ′=60°,∴在Rt △A ′HA 中,AH =12 AA ′=1,∴A ′H =22-12 =3 ,A ″H =AH +AA ″=1+4=5,∴A ′A ″=A ′H 2+A ″H 2 =27 ,∴△AMN 的周长最小值为27 .第2题解图3. 43 【解析】如解图,作点E 关于BC 的对称点E ′,连接EE ′,交BC 于点F ,连接DE ′,AE ′,过点E ′作E ′G ⊥AC 交AC 的延长线于点G ,则DE =DE ′,EF =E ′F ,DE +DA =DE ′+DA ≥AE ′,∴当A ,D ,E ′在同一直线上时,DE +DA 的值最小,最小值为AE ′的长,∵∠ACB =90°,∠ABC =30°,BC =43 ,∴AC =33 BC =33×43 =4,∵点E 为边AB 的中点,∴EF 为△ABC 的中位线,∴EF =12 AC =2,CF =12BC =23 ,∴E ′F =EF =2=CG ,E ′G =CF =23 ,∴AG =AC +CG =4+2=6,∴AE ′=E ′G 2+AG 2 =(23)2+62 =43 ,∴DE +DA 的最小值为43 .第3题解图4. 25 【解析】如解图,过点A 作AD ⊥BC 于点D ,∵AB =AC =22 ,∠BAC =90°,∴AD =2,BC =4,∵S △BCP =12S △ABC ,∴点P 到BC 的距离为1,即点P 在AD 的垂直平分线l 上运动,作点B 关于直线l 的对称点B ′,连接B ′C 交直线l 于点P ′,连接BP ′,B ′P ,则BB ′⊥BC ,BP ′=B ′P ′,BP =B ′P ,∴BP +PC =B ′P +PC ≥B ′C ,当B ′,P ,C 三点共线,即点P 与点P ′重合时,BP +PC 的值最小,为B ′C 的长.在Rt △B ′BC 中,BB ′=2,BC =4,∴B ′C =BB ′2+BC 2 =25 ,∴PB +PC 的最小值为25 .第4题解图5. 13 +5 【解析】如解图,连接AC ,AP ,令y =0,得x =-3或1,∴点A (-3,0),点B (1,0),∴抛物线的对称轴是直线x =-1,OA =3,OB =1,令x =0,得y =2,∴点C (0,2),∴OC =2,∴BC =OB 2+OC 2 =5 ,AC =OA 2+OC 2 =13 ,∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴要使△PBC 的周长最小,则PB +PC 最小即可,∵点A 与点B 关于对称轴对称,∴P A =PB ,∴PB +PC =P A +PC ≥AC ,∴PB +PC 的最小值为AC 的长,∴△PBC 的周长最小值=AC +BC =13 +5 .第5题解图类型三 利用“二次函数性质”解决最值问题1. C 【解析】∵p =5,c =4,∴S =5(5-a )(5-b )(5-4) =5(5-a )(5-b ) ,∵p =a +b +c 2 ,∴a +b =2p -c =6,∴b =6-a ,∴S =5(5-a )[5-(6-a )] =5(5-a )(a -1) =-5(a -3)2+20 ,∵-5<0,∴当a =3时,S 有最大值为20 =25 .2. 98【解析】∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵AP ⊥PE ,∴∠APB +∠CPE =∠CPE +∠PEC =90°,∴∠APB =∠PEC ,∴△ABP ∽△PCE ,∴AB PC =BP CE,设BP =x ,CE =y ,则PC =3-x ,即23-x =x y,∴y =-12 x 2+32 x =-12 (x -32 )2+98 ,∵-12 <0,∴当x =32 时,y 有最大值,最大值是98 ,∴线段CE 的最大值为98 . 3. 3 【解析】如解图,过点C 作CE ⊥AB 于点E ,过点P 作PF ⊥AB 于点F ,设AP =x ,则CP =4-x ,∵AC =BC ,∠C =120°,∴∠BAC =∠B =30°,AE =BE ,∴CE =12AC =2,PF =12 AP =12x ,在Rt △AEC 中,由勾股定理得AE =42-22 =23 ,∴AB =2AE =43 ,∵PD ∥AB ,∴△PCD ∽△ACB ,∴PC AC =PD AB ,∴4-x 4 =PD 43,解得PD =3 (4-x ),∴S △APD =12 PD ·PF =12 ×3 (4-x )×12 x =-34 (x -2)2+3 ,∵-34<0,∴当x =2时,S △APD 有最大值,最大值为3 .第3题解图4. (1)1 【解析】∵点E 为AB 的中点,AE =CF ,∴点F 为CD 的中点,∴EF =FG =4,此时F ,D ,G 三点共线,∴DG =FG -FD =1; (2)255 【解析】如解图,过点F 作FH ⊥AB 于点H ,过点G 作IG ⊥CD 于点I ,则∠EHF =∠GIF =90°,由题意可知∠EFG =90°,EF =GF ,∴∠EFH +∠EFI =∠EFI +∠GFI =90°,∴∠EFH =∠GFI ,∴△EFH ≌△GFI (AAS),∴EH =GI ,设AE =a ,①当0<a <3时,如解图①,GI =EH =6-2a ,ID =FD -FI =FD -FH =6-a -4=2-a ,∴DG 2=ID 2+IG 2=(2-a )2+(6-2a )2=5a 2-28a +40=5(a -145 )2+45 ,∵5>0,∴当a =145 时,DG 2取最小值45,∴DG =255;②当3≤a <6时,如解图②,GI =EH =2a -6,ID =FI -FD =FH -AE +EH =4-a +2a -6=a -2,∴DG 2=ID 2+IG 2=(a -2)2+(2a -6)2=5a 2-28a +40=5(a -145)2+45 ,∵5>0,3≤a <6,∴当a =3时,DG 2取最小值1,∴DG =1,∵1>255,∴DG 的最小值为255.第4题解图类型四 利用“辅助圆”解决最值问题1. 2 【解析】如解图,以点A 为圆心,AD 长为半径画弧,过点B 作弧的切线交CD 于点G ,切点为F ,此时点E 和点G 重合,DG 的最大值即为DE 的长,∵四边形ABCD 是矩形,∴BC =AD =25 ,AB =CD =6,由折叠的性质可知,DE =EF ,AF =AD =25 ,设DE =EF =x ,则CE =CD -DE =6-x ,在Rt △ABF 中,由勾股定理得BF =AB 2-AF 2 =4,则BE =BF +EF =4+x ,在Rt △BEC 中,由勾股定理得BE 2=CE 2+BC 2,即(4+x )2=(6-x )2+(25 )2 ,解得x =2,即DG 的最大值为2.第1题解图 2. 5 -1 【解析】如解图,取CD 的中点O ,连接BO ,∵四边形ABCD 为正方形,∴AB =BC =CD =AD ,∠EBC =∠FCD =90°,∵AE =BF ,∴AE +BE =BF +CF ,∴BE =CF ,∴△EBC ≌△FCD (SAS),∴∠BCE =∠CDF ,∵∠BCE +∠DCE =∠BCD =90°,∴∠CDF +∠ECD =90°,∴∠CMD =90°,当点E ,F 分别在AB 和BC 上移动时,点M 在以CD 的中点O 为圆心,OC 长为半径的半圆上运动,要使BM 取得最小值,则需点B ,M ,O 在同一条直线上.∵AB =2,∴CO =1,∴BO =5 ,∴此时BM =5 -1,即BM 的最小值为5 -1.第2题解图3. 9 【解析】如解图,过点P 作PH ⊥AB 于点H ,则S △ABP =12AB ·PH =5PH ,∴当PH 最小时,△ABP 的面积最小.∵∠ACB =90°,AB =10,BC =8,∴AC =AB 2-BC 2 =6.∴EF=AC =6.连接CP ,则CP =12EF =3.∴点P 在以点C 为圆心,3为半径的圆弧上,过点C 作CH ′⊥AB 于点H ′,交⊙C 于点P ′,∵P ′H ′=CH ′-CP ′=CH ′-CP ≤CP +PH -CP =PH ,∴当点P 与点P ′重合,点H 与点H ′重合时,PH 最小,最小值为P ′H ′的长.∵S △ABC =12AC ·BC =12 AB ·CH ′,∴CH ′=AC ·BC AB =245 ,∴P ′H ′=CH ′-CP ′=245 -3=95 ,∴PH 的最小值是95 ,此时S △ABP =5PH =9,即△ABP 面积的最小值为9.第3题解图4. 27 -2 【解析】如解图,过点E 作EH ∥AD ,交AC 于点H ,∵△ABC 为等边三角形,∴AB =AC =6,由旋转的性质得AD =AB ,∴AD =AC ,∴∠D =∠ACD ,∵DE =2CE ,∴CE CD =CH CA =13 ,∠CEH =∠D =∠ACD ,∴CH =EH ,∵AC =6,∴CH =EH =2,取AH 的中点P ,连接EP ,则PH =EH ,∴∠EPH =∠PEH ,∵∠EPH +∠CEP +∠ACD =180°,∴2∠PEH +2∠CEH =180°,∴∠CEP =90°,∴点E 在以点H 为圆心,CP 为直径的圆弧上运动,连接BH ,∵EH 为定值2,∴当B ,E ,H 三点共线时,BE 的长最小,过点B 作BQ ⊥AC 于点Q ,则CQ =12AC =3,∴QH =CQ -CH =1,BQ =BC 2-CQ 2 =62-32 =33 ,∴BH =BQ 2+QH 2 =(33)2+12 =27 ,∴BE 的最小值为27 -2.第4题解图5. 32+64【解析】如解图,连接CP ,∵∠PDC =∠PEC =90°,∴∠PDC +∠PEC =180°,∴C ,D ,P ,E 四点共圆,圆心为点O ,且直径为CP ,∵BC =3 +1,∠ACB =45°,∠B =60°是定值,∴直径CP 最小时,∠DCE 所对的弦DE 最小,即CP ⊥AB 时,DE 的值最小,连接OD ,OE ,∵∠B =60°,CP ⊥AB ,BC =3 +1,∴∠BCP =30°,∴BP =12BC =3+12 ,CP =3 BP =3+32 ,∴OD =OE =12 CP =3+34,∵∠ACB =45°,∴∠DOE =2∠ACB =90°,∴△ODE 是等腰直角三角形,∴DE =2 OD =32+64,即DE 的最小值为32+64.第5题解图。

2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)

2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)

牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。

中考数学专题复习最值问题费马点

中考数学专题复习最值问题费马点

中考数学专题复最值问题费马点学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .33 2B .23 3C .33 3D .43 3评卷人 得分二、填空题 2.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.3.问题背景:如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________4.如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为22,则BC=_____.5.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.评卷人得分三、解答题6.如图,∠ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求2253BP AP PC++最小值7.如图,在∠ABC中,∠BAC=90°,AB=AC=1,P是∠ABC内一点,求P A+PB+PC的最小值.8.【问题提出】(1)如图1,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM ,CM .若连接MN ,则BMN △的形状是________.(2)如图2,在Rt ABC 中,90BAC ∠=︒,10AB AC +=,求BC 的最小值. 【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD ,6AB BC +=千米,60ABC ∠=︒,公园内有一个儿童游乐场E ,分别从A 、B 、C 向游乐场E 修三条,,AE BE CE ,求三条路的长度和(即AE BE CE ++)最小时,平行四边形公园ABCD的面积.9.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=22; (1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ; ∠把图形补充完整(无需写画法); ∠求2EF 的取值范围; (2)如图2,求BE+AE+DE 的最小值.10.如图,在平面直角坐标系xoy中,点B的坐标为(0,2),点D在x轴的正半轴上,30ODB∠=︒,OE为∠BOD的中线,过B、E两点的抛物线236y ax x c=++与x 轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边∠OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P为∠ABO内的一个动点,设m PA PB PO=++,请直接写出m的最小值,以及m取得最小值时,线段AP的长.11.背景资料:在已知ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当ABC三个内角均小于120°时,费马点P 在ABC内部,当120APB APC CPB∠=∠=∠=︒时,则PA PB PC++取得最小值.(1)如图2,等边ABC 内有一点P ,若点P 到顶点A 、B 、C 的距离分别为3,4,5,求APB ∠的度数,为了解决本题,我们可以将ABP △绕顶点A 旋转到ACP '△处,此时ACP ABP '≌这样就可以利用旋转变换,将三条线段PA 、PB 、PC 转化到一个三角形中,从而求出APB ∠=_______;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与ABC 的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,ABC 三个内角均小于120°,在ABC 外侧作等边三角形ABB ',连接CB ',求证:CB '过ABC 的费马点.(3)如图4,在RT ABC 中,90C ∠=︒,1AC =,30ABC ∠=︒,点P 为ABC 的费马点,连接AP 、BP 、CP ,求PA PB PC ++的值.(4)如图5,在正方形ABCD 中,点E 为内部任意一点,连接AE 、BE 、CE ,且边长2AB =;求AE BE CE ++的最小值.参考答案:1.D【解析】【分析】根据“两点之间线段最短”,当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长.【详解】解:如图,∠将△ABG绕点B逆时针旋转60°得到△EBF,∠BE=AB=BC,BF=BG,EF=AG,∠∠BFG是等边三角形.∠BF=BG=FG,.∠AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∠当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF∠BC交CB的延长线于F,∠∠EBF=180°-120°=60°,∠BC=4,∠BF=2,EF=23,在Rt△EFC中,∠EF2+FC2=EC2,∠EC=43.∠∠CBE=120°,∠∠BEF=30°,∠∠EBF=∠ABG=30°,∠EF=BF=FG,∠EF=13CE=433,故选:D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.2.4+33【解析】【分析】【详解】【分析】依然构造60°旋转,将三条折线段转化为一条直线段.分别以AD、AM为边构造等边∠ADF、等边∠AMG,连接FG,易证∠AMD∠∠AGF,∠MD=GF∠ME+MA+MD=ME+EG+GF过F作FH∠BC交BC于H点,线段FH的长即为所求的最小值.3.229【解析】【分析】如图,将∠MOG绕点M逆时针旋转60°,得到∠MPQ,易知∠MOP为等边三角形,继而得到点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q 作QA∠NM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将∠MOG绕点M逆时针旋转60°,得到∠MPQ,显然∠MOP为等边三角形,∠,OM+OG=OP+PQ,∠点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,∠当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q作QA∠NM交NM的延长线于A,则∠MAQ=90°,∠∠AMQ=180°-∠NMQ=45°,∠MQ=MG=42,∠AQ=AM=MQ•cos45°=4,∠NQ=2222AN AQ+=++=,(46)4229故答案为229.【点睛】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.4.62-【解析】【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题.【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∠AB=AC,AH∠BC,∠∠BAP=∠CAP,∠PA=PA,∠∠BAP∠∠CAP(SAS),∠PC=PB,∠MG=PB,AG=AP,∠GAP=60°,∠∠GAP是等边三角形,∠PA=PG,∠PA+PB+PC=CP+PG+GM,∠当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∠AP+BP+CP的最小值为22,∠CM=22,∠∠BAM=60°,∠BAC=30°,∠∠MAC=90°,∠AM=AC=2,作BN∠AC于N.则BN=12AB=1,AN=3,CN=2-3,∠BC=2222=1(23)=62BN CN++--.故答案为62.【点睛】本题考查轴对称-最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题5.63【解析】【分析】以BM为边作等边∠BMN,以BC为边作等边∠BCE,如图,则∠BCM∠∠BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH∠AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.【详解】以BM为边作等边∠BMN,以BC为边作等边∠BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∠∠MBC=∠NBE,∠∠BCM∠∠BEN,∠CM=NE,∠AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∠AB=BC=BE=6,∠ABH=∠EBH=60°,∠BH∠AE,AH=EH,∠BAH=30°,∠BH=1AB=3,2AH=3BH=33,∠AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.6.36【解析】【分析】将∠APC 绕点A 逆时针旋转45°,得到∠A P 'C ',将∠A P 'C '扩大324倍,得到∠AP C '''',当点B 、P 、P ''、C ''在同一直线上时,2253BP AP PC ++=()''''''22PB PP P C ++最短,利用勾股定理求出BC ''即可.【详解】解:如图,将∠APC 绕点A 逆时针旋转45°,得到∠A P 'C ',将∠A P 'C '扩大,相似比为324倍,得到∠AP C '''',则32=4AP AP ''',32=4P C P C '''''',32=4AC AC ''', 过点P 作PE ∠A P ''于E ,∠AE=22PE AP =, ∠P ''E=A P ''-AE=24AP , ∠P P ''=22104PE P E AP ''+=, 当点B 、P 、P ''、C ''在同一直线上时,2253BP AP PC ++=()''''''22PB PP P C ++最短,此时()''''''22PB PP P C ++=B C '',∠∠BA C ''=∠BAC +∠CA C ''=90°,AB =6,3232==43244AC AC '''⨯=,∠2222=6(32)36BC AB AC ''''+=+=.【点睛】此题考查旋转的性质,全等三角形的性质,勾股定理,正确理解费马点问题的造图方法:利用旋转及全等的性质构建等量的线段,利用三角形的三边关系及点共线的知识求解,有时根据系数将图形扩大或缩小构建图形.7.22+62 【解析】【分析】以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接BN .根据△PAM 、△ABN 都是等边三角形,可得PA+PB+PC=CP+PM+MN ;根据当C 、P 、M 、N 四点共线时,由CA=CB ,NA=NB 可得CN 垂直平分AB ,进而求得PA+PB+PC 的最小值.【详解】证明:如图所示,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接BN .由旋转可得,△AMN∠∠ABP ,∠MN=BP ,PA=AM ,∠PAM=60°=∠BAN ,AB=AN ,∠∠PAM 、△ABN 都是等边三角形,∠PA=PM ,∠PA+PB+PC=PM+MN+PC ; (3)当AC=BC=1时,AB=22,当C 、P 、M 、N 四点共线时,由CA=CB ,NA=NB 可得CN 垂直平分AB ,∠AQ=12AB=22=CQ ,NQ=62, 此时CN=CP+PM+MN=PA+PB+PC=22+628.(1)等边三角形;(2)BC 的最小值为52;(3)平行四边形公园ABCD 的面积为932(平方米).【解析】【分析】(1)由旋转得BN =BM ,∠MBN =60°,可判断出△BMN 是等边三角形即可;(2)设AB =a ,则AC=10-a ,进而根据勾股定理得出()222550BC a =-+即可得出结论; (3)先判断出点A',E',E ,C 在同一条线上,设BF =x ,进而依次得出AB =2x ,BC =6-2x ,CF =6-x ,再利用勾股定理得出223'4()272A C x =-+,得出x =32是A'C 最小,进而求出A'F ,BC ,利用平行四边形面积公式计算即可.【详解】(1)证明:BMN △的形状是等边三角形,理由如下;由旋转知,BN =BM ,∠MBN =60°∠△BMN 为等边三角形故答案为:等边三角形;(2)解:设AB=a,∠AB+AC=10,∠AC=10-AB=10a-,在Rt△ABC中,根据勾股定理得,()2222210BC AB AC a a=+=+-2220100a a=-+()22550a=-+,∠()250a-≥,∠()2255050a-+≥,即250BC≥,∠52BC≥,即BC的最小值为52;(3)解:如图3,将△ABE绕点B逆时针旋转60°得到△A'BE',∠∠ABE∠∠A'BE',∠∠A'E'B=∠AEB,AB=A'B,A'E'=AE,BE'=BE,∠EBE'=60°,∠∠EBE'为等边三角形,∠∠BE'E=∠BEE'=60°,EE'=BE,∠AE+BE+CE=A'E'+EE'+CE,要AE+BE+CE最小,即点A',E',E,C在同一条线上,即最小值为A'C,过点A'作A'F∠CB,交CB的延长线于F,在Rt△A'FB中,∠A'BF=180°-∠ABA'-∠ABC=60°,设BF=x,则A'B=2x,根据勾股定理得,A'F=3x,∠AB=A'B,∠AB =2x ,∠AB +BC =6,∠BC =6-AB =6-2x ,∠CF =BF +BC =6-x ,在Rt △A'FC 中,根据勾股定理得,2222223''3(6)4()272A C A F CF x x x =+=+-=-+, ∠当x =32,即AB =2x =3时,2'A C 最小, 此时,BC =6-3=3,A'F =3332x =, ∠平行四边形公园ABCD 的面积为3393322⨯=(平方千米). 【点睛】本题是四边形综合题,主要考查了等边三角形的判定和性质,旋转的性质,勾股定理,用代数式表示线段,利用配方法确定极值问题,判断出AB =BC 时,AE +BE +CE 最小是解本题的关键.9.(1)∠补图见解析;∠2816EF ≤≤;(2)232+【解析】【分析】(1)∠根据要求画出图形即可;∠首先证明∠ECF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,在Rt∠ECF 中,利用勾股定理即可解决问题;(2)如图2中,将∠ABE 绕点A 顺时针旋转60°得到∠AFG ,连接EG ,DF .作FH∠AD 于H .根据两点之间线段最短可得DF≤FG +EG +DE ,BE =FG ,推出AE +BE +DE 的最小值为线段DF 的长;【详解】(1)∠如图∠DCF 即为所求;∠∠四边形ABCD是正方形,∠BC=AB=22,∠B=90°,∠DAE=∠ADC=45°,∠AC=22AB BC=2AB=4,∠∠ADE绕点D逆时针旋转90°得到∠DCF,∠∠DCF=∠DAE=45°,AE=CF,∠∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4−x,∠y=(4−x)2+x2=2x2−8x+160(0<x≤4).即y=2(x−2)2+8,∠2>0,∠x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∠8≤EF2≤16.(2)如图中,将∠ABE绕点A顺时针旋转60°得到∠AFG,连接EG,DF.作FH∠AD于H.由旋转的性质可知,∠AEG是等边三角形,∠AE=EG,∠DF≤FG+EG+DE,BE=FG,∠AE+BE+DE的最小值为线段DF的长.在Rt∠AFH中,∠FAH=30°,AB=22=AF,∠FH =12AF =2,AH =22AF FH -=6, 在Rt∠DFH 中,DF =()2222(226)2FH DH +=++=232+,∠BE +AE +ED 的最小值为232+.【点睛】本题考查作图−旋转变换,正方形的性质,勾股定理,两点之间线段最短等知识,解题的关键是学会构建二次函数解决最值问题,学会利用旋转法添加辅助线,学会用转化的思想思考问题,属于中考常考题型.10.(1)213 226y x x =-++ (2) 13AE = ;71313AM =或51313AM = (3)m 可以取到的最小值为13.当m 取得最小值时,线段AP 的长为51313【解析】【分析】 (1)已知点B 的坐标,可求出OB 的长;在Rt △OBD 中,已知了∠ODB=30°,通过解直角三角形即可求得OD 的长,也就得到了点D 的坐标;由于E 是线段BD 的中点,根据B 、D 的坐标即可得到E 点的坐标;将B 、E 的坐标代入抛物线的解析式中,即可求得待定系数的值,由此确定抛物线的解析式;(2)过E 作EG∠x 轴于G ,根据A 、E 的坐标,即可用勾股定理求得AE 的长;过O 作AE 的垂线,设垂足为K ,易证得△AOK∠∠AEG ,通过相似三角形所得比例线段即可求得OK 的长;在Rt △OMK 中,通过解直角三角形,即可求得MK 的值,而AK 的长可在Rt △AOK 中由勾股定理求得,根据AM=AK-KM 或AM=AK+KM 即可求得AM 的长; (3)由于点P 到△ABO 三顶点的距离和最短,那么点P 是△ABO 的费马点,即∠APO=∠OPB=∠APB=120°;易证得△OBE 是等边三角形,那么PA+PO+PB 的最小值应为AE 的长;求AP 的长时,可作△OBE 的外接圆(设此圆为∠Q ),那么∠Q 与AE 的交点即为m 取最小值时P 点的位置;设∠Q 与x 轴的另一交点(O 点除外)为H ,易求得点Q 的坐标,即可得到点H 的坐标,也就得到了AH 的长,相对于∠Q 来说,AE 、AH 都是∠Q 的割线,根据割线定理(或用三角形的相似)即可求得AP 的长.【详解】(1)过E 作EG∠OD 于G∠∠BOD=∠EGD=90°,∠D=∠D ,∠∠BOD∠∠EGD ,∠点B (0,2),∠ODB=30°,可得OB=2,OD =23;∠E 为BD 中点,∠EG DE GD BO DB OD ===12∠EG=1,GD =3∠OG =3∠点E 的坐标为(3,1)∠抛物线236y ax x c =++经过()0,2B 、()3,1E 两点, ∠()2313326a =+⨯+. 可得12a =-. ∠抛物线的解析式为213226y x x =-++. (2)∠抛物线与x 轴相交于A 、F ,A 在F 的左侧,∠A 点的坐标为()3,0-.过E 作EG∠x 轴于G∠23,1AG EG ==,∠在△AGE 中,90AGE ∠=︒, ()2223113AE =+=. 过点O 作OK ∠AE 于K ,可得△AOK ∠∠AEG .∠OK EG AO AE=. ∠1313OK =. ∠39.13OK = ∠2261313AK AO OK =-=.∠∠OMN是等边三角形,∠60NMO∠=︒.∠391313tan133OKKMKMO===∠.∠71313AM AK KM=+=,或51313AM AK KM=-=(3)如图;以AB为边做等边三角形AO′B,以OA为边做等边三角形AOB′;易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);∠OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∠∠AOE∠∠B′OB;∠∠B′BO=∠AEO;∠∠BOP=∠EOP′,而∠BOE=60°,∠∠POP'=60°,∠∠POP′为等边三角形,∠OP=PP′,∠PA+PB+PO=AP+OP′+P′E=AE;即m最小=AE=13如图;作正△OBE的外接圆∠Q,根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;∠∠PBE+∠POE=180°,∠BPO+∠BEO=180°;即B、P、O、E四点共圆;易求得Q(33,1),则H(233,0);∠AH=533;由割线定理得:AP•AE=OA•AH,即:AP=OA•AH÷AE=3×533÷13=51313故:m可以取到的最小值为13.当m取得最小值时,线段AP的长为513 13【点睛】此题是二次函数的综合类试题,涉及到二次函数解析式的确定、等边三角形的性质、解直角三角形以及费马点位置的确定和性质,能力要求极高,难度很大.11.(1)150°;(2)见详解;(3)7;(4)62+.【解析】【分析】(1)根据旋转性质得出ABP△∠ACP'△,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP =AP′=3,BP=CP′=4,根据∠ABC 为等边三角形,得出∠BAC =60°,可证∠APP′为等边三角形,PP′=AP =3,∠AP′P =60°,根据勾股定理逆定理222223425PP P C PC ''+=+==,得出△PP′C 是直角三角形,∠PP′C =90°,可求∠AP′C =∠APP +∠PPC =60°+90°=150°即可; (2)将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB ∠△AB′P′,AP =AP′,PB =PB′,AB =AB′,根据∠P AP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP ,根据PA PB PC PP P B PC '''++=++,根据两点之间线段最短得出点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,点P 在CB′上即可;(3)将△APB 逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB ∠∠AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP ,BB′=AB ,∠ABB′=60°,根据PA PB PC PP P B PC '''++=++,可得点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,利用30°直角三角形性质得出AB =2AC =2,根据勾股定理BC =2222213AB AC -=-=,可求BB′=AB =2,根据∠CBB′=∠ABC +∠ABB′=30°+60°=90°,在Rt △CBB′中,B′C =()2222327BC BB '+=+=即可; (4)将△BCE 逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F ∠AB ,交AB 延长线于F ,得出△BCE ∠△CE′B′,BE =B′E′,CE =CE ′,CB =CB′,可证△ECE′与△BCB′均为等边三角形,得出EE ′=EC ,BB′=BC ,∠B′BC =60°,AE BE CE AE EE E B '''++=++,得出点C ,点E ,点E′,点B′四点共线时,AE BE CE AE EE E B '''++=++最小=AB′,根据四边形ABCD 为正方形,得出AB =BC =2,∠ABC =90°,可求∠FBB′=180°-∠ABC -∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF =112122BB '=⨯=,勾股定理BF =2222213BB B F ''-=-=,可求AF =AB +BF =2+3,再根据勾股定理AB′=()222223162AF B F '+=++=+即可. (1)解:连结PP′,∠ABP △∠ACP '△,∠∠BAP =∠CAP′,∠APB =∠AP′C ,AP =AP′=3,BP=CP′=4,∠∠ABC 为等边三角形,∠∠BAC =60°∠∠P AP ′=∠P AC +∠CAP ′=∠P AC +∠BAP =60°,∠∠APP′为等边三角形,,∠PP′=AP =3,∠AP′P =60°,在△P′PC 中,PC =5,222223425PP P C PC ''+=+==,∠∠PP′C 是直角三角形,∠PP′C =90°,∠∠AP′C =∠APP +∠PPC =60°+90°=150°,∠∠APB =∠AP′C =150°,故答案为150°;(2)证明:将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,∠∠APB ∠△AB′P′,∠AP =AP′,PB =PB′,AB =AB′,∠∠P AP′=∠BAB′=60°,∠∠APP′和△ABB′均为等边三角形,∠PP′=AP ,∠PA PB PC PP P B PC '''++=++,∠点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∠点P 在CB′上,∠CB '过ABC 的费马点.(3)解:将∠APB 逆时针旋转60°,得到∠AP′B′,连结BB′,PP′,∠∠APB ∠∠AP′B′,∠AP′=AP ,AB′=AB ,∠∠P AP′=∠BAB′=60°,∠∠APP′和∠ABB′均为等边三角形,∠PP′=AP ,BB′=AB ,∠ABB′=60°,∠PA PB PC PP P B PC '''++=++∠点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∠90C ∠=︒,1AC =,30ABC ∠=︒,∠AB =2AC =2,根据勾股定理BC =2222213AB AC -=-=∠BB′=AB =2,∠∠CBB′=∠ABC +∠ABB′=30°+60°=90°,∠在Rt∠CBB′中,B′C =()2222327BC BB '+=+= ∠PA PB PC ++最小=CB′=7;(4)解:将∠BCE 逆时针旋转60°得到∠CE′B′,连结EE′,BB′,过点B′作B′F ∠AB ,交AB 延长线于F ,∠∠BCE ∠∠CE′B′,∠BE =B′E′,CE =CE ′,CB =CB′,∠∠ECE′=∠BCB′=60°,∠∠ECE′与∠BCB′均为等边三角形,∠EE ′=EC ,BB′=BC ,∠B′BC =60°,∠AE BE CE AE EE E B '''++=++,∠点C ,点E ,点E′,点B′四点共线时,AE BE CE AE EE E B '''++=++最小=AB′, ∠四边形ABCD 为正方形,∠AB =BC =2,∠ABC =90°,∠∠FBB′=180°-∠ABC -∠CBB′=180°-90°-60°=30°,∠B′F ∠AF ,∠BF =112122BB '=⨯=,BF =2222213BB B F ''-=-=, ∠AF =AB +BF =2+3,∠AB′=()222223162AF B F '+=++=+,∠AE BE CE ++最小=AB′=62+.【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.。

中考中的最值问题

中考中的最值问题

最值问题一、与绝对值有关的最值问题例1(2004,南昌):先阅读下面材料,然后解答问题。

在一条直线上有依次排列的n台机床在工作,我们要设置一个零件供应站P使这n台机床到供应站P的距离总和最小,要解决这个问题,先“退”到比较简单的情形:(1)如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之合等于A1到A2的距离。

(2)如果直线上有3台机床时,不难判断,供应站高在中间一台机床A2处最合适,因为如果P放在A2处,甲和丙所走的距离之和恰好为A1到A3的距离,而如果把P放在别处,例如D处,那么甲和丙所走的距离之和恰好为A1到A3的距离,可是乙还得走从A2到D 的这一段,这是多出来的,因此P放在A2处是最佳选择。

不难知道,如果直线上有4台机床,P应设在第2台与第3台之间的任何地方;有5台机床,P应设在第3台的位置,试回答:(1)有n台机床时,P应设在何处?(2)根据问题(1)的结论,求的最小值。

二、由不等关系确定的最值问题例2:某加工厂以每吨3000元的价格购进50吨原料进行加工,若进行粗加工,每吨加工费为600元,需天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需天,每吨售价为4500元,现将这50吨原料全部加工完。

(1)设其中粗加工吨,获利元,求与的函数关系式。

(不要求写自变量的范围)(2)如果必须在20天内完成,如何安排生产才通报获得最大利润?最大利润是多少?三、由相等关系确定的最值问题例3:已知:a、b、c均为实数,且满足a+b+c=2, abc=4求a、b、c中最大者的最小值四、由垂线段确定的最值问题例4:台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东300方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1) 该城市是否会受到这次台风的影响?为什么?.(2) 若受到台风影响,那么台风影响该城市的持续时间有多长?(3) 该城市受到台风影响的最大风力为几级?五、由完全平方公式确定的最值问题例5:设为x实数,代数式x2+4x-5的最小值为。

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题训练(含答案)

2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣38.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。

2020年数学中考最值问题试题总汇【含答案】

2020年数学中考最值问题试题总汇【含答案】

⎭ ⎝⎝ ⎝ 4 4 6 4 ⎭ 初中代数、几何所有最值问题一代数问题中的最值问题1、从 - 3,- 2,-1,4,5中任取两个数相乘,所得积中最大值为a ,最小值为b ,求-4答案: 32、若a , b , c 都是大于1的自然数,且a c= 252b , 求a 的最小值? 答案:42.a 的值?b 解析:252b 可以分成某数幂的形式。

252b=6×6×7 b , × 即 b=7,即 a=6×7=42.3、下面是按一定规律排列的一组数:1 ⎛ -1 ⎫第一个数: - 1+ ⎪2 ⎝ 2 ⎭1 ⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫第二个数: - 1+ ⎪ 1+ ⎪1+ ⎪3 ⎝ 2 ⎪ ⎪ ⎭⎝ ⎭1 ⎛ -1 ⎫⎛ (-1)2 ⎫⎛ (-1)3 ⎫⎛ (-1)4 ⎫⎛ (-1)5 ⎫第三个数: - 1+ ⎪ 1+ ⎪1+ ⎪1+ ⎪1+ ⎪4 ⎝ 2 ⎭⎪ ⎪ ⎭⎝ ⎭⎝ ⎪ ⎪ ⎭⎝ ⎭……第 n 个数:1⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫ ⎛ (-1)2n -1 ⎫ - 1+ ⎪ 1+ ⎪1+ ⎪…… 1+ ⎪n +1 ⎝ 2 ⎭ ⎪ ⎪ ⎭⎝ ⎭ ⎝2n ⎪ ;那么在第 10 个数,第 11 个数,第 12个数中,最大数是?答案:第 10 个。

解析:第n 个数是 1- n2(n +1), 把n = 10, n = 11, n = 12, n = 13分别代入得出答案。

4、已知: 20n 是整数,求满足条件的 最小整正数n 的值?答案:5解析:20n=4×5×n ,因为20n 是整数,∴ 20n 是一个完全平方数,∴ n 的最小值为54、当(m+n )²+1 取最小值时,求m 2 - n 2 + 2 m - 2 n 的值?答案:0解析:(m+n )²+1 取最小值,m+n=0 时最小。

中考专题训练:定值和最值问题

中考专题训练:定值和最值问题

(一)定值问题1、如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)2. 以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△A EF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?2、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.(二)由运动产生的线段和差问题(最值问题)1、如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】A. 1(,0)2B. (1,0)C. 3(,0)2D. 5(,0)22、如图,抛物线l 交x 轴于点A (﹣3,0)、B (1,0),交y 轴于点C (0,﹣3).将抛物线l 沿y 轴翻折得抛物线l 1.(1)求l 1的解析式;(2)在l 1的对称轴上找出点P ,使点P 到点A 的对称点A 1及C 两点的距离差最大,并说出理由;3、如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.4、如图,已知抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M ,使得MA+MB 的值最小,并求出点M 的坐标.(3)在抛物线上是否存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.。

中考数学专题复习最值问题胡不归 (2)

中考数学专题复习最值问题胡不归 (2)

中考数学专题复最值问题胡不归学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象与x轴交于A、C两点,与y轴交于点B(0,﹣3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则2PD+PC的最小值是()A.4B.2+22C.22D.32223+2.如图,在ABC∆中,90A∠=︒,60B∠=︒,2AB=,若D是BC边上的动点,则2AD DC+的最小值()A.236+B.6C.33+D.4评卷人得分二、填空题3.如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+12CG的最小值为_____.4.如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则32AP PC的最小值是______.5.如图,直线y=x﹣3分别交x轴、y轴于B、A两点,点C(0,1)在y轴上,点P 在x轴上运动,则2PC+PB的最小值为___.6.如图,矩形ABCD中AB=3,BC=3,E为线段AB上一动点,连接CE,则12AE +CE的最小值为___.7.如图,∠ABC中,∠BAC=75°,∠ACB=60°,AC=4,则∠ABC的面积为_;点D,点E,点F分别为BC,AB,AC上的动点,连接DE,EF,FD,则∠DEF的周长最小值为_.8.如图,在边长为4的正方形ABCD内有一动点P,且BP=2.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则12DQ+CQ的最小值为___.9.如图,四边形ABCD是菱形,AB=8,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+12BM的最小值为_____.10.如图,∠ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.11.如图,ABC中,10AB AC==,tan2A=,BE AC⊥于点E,D是线段BE上的一个动点,则55CD BD+的最小值是__________.12.如图,抛物线223y x x =--与x 轴交于A 、B 两点,过B 的直线交抛物线于E,,且tan ∠EBA=43,有一只蚂蚁从A 出发,先以1单位/s 的速度爬到线段BE 上的点D 处,再以1.25单位/s 的速度沿着DE 爬到E 点处觅食,则蚂蚁从A 到E 的最短时间是________s评卷人 得分三、解答题 13.如果有一条直线经过三角形的某个顶点,将三角形分成两个三角形,其中一个三角形与原三角形相似,则称该直线为三角形的“自相似分割线”.如图1,在△ABC 中,AB =AC =1,∠BAC =108°,DE 垂直平分AB ,且交BC 于点D ,连接AD .(1)证明直线AD 是△ABC 的自相似分割线;(2)如图2,点P 为直线DE 上一点,当点P 运动到什么位置时,P A +PC 的值最小?求此时P A +PC 的长度.(3)如图3,射线CF 平分∠ACB ,点Q 为射线CF 上一点,当514AQ CQ -+取最小值时,求∠QAC 的正弦值.14.如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt∠BEF绕点B 旋转,BE=BF=10,连接AE,CF.(1)求证:∠ABE∠∠CBF.(2)如图2,连接DE,当DE=BE时,求S△BCF的值.(S△BCF表示∠BCF的面积)(3)如图3,当Rt∠BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G 时,若M是CD的中点,P是线段DG上的一个动点,当满足2MP+PG的值最小时,求MP的值.15.如图,在平面直角坐标系中,直线l1:y=33x+3和直线l2:y=﹣3x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求∠ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F的坐标,并求出此时PF+22OP的最小值.16.如图,在平面直角坐标系中,直线l 13:33y x =+和直线l 2相交于y 轴上的点B ,分别交x 轴于A 、C 且∠OBC =30度.(1)求直线l 2的解析式;(2)点E 坐标为(5,0),点F 为直线l 1上一个动点,点P 为y 轴上一个动点,求当EF +CF 最小时,点F 的坐标,并求出此时22PF OP +的最小值.17.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点B 的坐标为(23,4),一次函数33yx b 的图象与边OC 、AB 、x 轴分别交于点D 、E 、F ,30DFO ∠=,并且满足OD BE =,点M 是线段DF 上的一个动点.(1)求b 的值;(2)连接OM ,若ODM ∆的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标;(3)求12OM MF +的最小值.18.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,3),C(2,0),其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)点M为抛物线的对称轴上的一个动点,若平面内存在点N,使得以A,B,M,N 为顶点的四边形为菱形,求点M的坐标;(3)若P为y轴上的一个动点,连接PD,求12PB+PD的最小值.19.∠AOB=30°,OM=2,D为OB上动点,求MD1+2OD的最小值.20.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接BC,且tan∠CBD4=3,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.∠过点P作x轴的平行线交线段BC于点E,过点E作EF∠PE交抛物线于点F,连接FB、FC,求∠BCF的面积的最大值;∠连接PB,求35PC+PB的最小值.21.在平面直角坐标系中,将二次函数()20y ax a=>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B 的左侧),1OA=,经过点A的一次函数()0y kx b k=+≠的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,ABD∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求ACE∆面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求35PE PA+的最小值.22.已知抛物线2(0)y ax bx c a=++≠过点(1,0)A,(3,0)B两点,与y轴交于点C,=3OC.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM BC⊥,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当PBC∆面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:12AQ QC+是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.23.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交于点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC 的最小值;(2)在(1)中,当MN 取得最大值HF +FP +1/3PC 取得小值时,把点P 向上平移个22单位得到点Q ,连结AQ ,把∠AOQ 绕点O 瓶时针旋转一定的角度α(0°<α<360°),得到∠AOQ ,其中边AQ 交坐标轴于点C 在旋转过程中,是否存在一点G 使得''Q Q OG ∠=∠?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.24.已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(∠)当2b =时,求抛物线的顶点坐标;(∠)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(∠)点1(,)2Q Q b y +在抛物线上,当22AM QM +的最小值为3324时,求b 的值.25.如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-1x-6交y轴与点C.点E是直线AB上的动点,过点E作EF∠x轴交AC于点F,2交抛物线于点G.(1)求抛物线y=-x2+bx+c的表达式;(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)∠在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;∠在∠的前提下,以点E为圆心,EH长为半径作圆,点M为∠E上一动点,求12AM+CM的最小值.26.如图,已知抛物线()()248k y x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y轴交于点C ,经过点B 的直线33yx b 与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与∠ABC 相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少.参考答案:1.A【解析】【分析】过点P作PJ∠BC于J,过点D作DH∠BC于H.根据()22222PD PC PD PC PD PJ⎛⎫+=+=+⎪⎪⎝⎭,求出DP PJ+的最小值即可解决问题.【详解】解:过点P作PJ∠BC于J,过点D作DH∠BC于H.∠二次函数y=x2﹣2x+c的图象与y轴交于点B(0,﹣3),∠c=﹣3,∠二次函数的解析式为y=x2﹣2x﹣3,令y=0,x2﹣2x﹣3=0,解得x=﹣1或3,∠A(﹣1,0),B(0,-3),∠OB=OC=3,∠∠BOC=90°,∠∠OBC=∠OCB=45°,∠D(0,1),∠OD=1,BD=4,∠DH∠BC,∠∠DHB=90°,设DH x=,则BH x=,∠222DH BH BD+=,∠2224x x+=,∠22x=,∠22DH =,∠PJ ∠CB ,∠90PJC ∠︒=,∠22PJ PC =, ∠()22222PD PC PD PC PD PJ ⎛⎫+=+=+ ⎪ ⎪⎝⎭, ∠DP PJ DH +≥,∠22DP PJ +≥,∠DP +PJ 的最小值为22,∠2PD PC +的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.2.B【解析】【分析】作点A 关于BC 的对称点A',连接AA', A'D,过D 作DE∠AC 于E ,易得2DE = CD ,AD= A'D ,从而得出AD+ DE = A'D+ DE ,当A',D, E 在同一直线上时,AD + DE 的最小值等于A' E 的长是3,进而求出2AD 十CD 的最小值.【详解】如图所示,作点A 关于BC 的对称点A',连接AA', A'D,过D 作DE∠AC 于E∠∠BAC = 90o ,∠B = 60o ,AB= 2∠BH=1,AH=3,AA'=23,∠C= 30o∠DE =12CD,即2DE = CD∠A 与A'关于BC 对称∠AD= A'D∠AD+ DE = A'D+ DE∠当A',D, E 在同一直线上时AD + DE的最小值等于A' E的长,在Rt∠AA' E中:A' E= sin60o×AA'=32×23= 3∠AD十DE的最小值为3∠2AD十CD的最小值为6故选B【点睛】本题主要考察了三角形的动点最值问题,做完辅助线后先求出AD + DE的最小值是解题关键.3.5【解析】【分析】因为DG=12EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证∠GDI∠∠CDG,从而得出GI=12CG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在Rt∠DEF中,G是EF的中点,∠DG=122EF ,∠点G 在以D 为圆心,2为半径的圆上运动,在CD 上截取DI =1,连接GI ,∠DI DG =DG CD=12, ∠∠GDI =∠CDG ,∠∠GDI ∠∠CDG ,∠IG DI CG DG==12, ∠IG =12CG , ∠BG +12CG =BG +IG ≥BI , ∠当B 、G 、I 共线时,BG +12CG 最小=BI , 在Rt∠BCI 中,CI =3,BC =4,∠BI =5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点G 的运动轨迹是解题的关键.4.3332+##3332+ 【解析】【分析】作∠OCE =120°,过点P 作PG ∠CE 于点G ,利用含30度角的直角三角形的性质以及勾股定理求得PG =32PC ;当A 、P 、G 在同一直线时,AP +32PC = AP +PG = AG 的值最小,再利用含30度角的直角三角形的性质以及勾股定理即可求解.【详解】解:∠点A 、C 的坐标分别为(3,0)、(0,﹣3),∠OA =3,OC =3,作∠OCE =120°,∠∠OCB =60°,则∠OCB =∠BCE =∠FCE =60°,过点P 作PG ∠CE 于点G ,如图:在Rt△PCG中,∠PCG=60°,则∠CPG=30°,∠CG=12PC,由勾股定理得PG=32PC,∠AP+32PC= AP+PG,当A、P、G在同一直线时,AP+PG= AG的值最小,延长AG交y轴于点F,∠∠FCG=60°,∠CGF=90°,∠∠CFG=30°,∠CF=2CG,GF=32CF,在Rt△OAF中,∠AOF=90°,∠OF A=30°,∠AF=2OA=6,OF=333OA=,∠CF=OF-OC=333-,∠GF=32(333-)=93322-,∠AG=AF-FG=93333362222-+=+,即AP+32PC的最小值为33322+.故答案为:3332+.【点睛】本题考查了坐标与图形,含30度角的直角三角形的性质以及勾股定理,作出合适的辅助线,得到当A、P、G在同一直线时,AP+32PC= AP+PG= AG的值最小是解题的关键.5.4【解析】【分析】【详解】思路引领:过P作PD∠AB于D,依据∠AOB是等腰直角三角形,可得∠BAO=∠ABO=45°=∠BPD,进而得到∠BDP是等腰直角三角形,故PD22=PB,当C,P,D在同一直线上时,CD∠AB,PC+PD的最小值等于垂线段CD的长,求得CD的长,即可得出结论.答案详解:如图所示,过P作PD∠AB于D,∠直线y=x﹣3分别交x轴、y轴于B、A两点,令x=0,则y=﹣3;令y=0,则x=3,∠A(0,﹣3),B(3,0),∠AO=BO=3,又∠∠AOB=90°,∠∠AOB是等腰直角三角形,∠∠BAO=∠ABO=45°=∠BPD,∠∠BDP是等腰直角三角形,∠PD22=PB,∠2PC+PB2=(PC22+PB)2=(PC+PD),当C,P,D在同一直线上,即CD∠AB时,PC+PD的值最小,最小值等于垂线段CD的长,此时,∠ACD是等腰直角三角形,又∠点C(0,1)在y轴上,∠AC =1+3=4,∠CD 22=AC =22, 即PC +PD 的最小值为22,∠2PC +PB 的最小值为222⨯=4,故答案为:4.6.3【解析】【分析】【详解】思路引领:在射线AB 的下方作∠MAB =30°,过点E 作ET ∠AM 于T ,过点C 作CH ∠AM 于H .易证ET 12=AE ,推出12AE +EC =CE +ET ≥CH ,求出CH 即可解决问题. 答案详解:∠四边形ABCD 是矩形,∠∠B =90°,∠tan∠CAB 33CB AB ==, ∠∠CAB =30°,∠AC =2BC =23,在射线AB 的下方作∠MAB =30°,过点E 作ET ∠AM 于T ,过点C 作CH ∠AM 于H . ∠ET ∠AM ,∠EAT =30°,∠ET12=AE,∠∠CAH=60°,∠CHA=90°,AC=23,∠CH=AC•sin6°=2332⨯=3,∠12AE+EC=CE+ET≥CH,∠12AE+EC≥3,∠12AE+EC的最小值为3,故答案为3.7.6+23326+【解析】【分析】(1)过点A作AH∠BC于H,根据∠BAC=75°,∠C=60°,即可得到(2)过点B作BJ∠AC于J,作点F关于AB的对称点M,点F关于BC的对称点N,连接BM,BN,BJ,MN,MN交AB于E′,交BC于D′,此时∠FE′D′的周长=MN的长,然后证明∠BMN是等腰直角三角形,BM的值最小时,MN的值最小,再根据垂线段最短可知,当BF与BJ重合时,BM的值最小,由此求解即可.【详解】解:∠如图,过点A作AH∠BC于H.∠∠AHB=∠AHC=90°,∠∠BAC=75°,∠C=60°,∠∠B=180°﹣∠BAC﹣∠C=45°,∠HAC=30°∠BH=AH,122HC AC==∠2223AH AC HC=-=∠AH=BH=23,∠BC=BH+CH=23+2,∠S△ABC=12•BC•AH=12•(23+2)3=6+23.∠如图,过点B作BJ∠AC于J,作点F关于AB的对称点M,点F关于BC的对称点N,连接BM,BN,BJ,MN,MN交AB于E′,交BC于D′,此时∠FE′D′的周长=MN的长.∠BF=BM=BM,∠ABM=∠ABJ,∠CBJ=∠CBN,∠∠MBN=2∠ABC=90°,∠∠BMN是等腰直角三角形,∠BM的值最小时,MN的值最小,根据垂线段最短可知,当BF与BJ重合时,BM的值最小,∠21243==334ABCSBJAC+=+△,∠MN的最小值为2BJ=326+,∠∠DEF的周长的最小值为326+.故答案为:6+23,326+.【点睛】本题主要考查了勾股定理,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,垂线段最短,解题的关键在于能够熟练掌握相关知识进行求解.8.5【解析】【分析】连接AC 、AQ ,先证明∠BCP ∠∠ACQ 得22AQ BP =即AQ =2,在AD 上取AE =1,证明∠QAE ∠∠DAQ 得EQ =12QD ,故12DQ +CQ =EQ +CQ ≥CE ,求出CE 即可. 【详解】解:如图,连接AC 、AQ ,∠四边形ABCD 是正方形,PC 绕点P 逆时针旋转90°得到线段PQ ,∠∠ACB =∠PCQ =45°,∠∠BCP =∠ACQ ,cos∠ACB =22BC AC =,cos∠PCQ =22PC QC =, ∠∠ACB =∠PCO ,∠∠BCP ∠∠ACQ ,∠22AQ BP = ∠BP =2,∠AQ =2,∠Q 在以A 为圆心,AQ 为半径的圆上,在AD 上取AE =1,∠12AE AQ =,12AQ AD =,∠QAE =∠DAQ , ∠∠QAE ∠∠DAQ ,∠12EQ QD =即EQ =12QD , ∠12DQ +CQ =EQ +CQ ≥CE ,连接CE ,∠225CE DE CD =+=,∠12DQ +CQ 的最小值为5.故答案为:5.【点睛】本题主要考查了正方形的性质,旋转的性质,相似三角形的性质与判定,三角函数,解题的关键在于能够连接AC、AQ,证明两对相似三角形求解.9.43【解析】【分析】如图,过点A作AT∠BC于T,过点M作MH∠BC于H,根据菱形的性质和30°角的直角三角形的性质可得MH=12BM,于是可得AM+12BM的最小值即为AT的长,再利用解直角三角形的知识求解即可.【详解】解:如图,过点A作AT∠BC于T,过点M作MH∠BC于H.∠四边形ABCD是菱形,∠ABC=60°,∠∠DBC=12∠ABC=30°,∠MH∠BC,∠∠BHM=90°,∠MH=12BM,∠AM+12BM=AM+MH,∠AT∠BC,∠∠ATB=90°,∠AT=AB•sin60°=43,∠AM+MH≥AT,∠AM+MH≥43,∠AM+1BM≥43,2BM的最小值为43,∠AM+12故答案为:43.【点睛】本题考查了菱形的性质、30°角的直角三角形的性质、垂线段最短以及解直角三角形等知识,属于常考题型,熟练掌握上述知识、明确解答的方法是解题关键.10.6【解析】【分析】过点P作PE∠AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E AB∠CD,推出PE=12三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=12 AB=3,得到2PB+ PD的最小值等于6.【详解】过点P作PE∠AD交AD的延长线于点E,∠四边形ABCD是平行四边形,∠AB∠CD,∠∠EDC=∠DAB=30°,PD,∠PE=12PD)=2(PB+PE),∠2PB+ PD=2(PB+12∠当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,∠∠DAB=30°,∠AEP=90°,AB=6,∠PB+PE的最小值=1AB=3,2∠2PB+ PD的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD 转化为三点共线的形式是解题的关键.11.45【解析】【分析】过点D 作DH AB ⊥于H ,过点C 作CM AB ⊥于M ,首先通过勾股定理及tan 2A =求出AE,BE 的长度,然后根据等腰三角形两腰上的高相等得出CM BE =,然后通过锐角三角函数得出55DH BD =,进而可得出55CD BD CD DH +=+,最后利用CD DH CM +即可求值.【详解】解:如图,过点D 作DH AB ⊥于H ,过点C 作CM AB ⊥于M .∠BE AC ⊥,∠90AEB =︒∠,∠tan 2BE A AE==, 设AE a =,2BE a =,222AB AE BE =+∠221004a a =+,∠220a =,∠25a =或25-(舍弃),∠245BE a ==,∠AB AC =,BE AC ⊥,CM AB ⊥,∠45CM BE ==(等腰三角形两腰上的高相等)∠DBH ABE ∠=∠,BHD BEA ∠=∠,∠5sin 5DH AE DBH BD AB ∠===, ∠55DH BD =, ∠55CD BD CD DH +=+,∠CD DH CM +,∠5455CD BD +, ∠55CD BD +的最小值为45, 故答案为:45.【点睛】本题主要考查解直角三角形,等腰三角形的性质,勾股定理,垂线段最短等,学会添加辅助线并利用转化的思想是解题的关键.12.649【解析】【详解】过点E 作EF ∠AB ,过点A 作AH ∠EF 于点H ,交EF 于点D ,易知A (-1,0),B (3,0),又4tan 3EBA ∠=,则4:43BE l y x =-+,所以E (73-,649), 因为EF ∠AB ,所以∠DEH =∠ABE ,所以4tan 3DEH ∠=,则4sin 5DH DEH DE ∠==,故1.25DE DH =. 蚂蚁从A 到H 所用的时间t =1 1.25AD DE +=1AD DH AD DH AH +=+=. 因为AH =649,所以t 的最小值是649.点晴:本题是一个求最小时间的胡不归问题,解题的关键是化12v DE v =DH ,一般的以目的地E 为角的顶点,以12sin v BEF v ∠=构造直角三角形,得到直角边EF ,再过A 作AH ∠EF 交BE 于点D ,则可解决问题. 13.(1)直线AD 是∠ABC 的自相似分割线;(2)当点P 运动到D 点时,P A +PC 的值最小,此时512PA PC ++=; (3)∠QAC 的正弦值为514+ 【解析】【分析】(1)根据定义证明∠DBA ∠∠ABC 即可得证;(2)根据垂直平分线的性质可得PA PC PB PC BC +=+≥,当点P 与D 重合时,PA PC PB PC BC +=+=,此时PA PC +最小,设BD x =,则1BC x =+ 根据DBA ABC ∽,列出方程,解方程求解即可求得BD ,进而即可求得BC 的长,即PA PC +最小值;(3)过点A 作AH BC ⊥于点H ,过点Q 作QG BC ⊥于点G ,连接AG ,设CF 与AD 交于点M ,根据已知条件求得514GQ CQ -=,进而转化为514AQ CQ AQ GQ -+=+,则当Q 点落在AG 上时,点G 与点H 重合,此时514AQ CQ -+的值最小,最小值为AH ,进而根据sin sin CH QAC HAC AC ∠=∠=求解即可. (1)∠∠ABC 中,AB =AC =1,∠BAC = 108°∠∠B =∠C =12(180°-∠BAC )= 36° ∠DE 垂直平分AB∠AD = BD∠∠B =∠BAD = 36°∠∠C =∠BAD又∠∠B =∠B∠∠DBA ∠∠ABC∠直线AD 是∠ABC 的自相似分割线.(2)如图,连接PB ,AD ,DE 垂直平分AB ,PA PB ∴=PA PC PB PC BC ∴+=+≥ 当点P 与D 重合时,PA PC PB PC BC +=+=,此时PA PC +最小, 72ADC B BAD ∠=∠+∠=︒,72DAC BAC BAD ∠=∠-∠=︒ ADC DAC ∴∠=∠1CD CA ∴==设BD x =,则1BC x =+ DBA ABC ∽ BD AB AB BC∴= 111x x ∴=+ 210x x ∴+-=解得:152x -±=0x x ∴=152-+ 5112BC x +∴=+= ∴P A +PC =512+ ∴当点P 运动到D 点时,P A +PC 的值最小,此时512PA PC ++=; (3)如图,过点A作AH BC⊥于点H,过点Q作QG BC⊥于点G,连接AG,设CF与AD交于点M,AB AC=,15124CH BC+∴==由(2)知,1DC AC==CF平分ACB∠CM AD∴⊥15124DM AM AD-===sinGQMCDCQ∴∠=514DMCD-==514GQ CQ-∴=514AQ CQ AQ GQ AG-∴+=+≥AG AH≥Q∴点落在AG上时,点G与点H重合,即此时514AQ CQ-+的值最小,最小值为AHQAC HAC∴∠=∠,AB AC AH BC=⊥15124CH BC+∴==51sin sin4CHQAC HACAC+∴∠=∠==∴∠QAC的正弦值为514+【点睛】本题考查了相似三角形的性质与判定,求角的正弦,垂直平分线的性质,两点之间线段最短,垂线段最短,胡不归问题,转化线段是解题的关键.14.(1)见解析(2)2或6(3)1152- 【解析】【分析】(1)由“SAS ”可证∠ABE ∠∠CBF ;(2)由“SSS ”可证∠ADE ∠∠ABE ,可得∠DAE =∠BAE =45°,可证AH =EH ,由勾股定理可求BE 的长,即可求解;(3)先确定点P 的位置,过点B 作BQ ∠CF 于Q ,由勾股定理可求CE 的长,由平行线分线段成比例可求解.(1)证明:∠四边形ABCD 是正方形,∠AB =BC ,∠ABC =90°,∠∠EBF =90°=∠ABC ,∠∠ABE =∠CBF ,又∠BE =BF ,AB =BC ,在∠ABE 和∠CBF 中, AB CB ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩,∠∠ABE ∠∠CBF (SAS );(2)解:如图2,过点E 作EH ∠AB 于H ,∠∠ABE∠∠CBF,∠S△ABE=S△CBF,∠AD=AB,AE=AE,DE=BE,∠∠ADE∠∠ABE(SSS),∠∠DAE=∠BAE=45°,∠EH∠AB,∠∠EAB=∠AEH=45°,∠AH=EH,∠BE2=BH2+EH2,∠10=EH2+(4﹣EH)2,∠EH=1或3,当EH=1时∠S△ABE=S△BCF=12AB×EH=12×4×1=2,当EH=3时∠S△ABE=S△BCF=12AB×EH=12×4×3=6,∠S△BCF的值是2或6;(3)解:如图3,过点P作PK∠AE于K,由(1)同理可得∠ABE∠∠CBF,∠∠EAB=∠BCF,∠∠BAE+∠CAE+∠ACB=90°,∠∠BCF+∠CAE+∠ACB=90°,∠∠AGC=90°,∠∠AGC=∠ADC=90°,∠点A,点G,点C,点D四点共圆,∠∠ACD=∠AGD=45°,∠PK∠AG,∠∠PGK=∠GPK=45°,∠PK=GK=22PG,∠MP+22PG=MP+PK,∠当点M,点P,点K三点共线时,且点E,点G重合时,MP+22PG值最小,即2 MP+PG最小,如图4,过点B作BQ∠CF于Q,∠BE=BF=10,∠EBF=90°,BQ∠EF,∠EF=25,BQ=EQ=FQ=5,∠CQ=2216511BC BQ-=-=,∠CE=CQ﹣EQ=115-,∠MK∠AE,CE∠AE,∠MK∠CE,∠DM MPDC CE=,又∠M是CD的中点,∠DC=2DM,∠MP=12CE=1152-.【点睛】本题主要考查勾股定理、全等三角形的性质与判定、正方形的性质及圆的基本性质,熟练掌握勾股定理、全等三角形的性质与判定、正方形的性质及圆的基本性质是解题的关键.15.(1)S△ABC=23;(2)点F坐标为(1,433);PF+22OP的最小值为26232+.【解析】【分析】(1)根据l1的解析式可得A、B坐标,把点B坐标代入y=﹣3x+b可求出b值,进而可得出点C坐标,即可求出AC、OB的长,利用三角形面积公式即可得答案;(2)如图,作点C关于直线l1的对称点C′,连接C′E,交l1于F,根据A、B、C坐标可得∠ABC是直角三角形,可得点C′在直线l2上,根据两点间距离公式可得出C′坐标,可得C′E为EF+CF的最小值,利用待定系数法可得出直线C′E的解析式,联立直线C′E与l1解析式即可得出得F的坐标;作二、四象限对角线l3,过点F作FG∠l3于G,交y轴于P,可得∠GOP=45°,可得PG=22OP,可得FG为PF+22OP的最小值,过点F作FQ∠x轴,交l3于Q,可得∠FGQ为等腰直角三角形,可得FG=22FQ,由l3的解析式为y=-x及点F的坐标可得点Q坐标,进而可得FQ的长,即可得FG的长,可得答案.【详解】(1)∠l1:y=33x+3,∠当x=0时,y=3,当y=0时,x=-3,∠A(-3,0),B(0,3),∠点B直线l2:y=﹣3x+b上,∠b=3,∠直线l2的解析式为y=﹣3x+3,∠当y=0时,x=1,∠C(1,0),∠AC=4,OB=3,∠S△ABC=12AC OB⋅=1432⨯⨯=23.(2)如图,作点C关于直线l1的对称点C′,连接C′E,交l1于F,∠A(-3,0),B(0,3),C(1,0),∠AB2=(-3)2+(3)2=12,BC2=12+(3)2=4,AC2=42=16,∠AC 2=AB 2+BC 2,∠∠ABC 是直角三角形,∠点C ′在直线l 2上,∠点C 与点C ′关于直线l 1的对称,∠CC ′=2BC =4,设点C ′(m ,﹣3m +3,)∠(m -1)2+(﹣3m +3)2=42,解得:m 1=-1,m 2=3,∠点C ′在第二象限,∠m =-1,∠﹣3m +3=23,∠FC=FC′,∠EF +CF =EF+FC′,∠当C ′、F 、E 三点共线时EF +CF 的值最小,设直线C ′E 的解析式为y =kx +b ,∠2350k b k b ⎧-+=⎪⎨+=⎪⎩, 解得:33533k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∠直线C ′E 的解析式为35333y x =-+, 联立直线C ′E 与l 1解析式得35333333y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩, 解得:1433x y =⎧⎪⎨=⎪⎩, ∠F (1,433). 如图,作二、四象限对角线l 3,过点F 作FG ∠l 3于G ,交y 轴于P ,过点F 作FQ ∠x 轴,交l 3于Q ,∠直线l3的解析式为y=-x,∠GOP=45°,∠∠GOP是等腰直角三角形,∠PG=22OP,∠G、P、F三点共线时,PF+22OP的值最小,最小值为FG的长,∠∠GOP=45°,∠POE=90°,∠∠EOQ=45°,∠∠FQO=45°,∠∠FGQ是等腰直角三角形,∠FG=22FQ,∠F(1,433),直线l3的解析式为y=-x,∠Q(1,-1),∠FQ=433-(-1)=433+1,∠FG=22FQ=22×(433+1)=26232+,∠PF+22OP的最小值为26232+.【点睛】本题考查一次函数的综合、轴对称的性质、等腰直角三角形的判定与性质,正确添加辅助线,熟练掌握待定系数法求一次函数解析式及轴对称的性质是解题关键.16.(1)33y x=-+;(2)F(1,433),PF+22OP的最小值为22623+;【解析】【分析】(1)求出B(0,3),再由OC=BO•tan30°=1,求出C(1,0),再由待定系数法求直线解析式即可;(2)先确定∠ABC=90°,则可知C点关于直线l2的对称点C'在l2上,过点C'作C'K∠y轴交K点,易证△C'KB∠∠COB(AAS),则C'的纵坐标为23,即可求C'(-1,23),连接C'E交l1于F,因为EF+CF=EF+C'F≥C'E,所以当C'、E、F三点共线时,EF+CF的值最小为C'E;当P、F、Q三点共线时,PF+22OP的值最小,过F作FG∠x轴交l3,于点G,易证△FQG为等腰直角三角形,然后求出最小值即可.【详解】解:(1)令x=0,则y=3,∠B(0,3),∠OB=3,∠∠OBC=30°,∠OC=BO•tan30°=3×313=,∠C(1,0),设直线l2的解析式为y=kx+b,则3bk b⎧=⎪⎨+=⎪⎩,∠33kb⎧=-⎪⎨=⎪⎩,∠直线l2的解析式为33y x=-+;(2)令y=0,则3303x+=,∠x=-3,∠A(-3,0),∠OA=3,∠tan∠ABO=333AOBO==,∠∠ABO=60°,∠∠ABC=90°,∠C点关于直线l1的对称点C'在l2上,如图1,过点C '作C 'K ∠y 轴交K 点,∠∠KBC '=∠CBO ,∠C 'KB =∠BOC ,BC =BC ',∠∠C 'KB ∠∠COB (AAS ),∠BK =BO =3,∠C '的纵坐标为23,∠3323x -+=,∠x =-1,∠C '(-1,23),连接C 'E 交l 1于F ,∠EF +CF =EF +C 'F ≥C 'E ,∠当C '、E 、F 三点共线时,EF +CF 的值最小为C 'E ,设直线C 'E 的解析式为y =kx +b ,∠E (5,0),C '(-1,23),则5023k b k b +=⎧⎪⎨-+=⎪⎩, ∠33533k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∠35333y x =-+,∠35333333y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩, 解得x =1,∠F (1,433), 作第二、四象限的角平分线l 3,,过点F 作FQ ∠l 3,,交y 轴于点P ,交l 3,于点Q , 在Rt △PQO 中,∠POQ =45°,∠22OP PQ =, ∠PF +22OP =PF +PQ ≥FQ , 当P 、F 、Q 三点共线时,PF +22OP 的值最小, 过F 作FG ∠x 轴交l 3,于点G ,∠∠FQG 为等腰直角三角形,∠FQ =22FG , ∠l 3,的解析式为y =-x ,∠G (1,-1),∠FG =1+433, ∠FQ =22+263, ∠PF +22OP 的最小值为22+263. 【点睛】本题考查一次函数的综合,熟练掌握一次函数的图象及性质,通过构造坐标象限的角平分线将22PF OP 转化为求FQ 的长是解(2)问的关键,数形结合,利用坐标平移的性质是解题关键.17.(1)3b =;(2)237(,)33M ;(3)92 【解析】【分析】(1)利用矩形的性质,用b 表示点E 的坐标,再利用待定系数法即可求解;(2)首先求出四边形OAED 的面积,再根据条件求出ODM △的面积,即可解决问题;(3)过点M 作MN x ⊥轴交于点N ,则12OM MF OM MN +=+,即可转化为求OM MN +的最小值,作点O 关于一次函数的对称点O ',过点O '作x 轴的垂线交x 轴于点N ',交一次函数于点M ,即OM MN +的最小值为O N '',算出长度即可.【详解】(1)在33y x b 中,令0x =,则y b =, ∴点D 的坐标为(0,)b ,OD BE =,(23,4)B ,(23,4)E b ∴-,把(23,4)E b -代入33yx b 中得:34233b b -=-⨯+, 解得:3b =; (2)由(1)得一次函数为333y x =-+,(0,3)D ,(23,1)E , 3OD ∴=,1AE =,23=OA ,11=()(31)234322OADE S OD AE OA ∴+⋅=⨯+⨯=四边形, ODM ∆的面积与四边形OAEM 的面积之比为1:3, ODM 的面积与四边形OADE 的面积之比为1:4,134ODM OADE S S ∴==四边形, 设点M 的横坐标为a ,则1332a ⨯=, 解得:233a =, 把233x =代入333y x =-+中得:73y =, 237(,)33M ∴; (3)如图所示,过点M 作MN x ⊥轴交于点N , 30DFO ∠=,12MN MF ∴=, 12OM MF OM MN ∴+=+,作点O 关于一次函数的对称点O ',且OO’与直线DF 交于Q 点,过点O '作x 轴的垂线交x 轴于点N ',OM O M '∴=,12OM MF OM MN O M MN '∴+=+=+,当O '、M 、N 在同一直线时O M MN '+最小,即12OM MF OM MN O M MN '+=+=+的最小值为O N '',30DFO ∠=︒,60ODF ∴∠=︒,30DOQ ∠=︒,903060O ON ''∠=︒-︒=︒,在Rt ODQ 中,333sin 60322OQ OD =⋅︒=⨯=, 233OO OQ ∴==',在Rt ON O ''中.39sin 603322O N OO =︒='⨯='', 12OM MF ∴+的最小值为92.【点睛】本题考查几何图形与函数的综合题,包括一次函数、矩形的性质、四边形的面积,解直角三角形以及胡不归问题,属于中考压轴题. 18.(1)y =32(x 12-)2938-,(12,938-);(2)(12,72)或(12,72-)或(12,153+2-)或(12,1532--)或(12,36-);(3)334【解析】 【分析】 【详解】思路引领:(1)将A 、B 、C 三点的坐标代入y =ax 2+bx +c ,利用待定系数法即可求出二次函数的表达式,进而得到其顶点坐标;(2)当以A ,B ,M ,N 为顶点的四边形为菱形时,分三种情况:∠以A 为圆心AB 为半径画弧与对称轴有两个交点,此时AM =AB ;∠以B 为圆心AB 为半径画弧与对称轴有两个交点,此时BM =AB ;∠线段AB 的垂直平分线与对称轴有一个交点,此时AM =BM ,分别列出方程,求解即可;(3)连接AB ,作DH ∠AB 于H ,交OB 于P ,此时12PB +PD 最小.最小值就是线段DH ,求出DH 即可.答案详解:(1)由题意03420a b c c a b c -+=⎧⎪=-⎨⎪++=⎩,解得 32323a b c ⎧=⎪⎪⎪⎪=-⎨⎪⎪=-⎪⎪⎩,∠抛物线解析式为y 32=x 232-x 3-, ∠y 32=x 232-x 332-=(x 12-)2938-,∠顶点坐标(12,938-); (2)设点M 的坐标为(12,y ).∠A (﹣1,0),B (0,3-), ∠AB 2=1+3=4.∠以A 为圆心AB 为半径画弧与对称轴有两个交点,此时AM =AB , 则(12+1)2+y 2=4,解得y =±72,即此时点M 的坐标为(12,72)或(12,72-);∠以B 为圆心AB 为半径画弧与对称轴有两个交点,此时BM =AB , 则(12)2+(y 3+)2=4,解得y 1532=-+或y 1532=--,即此时点M 的坐标为(12,1532-+)或(12,1532--);∠线段AB 的垂直平分线与对称轴有一个交点,此时AM =BM , 则(12+1)2+y 2=(12)2+(y 3+)2,解得y 36=-,即此时点M 的坐标为(12,36-).综上所述,满足条件的点M 的坐标为(12,72)或(12,72-)或(12,1532-+)或(12,1532--)或(12,36-);(3)如图,连接AB ,作DH ∠AB 于H ,交OB 于P ,此时12PB +PD 最小.理由:∠OA =1,OB 3=,∠tan∠ABO 33OA OB ==, ∠∠ABO =30°, ∠PH 12=PB , ∠12PB +PD =PH +PD =DH , ∠此时12PB +PD 最短(垂线段最短).在Rt∠ADH 中,∠∠AHD =90°,AD 32=,∠HAD =60°, ∠sin60°DHAD=, ∠DH 334=, ∠12PB +PD 的最小值为334. 19.3 【解析】 【分析】【详解】思路引领:(胡不归经典)作∠BON =∠AOB =30°,过点M 作MC ∠ON 于点C ,交OB 于点D ′,当MC ∠ON 时,(此时点D ′即为点D )MD 12+OD =MD +CD 的值最小,最小值是CM的长,答案详解:如图,作∠BON =∠AOB =30°,过点M 作MC ∠ON 于点C ,交OB 于点D ′,∠CD ′12=OD ′ 所以当MC ∠ON 时,(此时点D ′即为点D )MD 12+OD =MD +CD 的值最小,最小值是CM 的长,∠在Rt∠OCM 中,∠OMC =30°,OM =2 ∠OC =1, ∠CM 3=.答:MD 12+OD 的最小值为3.20.(1)241620999x x -++;(2)∠32;∠245【解析】 【分析】 【详解】思路引领:(1)设抛物线的解析式为:y =a (x +1)(x ﹣5),可得对称轴为直线x =2,由锐角三角函数可求点C 坐标,代入解析式可求解析式;(2)∠先求出直线BC 解析式,设P (2,t ),可得点E (534-t ,t ),点2315244F t t t ⎛⎫-- ⎪⎝⎭,,可求EF 的长,由三角形面积公式和二次函数性质可求解;∠根据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,过点P 作PG ∠AC 于G ,可得PG35=PC ,可得35PC PB PG PB +=+,过点B 作BH ∠AC 于点H ,则PG +PB ≥BH ,即BH 是35PC +PB 的最小值,由三角形面积公式可求解. 答案详解:(1)根据题意,可设抛物线的解析式为:y =a (x +1)(x ﹣5), ∠抛物线的对称轴为直线x =2, ∠D (2,0), 又∠43CDtan CBD DB∠==, ∠CD =BD •tan∠CBD =4, 即C (2,4),代入抛物线的解析式,得4=a (2+1)(2﹣5), 解得 49a =-,∠二次函数的解析式为 ()()441599y x x =-+-=-x 2162099x ++; (2)∠设P (2,t ),其中0<t <4, 设直线BC 的解析式为 y =kx +b ,∠0542.k b k b =+⎧⎨=+⎩,, 解得 4320.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,即直线BC 的解析式为 42033y x =-+,令y =t ,得:354x t =-,∠点E (534-t ,t ),把354x t =- 代入()()4159y x x =-+-,得 24t y t ⎛⎫=- ⎪⎝⎭,即2315244F t t t ⎛⎫-- ⎪⎝⎭,, ∠221244t EF t t t t ⎛⎫=--=- ⎪⎝⎭,∠∠BCF 的面积12=⨯EF ×BD 32=(t 24t -)()223334(2)882t t t =--=--+,∠当t =2时,∠BCF 的面积最大,且最大值为32;∠如图,据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,∠35AD sin ACD AC ∠==, 过点P 作PG ∠AC 于G ,则在Rt∠PCG 中,35PG PC sin ACD PC =⋅∠=,∠35PC PB PG PB +=+, 过点B 作BH ∠AC 于点H ,则PG +PB ≥BH , ∠线段BH 的长就是35PC PB +的最小值,∠11641222ABCSAB CD =⨯⨯=⨯⨯=, 又∠1522ABCSAC BH BH =⨯⨯=, ∠5122BH =, 即245BH =, ∠35PC PB +的最小值为245.21.(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516,此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3.【解析】 【分析】(1)先写出平移后的抛物线解析式,再把点()1,0A -代入可求得a 的值,由ABD ∆的面积为5可求出点D 的纵坐标,代入抛物线解析式可求出横坐标,由A 、D 的坐标可利用待定系数法求出一次函数解析式; (2)作EMy 轴交AD 于M ,如图,利用三角形面积公式,由ACE AME CME S S S ∆∆∆=-构建关。

中考专题最值问题(一)最小值问题基本题两定一动,一定两动

中考专题最值问题(一)最小值问题基本题两定一动,一定两动

中考专题最值问题(一)(最小值问题基本题两定一动,一定两动)1.在平面直角坐标系中,已知点A(0,2)、B(4,1),点P在x轴上,则P A+PB的最小值是.2.如图,将边长为4的正方形置于平面直角坐标系中,OE=3,点P为对角线DB上一动点,则PE+P A的最小值为.第2题图第4题图3.已知点A(1,1),点B(3,3),点C是y轴上一动点,当点C运动到位置时(填坐标),△ABC的周长最小.4.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则△P AC周长的最小值为.5.如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2),(﹣1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是.6.几何模型:条件:如图1,A,B是直线l同旁的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点A关于直线l的对称点A’,连接A’B交l于点P,则P A+PB=A’B的值最小(不必证明)模型应用:(1)如图2,已知平面直角坐标系中两定点A(0,﹣1)和B(2,﹣1),P为x轴上一动点,则当P A+PB的值最小是点P的横坐标是,此时P A+PB=.(2)如图3,正方形ABCD的边长为4,E为AB的中点,P是AC上一动点,连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是.(3)如图4,在菱形ABCD中,AB=10,∠DAB=60°,P是对角线AC上一动点,E,F分别是线段AB和BC上的动点,则PE+PF的最小值是.(4)如图5,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E.F 分别是AG,AD上的两个动点,则EF+ED的最小值是.参考答案1.5.2..3.(0,).4.+2.5.2+2.6.(1)1;2;(2)2;(3)5;(4)3.。

中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.482.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm23.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.274.如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6 B.8 C.12 D.185.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G 绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11二、填空题6.如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=6,则△BDE面积的最大值为_________.7.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.9.如图,在矩形ABCD中,∠ACB=30°,,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.10.如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线1(2)(4)2y x x=--上,则△ABP面积的最小值为__________.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.12.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,AD 上,AH =2,连接CF .(1)当四边形EFGH 为正方形时,求DG 的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.16.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.20.如图,已知边长为6的菱形ABCD 中,∠ABC =60°,点E ,F 分别为AB ,AD 边上的动点,满足BE AF =,连接EF 交AC 于点G ,CE 、CF 分别交BD 于点M ,N ,给出下列结论:①△CEF 是等边三角形;②∠DFC =∠EGC ; ③若BE =3,则BM =MN =DN ;④222EF BE DF =+; ⑤△ECF .其中所有正确结论的序号是______21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.23.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点A 的坐标;若不存在,请说明理由.24.如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△; (2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.参考答案与解析一、单选题1.【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC =12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,=, 则由三角形面积公式得,12BC ×DM=12OB ×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.【答案】B【分析】连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【解答】解:连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S △OMN =12•MN •OH =12,MN =6,∴OH =4,∵点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,∴∠AOP =∠AOP 1,∠POB =∠P 2OB ,OP =OP 1=OP 2∵∠AOB =45°,∴∠P 1OP 2=2(∠POA+∠POB )=90°,∴△OP 1P 2是等腰直角三角形,∴OP =OP 1最小时,△OP 1P 2的面积最小,根据垂线段最短可知,OP 的最小值为4,∴△OP 1P 2的面积的最小值=12×4×4=8, 故选:B .【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP 1P 2是等腰直角三角形,属于中考常考题型.5.【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE == G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN +∠DEN =90°,∵∠EDC =90°,∴∠EDN +∠CDM =90°,∴∠DEN =∠CDM , 在EDN 和DCM 中DEN CDM END DMC 90ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN ≌DCM (AAS ),∴EN =DM ,∵∠BAC =120°,∴∠MAC =60°,∴∠ACM =30°,∴AM =12AC =12⨯6=3, ∴BM =AB +AM =6+3=9,设BD =x ,则EN =DM =9﹣x ,∴S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818, ∴当BD =4.5时,S △BDE 有最大值为818, 故答案为:818. 【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时,12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.【答案】【分析】五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积,∴只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小,易知AD =,∵四边形ABCD 的面积=12(1+3)×2=4=12×1×1+12•AD •OH+12•1•3,∴OH ,∴PH ﹣11,∴△CAD 的面积最小值为2,∴五边形ABCDP 面积的最大值是4﹣(2)=.故答案为.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.【答案】42a - 【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【解答】∵四边形ABCD 是矩形,∴∠B=90°,∵∠ACB=30°,,∴AB=2,AC=4,∵AG=a ,∴CG=4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11222a AD MG=⋅=⨯=当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =,∴△ADG 的面积的最小值为4233=,故答案为:42a -. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b=-+⎧⎨-=⎩ ∴24k b =-⎧⎨=-⎩∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x p y x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-= ∴()44820p ∆=--=∴72p =∴2210x x -+= ∴1x =将1x =代入1(2)(4)2y x x =--,得32y =∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++=⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠=∴1115=2222ABP AB A S P ⨯=⨯=△ 即△ABP 面积的最小值为152故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点; 【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433a bab,解得14a b ==-⎧⎨⎩,所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)yx xx x ,(3,0)∴B ,抛物线的对称轴为2x =;BC 长度不变,BDDC 最小时,BCD ∆的周长最小,A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小, 如图,∴21x yx ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243y x m yx x,消掉y 得,2530x x m ,2(5)41(3)0m ,解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-,设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF, 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 45428AF , 又223(41)32AC ,∴∆的最大面积127ACE=⨯=.28【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.【答案】(1)2‘(2)1;(3)(.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2(3)先设DG=x,由第(2)小题得,S△FCG≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x,从而可得当时,△GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE , ∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG , ∴△AHE ≌△MFG (AAS ), ∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此S △FCG =12×FM ×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x , 在△AHE 中,AE ≤AB=7, ∴HE 2≤53, ∴x 2+16≤53,∴x∴S △FCG 的最小值为,此时,∴当时,△FCG 的面积最小为(.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 13.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解;(3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =, ∴CH则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点1322Q ⎛-- ⎝⎭或⎝⎭;综上,点Q -或(或⎝⎭或⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1 【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DFDO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得;(3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG •MN 列出关于k 的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2; (2)由(1)知点D 坐标为(1,0), 设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0), 则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°, ∵∠BDC =90°, ∴∠BDO+∠CDF =90°, ∴∠BDO =∠DCF , ∴△BDO ∽△DCF , ∴BO DFDO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1, ∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N , 由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0. ∴x 1+x 2=2+k ,x 1•x 2=k . ∴MN =|x 1﹣x 2|=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1), 所以DG =1,∴S △PDQ =12DG •MN =12×1×|x 1﹣x 2|12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值.【解答】解:设213,222P x x x ⎛⎫-++⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC , ∴∠PFE=∠BCO, 又∵∠PEF=∠BOC=90°, ∴△PEF ∽△BOC, ∴PE EF PF BO OC BC== ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭,∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO ·PF BC =42212x x -+== , EF=OC ·PFBC=222211122(2)x x x x x x -+-+-== , ∴221(2)1225PEFx x SPE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=, 当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=, 故答案为45. 【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.【答案】(1)见解析;(2)见解析;(3)当点P 是MN 的中点时S △MON 最小.理由见解析. 【分析】(1)根据尺规作图,过P 点作PN ⊥OB 于N ,交OA 于点M ; (2)证明三角形全等得P 为MN 的中点,便可得到结论;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,证明△PGM ≌△PFN ,得△PGM 与△PFN 的面积相等,进而得S 四边形MOFG =S △MON . 便可得S △MON <S △EOF ,问题得以解决.【解答】(1)①在OB 下方取一点K ,②以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,③分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.【答案】(1)12x <<;(2)2. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =,BD ==, ∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12,∴ABC . 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴=最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.19.【答案】(1)20;(2)5;(3)S △BCD =16;∠BCD =45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A =∠DBA ,由余角的性质可得∠DBC =∠C ,可得DB =DC =AD =12AC =5; (3)由中点的性质和折叠的性质可得DE =EC =4,则当DE ⊥BC 时,S △BCD 有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC =90°,AB =12,BC =16,∴20AC ==,故答案为:20;(2)∵DA =DB ,∴∠A =∠DBA ,∵∠ABC =90°∴∠A +∠C =90°,∠ABD +∠DBC =90°,∴∠DBC =∠C ,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积2,则当EC⊥AB时,△ECF【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF =∠BCA =60°,∴△EFC 是等边三角形,故①正确;∵∠ECF =∠ACD =60°,∴∠ECG =∠FCD ,∵∠FEC =∠ADC =60°,∴∠DFC =∠EGC ,故②正确;若BE =3,菱形ABCD 的边长为6,∴点E 为AB 中点,点F 为AD 中点,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∠ABO =12∠ABC =30°,∴AO =12AB =3,BO =∴BD =,∵△ABC 是等边三角形,BE =AE =3,∴CE ⊥AB ,且∠ABO =30°,∴BE EM =3,BM =2EM ,∴BM =同理可得DN =∴MN =BD −BM −DN =∴BM =MN =DN ,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD ≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =ECF 面积的最小值为4,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=--33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t -()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩ 解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.。

中考 最值问题复习题(带答案)

中考 最值问题复习题(带答案)

【最值问题复习】一、 将军饮马1. 如图,在矩形ABCD 中,AD=3,点E 为边AB 上一点,AE=1,平面内动点P 满足1=3PAB ABCD S S △矩形,则DP EP -的最大值为_____________.2. 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为 .类型二:点到直线距离垂线段最短3.在平面直角坐标系中,原点O 到直线24y kx k =-+的最大距离为____________.4. 如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A .2B .2.2C .2.4D .2.55. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 的距离的最小值是( )A .B .1C .D .6. 如图,直线y=x+4与x轴、y轴分别交于点A和点B,点D为线段OB的中点,点C、P分别为线段AB、OA上的动点,当PC+PD值最小时点P的坐标为.7. 如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个8. 如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,将直角三角板的直角顶点与AC边的中点P重合,直角三角板绕着点P旋转,两条直角边分别交AB边于M,N,则MN 的最小值是.9.如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧作等边△APM和等边△BPN,则△MNP外接圆半径的最小值为.类型三、平行线间的距离为最值10.如图,菱形ABCD中,AB=4,∠A=120°,点M、N、P分别为线段AB、AD、BD上的任意一点,则PM+PN的最小值为.11. 如图,在等边△ABC中,AB=4,P、M、N分别是BC、CA、AB边上动点,则PM+MN的最小值是.类型四、利用三角形三边关系、三点共线取最值12. 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.点P在运动时,线段AB的长度也在发生变化,则线段AB长度的最小值为___________.13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.类型五、构造圆球最值(圆外一点与圆上点的连线的距离最值问题)15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.16.在平面直角坐标系xOy中,A(3,0)、B(a,2)、C(0,m)、D(n,0),且m2+n2=4,若E为CD中点.则AB+BE的最小值为.17.如图,半径为2的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠BAC=60°恒成立,设△ABC的重心为G,则DG的最小值是.18.如图,在△ABC中,∠A=60°(∠B<∠C),E、F分别是AB、AC上的动点,以EF为边向下作等边三角形DEF,△DEF的中心为点O,连接CO.已知AC=4,则CO的最小值为___________.类型六、面积、周长最值问题19. 如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )A .2B .4C .4D .820. 如图,在菱形ABCD 中,∠BAD =135°,AB =4,点P 是菱形ABCD 内或边上的一点,且∠DAP +∠CBP =90°,连接DP ,CP ,则△DCP 面积的最小值为 .21. 如图,sin ∠C =,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,且BC =5,则△BDE 周长的最小值为 .类型七、函数最值问题22.已知22(3)9(1)4y x x =-+--+,则y 的最大值为_____________.23.已知6213309,3b ___________.a b c b c a c =+=-+,且≥,≤则的最大值为24.如图,AB 为半圆的直径,点O 为圆心,AB=8,若P 为AB 反向延长线上的一个动点(不与点A 重合),过点P 作半圆的切线,切点为C ,过点B 作BD ⊥PC 交PC 的延长线于点D ,则AC+BD 的最大值为_______________.25. 如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接P A.设P A=x,PB=y,则(x﹣y)的最大值是.26.如图,在正方形ABCD中,AB=4,以B为圆心,BA长为半径画弧,点M为弧上一点,MN ⊥CD于N,连接CM,则CM-MN的最大值为.27. 如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结果留根号).类型八、胡不归与阿氏圆问题28. 如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x 正半轴上.以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值_________.29.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.30.如图,点C的坐标为(2,5),点A的坐标为(7,0),圆C的半径为10,点B在圆C上运动,则55OB AB+的最小值为_______________.31.如图,在平面直角坐标系中,点A(-1,0),B(0,22),点C是线段OB上的动点,则3AC BC+的最小值为_________,此时点C的坐标为_______________.【参考答案】1.【解答】 DP EP -≤1DE =22. 【解答】解:设△ABP 中AB 边上的高是h .∵S △P AB =S 矩形ABCD ,∴AB •h =AB •AD ,∴h =AD =2,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE ,连接BE ,则BE 的长就是所求的最短距离. 在Rt △ABE 中,∵AB =5,AE =2+2=4,∴BE ===, 即P A +PB 的最小值为. 故答案为:.3.【解答】直线24y kx k =-+=24y k x =-+()过定点(2,4),OH ≤OA ,当OA 垂直于该直线时,距离最大,为254.【解答】解:连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.5.【解答】解:如图所示:当PE∥AB.由翻折的性质可知:PF=FC=2,∠FPE=∠C=90°.∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.又∵FP为定值,∴PD有最小值.又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.∴,即=,解得:DF=3.2.∴PD=DF﹣FP=3.2﹣2=1.2.故选:D.6.【解答】解:作点D关于x轴对称点D′,过点D′作DC⊥AB于点C,与OA交于点P,则此时PC+PD值最小.当x=0时,y=x+4=4,∴OB=4;当y=0时,x+4=0,解得:x=﹣4,∴OA=4.∵OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,∴∠OBA=45°.∵D′C⊥AB,∴△BCD′为等腰直角三角形,∴∠BD′C=45°.在△OPD′中,∠POD′=90°,∠OD′P=45°,∴∠OPD′=45°,∴OP=OD′=OD.又∵点D为线段OB的中点,∴OD=2,∴OP=2,∴点P的坐标为(﹣2,0).故答案为:(﹣2,0).7.【解答】解:如图,连结CE,∵在菱形ABCD中,AB=BC,∠ABE=∠CBE=30°,BE=BE,∴△ABE≌△CBE,∴AE=CE,设∠OCE=a,∠OAE=a,∠AEO=90°﹣a,∴∠DEF=120°﹣(90°﹣a)=30°+a,∴∠EFC=∠CDE+∠DEF=30°+30°+a=60°+a,∵∠ECF=∠DCO+∠OCE=60°+a,∴∠ECF=∠EFC,∴CE=EF,∴AE=EF,∵AB=4,∠ABE=30°,∴在Rt△ABO中,AO=2,∵OA≤AE≤AB,∴2≤AE≤4,∴AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选:C.8.【解答】解:取MN的中点D连接PD,∵∠MPN=90°,∴MN=2PD,∴当PD⊥MN时,PD值最小,此时MN的值最小,如图所示,∵∠A=∠A,∠ADP=∠ACB=90°,∴△APD∽△ABC,∴,即,∴PD=,∴MN=2PD=2.故答案为:2.9.【解答】解:分别作∠A与∠B角平分线,交点为O,连接OP,∵△AMP和△NPB都是等边三角形,∴AO与BO为PM、PN垂直平分线.∵圆心O在PM、PN垂直平分线上,即圆心O是一个定点,若半径OP最短,则OP⊥AB.又∵∠OAP=∠OBP=30°,AB=6,∴OA=OB,∴AP=BP=3,∴在直角△AOP中,OP=AP•tan∠OAP=3×tan30°=,故答案为:.10.【解答】解:连接AC,过点A作AE⊥BC于点E,∵四边形ABCD是菱形,∴AB=AD,当PM⊥AB,PN⊥AD时,PM+PN的值最小,最小值=AD边上的高,设这个高为AE,•AB•PM+•AD•PN=AD•AE,PM+PN=AE,∵菱形ABCD中,AB=4,∠A=120°,∴∠ABC=60°,AB=BC=4,∴△ABC是等边三角形,∴BE=EC=2,∴AE==2.故答案为:2.11.【解答】解:作点B关于直线AC的对称点K,连接AK、CK,作点N关于直线AC 的对称点N′,作N′P′⊥BC于P′,交AC于M′,则线段N′P′的长即为PM+MN 的最小值(垂线段最短).∵△ABC是等边三角形,易知,四边形ABCK是菱形,N′P′是菱形的高=×4=2,∴PM+MN的最小值为2,故答案为2.12.【解答】线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,则AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4;13.【解答】解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.14.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2﹣2.15.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.16.【解答】解:由题意CD==2,∵E为CD中点,∴OE=CD=1,∴点E在O为圆心,1为半径的圆上,作点A关于直线y=2的对称点A′,连接OA′交直线y=2于B,交⊙O于E.此时BA+BE=BA′+BE的值最小.在Rt△OAA′中,OA′==5,∴EA′=5﹣1=4,∴BA+BE的最小值为4,故答案为:4.17.【解答】解:连接AG并延长,交BC于点F,∵△ABC的重心为G,∴F为BC的中点,∴OF⊥BC,∵∠BAC=60°,∴∠BOF=60°,∴∠OBF=30°,∴OF=OB=1,∵△ABC的重心为G,∴AG=AF,在AO上取点E,使AE=AO,连接GE,∵==,∠F AO=∠GAE,∴△AGE∽△AFO,∴=,∴GE=.∴G在以E为圆心,为半径的圆上运动,∴E(,0),∴DE==,∴DG的最小值是﹣,故答案为:﹣.18.【解答】连接OE、OD、OA,∠DAE+∠DOE=180°,所以A、E、O、D四点共圆,所以∠EAO=∠ODE=30°,所以点O在一条直线上运动,过点C向这条直线作垂线CH,所以CO的最小值为CH,最小值为2.19.【解答】【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB 的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故选:C.20.【解答】解:在菱形ABCD中,∵AD∥BC,∴∠DAB+∠ABC=180°,∵∠DAP+∠CBP=90°,∴∠P AB+∠PBA=90°,∴AP⊥PB,∴当△DCP面积的最小时,P到CD的距离最小,即P到AB的距离最大,∴当Rt△ABP是等腰直角三角形时,即P到AB的距离最大,∵∠CBA=45°,∴点P在BC边上,且AP⊥BC,过C作CF⊥AB于F,PE⊥AB于E,∴CF=BC=4,PE=AB=2,∴P到CD的距离=4﹣2,∴△DCP面积的最小值为:4×(4﹣2)=8﹣8,故答案为:8﹣8.21.【解答】解:如图作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G,连接BG交CF于D′,此时△BD′E′的周长最小.在Rt△BGK中,易知BK=2,GK=6,∴BG==2,∴△BDE周长的最小值为BE′+D′E′+BD′=KD′+D′E′+BD′=D′E′+BD′+GD′=D′E′+BG=2+2.故答案为:2+2.22.【解答】设点C(x,0),A(3,3),B(1,2)222222(3)9(1)4(3)(03)(1)(02)y x x x x=-+--+=-+---+-表示AC-BC的值,且AC-BC≤AB,当A,BC三点共线时,AC-BC取最大值AB,即5.23.【解答】13 6213309,c29,302a b c b c a b a=+===-,且≥,≤得≤≥,解得13962a ≤≤,所以393b 62a c a -+=-+的 取值范围是15133b 22a c -+-≤≤. 24. 【解答】连接BC ,易证△ABC ∽△CBD ,可得2BC AB BD =⋅,设AC=x ,在△ABC 中,22=64BC x -,所以2648x BD -=,所以288x AC BD x +=-++,所以当4x =时,取最大值4.25【解答】解:如图,作直径AC ,连接CP ,∴∠CP A =90°,∵AB 是切线,∴CA ⊥AB ,∵PB ⊥l ,∴AC ∥PB ,∴∠CAP =∠APB ,∴△APC ∽△PBA ,∴,∵P A =x ,PB =y ,半径为4,∴=,∴y =x 2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.26.【解答】过点H作BH⊥MC,易证△BHC∽△CNM,设CM=x,MN=y,由△BHC∽△CNM可得BC CHMC MN,代入可得y=x2,所以CM-MN= x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.27.【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设P A=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故答案为2.28. 【解答】如图3,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.可证得,△AEP≌△ADB,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线EF 上运动,当OP ⊥EF 时,OP 最小,∴OP =OF =则OP 的最小值为.29. 【解答】考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显. 当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =. M A BCD D C B A M问题转化为DM+DB 的最小值,直接连接BM ,则AD +BD=DM+BD ≥BM=1030. 【解答】连接AC ,在AC 取一点M 使得2(2÷CM r BC =),易证得 △CBM ∽CAB 5=AB BM ,所以5=OB AB BM OB OM +≥,当O 、B 、M 三点共线时取最小值,由于点M 坐标为(3,4),OM=5,所以最小值为5.31. 【解答】13=3)3AC BC AC BC ++(,构造1sin =3α,故1tan =22α,取点D (1,0),连接BD ,作CH ⊥BD ,故1=3BC CH ,所以13=3)AC CH 3AC BC AC BC ++=+(≥AH ,当AH 垂直于BD 时,取最小值,由等积法可求得垂直时,AH 的最小值为423,所以3AC BC +的最小值为42,由相似可得此时点C 的坐标为2(0,)4.。

专题01 中考数学专题复习最值问题(阿氏圆)练习

专题01 中考数学专题复习最值问题(阿氏圆)练习

中考数学专题复习最值问题(阿氏圆)练习1.如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.C.4D.【答案】B【解析】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=PA,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案解析:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∴PC2=CM•CA,∴PC CM CA CP=,∵∠PCM=∠ACP,∴△PCM∽△ACP,∴13 PM PCPA AC==,∴PM13=PA,∴13AP+BP=PM+PB,∵PM+PB≥BM,在Rt△BCM中,∵∠BCM=90°,CM=1,BC=7,∴BM==∴13AP +BP ,∴13AP +BP 的最小值为.故选:B .2.如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O +PB 的最小值为________.【答案】【分析】+PB (PA PB )PB 即可解答.【解析】解:设⊙O 半径为r ,OP =r =12BC =2,OB r =,取OB PI ,∴OI =IB∵OP OI =,OB OP ==,∴OP OBOI OP= ,∠O 是公共角,∴△BOP ,∴PI PB =,∴PI ,∴AP =AP +PI ,∴当A 、P 、I 在一条直线上时,AP 最小,作IE ⊥AB 于E ,∵∠ABO =∴IE =BE =1,∴AE =AB −BE =3,∴AI =∴AP 最小值=AI+PB (PA PB ),+=.故答案是【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.3.如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC -的最大值为_______.【答案】152【分析】如图,连接BP ,在BC 上取一点M ,使得BM =32,进而证明BPM BCP △∽△,则在点P 运动的任意时刻,均有PM =12PC ,从而将问题转化为求PD -PM 的最大值.连接PD ,在△PDM 中,PD -PM <DM ,故当D 、M 、P 共线时,PD -PM =DM 为最大值,勾股定理即可求得DM .【解析】如图,连接BP ,在BC 上取一点M ,使得BM =32,31232BM BP ==Q ,3162BP BC ==BM BPBP BC\=PBM CBP Ð=ÐQ \BPM BCP△∽△12MP BM PC BP \==12MP PC \=12PD PC PD MD\-=-在△PDM 中,PD -PM <DM ,当D 、M 、P 共线时,PD -PM =DM 为最大值,Q 四边形ABCD 是正方形90C \Ð=°在Rt CDM V 中,152DM ===故答案为:152.【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造12PC 是解题的关键.4.如图,在V 90,2B AB CB Ð=°==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA +的最小值是___________.【分析】作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH等腰直角三角形的性质得到BH 12=AC =接着证明△BPD ∽△BCP 得到PD =,所以PAPC =PA +PD ,而PA +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到PA 的最小值.【解析】解:作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,∵AC 为切线,∴BH 为⊙B 的半径,∵∠90°=CB =2,∴AC ==∴BH 12=AC∴BP =∵PB BC BD BP ==,而∠PBD =∠CBP ,∴△BPD∴PD PC ∴PD =,∴PA =PA +PD ,而PA +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD =∴PA+即PA【点睛】:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD=.也考查了等腰直角三角形的性质.5.如图,在Rt ABCD中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的 E F上任意一点,连接BP,CP,则12BP+CP的最小值是_____..【分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明PAT BAPD D∽,推出PTPB=APAB=12,推出PT=12PB,推出12PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【解析】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=4=AT•AB,∴PAAT=ABPA,∵∠PAT=∠PAB,∴PAT BAPD D∽,∴PTPB=APAB=12,∴PT=12PB,∴12PB+CP=CP+PT,∵PC+PT≥TC,在Rt ACTD中,∵∠CAT=90°,AT=1,AC=4,∴CT,∴12PB+PC,∴12PB+PC..【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.6.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣12 PC的最大值为_____.【答案】5【解析】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.解析: 在BC上取一点G,使得BG=1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴12 PG BGPC PB==,∴PG=12PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.7.如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上的动点,已知r=k·OB.连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?【解析】1:连接动点至圆心0(将系数不为1的线段两端点分别与圆心相连接),即连接OP 、OB ;2:计算连接线段OP 、OB 长度;3:计算两线段长度的比值k OPOB=;4:在OB 上截取一点C ,使得OC OPOP OB=构建母子型相似:5:连接AC ,与圆0交点为P ,即AC 线段长为PA +K *PB 的最小值.本题的关键在于如何确定“k ·PB ”的大小,(如图 2)在线段 OB 上截取 OC 使 OC =k ·r ,则可说明△BPO 与△PCO 相似,即 k ·PB =PC .∴本题求“PA +k ·PB ”的最小值转化为求“PA +PC ”的最小值,即 A 、P 、C 三点共线时最小(如图 3),时AC 线段长即所求最小值.8.如图,点A 、B 在O e 上,且OA =OB =6,且OA ⊥OB ,点C 是OA 的中点,点D 在OB 上,且OD =4,动点P 在O e 上.求2PC +PD 的最小值.【答案】【分析】连接OP ,在射线OA 上截取AE =6,连接PE .由题意易证OPC OEP V :V ,即得出2PE PC =,从而得出2PC PD PE PD +=+,由此可知当P 、D 、E 三点共线时,PE PD +最小,最小值为DE 的长,最后在Rt OED △中利用勾股定理求出DE 的长即可.【解析】如图,连接OP ,在射线OA 上截取AE =6,连接PE .∵C 是OA 的中点,∴1122OC OA OP ==.∴在△OPC 和△OEP 中,12COP POE OC OP OP OE Ð=Ðìïí==ïî,∴OPC OEP V :V ,∴1=2PC PE ,即2PE PC =,∴2PC PD PE PD +=+,.∴当P 、D 、E 三点共线时,PE PD +最小,最小值即为DE 的长,如图,在Rt OED △中,DE ===,∴2PC PD +的最小值为.【点睛】本题考查同圆半径相等、三角形相似的判定和性质和勾股定理等知识.正确作出辅助线并理解当P 、D 、E 三点共线时,PE PD +最小,最小值为DE 的长是解答本题的关键.9.如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD ,连接AF ,BD(1)求证:△BDC ≌△AFC(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD AD 的值;(3)直接写出正方形CDEF 旋转过程中,BD 的最小值.【答案】(1)见解析;(21 ;(3【分析】(1)利用SAS ,即可证明△FCA ≌△DCB ;(2)分两种情况当点D ,E 在AB 边上时和当点E ,F 在边AB(3)取AC 的中点M .连接DM ,BM .则CM =1,可证得△DCM ∽△ACD ,可得DM ,从而得到当B ,D ,M 共线时,BD 的值最小,即可求解.【解析】(1)证明: ∵四边形CDEF 是正方形,∴CF =CD ,∠DCF =∠ACB =90°,∴∠ACF =∠DCB ,∵AC =CB ,∴△FCA ≌△DCB (SAS );(2)解:①如图2中,当点D ,E 在AB 边上时,∵AC =BC =2,∠ACB =90°,∴sin 45ACAB ==°∵CD ⊥AB ,∴AD AC =´=∴BD =1==;②如图3中,当点E ,F 在边AB 上时.BD =CF =sin 452BC ´°==AD∴BD =综上所述,BD 1+(3)如图4中.取AC 的中点M .连接DM ,BM .则CM =1,∵CD CM =1,CA =2,∴CD 2=CM •CA ,∴CD CA =CMCD,∵∠DCM =∠ACD ,∴△DCM ∽△∴DM AD =CD AC ,∴DM ,∴BD =BD +DM ,∴当B ,D ,M 共线时,BD 的值最小,最小值BM ==【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,锐角三角函数,熟练掌握相关知识点是解题的关键.10.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (5,0)两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连接BC ,且tan∠CBD 4=3,如图所示.(1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF ⊥PE 交抛物线于点F ,连接FB 、FC ,求△BCF 的面积的最大值;②连接PB ,求35PC +PB 的最小值.【答案】(1)241620999x x -++;(2)①32;②245【解析】思路引领:(1)设抛物线的解析式为:y =a (x +1)(x ﹣5),可得对称轴为直线x =2,由锐角三角函数可求点C 坐标,代入解析式可求解析式;(2)①先求出直线BC 解析式,设P (2,t ),可得点E (534-t ,t ),点2315244F t t t æö--ç÷èø,,可求EF 的长,由三角形面积公式和二次函数性质可求解;②根据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,过点P 作PG ⊥AC 于G ,可得PG 35=PC ,可得35PC PB PG PB +=+,过点B 作BH ⊥AC 于点H ,则PG +PB ≥BH ,即BH 是35PC +PB 的最小值,由三角形面积公式可求解.答案解析:(1)根据题意,可设抛物线的解析式为:y =a (x +1)(x ﹣5),∵抛物线的对称轴为直线x =2,∴D (2,0),又∵43CDtan CBD DBÐ==,∴CD =BD •tan∠CBD =4,即C (2,4),代入抛物线的解析式,得4=a (2+1)(2﹣5),解得 49a =-,∴二次函数的解析式为 ()()441599y x x =-+-=-x 2162099x ++;(2)①设P (2,t ),其中0<t <4,设直线BC 的解析式为 y =kx +b ,∴0542.k b k b =+ìí=+î,,解得 4320.3k b ì=-ïïíï=ïî即直线BC 的解析式为 42033y x =-+,令y =t ,得:354x t =-,∴点E (534-t ,t ),把354x t =- 代入()()4159y x x =-+-,得 24t y t æö=-ç÷èø,即2315244F t t t æö--ç÷èø,,∴221244t EF t t t t æö=--=-ç÷èø,∴△BCF 的面积12=´EF ×BD 32=(t 24t -)()223334(2)882t t t =--=--+,∴当t =2时,△BCF 的面积最大,且最大值为32;②如图,据图形的对称性可知∠ACD =∠BCD ,AC =BC =5,∴35AD sin ACD AC Ð==,过点P 作PG ⊥AC 于G ,则在Rt△PCG 中,35PG PC sin ACD PC =×Ð=,∴35PC PB PG PB +=+,过点B 作BH ⊥AC 于点H ,则PG +PB ≥BH ,∴线段BH 的长就是35PC PB +的最小值,∵11641222ABC S AB CD =´´=´´=V ,又∵1522ABC S AC BH BH =´´=V ,∴5122BH =,即245BH =,∴35PC PB +的最小值为245.11.问题提出:如图①,在Rt ABC △中,90C =o ∠,4CB =,6CA =,⊙C 的半径为2,P 为圆上一动点,连接AP 、BP ,求12AP BP +的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP ,在CB 上取一点D ,使1CD =,则12CD CP CP CB ==.又PCD BCP Ð=Ð,所以PCD D ∽BCP D .所以12PD CD BP CP ==.所以12PD PB =,所以12AP BP AP PD +=+.请你完成余下的思考,并直接写出答案:12AP BP +的最小值为________;(2)自主探索:在“问题提出”的条件不变的前提下,求13AP BP +的最小值;(3)拓展延伸:如图②,已知在扇形COD 中,90COD Ð=o ,6OC =,3OA =,5OB =,P 是 CD上一点,求2PA PB +的最小值.【答案】(1;(2(3)13.【分析】(1)根据题意可知最小值为AD 长度,利用勾股定理即可求出AD 长度.(2)连接CP ,在CA 上取一点D ,使23CD =,即可证明PCD V ∽ACP △,得到13PD AP =,即13AP BP PD BP +=+,所以13AP BP +的最小值为BD 长度,利用勾股定理即可求出BD 长度.(3)延长OC 到E ,使6CE =,连接PE ,OP ,即可证明OAP △∽OPE V ,得到2EP PA =,即2PA PB EP PB +=+,所以2PA PB +的最小值为BE 长度,利用勾股定理即可求出BE 长度.【解析】(1)根据题意可知,当A 、P 、D 三点共线时,12AP BP +最小,最小值AD ====.(2)连接CP ,在CA 上取一点D ,使23CD =,则有13CD CP CP CA ==,∵PCD ACP Ð=Ð,∴PCD D ∽ACP △,得13PD CD AP CP ==,∴13PD AP =,故13AP BP PD BP +=+,仅当B 、P 、D 三点共线时,13AP BP +的最小值BD ====.(3)延长OC 到E ,使6CE =,连接PE ,OP ,则12OA OP OP OE ==,∵AOP POE Ð=Ð,∴OAP △∽OPE D ,∴12OA OP AP OP OE EP ===,∴2EP PA =,∴2PA PB EP PB +=+,仅当E 、P 、B 三点共线时,13EP PB BE +====,即2PA PB +的最小值为13.【点睛】本题考查圆的综合,勾股定理,相似三角形的判定和性质.根据阅读材料的思路构造出PCD V ∽ACP △和OAP △∽OPE V 是解题的关键.本题较难.12.如图,抛物线2y ax bx c =++与x 轴交于A 0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且3OB OA =,OAC Ð的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF x ^轴,垂足为F ,交直线AD 于点H .(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH HP =时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ EQ +的最小值.【答案】(1)y 13=x 2﹣3;(2);(3【分析】对于(1),结合已知先求出点B 和点C 的坐标,再利用待定系数法求解即可;对于(2),在Rt△OAC 中,利用三角函数的知识求出∠OAC 的度数,再利用角平分线的定义求出∠OAD 的度数,进而得到点D 的坐标;接下来求出直线AD 的解析式,表示出点P ,H ,F 的3),首先求出⊙H 的半径,在HA 上取一点K ,使得HK=14,此时K (15-8);然后由HQ 2=HK·HA ,得到△QHK∽△AHQ,再利用相似三角形的性质求出KQ=14AQ ,进而可得当E 、Q 、K 共线时,14AQ+EQ 的值最小,据此解答.【解析】(1)由题意A 0),B 0),C (0,﹣3),设抛物线的解析式为y =a (x(x ,把C (0,﹣3)代入得到a 13=,∴抛物线的解析式为y 13=x 2﹣3.(2)在Rt△AOC 中,tan∠OAC OCOA==,∴∠OAC =60°.∵AD OAC ,∴∠OAD =30°=D (0,﹣1),∴直线AD 的解析式为y =﹣1,由题意P (m ,13m 2,H (m ﹣1),F (m ,0).∵FH =PH ,∴1=﹣1﹣(13﹣3)解得m =,∴当时,m .(3)如图,∵PF 是对称轴,∴F 0),H (.∵AH ⊥AE ,∴∠EAO =60°,∴EO ==3,∴E (0,3).∵C (0,﹣3),∴HC ==2,AH =2FH =4,∴QH 12=CH =1,在HA 上取一点K ,使得HK14=,此时K (158-).∵HQ 2=1,HK •HA =1,∴HQ 2=HK •HA ,∴HQ KHAH HQ=.∵∠QHK =∠AHQ ,∴△QHK ∽△AHQ ,∴14KQ HQ AQ AH ==,∴KQ 14=AQ ,∴14AQ +QE =KQ +EQ ,∴当E 、Q 、K 共线时,14AQ +QE 的值最小,最小值==.【点睛】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最值问题复习】
一、 将军饮马
1. 如图,在矩形ABCD 中,AD=3,点E 为边AB 上一点,AE=1,平面内动点P 满足1=3PAB ABCD S S △矩形,则DP EP -的最大值为_____________.
2. 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为 .
类型二:点到直线距离垂线段最短
3.在平面直角坐标系中,原点O 到直线24y kx k =-+的最大距离为____________.
4. 如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )
A .2
B .2.2
C .2.4
D .2.5
5. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 的距离的最小值是( )
A .
B .1
C .
D .
6. 如图,直线y=x+4与x轴、y轴分别交于点A和点B,点D为线段OB的中点,点C、P
分别为线段AB、OA上的动点,当PC+PD值最小时点P的坐标为.
7. 如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO
上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()
A.1个B.2个C.3个D.4个
8. 如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,将直角三角板的直角顶点与AC
边的中点P重合,直角三角板绕着点P旋转,两条直角边分别交AB边于M,N,则MN 的最小值是.
9.如图,P是线段AB上异于端点的动点,且AB=6,分别以AP、BP为边,在AB的同侧
作等边△APM和等边△BPN,则△MNP外接圆半径的最小值为.
类型三、平行线间的距离为最值
10.如图,菱形ABCD中,AB=4,∠A=120°,点M、N、P分别为线段AB、AD、BD上
的任意一点,则PM+PN的最小值为.
11. 如图,在等边△ABC中,AB=4,P、M、N分别是BC、CA、AB边上动点,则PM+MN
的最小值是.
类型四、利用三角形三边关系、三点共线取最值
12. 如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动
点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.点P在运动时,线段AB的长度也在发生变化,则线段AB长度的最小值为___________.
13.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上
一点,连接BD,点M为BD中点,线段CM长度的最大值为.
14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动
点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.
类型五、构造圆球最值(圆外一点与圆上点的连线的距离最值问题)
15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠
P AB=∠PBC,则线段CP长的最小值为.
16.在平面直角坐标系xOy中,A(3,0)、B(a,2)、C(0,m)、D(n,0),且m2+n2=4,
若E为CD中点.则AB+BE的最小值为.
17.如图,半径为2的⊙O分别与x轴,y轴交于A,D两点,⊙O上两个动点B,C,使∠
BAC=60°恒成立,设△ABC的重心为G,则DG的最小值是.
18.如图,在△ABC中,∠A=60°(∠B<∠C),E、F分别是AB、AC上的动点,以EF为
边向下作等边三角形DEF,△DEF的中心为点P,连接CO.已知AC=4,则CO的最小值为___________.
类型六、面积、周长最值问题
19. 如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( )
A .2
B .4
C .4
D .8
20. 如图,在菱形ABCD 中,∠BAD =135°,AB =4,点P 是菱形ABCD 内或边上的一点,且∠DAP +∠CBP =90°,连接DP ,CP ,则△DCP 面积的最小值为 .
21. 如图,sin ∠C =,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,且BC =5,则△BDE 周长的最小值为 .
类型七、函数最值问题
22.已知22
(3)9(1)4y x x =-+--+,则y 的最大值为_____________.
23.已知6213309,a 3b ___________.a b c b c c =+=-+,且≥,≤则的最大值为
24.如图,AB 为半圆的直径,点O 为圆心,AB=8,若P 为AB 反向延长线上的一个动点(不与点A 重合),过点P 作半圆的切线,切点为C ,过点B 作BD ⊥PC 交PC 的延长线于点D ,则AC+BD 的最大值为_______________.
25. 如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),
过点P作PB⊥l,垂足为B,连接P A.设P A=x,PB=y,则(x﹣y)的最大值是.
26.如图,在正方形ABCD中,AB=4,以B为圆心,BA长为半径画弧,点M为弧上一点,MN ⊥CD于N,连接CM,则CM-MN的最大值为.
27. 如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱
形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角
线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为(结
果留根号).
类型八、胡不归与阿氏圆问题
28. 如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x
正半轴上.以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值
_________.
29.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上
有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.
30.如图,点C的坐标为(2,5),点A的坐标为(7,0),圆C的半径为10,点B在圆C上
运动,则
5
5
OB AB
+的最小值为_______________.
31.如图,在平面直角坐标系中,点A(-1,0),B(0,22),点C是线段OB上的动点,则3AC BC
+的最小值为_________,此时点C的坐标为_______________.。

相关文档
最新文档