FSK调制解调实验
FSK调制解调原理实验
FSK调制解调原理实验一、实验目的1.了解FSK调制解调的基本原理;2.了解FSK调制解调器的实现过程;3.学习使用软件工具进行FSK调制解调实验。
二、实验原理FSK(Frequency Shift Keying)调制解调是一种常用的数字调制解调技术,它通过改变信号的调制频率来表示不同的数字信号。
FSK调制解调一般分为两个部分:调制器(Modulator)和解调器(Demodulator)。
(一)FSK调制器原理FSK调制器的任务是根据输入信息信号的不同,产生两个不同频率的载波信号。
当输入是数字"0"时,调制器选择低频率载波信号进行调制;当输入是数字"1"时,调制器选择高频率载波信号进行调制。
调制可采用线性调制或非线性调制两种方式。
线性调制实质是将低频调制信号与载波信号作直接叠加得到调制信号。
设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t) = \cos(2\pi f_c t) + A_0 \cos(2\pi f_0 t)$$非线性调制利用逻辑电路切换不同频率的载波信号,常采用矩形脉冲函数进行调制。
设载波频率为$f_c$,低频信号频率为$f_0$,则调制后信号可以表示为:$$s(t)= \begin{cases}\cos(2\pi f_1 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"0"时}\\\cos(2\pi f_2 t), & \text{当} 0 \leq t \leq T_b \text{且输入为数字"1"时}\end{cases}$$其中$T_b$为每个码元(bit)的时间长度,$f_1$和$f_2$为两个不同频率的载波频率。
(二)FSK解调器原理FSK解调器的任务是对调制信号进行解调,即还原出原始的数字信号。
FSK调制及解调实验报告
FSK调制及解调实验报告FSK调制及解调实验报告一、实验目的1.深入理解频移键控(FSK)调制的基本原理和特点;2.掌握FSK调制和解调的实验方法和技能;3.通过实验观察和分析FSK调制解调的性能和应用。
二、实验原理频移键控(Frequency Shift Keying,FSK)是一种常见的数字调制方法,它利用不同频率的信号代表二进制数据中的“0”和“1”。
在FSK调制中,输入信号被分为两种频率,通常表示为f1和f2,分别对应二进制数据中的“0”和“1”。
FSK调制的基本原理是将输入的二进制数据序列通过频率切换的方式转换为高频信号序列。
具体来说,当输入数据为“0”时,选择频率为f1的信号进行传输;当输入数据为“1”时,选择频率为f2的信号进行传输。
解调过程中,接收端将收到的混合信号进行滤波处理,根据不同的频率将其分离,再通过低通滤波器恢复出原始的二进制数据序列。
三、实验步骤1.FSK调制过程(1) 将输入的二进制数据序列通过串并转换器转换为并行数据序列;(2) 利用FSK调制器将并行数据序列转换为FSK信号;(3) 通过高频信道发送FSK信号。
2.FSK解调过程(1) 通过高频信道接收FSK信号;(2) 利用FSK解调器将FSK信号转换为并行数据序列;(3) 通过并串转换器将并行数据序列转换为原始的二进制数据序列。
四、实验结果与分析1.FSK调制结果与分析在FSK调制实验中,我们选择了两种不同的频率f1和f2分别表示二进制数据中的“0”和“1”。
通过对输入的二进制数据进行FSK调制,我们成功地将原始的二进制数据转换为FSK信号,并可以通过高频信道进行传输。
在调制过程中,我们需要注意信号转换的准确性和稳定性,以确保传输的可靠性。
2.FSK解调结果与分析在FSK解调实验中,我们首先接收到了通过高频信道传输过来的FSK信号,然后利用FSK解调器将信号转换为并行数据序列。
最后,通过并串转换器将并行数据序列恢复为原始的二进制数据序列。
FSK调制及解调实验报告
FSK调制及解调实验报告
实验背景和目的:
FSK调制及解调是一种常用的数字调制和解调技术。
FSK调制和解调
主要用于数字通信系统中,通过改变载波频率来表示数字信号的不同符号。
本实验旨在通过对FSK调制和解调技术的实际操作,加深对该技术原理和
应用的理解和掌握。
实验原理:
实验步骤:
1.搭建FSK调制电路:根据实验要求,搭建FSK调制电路,包括信号源、载波发生器、混频器等组成部分。
2.设置调制参数:根据实验要求,设置信号源的频率、调制信号的频
率等参数。
3.进行调制实验:将调制信号通过混频器与频率稳定的载波信号相乘,得到FSK调制信号。
4.搭建FSK解调电路:根据实验要求,搭建FSK解调电路,包括滤波器、频率判决电路等组成部分。
5.进行解调实验:将接收到的FSK信号输入解调电路,通过滤波器滤
除不需要的频率成分,再经过频率判决电路,判断接收到的信号是低频率
还是高频率,从而还原原始数字信号。
6.记录实验结果:记录调制信号和解调信号的波形图,并进行分析。
实验结果和分析:
经过实验操作和数据记录,得到了调制信号和解调信号的波形图。
通
过对比波形图可以看出,解调信号与调制信号基本一致,表明调制和解调
过程基本无误。
实验结果验证了FSK调制和解调技术的可行性和有效性。
结论:
通过本次实验,我们深入了解了FSK调制和解调技术的原理和应用。
通过实际操作和数据记录,我们掌握了FSK调制和解调的实验步骤和方法。
实验结果验证了FSK调制和解调技术的可行性和有效性,对今后的数字通
信系统的设计和实现具有重要的参考价值。
FSK调制解调实验报告
FSK调制解调实验报告实验报告:FSK调制解调引言:FSK (Frequency Shift Keying)调制解调是一种将数字信号转换为模拟信号的调制技术,通过改变信号的频率来表示数字信息。
FSK调制解调器在通信系统中起着重要的作用,因此,理解FSK调制解调原理并进行实验验证是非常有意义的。
实验目的:1.理解FSK调制解调原理。
2.使用软件(如MATLAB)进行FSK调制解调仿真。
3.通过硬件电路搭建进行FSK调制解调实验。
实验原理:FSK解调:FSK解调器将接收到的数字信号转换为模拟信号,并检测信号的频率以恢复原始的二进制序列。
解调器通过比较两个频率的能量来确定输入信号的频率,然后根据已知的频率对照表将其转换为对应的二进制数字。
实验步骤:1.使用软件(如MATLAB)进行FSK调制仿真:a.设计一个数据源,例如一个随机生成的二进制序列。
b.将二进制序列转换为FSK调制信号,即将0转换为低频率信号,将1转换为高频率信号。
c.添加噪声以模拟真实通信环境。
d.绘制调制后的信号波形。
2.使用软件进行FSK解调仿真:a.使用接收到的调制信号作为输入信号。
b.设计一个解调器来检测信号的频率以恢复原始的二进制序列。
c.绘制解调后的信号波形,并与原始信号进行比较。
3.使用硬件电路进行FSK调制解调测试:a.搭建FSK调制电路,将输入的二进制序列转换为FSK信号。
b.使用示波器观察调制后的信号波形。
c.搭建FSK解调电路,将接收到的调制信号转换为原始的二进制序列。
d.使用示波器观察解调后的信号波形,并与原始信号进行比较。
实验结果与分析:通过软件仿真可以得到调制后的信号波形,并通过解调获得原始的二进制序列。
这些结果可以与原始输入信号进行比较,以验证FSK调制解调的准确性。
通过硬件电路测试,可以观察到调制后的信号波形以及解调后的信号波形,进一步验证了FSK调制解调的可行性。
结论:通过FSK调制解调实验,我们可以更好地理解FSK调制解调的原理,并通过软件仿真和硬件搭建实验来验证其可行性。
实验八 移频键控 FSK 调制与解调实验
实验八FSK移频键控调制与解调实验一、实验目的1、掌握用键控法产生 FSK 信号的方法。
2、掌握 FSK 过零检测解调的原理。
二、实验内容1、观察 FSK 调制信号波形。
2、观察 FSK 解调信号波形。
3、观察 FSK 过零检测解调器各点波形。
三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、⑦号模块一块5、 20M 双踪示波器一台6、连接线若干四、实验原理1、 2FSK 调制原理。
2FSK 信号是用载波频率的变化来表征被传信息的状态的,被调载波的频率随二进制序列0、1 状态而变化,即载频为 f0 时代表传 0,载频为 f1 时代表传 1。
显然,2FSK 信号完全可以看成两个分别以f0 和 f1 为载频、以 an 和 an 为被传二进制序列的两种 2ASK 信号的合成。
2FSK 信号的典型时域波形如图 8-1 所示.2FSK 信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。
由于频率选择法产生的 2FSK 信号为两个彼此独立的载波振荡器输出信号之和,在二进制码元状态转换(01 或10)时刻,2FSK载波调频法是在一个直接调频器中产生 2FSK信号出自同一个振荡器,信号相位在载频变化时始终是连续的,这将有利于已调信号功率谱旁瓣分量的收敛,使信号功率更集中于信号带宽内。
在这里,我们采用的是频率选择法,其调制原理框图 8-2 所示:图 8-2 2FSK 调制原理框图由图可知,从“FSK-NRZ”输入的基带信号分成两路,1 路经 U5(LM339)反相后接至 U4B(4066)的控制端,另 1 路直接接至 U4A (4066)的控制端。
从“FSK 载波 A”和“FSK 载波 B”输入的载波信号分别接至 U4A 和 U4B 的输入端。
当基带信号为“1”时,模拟开关 U4A 打开,U4B 关闭,输出第一路载波;当基带信号为“0”时,U405A 关闭,U405B 打开,此时输出第二路载波,再通过相加器就可以得到 FSK 调制信号。
实验四 FSK调制与解调
FSK 调制解调一、实验目的1. 掌握FSK 调制器的工作原理及性能测试;2. 学习基于软件无线电技术实现FSK 调制、解调的实现方法。
二、 实验仪器1. RZ9681实验平台 2. 实验模块: ● 主控模块● 基带信号产生与码型变换模块-A2 ● 信道编码与频带调制模块-A4 ● 纠错译码与频带解调模块-A5 3. 信号连接线 4. 100M 四通道示波器三、实验原理3.1 FSK 调制电路工作原理2FSK (二进制频移键控,Frequency Shift Keying )信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0、1状态而变化。
2FSK 信号的产生方法主要有两种:一种采用模拟调频电路来实现;另一种采用键控法来实现,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元期间输出0f 或1f 两个载波之一。
FSK 调制和ASK 调制比较相似,只是把ASK 没有载波的一路修改为了不同频率的载波,如下图所示。
图3.3.2.1 FSK 调制电路原理框图上图中,将基带时钟和基带数据通过两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
-A图3.3.2.2 2FSK 调制信号波形示意图在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1和0)。
通常,FSK 信号的 表达式为:bc bbFSK T t t f f T E S ≤≤∆+=0)22cos(2ππ(二进制1)bc bbFSK T t t f f T E S ≤≤∆-=0)22cos(2ππ(二进制0)其中Δf 代表信号载波的恒定偏移。
FSK调制解调实验报告
FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。
同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。
二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。
在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。
在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。
实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。
2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。
3.通过示波器观察和记录已调制的FSK信号波形。
4.将已调制的信号通过电缆传输到解调器端。
5.调整解调器的参考频率和解调器的解调方式。
6.通过示波器观察和记录解调器输出的数字信号波形。
7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。
三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。
在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。
对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。
2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。
FSK调制及解调实验报告
FSK调制及解调实验报告1. 实验目的本次实验旨在了解FSK调制及解调原理,并通过实践掌握其实现方法。
主要内容包括:1.了解FSK调制及解调原理;2.掌握FSK调制解调的实现方法;3.验证FSK调制解调的正确性。
2. 实验原理2.1 FSK调制原理FSK调制就是将待传输的信息信号通过在不同的频率上进行调制,从而使信号能够在载波上传输的调制方式。
其基本原理如下:将准备发送的低频信号(m(t))的幅度等效为模拟式数字信号,通过频率劈裂产生两个频率分别为f1和f2的载波信号,然后将m(t)信号加到其中一个载波上,m(t)信号经过调制后,就可传送该信号f1载波的频段。
同理,m(t)信号也可以加到另一个载波上,这个信号就可以传送f2载波的频段。
具体的数学描述为:s(t)=Acos(2πf1t), (m(t)>=0);s(t)=Acos(2πf2t), (m(t)<0);其中,m(t)为信号的幅度,f1和f2分别是两个载波频率,A是使用的载波偏移量。
将传输的差分FSK信号转换为基频(F0)的正弦波信号,通过一个鉴频器(包括一个本振发生器、一个四象限乘法器和一个低通滤波器)将接收到的信号解调为原来的信号。
其基本原理如下:传输的信息被调制后后,接收的信号采用同样的方法分成两个部分,对每个部分分别进行解调,然后通过比较解调出来的两个信号的幅度大小即可得到原来发送的信息。
模块分为两个模块的组成,一个是FSK激励信号的发射模块,一个是FSK解调信号的接收模块。
fsk调制模块,由信号源、两路解调模块、FSK调制器和混频器组成, fsk解调模块,由前置放大、两路鉴频器、差分比较器、计数器等组成。
3. 实验装置及材料(1)信号发生器(2)示波器(3)功率放大器(4)低通滤波器(5)鉴频器(包括本振发生器、乘法器和低通滤波器)4. 实验过程及结果首先,对于fsk调制信号,我们搭建了一个基于ad654的fSK调制器,并通过示波器观察到了调制前后fsk波形的变化,确认了fsk信号的调制正确。
FSK调制解调实验报告_实验报告_
FSK调制解调实验报告一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。
观测基带数字和FSK(ASK)调制信号的频谱。
改变信噪比(S/N),观察解调信号波形。
四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK, OQPSK 等调制方式。
不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。
在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。
下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。
基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
通信原理三FSK调制解调
TP903:_32_ KHz的正弦波,载波f2
TP904:_16_ KHz的正弦波,载波f1
TP905:_2_ KHz的伪随机码(以单个码元的周期算频率), “____”
TP906:_2_ KHz的反相伪随机码,“与TP905反相”
TP907、8: FSK调制波形,标注“高”“低”频率与 “1”“0”之间的关系
实验三 FSK调制解调实验
实验三 FSK调制解调实验
【实验性质】:验证性实验
CUST
电工电子中心
实验三 FSK调制解调实验
一、实验目的
1、理解FSK调制工作原理及电路组 成。
2、理解利用锁相环解调FSK的原理 和实现方法。
CUST
电工电子中心
实验三 FSK调制解调实验
二、实验预习要求
实验前预习《通信原理》关于 二进制幅移键控ASK、频移键 控FSK及其解调有关章节。
数字调频又可称作频移键控FSK,它是利 用载频频率变化来传递数字信息。数字
调频信号可以分为相位离散和相位连续 两种情形。
若两个振荡频率分别由不同的独立振荡 器提供,它们之间相位互不相关,这就 叫相位离散的数字调频信号 。
若两个振荡频率由同一振荡信号源提供,
只是对其中一个载频进行分频,这样产
当输入信号为16KHz时,环路失锁,输 出为 低? 电平
CUST
电工电子中心
实验三 FSK调制解调实验
五、实验内容
1、测试FSK调制电路TP901—TP907各 测量点波形,画出波形并作详细分析。
2、测试FSK解调电路TP908—TP910各 测量点波形,画出波形并作详细分析。
注意:为便于对照,请将调制与解调电路 画在同一张图上。
fsk调制及解调实验报告
FSK调制及解调实验报告简介在通信领域,频移键控(Frequency Shift Keying,FSK)调制和解调是常见的数字调制技术,广泛应用于无线通信和数据传输系统中。
本实验报告将详细介绍FSK调制和解调的原理、实验步骤和结果分析。
原理FSK调制是利用不同频率的载波信号来表示数字信息。
在FSK调制中,两个不同频率的载波信号代表了两个不同的数字信号。
例如,在二进制数字通信中,0可以用低频率表示,而1可以用高频率表示。
FSK调制的原理是通过将数字信号转化为频率信息并将其叠加到载波信号上。
通过调整载波频率来传输数字信号的不同值。
FSK解调是将接收到的FSK信号恢复为原始数字信号。
解调过程包括接收信号的滤波和判决两个主要步骤。
滤波用于消除噪声和非目标频率分量,而判决用于确定接收信号所代表的数字信号的值。
实验步骤1.搭建实验电路–使用信号发生器生成两个不同频率的正弦波,分别作为两个载波信号。
–将数字信号源与信号发生器连接,使得数字信号源能够控制载波信号的频率。
–将两个载波信号叠加,并将叠加后的信号送入模拟调制电路。
–将模拟调制电路的输出连接到示波器,以便观察FSK调制后的信号波形。
2.观察和分析调制波形–调整信号发生器的频率和数字信号源的输入,观察调制后的波形特征。
–分析不同数字信号输入时,调制波形的频率变化情况。
–根据调制波形的特点,判断FSK调制是否正确实现。
3.进行FSK解调实验–将调制后的信号输入到解调电路中。
–使用合适的滤波器,滤除噪声和非目标频率分量。
–通过判决电路,将解调后的信号恢复为原始数字信号。
4.观察和分析解调结果–使用示波器观察解调后信号的波形特征。
–将解调后的信号与原始数字信号进行比较,分析解调的准确性和误差情况。
实验结果和分析经过搭建实验电路、观察、分析和解调实验,我们得到了以下实验结果和分析:1.根据观察得知,调制后的波形在不同数字信号输入时,频率发生了明显的变化。
这表明FSK调制成功。
FSK调制解调综合实验
❖ D、眼图、奈奎斯特准则实验(全做) ❖ 1.观察并画出开启度较大时眼图。
五、实验注意事项
❖ 按实验板标示电压调准电源,然后关闭电源,接好并检查电源与实验板的 正负极连接线是否正确,正确无误才能开启电源。开启电源时观察电流表, 保证+I<200mA,-I<60mA,否则迅速关机检查。
形为基准,画一个周期即可) ❖ 3.测量1.6的频率: ❖ a) K1接0时,1. 6输出l25KHZ方波载频,即0码时,发送l25KHZ载频; ❖ b) K1接1时,1.6输出100KHZ方波载频,即1码时,发送100KHZ载频;
c) K1接M,用示波器A线接l.5,并用A线触发,B线接1.6,观察记录调 制的FSK方波输出信号。(画一个“0”和一个“1”对应的波形输出即可)数字通信原ຫໍສະໝຸດ 实验FSK调制解调综合实验
一、实验目的
❖ 加深对FSK调制原理的理解及其硬件实现方法的了解 ❖ 加深对FSK信号过零点检测法解调原理的理解及其硬件实现方法 ❖ 加深对位同步提取原理的理解及其硬件实现方法 ❖ 了解码再生原理 ❖ 了解锁相环对消除相位抖动的作用
二、基本原理
定义:移频键控(FSK):利用载波的频率变化来传递数字信息的数字调制 方式,在二进制系统中可用两个不同的载频来传递数字信息。
生 …001111010
FSK发送原理图
FSK接收原理图
2FSK
限幅 (过
零检
测)
P2.1
过微整零分流 检P2测.2 法窄冲解成脉形调P基2.3带信低滤通波号
P2.4 P2.5
整形 (过
fsk调制解调实验报告
fsk调制解调实验报告FSK调制解调实验报告引言:FSK调制解调是一种常见的数字通信调制解调技术,广泛应用于无线通信、物联网等领域。
本实验旨在通过搭建FSK调制解调电路,探究FSK调制解调的原理和性能。
一、实验原理FSK调制是利用不同频率的载波信号来表示数字信号的一种调制方式。
在FSK 调制中,数字信号的“0”和“1”分别对应两个不同的频率。
FSK解调则是将接收到的FSK信号转换为数字信号。
二、实验材料和方法1. 实验材料:- 函数信号发生器- 电压控制振荡器- 低通滤波器- 示波器- 数字信号发生器- 电阻、电容等基础电子元件2. 实验步骤:1) 搭建FSK调制电路:将函数信号发生器和电压控制振荡器分别连接到两个电阻和电容组成的RC 电路上,并通过开关控制两个信号源的输出。
2) 搭建FSK解调电路:将接收到的FSK信号经过低通滤波器滤波,并通过示波器观察输出波形。
3) 进行调制解调实验:使用数字信号发生器生成一组数字信号,通过调制电路将数字信号转换为FSK信号,再通过解调电路将FSK信号还原为数字信号。
观察解调后的数字信号是否与原始信号一致。
三、实验结果与分析1. FSK调制:在实验中,我们使用函数信号发生器产生两个不同频率的正弦波信号作为调制信号源,并通过开关控制信号源的输出。
当输入数字信号为“0”时,选择低频信号源输出;当输入数字信号为“1”时,选择高频信号源输出。
通过示波器观察,我们可以看到调制后的FSK信号在频域上呈现两个不同的频率分量。
2. FSK解调:经过低通滤波器滤波后,我们可以观察到解调后的信号波形。
在理想情况下,解调后的信号应与原始数字信号完全一致。
然而,在实际应用中,由于噪声和传输损耗等因素的影响,解调后的信号可能存在一定的误差。
3. 实验结果分析:通过实验,我们验证了FSK调制解调的基本原理。
FSK调制解调技术具有抗干扰能力强、传输速率高等优点,广泛应用于无线通信系统和物联网等领域。
通信原理-FSK调制解调实验
FSK调制解调实验一、实验任务利用卷积编码、FSK调制和前导码等技术构建通信系统,学习发射机结构,实现发射机代码,完成卷积编码、FSK调制;学习其接收机结构,实现接收机代码,完成接收信号的滤波、FSK解调、定时同步和卷积码译码。
通过该FSK系统实验,进一步认识通信系统的结构及其处理流程,同时掌握FSK调制解调方法。
二、实验基本原理2.1 发射机结构FSK通信系统发射机图1所示,具体步骤如下:图 1 发射机结构(1)随机信源比特从指定数据文件中读取。
(2)对二进制序列进行卷积编码,编码器参数是[171,133],编码约束长度是7,编码前在信息比特的末尾添加6个0作为结尾比特。
(3)在编码比特之前插入前导码,前导码由16个固定比特组成,用于接收机的定时同步。
(4)进行FSK调制。
(5)最后将信号送往发射电路发射。
2.2 接收机结构DPSK通信系统接收机如图2所示,具体步骤如下图 2 接收机结构(1)首先对来自接收电路的信号的载波1和载波2进行滤波。
(2)对两路滤波输出的幅度相减。
(3)通过搜索前导码,确定第一个数据码元的时间位置。
(4)对解调信号进行抽样,得到码元抽样序列。
(5)送入卷积码译码器译码,得到接收比特序列,译码采用matlab函数vitdec,译码结果要去掉6个尾比特。
2.3 关键信号SendBit:发送的信源比特序列SendSig:FSK已调信号RecvFskDemod:FSK解调信号RecvCorr:前导码相关搜索结果RecvSymbolSampled:码元抽样RecvBit:恢复的数据比特2.4 关键参数系统参数(不可更改):Fs = 200kHz,系统采样率Rs = 10k码元/秒,码元速率SigLen = 200k,发射信号SendSig的采样点数信道参数:Amax = 1,最大信号幅度Pmax = pi,最大相位偏差Fmax = 128,最大频率偏差,单位HzTmax = 0.005,最大时间偏差,单位秒SNR = -3,信噪比三、模块设计与实现3.1 发射机模块1、随机信源比特从指定数据文件中读取,加载信源比特,获取其长度。
FSK调制及解调实验报告
实验四FSK调制及解调实验一、实验目的1、掌握用键控法产生FSK信号的方法。
2、掌握FSK非相干解调的原理。
二、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图FSK调制及解调实验原理框图2、实验框图说明基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。
四、实验步骤实验项目一FSK调制概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。
本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。
将9号模块的S1拨为0000。
调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。
3、此时系统初始状态为:PN序列输出频率32KH。
4、实验操作及波形观测。
(1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。
(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。
实验项目二FSK解调概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。
实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。
观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、TH8(FSK解调输出),验证FSK 解调原理。
通信原理FSK调制解调实验报告
通信原理FSK调制解调实验报告一、实验目的1.学习并掌握FSK调制解调的原理和方法;2.掌握FSK信号的频谱特性;3.搭建FSK调制解调电路,了解FSK调制解调的实际应用。
二、实验仪器1.示波器、信号发生器、示例开关等。
三、实验原理FSK(Frequency Shift Keying)调制即频移键控调制,是一种常用的数字调制方式之一、它通过改变载波频率的方式来表示数字信号的不同状态。
在FSK调制中,有两个不同的频率用于表示两种不同的数字。
在FSK调制中,若数字“0”对应的频率为f1,数字“1”对应的频率为f2,则它们可以分别用sin(2π f1 t)和sin(2π f2 t)的信号波形来表示。
四、实验步骤1.搭建FSK调制解调电路;2.输入数字信号源,调整信号发生器的频率控制,设置f1和f2的值;3.进行调制解调实验,观察示波器波形。
五、实验结果及分析1.频谱特性:FSK调制信号的频谱特性是两个频率与余弦正弦信号的卷积。
2.示波器波形:通过示波器可以观察到模拟信号在调制解调过程中的波形变化。
六、实验总结本次实验中,我们通过搭建FSK调制解调电路,了解了FSK调制解调的原理和方法。
通过实验,我们对FSK调制解调的频谱特性和波形变化有了更加深入的理解。
FSK调制解调在实际应用中具有广泛的用途,可以用于通信系统中的数据传输、调幅解调等方面。
在实验过程中,我们还发现了一些问题,例如调试电路的过程中可能出现信号干扰、波形失真等情况,需要进行相应的调整和优化。
通过本次实验,我们掌握了FSK调制解调的原理和方法,并对其实际应用有了更加深入的了解。
希望今后能够进一步应用所学的知识,不断提高实际操作的能力。
FSK调制解调原理实验
FSK调制解调原理实验FSK(频移键控)调制解调是一种常见的数字调制解调技术,其原理是通过改变载波的频率来表示数字信号。
在FSK调制中,低频信号的频率表示逻辑“0”,高频信号的频率表示逻辑“1”。
在本文中,我们将介绍FSK调制解调的原理以及如何进行实验。
实验设备和步骤:实验设备:1.函数信号发生器2.幅度调制解调器3.示波器4.模拟信号发生器5.低通滤波器6.计算机实验步骤:1.准备工作:(1)将函数信号发生器连接到幅度调制解调器的输入端口。
(2)将幅度调制解调器的输出端口连接到示波器的输入端口。
(3)将模拟信号发生器连接到低通滤波器的输入端口。
(4)将低通滤波器的输出端口连接到计算机的输入端口。
2.设置实验参数:(1)在函数信号发生器上设置两个频率,分别表示逻辑“0”和逻辑“1”。
(2)根据实验需求,调整幅度调制解调器的调制指数,以及模拟信号发生器的频率。
3.FSK调制实验:(1)使用函数信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器中。
(2)使用函数信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器中。
(3)观察示波器上的输出信号,验证FSK调制的效果。
4.FSK解调实验:(1)使用模拟信号发生器产生一个频率表示逻辑“0”的信号,并将其输入到幅度调制解调器的解调端口。
(2)使用模拟信号发生器产生一个频率表示逻辑“1”的信号,并将其输入到幅度调制解调器的解调端口。
(3)通过示波器观察解调器输出的信号,并通过低通滤波器对信号进行滤波。
(4)将滤波后的信号输入到计算机,并进行数字信号解调。
实验原理:FSK调制的原理是通过改变载波信号的频率来表示数字信号。
在调制过程中,将逻辑“0”映射为一个低频率信号,逻辑“1”映射为一个高频率信号。
在解调过程中,接收到的信号通过解调器解调后,通过低通滤波器滤除高频噪声,得到原始的数字信号。
实验结果:在进行FSK调制实验时,通过示波器观察可见,当输入逻辑“0”时,示波器输出的信号频率较低;当输入逻辑“1”时,示波器输出的信号频率较高。
fsk调制及解调实验报告
fsk调制及解调实验报告一、实验目的本实验旨在了解FSK调制及解调的原理,掌握FSK调制及解调的方法,并通过实际操作验证其正确性。
二、实验原理1. FSK调制原理FSK是频移键控的缩写,是一种数字调制技术。
在FSK通信中,将数字信号转换成二进制码后,用两个不同的频率代表“0”和“1”,然后将这两个频率按照数字信号的顺序交替发送。
接收端根据接收到的信号频率来判断发送端发出了哪个二进制码。
2. FSK解调原理FSK解调器是将接收到的FSK信号转换成数字信号的电路。
它通过检测输入电压频率来确定发送方使用了哪个频率,并将其转换成对应的数字信号输出。
三、实验器材示波器、函数发生器、计算机四、实验步骤1. 连接电路:将函数发生器输出端连接至FSK模块输入端,再将示波器连接至模块输出端。
2. 设置函数发生器:设置函数发生器输出频率为1000Hz和2000Hz,并使它们交替输出。
3. 测量波形:使用示波器观察并记录模块输出端口上产生的波形。
4. 解调信号:将示波器连接至解调器的输入端,设置解调器参数,观察并记录输出端口上产生的波形。
五、实验结果1. FSK调制结果:通过示波器观察到了交替出现的1000Hz和2000Hz两种频率的正弦波。
2. FSK解调结果:通过示波器观察到了输出端口上产生的数字信号,与输入信号相同。
六、实验分析本实验通过对FSK调制及解调原理的了解和实际操作验证,进一步加深了我们对数字通信技术的认识。
在实验中,我们使用函数发生器产生两个不同频率的信号,并将它们交替发送。
在接收端,我们使用FSK解调器将接收到的信号转换成数字信号输出。
通过观察示波器上产生的波形和数字信号,可以验证FSK调制及解调技术的正确性。
七、实验总结本次实验主要学习了FSK调制及解调原理,并进行了实际操作验证。
在操作过程中,我们掌握了FSK电路连接方法、函数发生器设置方法以及示波器使用方法等技能。
同时,在观察并分析实验结果时,我们深入理解了数字通信技术中FSK调制及解调的应用场景和原理。
fsk调制及解调实验报告
fsk调制及解调实验报告FSK调制及解调实验报告引言:FSK调制(Frequency Shift Keying)是一种常见的数字调制技术,广泛应用于通信领域。
本实验旨在通过实际操作,深入了解FSK调制与解调的原理和过程,并通过实验结果验证理论分析。
一、实验目的通过实验深入了解FSK调制与解调的原理和过程,掌握实际操作技巧,并通过实验结果验证理论分析。
二、实验原理1. FSK调制原理:FSK调制是通过改变载波信号的频率来表示数字信号的一种调制技术。
在FSK 调制中,两个不同的频率分别代表二进制数字0和1,通过切换频率来表示数字信号的变化。
2. FSK解调原理:FSK解调是将调制后的信号恢复为原始数字信号的过程。
解调器通过检测接收信号的频率变化来区分数字信号的0和1。
三、实验步骤1. 准备工作:搭建实验电路,包括信号发生器、调制电路和解调电路。
确保电路连接正确并稳定。
2. FSK调制实验:将信号发生器的输出连接到调制电路的输入端,调制电路通过改变输入信号的频率来实现FSK调制。
调制电路输出的信号即为FSK调制信号。
3. FSK解调实验:将调制电路的输出连接到解调电路的输入端,解调电路通过检测输入信号的频率变化来恢复原始数字信号。
解调电路输出的信号即为解调后的数字信号。
4. 实验结果记录与分析:记录不同输入信号对应的调制信号和解调后的数字信号,并进行分析。
通过比较解调后的数字信号与原始数字信号的一致性,验证FSK调制与解调的准确性。
四、实验结果与讨论在实验中,我们选择了两个不同频率的输入信号,分别对应二进制数字0和1。
通过调制电路和解调电路的处理,成功实现了FSK调制与解调。
通过对比解调后的数字信号与原始数字信号,我们发现它们完全一致,验证了FSK调制与解调的准确性。
实验结果表明,FSK调制与解调是一种可靠有效的数字调制技术。
五、实验总结通过本次实验,我们深入了解了FSK调制与解调的原理和过程,并通过实际操作验证了理论分析的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告册课程:通信系统原理教程
实验:FSK调制解调实验
班级:
姓名:
学号:
指导老师:
日期:
实验四:FSK 调制解调实验
一、实验目的:
1、了解对FSK 信号调制解调原理;
2、根据其原理设计出2FSK 信号的调制解调电路,在对电路进行仿真,观察 其波形,从而检验设计出的调制解调器是否符合要求。
二、实验原理:
2FSK 信号调制:
又称数字调频,它是用两种不同的载频1ω ,2ω来代表脉冲调制信号1 和0,而载波的振幅和相位不变。
如果载波信号采用正弦型波,则FSK 信号可表示为:
2FSK 信号()t S 分解为信号()t S 1与()t S 2之和,则有:()()()t S t S t S 21+= 其中:()()()t U t S m 11cos ω=,代表数字码元“1”
()()()t U t S m 22cos ω=,代表数字码元“0”
2FSK 信号调制器模型如下图:
如上图,两个独立的振荡器产生不同频率的载波信号,当输入基带信号()1=t S 时,调制器输出频率为f1的载波信号,当()0=t S 时,反相器的输出()t S 调制器输出频率为f2的载波信号。
f1和f2都取码元速率的整数倍。
2FSK 信号的带宽为:B f f B FSK 221+-=
其中:f 1为对应脉冲调制信号1的载波频率;f 2为对应脉冲调制信号0的载波频率。
2FSK 信号解调:
是调试的相反过程。
由于移频键控调制是将脉冲调制信号“1”用FSK 信号()t S 1,而“0”用()t S 2表示,那么在接收端,可从FSK 信号中恢复出其基带信号。
本设计采用了普通鉴频法进行解调,将()t S 1恢复成码元1,把()t S 2恢复成码元0 。
2FSK 信号的解调可以采用相干解调,也可以采用包络解调。
实验中采用相干解调,解调器模型如下图:
)
2
2cos(2)(2t f
b
T t πφ=
号
号调制器
在2FSK解调器中,2FSK信号进入带通滤波器抑制掉干扰,接着把FSK信号与相干载波相乘,把两种不同频率的FSK信号变成两种不同的电压信号,然后送低通滤波器滤除高频分量,最后通过抽样比较器得到最终的解调波形。
三、实验电路图:
子电路
FSK调制电路图:
四、实验数据:
1、FSK调制:设置系统运行时间:取样点数为512,取样频率为1024Hz。
2、FSK相干解调:
设置系统运行时间:取样点数为512,取样频率为1024Hz。
调制信号经过加性白噪声,经过干扰信号经带通滤波器,选择符合频带的波形进行过滤,后经过低通滤波器平滑滤波。
经过低通滤波器平滑滤波后,经过判决器判断输出波形。
五、实验结论:
通过两个不同频率的载波信号可以对调制信号进行2FSK调制;通过相干解调,可以较好的实现2FSK调制信号的解调;解调出来的波形与调制信号相比会有一定的延时。
2FSK信号频谱是看成是由两个不同频率的2ASK信号频谱组成。
六、实验问答题:
对于如何产生幅度为1V的单极性伪随机序列:可以这样做到,将输入幅度为1V的单极性伪随机序列可看成是幅度为0.5V的双极性随机序列与幅度为0.5V的直流信号相叠加。
所以将伪随机序列产生器中Amplitude设置为0.5V,将Offset设置为0.5V,这样就可以产生幅度为1V的单极性伪随机序列。