浙江大学数学分析历年考研试题

合集下载

浙江大学大二数学专业《数学分析(二)》考试A卷及答案

浙江大学大二数学专业《数学分析(二)》考试A卷及答案

数学分析(二)课程考试A 卷适用专业 考试日期:试卷所需时间120分钟 闭卷 试卷总分100分一、判断题:(对的打√,错的打×,每小题2分,共12分)1、若lim 0n n na a →∞=≠,则级数n a ∑收敛。

( )2、若()f x 在[,]a b 上连续,2()0baf x dx =⎰,则[,]x a b ∀∈,()0f x ≡。

( )3、若00(,)(,)lim(,)x y x y f x y a →=,则00lim lim (,)x x y y f x y a →→=。

( )4、级数2(1)sin nn n x ∞=-+∑在[0,2]x π∈上一致收敛。

( )5、级数,n n a b ∑∑均发散,则级数min(,)n n a b ∑也发散。

( )6、若在可积,则在可积。

( )二、填空题:(共6小题,每小题2分,共12分)1、函数1x e x-在0x =处的幂级数展开式为 。

2、函数222(,)y f x y x y=+在点(0,0)的重极限和累次极限分别为 、 、 。

3、定积分211(sin 2)x ex dx --+⎰等于 。

4、若反常积分11x dx xα+∞-+⎰收敛时,则α的取值范围是 。

5、幂级数2nn x n∑的收敛半径和收敛区域分别为 、 。

6、函数2x 在(,)ππ-上展开成傅立叶级数为 。

三、计算题:(共4小题,每小题5分,共20分)1、1ln eex dx ⎰ 2、1201x dx -3、1xe + 4、!lim lnnn n n→∞四、(10分)计算由sin ,0,2,0y x x x y π====所围成的平面图形,绕x 轴旋转一周所得旋转体的体积。

院系: 专业班级: 姓名: 学号:装 订 线五、(10分)求幂级数1nn nx ∞=∑的和函数()s x ,并利用该结果求级数12nn n∞=∑的值。

六、(10分)判别:(1)级数3!n n n n∑是否收敛;(2)级数2nx n n+∑在[0,1]x ∈上是否一致收敛。

浙江大学1999年数学分析

浙江大学1999年数学分析

浙江大学1999年研究生数学分析试题 一.求极限)(ln )1(∞→−n n
n n Lim n 二.在xy 平面上求一点,使它到三条直线0,0==y x 及0162=−+y x 的距离平
方和最小
三.计算二重积分∫∫D
xydxdy ,其中D 由曲线 y x y x +=+22 所围城的区域
四.设)(x f 在0>x 时连续,3)1(=f ,并且∫∫∫+=x
y xy dt t f y dt t f x dt t f 111)()()(,)0,0(>>y x ,试求函数)(x f
五.设函数),()(b a t f 在连续,若有数列)),(,(,b a y x a y a x n n n n ∈→→使
)()()()(∞→=∞→=n B y Limf n A x Limf n n 及,则对A ,B 之间的任意数µ,可找到数列a x n →,使得µ=)(n z Limf
六.设∑===<≤n k k n k a s n k a a 1,....,2,1,0令,证明不等式n n n
k k k s n ns a a −≥−∑
=11 七.设函数f 在n a b v a f f f b a n n vn −=
+=>δδ),(,0],[记上连续,且,试证明:
)}()(ln 1exp{
∞→−=∫n dx x f a b b a 并利用上述等式证明下式r dx r x r ln 2)cos 21ln(21
202=+−∫π
π )1(>r 八.从调和级数L L +++++n
131211中去掉所有在分母的十进表示中含数码9的项,证明由此所得余下的级数必定是收敛的。

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题【圣才出品】

2001年浙江大学436数学分析考研真题 浙江大学2001年攻读硕士学位研究生入学试题考试科目:数学分析(436)一、(30分)()i 用“εδ-语言”证明2211lim 3233n n n n n →∞-+=+-;()ii 求极限tan 21lim(2)x x x π→-;()iii 设101(ln )1x f x x x <≤⎧'=⎨>⎩,且(0)0f =,求()f x .二、(10分) 设()y y x =是可微函数,求(0)y ',其中2sin 7x y y ye e x x =-+-.三、(10分) 在极坐标变换cos ,sin x r y r θθ==之下,变换方程2222(,)z z f x y x y ∂∂+=∂∂.四、(20分)()i 求由半径为a 的球面与顶点在球心,顶角为2α的圆锥面所围成区域的体积; ()ii 求曲面积分222()()()s I y x dydz z y dzdx x z dxdy =-+-+-⎰⎰,其中S 是曲面 222(12)z x y z =--≤≤的上侧.五、(15分) 设二元函数(,)f x y 在正方形区域[][]0,10,1⨯上连续,记[]0,1J =. ()i 试比较inf sup (,)y J y J f x y ∈∈与supinf (,)y J y J f x y ∈∈的大小并证明之;()ii 给出一个使等式inf sup (,)supinf (,)y J y J y J y J f x y f x y ∈∈∈∈=成立的充分条件并证明之.六、(15分) 设()f x 是在[]1,1-上可积且在0x =处连续的函数,记 (1)01()10n n nx x x x e x ϕ⎧-≤≤⎪=⎨-≤≤⎪⎩ . 证明:11lim()()(0)2n n n f x x dx f ϕ-→∞=⎰.。

2000年浙江大学804数学分析考研真题【圣才出品】

2000年浙江大学804数学分析考研真题【圣才出品】

2000年浙江大学804数学分析考研真题浙江大学2000年攻读硕士学位研究生入学试题考试科目:数学分析(804)一、(10分)()i 求极限10(1)lim x x e x x →-+; ()ii 设01,x a x b ==,21,2,3,2n n n x x x n ---==.求lim n n x →∞.二、(10分) ()i 设(0)f K '=,试证明00()()lim a b f b f a K b a -+→→-=-;()ii 设()f x 在[],a b 上连续,()f x ''在(),a b 内存在,试证明存在(),a b ξ∈,使得2()()()2()()24a b b a f b f a f f ξ+-''+-=.三、(15分)()i 求数项级数12n n n ∞=∑的和;()ii 试证明函数11()x n S x n ∞==∑在()1,+∞上连续.四、(15分)()i 设方程组0sin sin 0x y u v x u y v +++=⎧⎨+=⎩,确定了可微函数(,)(,)u u x y v v x y =⎧⎨=⎩,试求,,v v du x y ∂∂∂∂; ()ii 设2)()y x y F y dx x =,求(1)F '.五、(30分) ()i 计算积分20sin 1cos x x I dx x π=+⎰;()ii 求以曲面22x y z e --=为顶,平面0z =为底,柱面221x y +=为侧面的曲顶柱体的体积V ;()iii 设S 表示半球面221)z x y =+≤的上侧,求第二类曲面积分222()(2)(2)S J x y z dydz x y z dzdx x z y dxdy=++-++⎰⎰.六、(20分)()i 将函数(),()f x x x ππ=-≤≤展开成Fourier 级数;()ii 求级数211n n ∞=∑的和;()iii 计算广义积分10ln(1)x dx x -⎰.。

浙大02数分

浙大02数分

浙 江 大 学
2002年攻读硕士学位研究生入学考试试题 考试科目:数学分析 编号:441
一、(共30﹪)
1. 用“εδ-语言”证明()()121lim 03
x x x x →--=- 2. 给出一个一元函数f ,在有理点都不连续、在无理点都连续,并证明之
3. 设为二元函数(),f x y ,在()00,x y 附近有定义,试讨论“(),f x y 在()00,x y 处可微”与“(),f x y 在()00,x y 附近关于,x y 的偏导数都存在”之间的关系,必要时,请给出反例。

二、(共30﹪)
1. 设()21
x f x x +=+,数列{}n x 由如下递推公式定义: ()()011,,0,1,2,n n x x f x n +=== ,
求证:lim n n x →∞=2.
求2
lim x x →∞; 3. 求()()0n f ,其中()()1
1,2,,00,x n f f x e -=== (当0x ≠时)
4.
求不定积分
5. 证明()1
1x n g x n ∞==
∑在()1,∞上连续可微 三、(共20﹪) 1. 求第一型曲面积分
2222x y z R I ++==⎰⎰,其中h R = 2. 设,,a b c 为3个实数。

证明:方程2x e ax bx c =++的根不超过3个。

四、(共20﹪)
设()2cos cos cos n
n f x x x x =+++ ,求证:
1. 对任意自然数n ,方程()1n f x =在1[0,)3
内有且仅有一个根; 2. 设1[0,)3n x ∈是()1n f x =的根,则lim 3n n x π
→∞=。

最新浙江大学数学分析试题及解答汇总

最新浙江大学数学分析试题及解答汇总

2005年浙江大学数学分析试题及解答浙江大学2005年数学分析解答一 (10分)计算定积分20sin x e xdx π⎰解:2sin xe xdx π⎰=()011cos 22x e x dx π⎡⎤-⎢⎥⎣⎦⎰ ()01x e dx e ππ=-⎰ 由分部积分法0cos 2xe xdx π=⎰()1e π-+20sin 2x e xdx π=⎰()1e π-04cos 2x e xdx π-⎰所以0cos 2x e xdx π=⎰()115e π-,所以20sin x e xdx π⎰=()215e π- 解毕 二 (10分)设()f x 在[0,1]上Riemann可积,且1()2f x dx =⎰,计算 11lim 4ln[1()]nn i if n n →∞=+∑解:因为()f x 在[0,1]上Riemann 可积,所以0,()M f x M ∃>≤,所以1()0if n n→ 因为0ln(1)lim 1x x x →+=,所以114ln[1()]n i i f n n =+∑与114()ni i f n n =∑等价且极限值相等由Riemann 积分的定义:11lim 4ln[1()]nn i if n n →∞=+∑=410()f x dx =⎰解毕三 (15分)设,,a b c 为实数,且1,0b c >-≠试确定,,a b c 的值,使得30sin limln(1)x x b ax xc t dtt →-=+⎰解:若0b ≠,显然30sin lim0ln(1)x x b ax xt dtt →-=+⎰,这与0c ≠矛盾,所以0b =计算300sin limln(1)x x ax xt dtt →-+⎰,利用洛必达法则:33000sin cos lim lim ln(1)ln(1)x x x ax x a xt x dt t x→→--=++⎰,易有30ln(1)lim0x x x→+=,若1a ≠, 33000sin cos limlim ln(1)ln(1)x x x ax x a x t x dt t x →→--==∞++⎰,矛盾,所以1a =.计算301cos lim ln(1)x xx x→-+,继续利用洛必达法则:33001cos cos limlim ln(1)ln(1)x x x x x x x x x →→--=++24003321cos sin 2sin cos lim lim 3631(1)x x x x x x x x x x x x x →→-++==-++332243343cos sin 1lim(612)(1)6(63)(1)2(1)x x x x c x x x x x x x →-===-+--++ 解毕 四 (15分)设()f x 在[,]a b 上连续,且对每一个[],x a b ∈,存在[],y a b ∈,使得1()()2f y f x ≤,证明:在存在[,],a b ξ∈使得()0f ξ=证明:反证法,由于()f x 在[,]a b 上连续,由闭区间上连续函数的性质,不妨假设0()m f x M <<<对于任选的一点1x ,存在2,x 使得211()()2f x f x ≤, 存在3,x 使得321211()()()22f x f x f x ≤≤所以1111[,],()()0,()22n n n n Mx a b f x f x n --∈≤≤→→∞即lim ()0n n f x →∞=,但对所有的x, 0()m f x M <<<,矛盾.所以[,]a b 存在零点 证毕五 (20分)(1)设()f x 在[,)a +∞上连续,且()af x dx +∞⎰收敛。

浙江大学1999年——2008年数学分析

浙江大学1999年——2008年数学分析
2
1 在 (1, ∞ ) 上连续可微. x n =1 n
x + y + z =R
2 2
∫∫
dS
2
x 2 + y 2 + ( z h) 2
,其中 h ≠ R .
(2)设 a, b, c 为三个实数,证明:方程 e x = ax 2 + bx + c 的根不超过三个. 四、 (20 分)设 f n ( x) = cos x + cos 2 x +
四、 (20 分)设 f ( x ) 连续, ( x) = ∫ f ( xt )dt ,且 lim
0
x →0
1
论 '( x ) 在 x = 0 处的连续性. 五、 (10 分)定义 Pn ( x ) 为 Pn ( x) = 1 d n ( x 2 1) n , n = 1, 2, 2n n ! dx n P0 ( x) = 1 .
D
四、设 f (x ) 在 x > 0 时连续, f (1) = 3 ,并且 ∫
( x > 0, y > 0) ,试求函数 f (x ) .
xy
1
f (t ) dt = x ∫ f (t ) dt + y ∫ f (t ) dt ,
1 1
y
x
五、设函数 f (t )在(a, b) 连续,若有数列 x n → a, y n → a ( x n , y n ∈ (a, b)) 使 lim f ( xn ) = A 及
2 2
五、 (15 分)设二元函数 f ( x, y ) 在正方形区域 [0,1] × [0,1] 上连续.记 J = [0,1] . (1)试比较 inf sup f ( x, y ) 与 sup inf f ( x, y ) 的大小并证明之;

浙江大学数学试题及答案

浙江大学数学试题及答案

浙江大学数学试题及答案一、单项选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \(\sqrt{2}\)是有理数B. \(\pi\)是无理数C. \(e\)是有理数D. \(0.3333...\)是无理数答案:B2. 函数\(f(x) = x^2 - 4x + 4\)的顶点坐标是?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A3. 以下哪个级数是发散的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:B4. 矩阵\(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)的行列式是?A. 5B. -5C. 2D. -2答案:B5. 函数\(y = \sin(x)\)的周期是?A. \(\pi\)B. \(2\pi\)C. \(\frac{\pi}{2}\)D. \(\frac{2\pi}{3}\)答案:B6. 以下哪个函数是奇函数?A. \(f(x) = x^2\)B. \(f(x) = x^3\)C. \(f(x) = \cos(x)\)D. \(f(x) = \sin(x)\)答案:D7. 已知\(\lim_{x \to 0} \frac{f(x)}{x} = 2\),则\(\lim_{x \to 0} f(x)\)是?A. 0B. 2C. -2D. 不存在答案:A8. 以下哪个选项是正确的?A. \(\int_0^1 x^2 dx = \frac{1}{3}\)B. \(\int_0^1 x^2 dx = \frac{1}{2}\)C. \(\int_0^1 x^2 dx = 1\)D. \(\int_0^1 x^2 dx = \frac{1}{6}\)答案:A9. 以下哪个选项是正确的?A. \(\ln(e^x) = x\)B. \(\ln(e^x) = e^x\)C. \(\ln(e^x) = e\)D. \(\ln(e^x) = \ln(x)\)答案:A10. 以下哪个选项是正确的?A. \(\frac{d}{dx}(x^2) = 2x\)B. \(\frac{d}{dx}(x^2) = x^2\)C. \(\frac{d}{dx}(x^2) = 2\)D. \(\frac{d}{dx}(x^2) = x\)答案:A二、填空题(每题4分,共20分)1. 函数\(f(x) = x^3 - 3x\)的导数是\(f'(x) =\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\ _\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\ _\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\。

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。

请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负! 考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim .x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2.(122)().f x y z gradf =,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x f r x r r r xf f y zgradf ∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===令:,,,则:,,因此,在点,,的法向量,,,故法线为: 4. 2221.(2).4Cx C y L x y ds +=+⎰设曲线:的长度为计算: 222(2)(44)44.=0.C C C Cx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的 211.n Fourier n +∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n nn nn n n n n f x b x x a dx a nxdx n nf x nx x R n x f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n n x n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n n n n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n n n n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n nn n n n t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n nt t n n t x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z z z f x y f x x x y ∂∂=+∂∂∂设,,且具有阶连续偏导,计算:, 12221112221222221112222232(1)2.111(2)222214(2).z y xf f x xz y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()112 1.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 34440443444442004113).2281(cos sin )41313)]sin 2sin 2.444228u v u u v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110000cos 0cos 2011012.241(sin )4sin cos 2422.22z z x y z z z u x x u z z x y z xoy e z I e dV I d rdr dz r dr r x x xe dx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 2220000011cos 2000(1)2.2sin 4sin 44(1)2.z dz I d d e d d e d e d e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327S SS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.S xdydz ydzdx zdxdy a x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zx xy yz zx xy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdy a a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42C xdy ydx x C A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从 (2).BD ππ-点沿直线到点,22222222222222222222022224.44(4)4(0).444410arc 42C C DA L DA LL y x P y x Q P Q x y x y y x y xDA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂∙====++∂+∂∙+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰方法一、,,则:连接,作:,足够小,方向为顺时针则:2220224221122332222222221tan 2217.88(0)(2)(2)(2).444(4)x y y dxdyA A A A A A A D L y x P y x Q P Q C L x y x y y x y xP Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都11223322222222222222022202442244444422arctan arctan arctan arctan 2242248C L AA A A A A A Dxdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nx u x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nx x n n n n nx n N n nx f x n nx n nx n g x n n n ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin 22sin sin [2](02)11.cos sin (02)()(0211n k n n x n x kx x n nx n nx Dirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数. 2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dy f x f x f x x dx ==+++=满足,且并计算的值 22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ∙=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos()x f x x x y y x x x y x y x yy y x x x x y dy++=∙+++===''+++-=-+'在两边同时对求导,且当时,则:。

浙江大学 2019 年数学分析考研试题

浙江大学 2019 年数学分析考研试题

y
dx
在 x ≥ 0 上一致收敛.(注:此为试卷原题,但疑似是 dy )
第 I 页(共 II 页)
三、(15′ ) 对于函数 f : R → R, 证明 f 在 R 上连续的充分必要条件是,对于 R 上任意 a, b,
{x : f (x) > a} 和 {x : f (x) < a} 都是开集合.
四、(15′ ) 对于函数 f : [a, b] → R, 证明函数 |f (x)| 在 [a, b] 上黎曼可积的充分必要条件是,函数
f 2 (x) 在 [a, b] 上黎曼可积.
五、(15′ )
(1)(5′ ) 叙述 R 上的聚点定理; (2)(10′ ) 使用聚点定理证明闭区间上的连续函数一致连续.
时,∀n ≥ 1, 有 |fn (x) − fn (y )| < ε; 又设函数列 {fn (x)} 在 [a, b] 上逐点收敛, 证明 {fn (x)} 在 [a, b] 上一 致收敛.
第 II 页(共 II 页)
3. (10′ ) 计算

0
1
ln x
(1 + x)
2 dx.
4. (15′ ) 计算
∫∫ x2 dxdy,
D
其中 D 是由 A (x1 , y1 ) , B (x2 , y2 ) , C (x3 , y3 ) 三点围成的三角形闭区域.
二、(15′ ) 证明
I (x) =

0

x 2 e −x
3
2 2
浙江大学 2019 年数学分析考研试题
一、计算题 (50′ )
1. (10′ ) 计算 In =
0

n
( x )n xa−1 1 − dx. n

浙江大学2009年数学分析

浙江大学2009年数学分析

浙江大学20**年数学分析试题一、计算(每小题10分,共40分)(1)22221(0)cos sin dx ab a x b x≠+⎰, (2)220220cos lim (1)(1cos )arctan t x x x e tdt x e x x →---⎰, (3)20ln 1x dx x +∞+⎰, (4)()sgn()Dx y x y dxdy +-⎰⎰,其中[0,1][0,1]D =⨯ 二、(15分)如果()f x 在的某邻域内可导,且00()1lim 2x x f x x x →'=-。

证明()f x 在点处取极小值。

三、(15分)设(,,)f x y z 表示从原点(0,0,0)O 到椭球面:2222221x y z a b c++=(0a >,0b >,0c >)上点(,,)p x y z 处的切平面的距离。

求第一类曲面积分(,,)ds f x y z ∑⎰⎰。

四、(20分)设()f x 在[,]a b 上连续,且[,]min ()1x a b f x ∈=。

证明:1lim()1(())b n n an dx f x →∞=⎰。

五、(20分)设对任意0a >,()f x 在[0,]a 上黎曼可积,且lim ()x f x C →∞= 。

证明: 00lim ()tx t t e f x dx C ++∞-→=⎰。

六、(20分)证明|sin |()x f x x=在(0,1)与(1,0)-上均一致连续,但在(1,0)(0,1)-⋃中不一致连续。

(注:称()y f x =在集合()D D R ⊂上一致连续是指:对0ε∀>,存在0δ>,使得对,x x D '''∀∈,当||x x δ'''-<时,有|()()|f x f x ε'''-<)。

七、(20分)设()f x 在[,]a b 上可导,导函数()f x '在[,]a b 上单调下降,且()0f b '>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档