拉伸压缩实验-工程力学实验报告用

合集下载

拉伸压缩实验总结

拉伸压缩实验总结

拉伸压缩实验总结
拉伸压缩实验是材料力学测试中的一种重要方法,通过对材料在不同
应力作用下的变形和破坏进行测量和分析,可以了解材料的力学性能和耐
久性。

本次实验探究了金属材料的拉伸和压缩特性,在实验中采用了万能
试验机对材料进行拉伸和压缩测试,并对实验结果进行分析和总结。

拉伸实验中,我们选取了黄铜材料进行测试,通过对样品在不同拉伸
应力下的位移变化进行测量,得到了拉伸试验的应力-应变曲线。

从实验
结果可以看出,随着拉伸应力的增加,样品的位移逐渐增大,直到材料发
生拉断破坏。

同时,应力-应变曲线呈现出典型的弹性阶段、屈服阶段和
塑性阶段,其中屈服点和极限点是材料力学性能的重要指标。

压缩实验中,我们选取了铝合金材料进行测试,通过对样品在不同压
缩应力下的位移变化进行测量,得到了压缩试验的应力-应变曲线。

与拉
伸试验类似,压缩试验也呈现出了类似的弹性阶段、屈服阶段和塑性阶段,但由于压缩过程中不易出现颈缩现象,因此应力-应变曲线相对于拉伸试
验来说更加平缓。

通过本次实验,我们深入了解了拉伸和压缩实验的基本原理和实验方法,对材料的力学性能有了更加清晰的认识。

同时,对于实验结果的分析
和总结,也为我们深入研究材料的力学性能提供了基础和参考。

拉伸压缩实验报告

拉伸压缩实验报告

一、实验目的1. 了解材料力学中拉伸和压缩的基本原理及实验方法。

2. 通过实验观察材料的弹性、屈服、强化等力学行为。

3. 测定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

4. 掌握电子万能试验机的使用方法及工作原理。

二、实验原理1. 拉伸实验:将试样放置在万能试验机的夹具中,缓慢施加轴向拉伸载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:将试样放置在万能试验机的夹具中,缓慢施加轴向压缩载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

三、实验设备1. 电子万能试验机2. 力传感器3. 位移传感器4. 游标卡尺5. 计算机及数据采集软件四、实验材料1. 低碳钢拉伸试样2. 铸铁压缩试样五、实验步骤1. 拉伸实验:1. 将低碳钢拉伸试样安装在万能试验机的夹具中。

2. 设置试验参数,如拉伸速率、最大载荷等。

3. 启动试验机,缓慢施加轴向拉伸载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:1. 将铸铁压缩试样安装在万能试验机的夹具中。

2. 设置试验参数,如压缩速率、最大载荷等。

3. 启动试验机,缓慢施加轴向压缩载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

六、实验结果与分析1. 低碳钢拉伸实验:1. 通过F-Δl曲线,确定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

2. 分析材料在拉伸过程中的弹性、屈服、强化等力学行为。

2. 铸铁压缩实验:1. 通过F-Δl曲线,确定材料的强度极限等力学性能指标。

2. 分析材料在压缩过程中的破坏现象。

七、实验结论1. 通过本次实验,我们掌握了拉伸和压缩实验的基本原理及实验方法。

2. 通过实验结果,我们了解了低碳钢和铸铁的力学性能。

3. 实验结果表明,低碳钢具有良好的弹性和塑性,而铸铁则具有较好的抗压性能。

拉伸与压缩实验报告

拉伸与压缩实验报告

拉伸与压缩实验报告一、 实验目的1、 观察实验过程中的各种现象,画出应力—应变曲线;2、 测定低碳钢拉伸时的屈服极限s σ、抗拉强度b σ、断后伸长率δ和断面收缩率ψ3、 测定铸铁的抗拉强度和抗压强度;二、 实验设备万能实验机游标卡尺钢板尺两脚规三、 试样本实验所用塑性材料试样用低碳钢按国家标准规定制成,脆性材料试样由铸铁按国家标准规定制成。

1、试件简图2、实验前试件尺寸(1)拉伸试件:低碳钢mm d mm L 56.15,3.7500==; 铸铁 mm d mm L 13.15,3.7500==;(2)压缩试件:低碳钢mm d mm L 85.14,3000==; 铸铁mm d mm L 86.14,3000==四、 实验结果 1、应力—应变曲线(εσ—曲线)(1) 低碳钢拉伸曲线;(2)铸铁拉伸和压缩曲线2、强度指标(1)拉伸:低碳钢 MPa MPa b s3.402,4.296==σσ;铸铁MPa b 8.155=σ (2)压缩:低碳钢 MPa s 8.305=σ;铸铁 MPa b 424=σ3、实验后试件尺寸和塑性指标低碳钢:==δ伸长率,9.1031mm L ,断裂处最小直径mm d 19.91=断面收缩率=ψ五、 回答问题1、 低碳钢拉伸时的四个阶段是什么?2、 如何区分塑性材料和脆性材料?(δ>5%为塑性材料,δ<5%为脆性材料=3、 表征材料的强度指标和塑性指标分别是什么?(强度指标是屈服极限和强度极限,塑性指标是伸长率和断面收缩率)4、 低碳钢拉伸时的滑移线是什么原因所致?铸铁压缩时为什么沿与轴线成 45角方向断裂?(滑移线是最大切应力所致,铸铁压缩时最大切应力发生在45角斜截面上,断裂是由该最大切应力造成的,铸铁抗压不抗剪。

)。

拉伸压缩实验-工程力学实验报告用

拉伸压缩实验-工程力学实验报告用

l1 l0 100%
O
Dl
l0
低碳钢拉伸曲线
A0 A1 100%
A0
拉 伸、压 缩 实 验
低碳钢拉伸试验现象: 滑移线 屈服:
tmax引起
颈缩:
低碳钢拉伸破坏后,断口呈“杯口”状。
拉 伸、压 缩 实 验
2.测定铸铁拉伸强度指标和塑性指标 ① 强度指标:
F
sb
Fb A0
② 塑性指标:
Fb
F
Fbc
强度极限:
拉伸实验
Dl
O
s
bc
Fbc A0
灰铸铁压缩 实验现象:
tmax引起
拉 伸、压 缩 实 验
四、实验步骤 1.测量试样原始尺寸:直径d0,长度l0。
2.安装试样,进行加载,测量并计算出实 验目的中所要求的各项参数。 3.观察实验过程中试样变形特点,并描述 试样拉伸、压缩破坏后断口特征。
O
铸铁拉伸曲线
l1 l0 100%
Dl
l0
拉 伸、压 缩 实 验
3.测定低碳钢压缩屈服点ssc
F Fsc 拉伸实验
O
压缩屈服点:
s
sc
Fsc A0
Dl
拉 伸、压 缩 实 验
低碳钢压缩实验现象:
低碳钢压缩变扁,不会断裂,由于两 端摩擦力影响,形成“腰鼓形”。
拉 伸、压 缩 实 验
4.测定灰铸铁抗压强度sbc
拉 伸、压 缩 实 验
五、实验报告要求 1.分别计算拉、压实验强度指标和塑性指标。 2.描述断口特征。 3.比较同种材料在拉伸、压缩时的机械性能。 4.强度指标以MPa为单位(1MPa 1N /)mm, 2
并保留3位有效数字。
以上有不当之处,请大家给与批评指正,谢 谢大家!

材料拉伸与压缩实验报告参考

材料拉伸与压缩实验报告参考

材料拉伸与压缩实验报告参考碳钢与铸铁的拉伸、压缩实验(实验⼀)⼀、实验⽬的1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断⾯收缩率ψ,测定铸铁拉伸时的强度极限b σ。

2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进⾏⽐较,使⽤绘图装置绘制拉伸图(P-ΔL 曲线)。

⼆、实验设备微机控制电⼦万能材料试验机、液压式万能材料试验机、游标卡尺。

三、实验试祥1. 为使各种材料机械性质的数值能互相⽐较,避免试件的尺⼨和形状对试验结果的影响,对试件的尺⼨形状GB6397-86作了统⼀规定,如图1所⽰:图1⽤于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。

必零满⾜L 0/d 0=10或5,其延伸率分别记做和δ10和δ52、压缩试样:低碳钢和铸铁等⾦属材料的压缩试件⼀般做成很短的圆柱形,避免压弯,⼀般规定试件⾼度h 直径d 的⽐值在下列范围之内:1≤d h≤3为了保证试件承受轴向压⼒,加⼯时应使试件两个端⾯尽可能平⾏,并与试件轴线垂直,为了减少两端⾯与试验机承垫之间的摩擦⼒,试件两端⾯应进⾏磨削加⼯,使其光滑。

四、实验原理图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件的伸长,并且包括机器本⾝的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初⼀段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则⽐较稳定,⼯程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截⾯积A0除PS ,即得屈服极限:0A Ps S =σ图2屈服阶段过后,进⼊强化阶段,试样⼜恢复了承载能⼒,载荷到达最⼤值P b ,时,试样某⼀局部的截⾯明显缩⼩,出现“颈缩”现象,这时⽰⼒盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。

以试样的初始横截⾯⾯积A 。

除P b 得强度极限为0A P b b =σ延伸率δ及断⾯收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在⼀起,量出拉断后的标距长为L 1延伸率应为%100001?-=l l l δ断⼝附近塑性变形最⼤,所以L 1的量取与断⼝的部位有关,如断⼝发⽣于L ο的两端或在L ο之外,则试验⽆效,应重做,若断⼝距L 。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。

二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。

在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。

2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。

通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。

三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。

2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。

四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。

b. 设置合适的加载速率和采样频率,开始施加拉力。

c. 记录载荷和位移数据,绘制应力-应变曲线。

d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。

2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。

b. 设置合适的加载速率和采样频率,开始施加压力。

c. 记录载荷和位移数据,得到应力-应变关系曲线。

d. 观察试样的变形情况,记录压缩过程中的各阶段特征。

五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。

2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。

六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。

实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。

这些结果为材料的工程应用提供了重要参考。

工作报告之工程力学拉伸实验报告

工作报告之工程力学拉伸实验报告

工程力学拉伸实验报告【篇一:工程力学拉伸实验报告】试验目的:3.了解塑性材料和脆性材料压缩时的力学性能。

材料拉伸与压缩实验指导书低碳钢拉伸试验拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。

通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。

其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。

操作步骤:1.试验设备:wdw-3050电子万能试验机2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。

3.打开试验机主机及计算机等相关设备。

4.试件安装(详见wdw3050电子万能试验机使用与操作三.拉伸试件的安装)。

5.引伸计安装(用于测量e, 详见wdw3050电子万能试验机使用与操作四.引伸计安装)。

6.测量参数的设定:7.再认真检查一遍试件安装等试验准备工作。

8.负荷清零,轴向变形清零,位移清零。

9.开始进行试验,点击试验开始。

10.根据提示摘除引伸计。

11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kn,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.).12.断裂以后记录力峰值。

13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量e的测定试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。

在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的计算ei的平均值,得到该材料的弹性模量e的值。

15.材料强度特征值屈服极限和强度极限的测定试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷fs, 找到的曲线上最大载荷值,即为极限载荷pb. 计算屈服极限:;计算强度极限:;16.材料的塑性特征值延伸率及截面收缩率的测定试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。

拉伸实验 工程力学实验报告

拉伸实验 工程力学实验报告

拉伸实验一、实验目的1.测定低碳钢(Q235)的屈服点σ,强度极限bσ,延伸率δ,断面收缩率ψ。

s2.测定铸铁的强度极限σ。

b3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。

4.熟悉试验机和其它有关仪器的使用。

二、实验设备1.液压式万能实验机;2.游标卡尺;3.试样刻线机。

三、万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。

2)测控部分,指示试件所受载荷大小及变形情况。

四、试验方法1.低碳钢拉伸实验(1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。

(2)调整试验机,使下夹头处于适当的位置,把试件夹好。

(3)运行试验程序,加载,实时显示外力和变形的关系曲线。

观察屈服现象。

(4)打印外力和变形的关系曲线,记录屈服载荷F s=22.5kN,最大载荷F b =35kN。

(5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。

测量拉断后的标距长L1,颈缩处最小直径d1。

并将测量结果填入表1-3。

图1-4 低碳钢拉伸曲线2.铸铁的拉伸其方法步骤完全与低碳钢相同。

因为材料是脆性材料,观察不到屈服现象。

在很小的变形下试件就突然断裂(图1-5),只需记录下最大载荷F b =10.8kN 即可。

b σ的计算与低碳钢的计算方法相同。

六、试验结果及数据处理低碳钢屈服极限 MPa 48.28654.78105.2230=⨯==A F s s σ低碳钢强度极限 MPa 63.44554.78103530=⨯==A F b b σ低碳钢断面收缩率 %6454.7827.2854.78%100010=-=⨯-=A A A ψ 低碳钢延伸率 %25100100125%100001=-=⨯-=L L L δ 铸铁强度极限 MPa 53.13754.78108.1030=⨯==A F b b σ七、思考题1.根据实验画出低碳钢和铸铁的拉伸曲线。

拉伸与压缩实验报告

拉伸与压缩实验报告

拉伸与压缩实验报告拉伸与压缩实验报告引言:拉伸与压缩是材料力学中常用的实验方法,用于研究材料在外力作用下的变形行为。

本次实验旨在通过拉伸与压缩实验,探究不同材料在不同加载条件下的力学性能和变形特点。

通过实验结果的分析,可以为工程设计和材料选择提供参考依据。

实验目的:1. 了解材料在拉伸和压缩过程中的变形特点;2. 掌握拉伸和压缩实验的基本操作方法;3. 分析不同材料的力学性能。

实验仪器与材料:1. 万能材料试验机2. 不同材料的试样(如金属、塑料、橡胶等)实验步骤:1. 准备不同材料的试样,并测量其初始长度和直径;2. 将试样装夹在试验机上,确保试样的纵轴与试验机的纵轴一致;3. 根据实验要求,选择拉伸或压缩实验模式,并设置加载速率;4. 开始实验,记录试样的载荷-位移曲线;5. 当试样发生断裂或达到预设的位移时,停止实验并记录结果;6. 对实验结果进行分析和讨论。

实验结果与讨论:1. 弹性阶段:在拉伸过程中,试样受到外力作用后会发生弹性变形,即在去除外力后能恢复到初始形状。

根据载荷-位移曲线,可以确定试样的弹性模量,即材料的刚度。

不同材料的弹性模量会有所差异,金属材料通常具有较高的弹性模量,而塑料和橡胶等材料的弹性模量较低。

2. 屈服阶段:在拉伸过程中,当试样受到一定载荷后,会出现屈服现象,即试样开始发生塑性变形。

屈服点是指试样开始发生塑性变形的载荷值。

不同材料的屈服点不同,这与材料的组织结构和力学性能有关。

3. 破坏阶段:在拉伸过程中,当试样承受的载荷超过其极限强度时,试样会发生破坏。

破坏形式有拉断、断裂等。

通过观察破坏形式,可以对材料的韧性和脆性进行初步判断。

金属材料通常具有较高的韧性,而塑料和橡胶等材料则更容易发生断裂。

4. 压缩过程:与拉伸过程类似,压缩实验也可以得到类似的结果。

在压缩过程中,试样会发生压缩变形,即试样的长度减小。

通过载荷-位移曲线,可以得到试样的压缩弹性模量和压缩强度等参数。

材料拉伸和压缩试验报告

材料拉伸和压缩试验报告

材料的拉伸压缩实验【实验目的】1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

2.确定低碳钢在拉伸时的机械性能(比例极限R、下屈服强度R eL、强度极p限R m、延伸率A、断面收缩率Z等等)。

3. 确定铸铁在拉伸时的力学机械性能。

4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。

【实验设备】1.微机控制电子万能试验机;2.游标卡尺。

3、记号笔4、低碳钢、铸铁试件【实验原理】1、拉伸实验低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-∆l曲线,即低碳钢拉伸曲线,见图1。

对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于∆l,此阶段称为弹性阶段。

屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。

其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。

下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。

测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图1低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。

应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。

根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。

2、压缩实验铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-∆l 曲线,即铸铁压缩曲线,见图2。

对铸铁材料,当承受压缩载荷达到最大载荷F b 时,突然发生破裂。

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告一、引言在工程力学实验中,拉伸与压缩实验是非常重要的一部分。

通过对材料在拉伸与压缩过程中的力学性质进行测试与分析,能够帮助我们更好地了解材料的强度、刚度等特性。

本实验旨在通过拉伸与压缩实验,探究材料在不同加载条件下的性能表现,以及分析材料的应力-应变关系等相关问题。

二、实验设备与方法2.1 实验设备在本实验中,我们使用的设备主要有: - 拉伸试验机 - 压缩试验机 - 拉伸与压缩试验样品2.2 实验方法1.拉伸实验方法:–准备拉伸试验样品。

–将试样夹入拉伸试验机,并进行初始调节。

–增加载荷,开始进行拉伸实验。

–记录载荷和伸长量,并绘制应力-应变曲线。

–根据实验结果分析材料的强度和韧性等性能指标。

2.压缩实验方法:–准备压缩试验样品。

–将试样夹入压缩试验机,并进行初始调节。

–增加载荷,开始进行压缩实验。

–记录载荷和压缩量,并绘制应力-应变曲线。

–根据实验结果分析材料的强度和刚度等性能指标。

三、实验结果与分析3.1 拉伸实验结果与分析在拉伸实验中,我们对不同材料进行了拉伸测试并记录了载荷和伸长量的数据。

通过计算这些数据,我们得到了对应的应力和应变值,并绘制了应力-应变曲线。

根据曲线的形状,我们可以分析材料的力学性能。

3.2 压缩实验结果与分析在压缩实验中,我们对不同材料进行了压缩测试并记录了载荷和压缩量的数据。

通过计算这些数据,我们得到了对应的应力和应变值,并绘制了应力-应变曲线。

根据曲线的形状,我们可以分析材料的力学性能。

四、结论通过本次拉伸与压缩实验,我们得到了不同材料在拉伸与压缩过程中的应力-应变曲线。

通过分析曲线特征,我们可以得出以下结论: 1. 不同材料具有不同的强度和刚度,应力-应变曲线的斜率可以反映材料的刚度。

2. 在拉伸过程中,材料会表现出一定的塑性变形,这可以通过应力-应变曲线的非线性段来观察。

3. 拉伸实验中断裂点的载荷值可以反映材料的抗拉强度。

纵向拉伸压缩实验报告

纵向拉伸压缩实验报告

纵向拉伸压缩实验报告1. 实验目的本实验旨在研究材料在纵向拉伸和压缩条件下的力学性能,并通过实验数据分析得到该材料的杨氏模量和极限强度。

2. 实验原理拉伸和压缩是一种常见的实验方法,用于测试材料的力学性能。

在拉伸实验中,材料被施加上拉力,逐渐延长,而在压缩实验中,材料被施加压缩力,逐渐缩短。

通过测量施加力和材料的变形,可以得到材料的应力和应变关系。

在拉伸实验中,材料的应力(stress)定义为单位面积内的力,计算公式为:\sigma = \frac{F}{A}其中,F 是施加在样品上的力,A 是样品初始横截面积。

材料的应变(strain)定义为单位长度内的变形,计算公式为:\varepsilon = \frac{\Delta L}{L_0}其中,\Delta L 是材料延长的长度,L_0 是样品初始长度。

杨氏模量(Young's modulus)定义为应力和应变的比值,计算公式为:E = \frac{\sigma}{\varepsilon}极限强度(ultimate strength)定义为材料能够承受的最大应力。

3. 实验步骤3.1 实验准备准备一台拉伸和压缩实验机,选择一个待测试的材料样品,并测量其初始长度和初始横截面积。

3.2 拉伸实验1. 将样品夹紧在拉伸实验机的夹具上。

2. 逐渐增加拉伸力,同时记录施加的力和样品的延长长度。

3. 当样品断裂时停止实验,记录最大力值和最终长度。

3.3 压缩实验1. 将样品夹紧在压缩实验机的夹具上。

2. 逐渐增加压缩力,同时记录施加的力和样品的压缩长度。

3. 当样品发生破坏时停止实验,记录最大力值和最终长度。

4. 实验数据分析4.1 拉伸实验数据根据实验记录的力和延长长度,计算得到应力和应变数据。

然后,根据应力和应变的关系绘制应力-应变曲线图。

根据应力-应变曲线的线性区域,确定杨氏模量。

选取线性部分的数据点,计算平均斜率,斜率即为杨氏模量。

4.2 压缩实验数据根据实验记录的力和压缩长度,计算得到应力和应变数据。

材料的拉伸与压缩实验报告

材料的拉伸与压缩实验报告

材料的拉伸与压缩实验报告材料的拉伸与压缩实验报告引言:材料的力学性质是工程设计和材料科学研究中的重要参数,而材料的拉伸与压缩实验是了解材料力学性能的常用手段之一。

本实验通过对不同材料在拉伸与压缩过程中的行为进行观察与分析,旨在揭示材料的力学特性,为工程应用提供参考。

实验目的:1. 了解材料在拉伸与压缩加载下的力学行为;2. 掌握拉伸与压缩实验的基本操作方法;3. 分析材料的应力-应变曲线,计算其力学参数。

实验步骤:1. 实验前准备:a. 准备实验所需材料,如金属样品或塑料样品;b. 根据实验要求,制备所需的试样;c. 检查实验设备,确保其正常工作。

2. 拉伸实验:a. 将试样固定在拉伸试验机上,并调整好试验机的参数;b. 逐渐增加拉伸力,记录拉伸力和试样的位移;c. 根据记录的数据,绘制应力-应变曲线;d. 分析曲线的特点,计算材料的屈服强度、抗拉强度等力学参数。

3. 压缩实验:a. 将试样固定在压缩试验机上,并调整好试验机的参数;b. 逐渐增加压缩力,记录压缩力和试样的位移;c. 根据记录的数据,绘制应力-应变曲线;d. 分析曲线的特点,计算材料的屈服强度、抗压强度等力学参数。

实验结果与分析:通过拉伸与压缩实验,我们得到了不同材料在加载过程中的应力-应变曲线。

根据曲线的特点,我们可以看出材料在拉伸与压缩过程中的行为有很大的差异。

在拉伸实验中,材料的应力随着应变的增加而逐渐增加,直到达到最大值。

此后,应力开始下降,直到材料发生断裂。

根据应力-应变曲线,我们可以计算出材料的屈服强度、抗拉强度等参数,这些参数可以用来评估材料的强度和韧性。

在压缩实验中,材料的应力随着应变的增加而逐渐增加,直到达到最大值。

与拉伸实验不同的是,材料在压缩过程中不会发生断裂,而是发生塑性变形。

根据应力-应变曲线,我们可以计算出材料的屈服强度、抗压强度等参数,这些参数可以用来评估材料的稳定性和可塑性。

结论:通过本次实验,我们对材料的拉伸与压缩行为有了更深入的了解。

轴向拉伸压缩实验报告

轴向拉伸压缩实验报告

轴向拉伸压缩实验报告轴向拉伸压缩实验报告引言轴向拉伸压缩实验是材料力学中常用的一种实验方法,通过施加轴向拉伸或压缩力来研究材料的力学性能。

本实验旨在探究不同材料在拉伸和压缩过程中的变形行为及其对应的应力-应变关系。

实验装置和方法本实验采用了一台万能试验机来进行轴向拉伸压缩实验。

首先,我们选择了三种不同的材料样品:钢材、铜材和铝材。

每种材料的样品长度均为10cm,直径为1cm。

我们将这些样品分别放置在试验机的夹具中,确保样品的轴线与试验机的轴线重合。

实验开始时,我们通过调整试验机的速度控制器,使拉伸或压缩的速度保持恒定。

接下来,我们开始施加拉伸或压缩力,直到样品发生破坏或达到预设的应变值。

在实验过程中,我们记录了试验机的读数,包括施加的力和样品的应变。

实验结果与分析通过对实验数据的分析,我们得到了不同材料在拉伸和压缩过程中的应力-应变曲线。

下面,我们将分别对钢材、铜材和铝材的实验结果进行讨论。

钢材的应力-应变曲线呈现出明显的弹性阶段和塑性阶段。

在弹性阶段,应变随着施加的拉伸力线性增加,而应力与应变成正比。

当施加的拉伸力超过材料的屈服强度时,钢材进入了塑性阶段。

在这个阶段,应变增加的速度远快于应力的增加速度,材料开始发生塑性变形。

当拉伸力继续增加,钢材最终达到了破坏点,应变迅速增加,而应力急剧下降。

铜材的应力-应变曲线与钢材有所不同。

铜材在拉伸过程中表现出较高的弹性模量和屈服强度。

在弹性阶段,铜材的应变增加速度相对较慢,而应力与应变成正比。

然而,当施加的拉伸力超过铜材的屈服强度时,铜材开始发生塑性变形。

与钢材不同的是,铜材的塑性阶段较为短暂,应变迅速增加,而应力下降较为缓慢。

最终,铜材达到了破坏点,应变急剧增加,应力迅速下降。

铝材的应力-应变曲线与铜材相似,但在塑性阶段表现出了更高的延展性。

在弹性阶段,铝材的应变增加速度较慢,而应力与应变成正比。

当施加的拉伸力超过铝材的屈服强度时,铝材开始发生塑性变形。

拉伸压缩实验报告

拉伸压缩实验报告

拉伸压缩实验报告拉伸压缩实验报告引言:拉伸压缩实验是材料力学实验中的一种重要实验方法,通过对材料在受力下的变形和破坏行为进行观察和分析,可以揭示材料的力学性能和力学行为规律。

本实验旨在通过拉伸和压缩两种不同的受力方式,研究材料在不同加载条件下的变形特性和破坏机制。

实验材料和装置:本实验选用了常见的金属材料和塑料材料,包括铝合金、钢材和聚合物等。

实验装置主要包括拉力试验机和压力试验机。

实验步骤和结果:1. 拉伸实验:将金属材料和塑料材料制备成标准的试样,通过夹具固定在拉力试验机上。

逐渐施加拉力,记录不同拉力下的试样长度和载荷。

实验结果显示,材料在拉伸过程中会发生线性弹性阶段、塑性变形阶段和断裂破坏阶段。

在线性弹性阶段,材料的应力与应变呈线性关系,即胡克定律。

而在塑性变形阶段,材料会发生塑性流动,应变呈非线性增加。

最终,在达到材料的极限强度后,试样发生断裂破坏。

2. 压缩实验:将金属材料和塑料材料制备成标准的试样,通过夹具固定在压力试验机上。

逐渐施加压力,记录不同压力下的试样长度和载荷。

实验结果显示,材料在压缩过程中也会经历类似的弹性阶段、塑性变形阶段和破坏阶段。

然而,与拉伸实验相比,材料在压缩过程中的变形和破坏行为具有一定的差异。

在压缩过程中,试样会发生侧向膨胀和弯曲变形,而不是拉伸时的细长形变。

此外,由于试样在压缩过程中受到的约束较大,其破坏形式也不同于拉伸时的断裂破坏,可能表现为局部压扁、脆性破裂或层状剥离。

讨论与分析:通过拉伸压缩实验的结果可以得出以下结论:首先,材料的弹性模量和屈服强度是材料力学性能的重要指标。

通过拉伸实验可以测得材料的弹性模量,从而评估材料的刚度和变形能力。

而通过压缩实验可以测得材料的屈服强度,从而评估材料的抗压能力。

其次,材料的变形和破坏行为与其晶体结构和组织性质密切相关。

金属材料由于晶体结构的存在,具有较好的延展性和塑性,因此在拉伸过程中会发生明显的塑性变形。

而塑料材料由于分子链的存在,具有较好的流动性,因此在拉伸过程中也会表现出较大的塑性变形。

材料拉伸与压缩试验报告

材料拉伸与压缩试验报告

材料拉伸与压缩试验报告一、实验目的1.了解材料在拉伸和压缩状态下的力学性能。

2.通过拉伸试验和压缩试验获取材料的应力-应变曲线。

3.测定材料的屈服点、抗拉强度、断裂强度和弹性模量等力学性能指标。

二、实验仪器和材料1.拉伸试验机。

2.横截面积测量器。

3.试样切割机。

4.金属材料试样。

三、实验步骤1.将待测试样的尺寸测量并记录下来,包括长度、直径等。

2.使用试样切割机将试样切割为适当的长度,并在试样两端做好标记。

3.将试样安装到拉伸试验机上,并设置合适的试验参数,如加载速度、试验时长等。

4.开始拉伸试验,记录试样随时间变化的力和位移数据,并计算出应力和应变值。

5.试验完成后,绘制应力-应变曲线,并通过曲线分析得到屈服点、抗拉强度和断裂强度等力学性能指标。

6.使用横截面积测量器测量试样的横截面积。

7.进行压缩试验,按照相同的步骤测量并记录试样的力和位移数据,计算出应力和应变值。

8.绘制应力-应变曲线,并分析得到压缩材料的力学性能指标。

四、实验结果和分析1.拉伸试验结果:通过该曲线可得到材料的屈服点、抗拉强度和断裂强度等信息,分别对应曲线上的不同点。

屈服点表示材料开始发生塑性变形的特点,抗拉强度表示材料能够承受的最大拉力,而断裂强度表示材料最终断裂的强度。

2.压缩试验结果:通过该曲线同样可以得到材料的力学性能指标。

五、实验结论1.在拉伸状态下,材料发生屈服后,会逐渐进入塑性变形阶段,直至最终断裂。

2.材料的屈服点和抗拉强度等性能指标可以通过应力-应变曲线得到。

3.在压缩状态下,材料同样具有一定的塑性变形能力,并且呈现出与拉伸试验相似的力学行为。

六、实验注意事项1.在进行试验之前,需检查试验设备的工作状态,确保正常运行。

2.选择合适的试样尺寸和试验参数,以获得准确的实验结果。

3.进行试验时需要小心操作,避免试验过程中出现安全事故。

4.在测量数据时,尽量减少误差,确保数据的准确性。

七、实验心得通过本次实验,我深刻认识到材料的拉伸和压缩试验对于研究和了解材料的力学性能非常重要。

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告

工程力学实验拉伸与压缩实验报告一、实验目的本次实验旨在通过拉伸与压缩实验,掌握材料的力学性能,了解材料的弹性、塑性及破坏特点,进一步加深对工程力学理论的认识。

二、实验原理拉伸与压缩实验是通过对试样施加拉伸或压缩力来测定材料在不同应变下的应力变化关系,以此来确定材料的力学性能。

其中,应力为单位面积内所受到的外部力大小,应变为物体长度或形状发生改变时相应的比例系数。

三、实验仪器和设备1. 万能试验机2. 计算机3. 试样夹具四、实验步骤1. 准备好试样,并进行标记。

2. 将试样夹入夹具中,并将夹具固定在万能试验机上。

3. 设置测试参数,包括加载速率、加载方式等。

4. 开始测试,并记录下载荷与位移数据。

5. 根据数据计算得出应力-应变曲线,并分析结果。

五、实验结果分析1. 拉伸试验结果分析:根据数据计算得出应力-应变曲线,可以看出随着应变增大,材料的应力也逐渐增大,直到达到极限强度后开始下降。

同时,在材料破坏前,其应变与应力之间呈线性关系,即材料的弹性变形区。

2. 压缩试验结果分析:与拉伸试验相似,随着应变增大,材料的应力也逐渐增大,直到达到极限强度后开始下降。

但是,在压缩试验中容易出现杆件侧向屈曲现象,因此需要注意试样的几何形状和长度。

六、实验注意事项1. 试样的准备需要严格按照要求进行,并进行标记。

2. 夹具固定在万能试验机上时需要保证稳定性。

3. 设置测试参数时需要根据实际情况进行调整。

4. 在测试过程中需要注意记录数据,并及时停止测试避免损坏设备。

七、实验结论通过拉伸与压缩实验可以了解材料的弹性、塑性及破坏特点,并掌握材料的力学性能。

同时,在进行实验时需要注意试样准备、夹具固定、测试参数设置及数据记录等方面的问题。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的掌握材料在拉伸和压缩下的力学性能;学习使用材料力学拉伸与压缩实验设备;分析材料的应力-应变关系,了解材料的弹性模量、屈服强度等参数。

二、实验原理拉伸与压缩实验是研究材料力学性能的基本实验之一。

通过该实验,可以了解材料在受到拉伸或压缩力时所表现出的应力-应变关系,从而评估材料的强度、塑性和弹性等性能指标。

三、实验步骤准备试样:选择合适的材料试样,一般为圆形或矩形截面试样,并确保其尺寸和形状符合实验要求;安装试样:将试样放置在实验设备的夹具中,确保夹具的位置正确,试样不会滑动;调整实验设备:调整实验设备的拉伸或压缩装置,确保其处于初始状态;开始实验:对试样施加拉伸或压缩力,记录实验过程中的力和位移数据;数据处理:根据实验数据绘制应力-应变曲线,并计算材料的弹性模量、屈服强度等参数;实验结束:将试样卸载,断开实验设备,整理实验数据和报告。

四、实验结果与分析应力-应变曲线:根据实验数据绘制应力-应变曲线,该曲线反映了材料在受到外力作用时的应力与应变之间的关系。

一般情况下,曲线可分为三个阶段:弹性阶段、屈服阶段和强化阶段;弹性模量:通过应力-应变曲线在弹性阶段的斜率,可以计算出材料的弹性模量。

弹性模量是反映材料抵抗弹性变形能力的重要参数;屈服强度:屈服强度是材料在屈服阶段所承受的最大应力值。

该值反映了材料抵抗塑性变形的能力;实验结果分析:结合实验结果和理论分析,可以对材料的力学性能进行评估,比较不同材料在拉伸与压缩下的性能差异。

五、结论与建议通过本次实验,我们掌握了材料在拉伸和压缩下的力学性能,学会了使用材料力学拉伸与压缩实验设备,并分析了材料的应力-应变关系。

实验结果表明,所选材料的弹性模量和屈服强度均符合要求。

在实际应用中,建议根据具体需求选择合适的材料,并充分考虑材料的力学性能,以确保工程结构的稳定性和安全性。

压缩实验 工程力学实验报告

压缩实验 工程力学实验报告

压缩实验一、实验目的1.测定低碳钢的压缩屈服极限和铸铁的压缩强度极限。

2.观察和比较两种材料在压缩过程中的各种现象。

二、实验设备、材料万能材料试验机、游标卡尺、低碳钢和铸铁压缩试件。

三、 实验方法1. 用游标卡尺量出试件的直径d 和高度h 。

2. 把试件放好,调整试验机,使上压头处于适当的位置,空隙小于10mm 。

3. 运行试验程序,加载,实时显示外力和变形的关系曲线。

4. 对低碳钢试件应注意观察屈服现象,并记录下屈服载荷F s =22.5kN 。

其越压越扁,压到一定程度(F=40KN )即可停止试验。

对于铸铁试件,应压到破坏为止,记下最大载荷F b =35kN 。

打印压缩曲线。

5. 取下试件,观察低碳钢试件形状: 鼓状;铸铁试件,沿 55~45方向破坏。

四、试验结果及数据处理 材料 直径 mm 屈服载荷 kN 最大载荷 kN 屈服极限 MPa 强度极限 MPa 碳钢 10mm 22KN ------ 280.11MP a ------铸铁 10mm ------ 60KN ------ 763.94MPa 低碳钢压缩屈服点 022*******.11MPa 10/4s s F A πσ=⨯== 铸铁压缩强度极限 0260000763.94MPa 10/4b b F A πσ=⨯== 五、思考题1. 分析铸铁破坏的原因,并与其拉伸作比较。

答:铸铁压缩时的断口与轴线约成 45角,在 45的斜截面上作用着最大的切应力,故其破坏方式是剪断。

铸铁拉伸时,沿横截面破坏,为拉应力过大导致。

F SF△L图2-1低碳钢和铸铁压缩曲线2. 放置压缩试样的支承垫板底部都制作成球形,为什么?答:支承垫板底部都制作成球形自动对中,便于使试件均匀受力。

3. 为什么铸铁试样被压缩时,破坏面常发生在与轴线大致成 55~45的方向上?答:由于内摩擦的作用。

4. 试比较塑性材料和脆性材料在压缩时的变形及破坏形式有什么不同? 答:塑性材料在压缩时截面不断增大,承载能力不断增强,但塑性变形过大时不能正常工作,即失效;脆性材料在压缩时,破坏前无明显变化,破坏与沿轴线大致成 55~45的方向发生,为剪断破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉 伸、压 缩 实 验
五、实验报告要求 分别计算拉、压实验强度指标和塑性指标。 1.分别计算拉、压实验强度指标和塑性指标。 2.描述断口特征。 描述断口特征。 比较同种材料在拉伸、压缩时的机械性能。 3.比较同种材料在拉伸、压缩时的机械性能。 强度指标以MPa为单位( MPa为单位 4.强度指标以MPa为单位( 1MPa =1N / mm ),
F
Fsc 拉伸实验
压缩屈服点: 压缩屈服点: Fsc σsc = A0
∆l
O
拉 伸、压 缩 实 验
低碳钢压缩实验现象: 低碳钢压缩实验现象:
低碳钢压缩变扁,不会断裂,由于两 低碳钢压缩变扁,不会断裂, 端摩擦力影响,形成“腰鼓形” 端摩擦力影响,形成“腰鼓形”。
拉 伸、压 缩 实 验
4.测定灰铸铁抗压强度σbc .
2
并保留3位有效数字。 并保留3位有效数字。
d0 h0
粗短圆柱体: 粗短圆柱体: h0=1~3d0
拉 伸、压 缩 实 验
拉伸标准试样: 拉伸标准试样:
低碳钢试样: 低碳钢试样:
l0=10d0
d0 l0
灰铸铁试样: 灰铸铁试样:
l0= 5d0
拉 伸、压 缩 实 验
三、实验原理 1. 测定低碳钢拉伸强度指标和塑性指标 强度指标: ① 强度指标:
拉 伸、压 缩 实 验
一、实验目的 拉伸: 拉伸: .测定低碳钢拉伸屈服点σ ,抗拉强度σ , 1. s b 断后伸长率δ 断面收缩率ψ 断后伸长率δ、断面收缩率ψ; 2.测定铸铁抗拉强度σb,断后伸长率δ。 . 断后伸长率δ 压缩: 压缩: 3.测定低碳钢压缩屈服点σsc; . 4.测定灰铸铁抗压强度σbc。 .
拉 伸、压 缩 实 验
二、实验仪器及材料 1. CMT5105电子万能材料试验机。 CMT5105电子万能材料试验机。 电子万能材料试验机 2. WES-2数显式万能材料试验机; WES- 数显式万能材料试验机 万能材料试验机; 3. 0.02mm游标卡尺。 0.02mm游标卡尺 游标卡尺。 4. 低碳钢、铸铁拉压试件各一。 低碳钢、铸铁拉压试件各一。 压缩标准试样: 压缩标准试样:
低碳钢拉伸破坏后,断口呈“杯口” 低碳钢拉伸破坏后,断口呈“杯口”状。
拉 伸、压 缩 验
2.测定铸铁拉伸强度指标和塑性指标 . ① 强度指标: 强度指标:
F
Fb σb = A0
塑性指标: ② 塑性指标:
Fb O ∆l
l1 − l0 δ= ×100% l0
铸铁拉伸曲线
拉 伸、压 缩 实 验
3.测定低碳钢压缩屈服点σsc .
F
K
Fb
Fs σs = A0
Fb σb = A0
Fs
卸载线
塑性指标: ② 塑性指标:
∆l
O
l1 − l0 δ= ×100% l0
A0 − A 1 ψ= ×100% A0
低碳钢拉伸曲线
拉 伸、压 缩 实 验
低碳钢拉伸试验现象: 低碳钢拉伸试验现象: 滑移线 屈服: 屈服: 颈缩: 颈缩:
τmax引起
F Fbc
拉伸实验
强度极限: 强度极限 Fbc σbc = A0
∆l
O
灰铸铁压缩 实验现象: 实验现象:
τmax引起
拉 伸、压 缩 实 验
四、实验步骤 量试样原始尺寸:直径d 长度l 1.测量试样原始尺寸:直径d0,长度 0。 安装试样,进行加载, 2.安装试样,进行加载,测量并计算出实 验目的中所要求的各项参数。 验目的中所要求的各项参数。 观察实验过程中试样变形特点, 3.观察实验过程中试样变形特点,并描述 试样拉伸、压缩破坏后断口特征。 试样拉伸、压缩破坏后断口特征。
相关文档
最新文档