高一数学同步辅导

合集下载

高一数学同步辅导

高一数学同步辅导

[练习题答案及提示] A 组 一.选择题1.D 2. C 3. B 4. D 二.填空题 5.⎭⎬⎫⎩⎨⎧<<-225x x 6.{}52>-<x x x 或7.⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+<<+-<<-2410221022102410x x x 或 三.解答题8.{}4323<≤-≤<-x x x 或9.{}1<x x 10.4,3=-=b aB 组一.选择题1.A 2. A 3. C 4. A 二.填空题5. k=-4 6.{}62<<x x 7.2-≤a三.解答题 8.βα11-<<-x9.()()0112,0:812≥-++-≥-≥m x m mx m m 时提示的解集总是非空的;0,0>∆<需要时m10. (1)21≤≤a (2)342-≤≤-a高一数学同步辅导资料(3)[本周复习进度]本周我们将学习§1.5一元二次不等式的解法,它既是前面集合知识的初步应用,也是学习后续内容的基础.在这一小节中,课本首先对照大家已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法.然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法.通过本小节的学习,同学们应达到以下要求:(1)掌握一元二次不等式的解法;(2)知道一元二次不等式可以转化为一元一次不等式组;(3)了解简单的分式不等式的解法.其中重点是一元二次不等式的解法.学好这一小节的关键是要搞清一元二次方程、一元二次不等式与二次函数的关系.事实上,一元二次方程、一元二次不等式在二次函数的观点下得到了统一.[重点分析和讲解]1.含有一个未知数,并且未知数的最高次数是二次的不等式叫一元二次不等式. 其一般形式为()00022≠<++>++a c bx ax c bx ax 或2.一元二次不等式的解法充分体现了“函数与方程”、“数形结合”的数学思想.一元二次方程02=++c bx ax 的根就是使二次函数c bx ax y ++=2的函数值为零时,对应的x 值,一元二次不等式0,022<++>++c bx ax c bx ax 的解就是使二次函数c bx ax y ++=2的函数值大于零或小于零时x 的取值范围.二次项系数是正数的一元二次函数、一元二次方程、一元二次不等式的主要结论与三者之间的密切联系,如下表所示: 判别式 ac b 42-=∆0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2 (0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R3.解一元二次不等式的一般步骤:(1) 看二次项系数是否为正数,一般地,利用不等式性质,总可以将其化为正数;(2) 计算判别式,判断相应方程的根的情况,求相应方程的根; (3) 写出不等式的解集.注:在求二次或二次以上不等式的解集时,还可以将不等式转化为一元一次不等式组求解.这种解法可以为以后解比较复杂的不等式打基础.4.利用不等式组或一元二次不等式解分式不等式时,应注意变形的同解性.简单的分式不等式可进行如下转化后求解:(1) 0))((0<--⇒<--b x a x b x ax (2) 0))((0>--⇒>--b x a x bx ax(3)⎩⎨⎧≠≤--⇒≤--b x b x a x b x ax 0))((0 (4) ⎩⎨⎧≠≥--⇒≥--b x b x a x b x ax 0))((0[典型应用]例1 解不等式)2(3)3)(12(2+<-+x x x 。

一元二次不等式的解法1

一元二次不等式的解法1

a>0
a<0
b a
y o x
y

o
b a

x
b x a
b {x | x } a
b x a
b {x | x } a b b {x | x } {x | x } a a
二、重难点讲解
类似地,我们能不能将一元二次不等式的求解与
一元二次函数以及一元二次方程联系起来找到其 y 求解方法呢? 试一试:解不等式 x2-2x-3>0 作出y=x2-2x-3的图像
三、例题讲解 例1 解不等式2x2-3x-2>0 解: 因为∆>0,
b 2 4ac 32 4 2 (2) 25 0
-1/2

o

2
x
方程2x2-3x-2=0 的解是
1 ( x )( x 2) 2
1 x1 , x2 2 2
所以不等式的解集是
1 {x | x 或x 2}. 2
y O 3 x
当x为何值时,y<0 ,即2x-6<0
当x为何值时,y>0,即x 2x-6>0 方程的解即函数图象与 轴交点的横 标,不等式的解集即函数图象在x轴 2x-6>0 2x-6<0的解为 的解为x>3 x<3 下方或上方图象所对应 x的范围. 2x-6=0的解为x=3
一、复习引入
一元一次函数 y=ax+ ax+b>0的解集 一元一次不等式 ax+b<0的解集
X=1

x2-2x-3=0的解为: -1 X=-1或x=3 x2-2x-3>0的解为: X<-1或x>3 x2-2x-3<0的解为: -1<x<3

高一数学辅导 高一数学参考答案

高一数学辅导 高一数学参考答案

高一数学辅导高一数学参考答案高一数学参考答案一选择题: A B B A C;D C B CA、二填空题:11、61;12、1;13、三解答题:15解:解:①处填20,②处填;……4分507个画师中年龄在[30,35)的人数为18;14、、3150、35⨯507≈177 人……8分补全频率分布直方图如图所示、……12分岁16解:从6个玻璃球中任取一个,共有6种结果,并且每种结果出现的可能性相同,取得红球或黑球共有5种结果、所以,由古典概率公式得P =5· ………………5分6从6个玻璃球中任取两个,共有15种结果,并且每种结果出现的可能性相同,取到的球中没有红球共有6种结果、又没有红球和至少一个红球为对立事件, 所以63=· ………………12分155πππ17解法一:由cos cos φ-sin sin φ=0得cos =0444ππ又024P =1-由得,f =sin x +⎛⎛π⎛⎛4⎛⎛⎛π⎛⎛4⎛函数f 的图像向左平移m 个单位后所对应的函数为g =sin x +m + g 是偶函数当且仅当m + 即m =k π+=k π+,42π,4从而,最小正实数m =解法二:同解法一由得,f =sin x +π、………………14分4⎛⎛π⎛⎛4⎛⎛⎛π⎛⎛4⎛函数f 的图像向左平移m 个单位后所对应的函数为g =sin x +m + g 是偶函数当且仅当g =g ,对x ∈R 恒成立亦即sin1⎛⎛2⎛24⎛⎛⎛⎛π⎛⎛-14⎛=22cosx ⎛x ⋅sin +2⎛2=sin x +cos x =2sin x +⎛ ………………4分4⎛⎛y =sin x 的单调区间是⎛2k π-π,2k π+π⎛ k ∈Z 和⎛2k π+π,2k π+3π⎛k ∈Z ;⎛⎛22⎛22⎛⎛⎛⎛⎛由2k π- 由2k π+πππ3ππ≤x +≤2k π+,解得:2k π-≤x ≤2k π+ k ∈Z ;24244ππ3ππ5πk ∈Z ≤x +≤2k π+,解得:2k π+≤x ≤2k π+24244函数f =π⎛⎛3ππ⎛k ∈Z ;2sin x +⎛的单调增区间是⎛2k π-,2kπ+⎛4⎛44⎛⎛⎛⎛单调减区间是⎛2k π+π,2k π+5π⎛k ∈Z ………9分⎛24⎛⎛⎛当x ∈⎛-π⎛π3π⎛⎛, ⎛时,0≤x +≤π,sin x +4⎛44⎛⎛π⎛⎛∈[0,1]4⎛f =2sin ⎛π⎛⎛x +4⎛⎛≤2所以当m ∈2, +∞)时,f--------------本文为网络收集精选范文、公文、论文、和其他应用文档,如需本文,请下载--------------。

人教新课标高中数学必修1同步训练资料(有答案)

人教新课标高中数学必修1同步训练资料(有答案)

必修1—集合【基础知识】①();();()Cu A B CuA CuB Cu A B CuA CuB A B A B A A B B ==⊆⇔==②A 集合中有n 个元素时,其子集个数:2n 真子集个数: 21n-非空真子集个数:22n -【题型训练】【题型1】集合定义及基本运算类 1.如图,阴影部分表示的集合是( D )(A )B ∩ [C U (A ∪C)] (B )(A ∪B)∪ (B ∪C) (C )(A ∪C) ∩( C U B) (D )[C U (A ∩C)]∪B2.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是B3.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( C ) A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅变式:1. 如果{}|3,x S y y x R ==∈,{}2|1,T y y x x R ==-∈,则S T = S .2.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂= ( C ) (A ){}2,1--(B ){}2-(C ){}1,0,1-(D ){}0,13.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B = ( B )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 4.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( C ) (A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 5.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( A )(A ){0}(B ){-1,,0} (C ){0,1}(D ){-1,,0,1}4.已知集合{}2,0xA y y x -==<,集合{}12B x y x ==,则A B ⋂=( B )A .[)1,+∞B .()1,+∞C .()0,+∞D .[)0,+∞5.设集合{|101},{|5}A x Z x B x Z x =∈--=∈≤≤≤,则A B 中元素的个数是( C )A 、11B 、10C 、16D 、15 6.若集合{}1213A x x =-≤+≤,20,x B x x -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= ( B ) A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤7.设集合1|,24K M x x K Z ⎧⎫==+∈⎨⎬⎩⎭,1|,42K N x x K Z ⎧⎫==+∈⎨⎬⎩⎭,则( B ) A.M=N B.M N ⊂ C. M N ⊃ D.M N φ= 【题型2】点集问题1.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( D ) A 、3,1x y ==- B 、(3,1)- C 、{3,1}- D 、{(3,1)}-2.设集合13{(,)|log }A x y y x ==,{(,)|3}xB x y y ==,则A B ⋂的子集的个数是(C )A .4B .3C .2D .1【题型3】子集问题1.已知全集 u={1、2、3、4、5},A={1、5},B C U A,则集合B 的个数是( D )(A )5(B) 6(C) 7(D)83.若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为( C )A .2B .3C .4D .162.集合{},,,,S a b c d e =,包括{},a b 的S 的子集共有( D ) A.2个 B.3个 C.4个 D.8个变式:1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( B ) A .1B .2C .3D .42.已知集合M={2,0,11},若A M ≠⊂,且A 的元素中至少含有一个偶数,则满足条件的集合A 的个数为 5 .【题型4】集合运算1.设全集{,,,,}I a b c d e =,集合{,,},{,,}M a b c N b d e ==,那么I I M N 痧是( A ) A 、∅ B 、{}d C 、{,}a c D 、{,}b e变式:1.已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .1(,0][,)2-∞+∞2.已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B = ð D (A ){1,3,4} (B ){3,4} (C ){3} (D ){4}2.若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð( A )A.2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭ B.2,2⎛⎫+∞ ⎪ ⎪⎝⎭C.2(,0][,)2-∞+∞D.2[,)2+∞ 3.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于( A ) A 、{|}xx <-2 B 、{|}x x -<<21 C 、{|}xx <1 D 、{|}x x -≤<21 4.设集合U 为全集,集合,M N U ≠⊂,若M N N = ,则( C )A.U U C M C N ⊇B.U M C N ⊆C.U U C M C N ⊆D.U M C N ⊇5.设集合{|12},{|}M x x N x x a =-<=≤≤,若M N ≠∅ ,则a 的取值范围是1a ≥-.6.已知集合2{|||1},{|40}A x x a B x x x =-≤=-≥,若A B φ= ,则实数a 的取值范围是( C )A .(0,4)B .(0,3)C .(1,3)D .(2,3)变式:1.{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( C ) A {}a |0a 6≤≤ B {}|2,a a ≤≥或a 4 C {}|0,6a a ≤≥或a D {}|24a a ≤≤设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( A ) (A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞7.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是C A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞)变式:设集合{}|||2A x x a =-<,21|12x B x x -⎧⎫=<⎨⎬+⎩⎭,若A B A = ,求实数a 取值范围.([0,1]) 8.设A 、B 、C 是三个集合,若A B B C = ,则有( D ) A. A B = B. C B ⊆ C. B A ⊆ D. A C ⊆变式:设I 为全集,123,,S S S 是I 的三个非空子集且123S S S I = ,则下面论断正确的是( C ) A.123()I C S S S φ⋂⋃= B.123()I I S C S C S ⊆ C.123I I I C S C S C S φ= D.123()I I S C S C S ⊆ 【题型4】集合与函数综合运用1. 知集合A={-1,a²+1,a²-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值。

交集与并集1

交集与并集1
bìzhànɡ名像墙壁的障碍物, 医药上做泻药,【;/zhifu/ 农村致富 ;】(繽)bīn[缤纷](bīnfēn)〈书〉形繁多而凌乱 :五彩~|落英(花)~。④手迹:遗~|绝~。【不迭】bùdié动①用在动词后面,【壁厢】bìxiānɡ名边;深邃的房屋。植株矮,【襜】chān [襜 褕](chānyú)〈书〉名一种短的便衣。③比喻所向往的境界:走向幸福的~。 【常备】chánɡbèi动经常准备或防备:~车辆|~药物|~不懈。 参看535页〖寒碜〗。使达到目的:~好事。失之千里】chāyǐháolí,房屋~工作应该抓紧。 【髌】(髕)bìn①髌骨。不如~。 在云南。 【编造】biānzào动①把资料组织排列起来(多指报表等):~名册|~预算。 【残败】cánbài形残缺衰败:~不堪|一片~的景象。【常规战争】 chánɡɡuīzhànzhēnɡ用常规武器进行的战争(区别于“核战争”)。体裁可以多样化。 形成几个平行的分支电路,【标量】biāoliànɡ名有大小 而没有方向的物理量, 过时的:设备虽然有点儿~, 【茶房】chá?②〈书〉在弟兄排行的次序里代表老大:~兄。【吵】chǎo①形声音大而杂乱:~ 得慌|临街的房子太~。②舌尖或小舌等颤动时发出的辅音, 【弊病】bìbìnɡ名①弊端:管理混乱,【不料】bùliào连没想到;【病源】bìnɡ yuán名发生疾病的根源。【】)、破折号(——)、省略号(… 【缠绵】chánmián形①纠缠不已, 【坼裂】chèliè〈书〉动裂开。并能前进。就不 能获得成功。【参赛】cānsài动参加比赛:~作品|~选手|取消~资格。【别管】biéɡuǎn连无论:~是谁,在空气中颜色变深,【病史】bìnɡ shǐ名患者历次所患疾病的情况。难以~|提高学生的口头~能力。 尝尝新吧。【播发】bōfā动通过广播、电视发出:~新闻。上面

高一数学:人教版高一数学上学期第一章) PPT课件 图文

高一数学:人教版高一数学上学期第一章) PPT课件 图文
其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版)高中数学必修1(全册)课时同步作业汇总

(人教A版 )高中数学必修1 (全册 )课时同步作业汇总活页作业(一) 集合的含义(时间:45分钟总分值:100分)一、选择题(每题5分 ,共25分)1.以下几组对象可以构成集合的是( )A.充分接近π的实数的全体B.善良的人C.世|界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确 ,应选D. 答案:D2.下面有四个语句: ①集合N *中最|小的数是0; ②-a ∉N ,那么a ∈N ;③a ∈N ,b ∈N ,那么a +b 的最|小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中正确语句的个数是( ) A .0 B .1 C .2D .3解析:N *是不含0的自然数 ,所以①错误; 取a = 2 ,那么-2∉N ,2∉N ,所以②错误;对于③ ,当a =b =0时 ,a +b 取得最|小值是0 ,而不是2 ,所以③错误;对于④ ,解集中只含有元素1 ,故④错误.答案:A3.集合A 含有三个元素2,4,6 ,且当a ∈A 时 ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4D .0解析:假设a =2∈A ,那么6-a =4∈A ;或a =4∈A ,那么6-a =2∈A ;假设a =6∈A ,那么6-a =0∉A .应选B.答案:B4.假设集合M 中的三个元素a ,b ,c 是△ABC 的三边长 ,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .应选D. 答案:D5.设a ,b ∈R ,集合A 中含有0 ,b ,ba三个元素 ,集合B 中含有1 ,a ,a +b 三个元素 ,且集合A 与集合B 相等 ,那么a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0 ,∴b a=-1 ,∴a =-1 ,b =1 ,∴a +2b =1.答案:A二、填空题(每题5分 ,共15分)6.集合A中只含有1 ,a2两个元素 ,那么实数a不能取的值为________.解析:由a2≠1 ,得a≠±1.答案:±17.假设集合P含有两个元素1,2 ,集合Q含有两个元素1 ,a2 ,且P ,Q相等 ,那么a =________.解析:由于P ,Q相等 ,故a2=2 ,从而a=± 2.答案:± 28.集合P中元素x满足:x∈N ,且2<x<a ,又集合P中恰有三个元素 ,那么整数a =________.解析:∵x∈N ,且2<x<a ,∴结合数轴可得a=6.答案:6三、解答题(每题10分 ,共20分)9.假设所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.解:∵3a+2b(a∈Z ,b∈Z)中 ,令a=2 ,b=-2 ,可得6-2 2 ,∴6-22是集合A中的元素.10.设集合A中含有三个元素3 ,x ,x2-2x.(1)求实数x应满足的条件;(2)假设-2∈A ,求实数x.解:(1)由集合中元素的互异性可知 ,x≠3 ,且x≠x2-2x ,x2-2x≠3.解得x≠3 ,且x≠0 ,且x≠-1.(2)∵-2∈A ,∴x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1 ,∴x=-2.一、选择题(每题5分 ,共10分)1.2a∈A ,a2-a∈A ,假设A只含这两个元素 ,那么以下说法中正确的选项是( ) A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.应选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1 ,假设t ∈A ,那么t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1 ,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每题5分 ,共10分)3.集合A 是由m -1,3m ,m 2-1三个元素组成的集合 ,且3∈A ,那么实数m 的值为________.解析:由m -1=3 ,得m =4 ,此时3m =12 ,m 2-1=15 ,故m =4符合题意;由3m =3 ,得m =1 ,此时m -1=m 2-1=0 ,故舍去;由m 2-1=3 ,得m =±2 ,经检验m =±2符合题意.故填4或±2.答案:4或±24.假设a ,b ∈R 且a ≠0 ,b ≠0 ,那么|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0 ,b >0时 ,|a |a +|b |b=2;当ab <0时 ,|a |a +|b |b =0;当a <0 ,b <0时 ,|a |a+|b |b=-2.所以集合中的元素为2,0 ,-2.即集合中元素的个数为3. 答案:3三、解答题(每题10分 ,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成 ,其中k ∈R ,假设A 中的元素只有一个 ,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 假设k =0 ,那么x =23 ,知A 中只有一个元素 ,符合题意;假设k ≠0 ,那么方程为一元二次方程.当Δ=9-8k =0 ,即k =98时 ,方程kx 2-3x +2=0有两个相等的实数解 ,此时A 中只有一个元素.综上所述 ,k =0或98.6.集合A 中的元素全为实数 ,且满足:假设a ∈A ,那么1+a1-a ∈A .(1)假设a =2 ,求出A 中其他所有元素. (2)0是不是集合A 中的元素 ?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外 ,其他所有元素为-3 ,-12 ,13.(2)0不是集合A 中的元素.理由如下: 假设0∈A ,那么1+01-0=1∈A ,而当1∈A 时 ,1+a1-a不存在 ,故0不是集合A 中的元素.活页作业(二) 集合的表示(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合A ={x ∈N |-3≤x ≤3} ,那么有( ) A .-1∈A B .0∈A C.3∈AD .2∈A解析:∵0∈N 且-3<0< 3 ,∴0∈A . 答案:B2.集合M ={y |y =x 2} ,用自然语言描述M 应为( ) A .函数y =x 2的函数值组成的集合B.函数y=x2的自变量的值组成的集合C.函数y=x2的图象上的点组成的集合D.以上说法都不对解析:从描述法表示的集合来看 ,代表元素是函数值 ,即集合M表示函数y=x2的函数值组成的集合.答案:A3.集合{-2,1}等于( )A.{(x-1)(x+2)=0} B.{y|y=x+1 ,x∈Z}C.{x|(x+1)(x-2)=0} D.{x|(x-1)(x+2)=0}解析:选项A是含有一个一元二次方程的集合 ,选项B是函数y=x+1 ,x∈Z的函数值组成的集合 ,有无数多个元素 ,选项C是方程(x+1)(x-2)=0的解的集合为{-1,2} ,选项D是方程(x-1)(x+2)=0的解的集合为{1 ,-2}.应选D.答案:D4.假设1∈{x ,x2} ,那么x=( )A.1 B.-1C.0或1 D.0或1或-1解析:∵1∈{x ,x2} ,∴x=1或x2=1 ,∴xx=1 ,那么x=x2=1 ,不符合集合中元素的互异性.答案:B5.以下集合中表示同一集合的是( )A.M={(3,2)} ,N={(2,3)}B.M={3,2} ,N={2,3}C.M={(x ,y)|x+y=1} ,N={y|x+y=1}D.M={1,2} ,N={(1,2)}解析:A中M、N都为点集 ,元素为点的坐标 ,顺序不同表示的点不同;C中M、N分别表示点集和数集;D中M为数集 ,N为点集 ,应选B.答案:B二、填空题(每题5分 ,共15分)6.集合A={x|x2=a ,x∈R} ,那么实数a的取值范围是________.解析:当x∈R时 ,a=x2≥0.答案:a≥07.集合A={-1,0,1} ,集合B={y|y=|x| ,x∈A} ,那么B=____________.解析:∵|-1|=1 ,|0|=0 ,|1|=1 ,∴B={0,1}.答案:{0,1}8.集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫125-x ∈N x ∈N ,那么用列举法表示为__________________.解析:根据题意 ,5-x 应该是12的因数 ,故其可能的取值为1,2,3,4,6,12 ,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}三、解答题(每题10分 ,共20分) 9.用另一种方法表示以下集合. (1){绝|对值不大于2的整数}; (2){能被3整除 ,且小于10的正数}; (3){x |x =|x | ,x <5 ,且x ∈Z }; (4){(x ,y )|x +y =6 ,x ∈N *,y ∈N *}; (5){-3 ,-1,1,3,5}. 解:(1){-2 ,-1,0,1,2}. (2){3,6,9}.(3)∵x =|x | ,∴x ∵x ∈Z ,且x <5 , ∴x =0或1或2或3或4. ∴集合可以表示为{0,1,2,3,4}.(4){(1,5) ,(2,4) ,(3,3) ,(4,2) ,(5,1)}. (5){x |x =2k -1 ,-1≤k ≤3 ,k ∈Z }.10.集合A ={x |ax 2-3x -4=0 ,x ∈R } ,假设A 中至|多有一个元素 ,求实数a 的取值范围.解:当a =0时 ,A =⎩⎨⎧⎭⎬⎫-43;当a ≠0时 ,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根 , ∴Δ=9+16a ≤0 ,即a ≤-916. 综上 ,所求实数a 的取值范围是a =0或a ≤-916.一、选择题(每题5分 ,共10分)1.设x =13-52 ,y =3+2π ,集合M ={m |m =a +2b ,a ∈Q ,b ∈Q } ,那么x ,y 与集合M 的关系是( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M 解析:x =13-52=3+523-523+52=-341-2×541∈M ,y ∉M .应选B. 答案:B2.用描述法表示如下图阴影局部的点(包括边界上的点)的坐标的集合是( )A .{-2≤x ≤0且-2≤y ≤0}B .{(x ,y )|-2≤x ≤0且-2≤y ≤0}C .{(x ,y )|-2≤x ≤0且-2≤y <0}D .{(x ,y )|-2≤x ≤0或-2≤y ≤0}解析:阴影局部为点集 ,且包括边界上的点 ,所以-2≤x ≤0且-2≤y ≤0. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={(x ,y )|y =2x +1} ,B ={(x ,y )|y =x +3} ,a ∈A 且a ∈B ,那么a 为________.解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎨⎧y =2x +1 y =x +3的解.解方程组得⎩⎪⎨⎪⎧x =2 y =5 ∴a为(2,5).答案:(2,5)4.A ={1,2,3} ,B ={1,2} ,定义集合间的运算A +B ={x |x =x 1+x 2 ,x 1∈A ,x 2∈B } ,那么集合A +B 中元素的最|大值是________.解析:当x 1=1 ,x 2=1或2时 ,x =2或3;当x 1=2 ,x 2=1或2时 ,x =3或4;当x 1=3 ,x 2=1或2时 ,x =4或5.∴集合A +B 中元素的最|大值是5.答案:5三、解答题(每题10分 ,共20分)5.集合A ={(x ,y )|2x -y +m >0} ,B ={(x ,y )|x +y -n ≤0} ,假设点P (2,3)∈A ,且P (2,3)∉B ,试求m ,n 的取值范围.解:∵点P ∈A ,∴2×2-3+m >0.∴m >-1. ∵点P ∉B ,∴2+3-n >0.∴n <5.∴所求m ,n 的取值范围分别是{m |m >-1} ,{n |n <5}.6.集合P ={x |x =2k ,k ∈Z } ,M ={x |x =2k +1 ,k ∈Z } ,a ∈P ,b ∈M ,设c =a +b ,那么c 与集合M 有什么关系 ?解:∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1 ,k 1∈Z ,b =2k 2+1 ,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1. 又k 1+k 2∈Z , ∴c ∈M .活页作业(三) 集合间的根本关系(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分) 1.以下关系中 ,表示正确的选项是( ) A .1∈{0,1} B .1{0,1} C .1⊆{0,1}D .{1}∈{0,1}解析:、⊆表示集合之间的关系 ,故B 、C 错误;∈表示元素与集合之间的关系 ,故D 错误.答案:A2.假设x ,y ∈R ,A ={(x ,y )|y =x } ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xy ⎪⎪⎪y x =1 ,那么A ,B 的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:集合A 表示函数y =x 图象上所有点组成的集合 ,集合B 中要求x ≠0 ,所以集合B 表示除点(0,0)以外的y =x 图象上的点组成的集合 ,A B 成立.答案:B3.全集U =R ,那么正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:∵M={-1,0,1} ,N={0 ,-1} ,∴N M.应选B.答案:B4.集合A={x|0≤x<3 ,x∈N}的真子集的个数是( )A.16 B.8C.7 D.4解析:易知集合A={0,1,2} ,∴A的真子集为∅ ,{0} ,{1} ,{2} ,{0,1} ,{0,2} ,{1,2} ,共有7个.答案:C5.设A={x|1<x<2} ,B={x|x<a} ,假设A⊆B ,那么a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2解析:如图 ,在数轴上表示出两集合 ,只要a≥2 ,就满足A⊆B.答案:D二、填空题(每题5分 ,共15分)6.右图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系 ,那么A ,B ,C ,D ,E分别代表的图形的集合为______________.解析:由以上概念之间的包含关系可知:集合A={四边形} ,集合B={梯形} ,集合C ={平行四边形} ,集合D={菱形} ,集合E={正方形}.答案:A={四边形} ,B={梯形} ,C={平行四边形} ,D={菱形} ,E={正方形}7.设集合M={(x ,y)|x+y<0 ,xy>0}和P={(x ,y)|x<0 ,y<0} ,那么M与P的关系为________.解析:∵xy>0 ,∴x ,y同号.又x+y<0 ,∴x<0 ,y<0 ,即集合M表示第三象限内的点.而集合P表示第三象限内的点 ,故M=P.答案:M=P8.集合A={x|-2≤x≤3} ,B={x|x≥m} ,假设A⊆B ,那么实数m的取值范围为_________________________________.解析:集合A ,B 在数轴上的表示如下图.由图可知 ,假设A ⊆B ,那么m ≤-2. 答案:m ≤-2三、解答题(每题10分 ,共20分)9.集合A ={(x ,y )|x +y =2 ,x ,y ∈N } ,试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2 ,x ,y ∈N } , ∴A ={(0,2) ,(1,1) ,(2,0)}. ∴A 的子集有:∅ ,{(0,2)} ,{(1,1)} ,{(2,0)} ,{(0,2) ,(1,1)} ,{(0,2) ,(2,0)} ,{(1,1) ,(2,0)} ,{(0,2) ,(1,1) ,(2,0)}.10.集合A ={x |1<ax <2} ,B ={x |-2<x <2} ,求满足A ⊆B 的实数a 的取值范围. 解:B ={x |-2<x <2}. (1)当a =0时 ,A =∅ ,显然A ⊆B . (2)当a >0时 ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2a . ∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≥-2 2a ≤2 解得a ≥1.(3)当a <0时 ,A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a<x <1a .∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≤22a ≥-2 解得a ≤-1.综上可知 , a =0 ,或a ≥1 ,或a ≤-1时 ,A ⊆B .一、选择题(每题5分 ,共10分)1.集合A ={x |x 2-3x +2=0 ,x ∈R } ,B ={x |0<x <5 ,x ∈N } ,那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:因为集合A ={1,2} ,B ={1,2,3,4} ,所以当满足A ⊆C ⊆B 时 ,集合C 可以为{1,2} ,{1,2,3} ,{1,2,4} ,{1,2,3,4} ,故满足条件的集合C 有4个.答案:D2.集合M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n 2-13 n ∈Z ,那么集合M ,N 的关系是( )A .M ⊆NB .M NC .N ⊆MD .N M解析:设n =2m 或2m +1 ,m ∈Z , 那么有N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x =2m 2-13或x =2m +12-13m ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ x =m -13或x =m +16 m ∈Z . 又∵M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z ,∴M N .答案:B二、填空题(每题5分 ,共10分)3.假设A ={1,2} ,B ={x |x ⊆A } ,那么B =________.解析:∵x ⊆A ,∴x =∅ ,{1} ,{2} ,{1,2} ,∴B ={∅ ,{1} ,{2} ,{1,2}}.答案:{∅ ,{1} ,{2} ,{1,2}}4.集合A ={x |ax 2+2x +a =0 ,a ∈R } ,假设集合A 有且仅有2个子集 ,那么a 的取值构成的集合为________________.解析:∵集合A 有且仅有2个子集 ,∴A 仅有一个元素 ,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时 ,方程化为2x =0 , ∴x =0 ,此时A ={0} ,符合题意.当a ≠0时 ,Δ=22-4·a ·a =0 ,即a 2=1 ,∴a =±1. 此时A ={-1} ,或A ={1} ,符合题意. ∴a =0或a =±1. 答案:{0,1 ,-1}三、解答题(每题10分 ,共20分)5.设集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x +4⎝ ⎛⎭⎪⎫x -12=0 x ∈Z ,B ={x |x 2+2(a +1)x +a 2-1=0} ,假设B ⊆A ,求实数a 的值.解:由题意得A ={0 ,-4}.(1)当B =∅时 ,方程x 2+2(a +1)x +a 2-1=0无解 , ∴Δ=4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当BA (B ≠∅)时 ,那么B ={0}或B ={-4} ,即方程x 2+2(a +1)x +a 2-1=0只有一解 , ∴Δ=8a +8=0. ∴aB ={0}满足条件.(3)当B =A 时 ,方程x 2+2(a +1)x +a 2-1=0 有两实根0 ,-4 ,∴⎩⎨⎧16-8a +1+a 2-1=0 a 2-1=0.∴a =1.综上可知 ,a ≤-1 ,或a =1.6.设集合A ={x |-1≤x +1≤6} ,B ={x |m -1<x <2m +1}. (1)当x ∈Z 时 ,求A 的非空真子集的个数; (2)假设A ⊇B ,求m 的取值范围. 解:化简集合A 得A ={x |-2≤x ≤5}. (1)∵x ∈Z ,∴A ={-2 ,-1,0,1,2,3,4,5} ,即A 中含有8个元素.∴A 的非空真子集的个数为28-2=254(个). (2)①当m ≤-2时 ,B =∅⊆A ;②当m >-2时 ,B ={x |m -1<x <2m +1} , 因此 ,要B ⊆A ,那么只要⎩⎨⎧m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述 ,m 的取值范围是{m |-1≤m ≤2或m ≤-2}.活页作业(四)并集、交集(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.设集合M ={m ∈Z |-3<m <2} ,N ={n ∈Z |-1≤n ≤3} ,那么M ∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}解析:由题意 ,得M ={-2 ,-1,0,1} ,N ={-1,0,1,2,3} ,∴M ∩N ={-1,0,1}. 答案:B2.假设集合M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1}解析:M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N ={0,1} ,应选D. 答案:D3.以下各组集合 ,符合Venn 图所示情况的是( )A .M ={4,5,6,8} ,N ={4,5,6,7,8}B .M ={x |0<x <2} ,N ={x |x <3}C .M ={2,5,6,7,8} ,N ={4,5,6,8}D .M ={x |x <3} ,N ={x |0<x <2}解析:因为{4,5,6,8}⊆{4,5,6,7,8} ,即M ⊆N ,所以选项A 错误.又因{x |0<x <2}⊆{x |x <3} ,所以选项B 错误 ,选项C 显然错误 ,选项D 正确.答案:D4.设集合A ={1,2} ,那么满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4D .8解析:∵A ={1,2} ,且A ∪B ={1,2,3} ,∴B ={3}或{1,3}或{2,3}或{1,2,3}. 答案:C5.设集合A ={x ∈N |1≤x ≤10} ,B ={x ∈R |x 2+x -6=0} ,那么图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析:∵A ={1,2,3,4,5,6,7,8,9,10} ,B ={-3,2} ,∴图中阴影表示的集合为A ∩B ={2}.答案:A二、填空题(每题5分 ,共15分)6.集合M ={x |-3<x ≤5} ,N ={x |-5<x <-2 ,或x >5} ,那么M ∪N =____________ ,M ∩N =__________________.解析:借助数轴可知:M ∪N ={x |x >-5} ,M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}7.集合A ={(x ,y )|y =x 2,x ∈R } ,B ={(x ,y )|y =x ,x ∈R } ,那么A ∩B 中的元素个数为________.解析:由⎩⎪⎨⎪⎧y =x 2y =x 得⎩⎪⎨⎪⎧x =0y =0 或⎩⎨⎧x =1y =1.答案:28.设集合A ={x |-1<x <2} ,B ={x |x <a } ,假设A ∩B ≠∅ ,那么a 的取值范围是________.解析:利用数轴分析可知 ,a >-1.答案:a >-1三、解答题(每题10分 ,共20分)9.集合A ={1,3,5} ,B ={1,2 ,x 2-1} ,假设A ∪B ={1,2,3,5} ,求x 及A ∩B . 解:∵B ⊆(A ∪B ) , ∴x 2-1∈(A ∪B ).∴x 2-1=3或x 2-1=5 ,解得x =±2或x =± 6. 假设x 2-1=3 ,那么A ∩B ={1,3}; 假设x 2-1=5 ,那么A ∩B ={1,5}.10.设集合A ={x |x 2-3x +2=0} ,B ={x |x 2-4x +a =0} ,假设A ∪B =A ,求实数a 的取值范围.解:A ={1,2} ,∵A ∪B =A ,∴B ⊆A .集合B 有两种情况:B =∅或B ≠∅. (1)B =∅时 ,方程x 2-4x +a =0无实数根 , ∴Δ=16-4a <0.∴a >4. (2)B ≠∅时 ,当Δ=0时 ,a =4 ,B ={2}⊆A 满足条件;当Δ>0时 ,假设1,2是方程x 2-4x +a =0的根 , 由根与系数的关系知1+2=3≠4 ,矛盾 ,∴a =4. 综上 ,a 的取值范围是a ≥4.一、选择题(每题5分 ,共10分)1.集合A ={1,2} ,B ={x |mx -1=0} ,假设A ∩B =B ,那么符合条件的实数m 的值组成的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1 12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 0 12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 -12解析:当m =0时 ,B =∅ ,A ∩B =B ;当m ≠0时 ,x =1m ,要使A ∩B =B ,那么1m =1或1m=2 ,即m =1或m =12,选C.答案:C2.定义集合{x |a ≤x ≤b }的 "长度〞是b -a .m ,n ∈R ,集合M =xm ≤x ≤m +23 ,N =xn-34≤x ≤n ,且集合M ,N 都是集合{x |1≤x ≤2}的子集 ,那么集合M ∩N 的 "长度〞的最|小值是( )A.23B.12C.512D .13解析:集合M ,N 的 "长度〞分别为23 ,34 ,又M ,N 都是集合{x |1≤x ≤2}的子集 ,如图 ,由图可知M ∩N 的 "长度〞的最|小值为53-54=512.答案:C二、填空题(每题5分 ,共10分)3.集合A ={1,3 ,m } ,B ={1 ,m } ,A ∪B =A ,那么m =________.解析:由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1 ,经检验 ,m =1时 ,B ={1,1}矛盾 ,m =0或3时符合题意.答案:0或34.设集合A ={5 ,a +1} ,集合B ={a ,b }.假设A ∩B ={2} ,那么A ∪B =______________. 解析:∵A ∩B ={2} ,∴2∈A .故a +1=2 ,a =1 ,即A ={5,2};又2∈B ,∴b =2 ,即B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}三、解答题(每题10分 ,共20分)5.A ={x |2a ≤x ≤a +3} ,B ={x |x <-1或x >5} ,假设A ∩B =∅ ,求a 的取值范围. 解:A ∩B =∅ ,A ={x |2a ≤x ≤a +3}. (1)假设A =∅ ,有2a >a +3 ,∴a >3. (2)假设A ≠∅ ,如下图.那么有⎩⎪⎨⎪⎧2a ≥-1a +3≤5 2a ≤a +3解得-12≤a ≤2.综上所述 ,a 的取值范围是-12≤a ≤2或a >3.6.集合M ={x |2x -4=0} ,N ={x |x 2-3x +m =0}. (1)当m =2时 ,求M ∩N ,M ∪N . (2)当M ∩N =M 时 ,求实数m 的值. 解:由得M ={2}. (1)当m =2时 ,N ={1,2}. ∴M ∩N ={2} ,M ∪N ={1,2}. (2)假设M ∩N =M ,那么M ⊆N , ∴2∈N . ∴4-6+m =0. ∴m =2.活页作业(五) 补集及集合运算的综合应用(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.全集U ={0,1,2} ,且∁U A ={2} ,那么A 等于( ) A .{0} B .{1} C .∅D .{0,1}解析:∵∁U A ={2} ,∴A ={0,1}. 答案:D2.A ={x |x +1>0} ,B ={-2 ,-1,0,1} ,那么(∁R A )∩B =( ) A .{-2 ,-1} B .{-2} C .{-1,0,1}D .{0,1} 解析:解不等式求出集合A ,进而得∁R A ,再由集合交集的定义求解. 因为集合A ={x |x >-1} ,所以∁R A ={x |x ≤-1}. 那么(∁R A )∩B ={x |x ≤-1}∩{-2 ,-1,0,1} ={-2 ,-1}. 答案:A3.如下图 ,U 是全集 ,A ,B 是U 的子集 ,那么图中阴影局部表示的集合是( )A.A∩B B.B∩(∁U A)C.A∪B D.A∩(∁U B)解析:阴影局部在B中且在A的外部 ,由补集与交集的定义可知阴影局部可表示为B∩(∁U A).答案:B4.设集合M={x|x=3k ,k∈Z} ,P={x|x=3k+1 ,k∈Z} ,Q={x|x=3k-1 ,k∈Z} ,那么∁Z(P∪Q)=( )A.M B.PC.Q D.∅解析:x=3k ,k∈Z表示被3整除的整数;x=3k+1 ,k∈Z表示被3整除余1的整数;x=3k-1表示被3整除余2的整数 ,所以∁Z(P∪Q)=M.答案:A5.集合A={x|x<a} ,B={x|1<x<2} ,且A∪(∁R B)=R,那么实数a的取值范围是( ) A.a≤1B.a<1C.a≥2D.a>2解析:如下图 ,假设能保证并集为R ,那么只需实数a在数2的右边 ,注意等号的选取.选C.答案:C二、填空题(每题5分 ,共15分)6.集合U={2,3,6,8} ,A={2,3} ,B={2,6,8} ,那么(∁U A)∩B=________.解析:(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}7.设全集U=R ,集合A={x|x≥0} ,B={y|y≥1} ,那么∁U A与∁U B的包含关系是______________.解析:∵∁U A={x|x<0} ,∁U B={y|y<1} ,∴∁U A∁U B.如图.答案:∁U A∁U B8.设全集S={1,2,3,4} ,且A={x∈S|x2-5x+m=0} ,假设∁S A={2,3} ,那么m=________.解析:因为S={1,2,3,4} ,∁S A={2,3} ,所以A={1,4} ,即1,4是方程x2-5x+m=0的两根 ,由根与系数的关系可得m=1×4=4.答案:4三、解答题(每题10分 ,共20分)9.全集U={2,3 ,a2-2a-3} ,A={2 ,|a-7|} ,∁U A={5} ,求a的值.解:由|a-7|=3 ,得a=4或a=10.当a=4时 ,a2-2a-3=5 ,当a=10时 ,a2-2a-3=77∉U ,所以a=4.10.集合A={x|3≤x<7} ,B={x|2<x<10} ,C={x|x<a}.(1)求(∁R A)∩B;(2)假设A⊆C ,求a的取值范围.解:(1)∵A={x|3≤x<7} ,∴∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a} ,且A⊆C ,如下图 ,∴a≥7.∴a的取值范围是{a|a≥7}.一、选择题(每题5分 ,共10分)1.全集U=R,集合A={x|-2≤x≤3} ,B={x|x<-2或x>4} ,那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3} ,∁U B={x|-2≤x≤4} ,如图 ,∴(∁U A)∩(∁U B)={x|3<x≤4}.应选A.答案:A2.设A ,B ,I均为非空集合 ,且满足A⊆B⊆I ,那么以下各式中错误的选项是( ) A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=IC.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B解析:方法一符合题意的Venn图 ,如图.观察可知选项A ,C ,D 均正确 ,(∁I A )∪(∁I B )=∁I A ,应选项B 错误.方法二 运用特例法 ,如A ={1,2,3} ,B ={1,2,3,4} ,I ={1,2,3,4,5}.逐个检验只有选项B 错误.答案:B二、填空题(每题5分 ,共10分)3.全集U =R ,A ={x |x <-3 ,或x ≥2} ,B ={x |-1<x <5} ,那么集合C ={x |-1<x <2}=______________.(用A ,B 或其补集表示)解析:如下图 ,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )4.某班共50人 ,参加A 项比赛的共有30人 ,参加B 项比赛的共有33人 ,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人 ,那么只参加A 项不参加B 项的有____人.解析:如下图 ,设A ,B 两项都参加的有x 人 ,那么仅参加A 项的共(30-x )人 ,仅参加B 项的共(33-x )人 ,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人 ,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50 ,解得x =21 ,所以只参加A 项不参加B 项的共有30-21=9(人).故填9.答案:9三、解答题(每题10分 ,共20分)5.设全集是实数集R ,A ={x |2x 2-7x +3≤0} ,B ={x |x 2+a <0}. (1)当a =-4时 ,求A ∩B 和A ∪B ;(2)假设(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3,当a =-4时 ,B ={x |-2<x <2} ,∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2 ,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x <12 或x >3 ,当(∁R A )∩B =B 时 ,B ⊆∁R A .①当B =∅ ,即a ≥0时 ,满足B ⊆∁R A ;②当B ≠∅ ,即a <0时 ,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12 ,解得-14≤a <0.综上可得 ,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.6.设全集I =R ,集合M ={x |(x +3)2≤0} ,N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R } ,假设B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3} ,N ={x |x 2+x -6=0}={-3,2}.∴∁I M ={x |x ∈R 且x ≠-3}. ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2} , ∵B ∪A =A ,∴B ⊆A . ∴B =∅或B ={2}.当B =∅时 ,a -1>5-a ,∴a >3;当B ={2}时 ,⎩⎪⎨⎪⎧a -1=25-a =2解得a =3.综上所述 ,所求a 的取值范围是{a |a ≥3}.活页作业(六) 函数的概念(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.设f:x→x2是集合A到集合B的函数 ,如果集合B={1} ,那么集合A不可能是( ) A.{1} B.{-1}C.{-1,1} D.{-1,0}解析:假设集合A={-1,0} ,那么0∈A ,但02=0∉B.应选D.答案:D2.各个图形中 ,不可能是函数y=f(x)的图象的是( )解析:因垂直x轴的直线与函数y=f(x)的图象至|多有一个交点.应选A.答案:A3.假设函数y=f(x)的定义域为M={x|-2≤x≤2} ,值域为N={y|0≤y≤2} ,那么函数y=f(x)的图象可能是( )解析:选项A ,定义域为{x|-2≤x≤0} ,不正确.选项C ,当x在(-2,2]取值时 ,y 有两个值和x对应 ,不符合函数的概念.选项D ,值域为[0,1] ,不正确 ,选项B正确.答案:B二、填空题(每题4分 ,共8分)4.假设(2m ,m+1)表示一个开区间 ,那么m的取值范围是________.解析:由2m<m+1 ,解得m<1.答案:(-∞ ,1)5.函数y=f(x)的图象如下图 ,那么f(x)的定义域是________________;其中只与x 的一个值对应的y值的范围是________________.解析:观察函数图象可知f (x )的定义域是[-3,0]∪[2,3]; 只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 答案:[-3,0]∪[2,3] [1,2)∪(4,5] 三、解答题6.(本小题总分值10分)求以下函数的定义域. (1)y =2x +1+3-4x . (2)y =1|x +2|-1.解:由得⎩⎪⎨⎪⎧2x +1≥0⇒x ≥-12 3-4x ≥0⇒x ≤34∴函数的定义域为⎣⎢⎢⎡⎦⎥⎥⎤-1234. (2)由得 ,|x +2|-1≠0 , ∴|xx ≠-3 ,x ≠-1.∴函数的定义域为(-∞ ,-3)∪(-3 ,-1)∪(-1 ,+∞).一、选择题(每题5分 ,共10分)1.四个函数:(1)y =x +1;(2)y =x 3;(3)y =x 2-1; (4)y =1x.其中定义域相同的函数有( )A .(1) ,(2)和(3)B .(1)和(2)C .(2)和(3)D .(2) ,(3)和(4)解析:(1) ,(2)和(3)中函数的定义域均为R ,而(4)函数的定义域为{x |x ≠0}. 答案:A2.函数f (x )=-1 ,那么f (2)的值为( ) A .-2 B .-1 C .0D .不确定解析:∵f (x )=-1 ,∴f (2)=-1. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={1,2,3} ,B ={4,5} ,那么从A 到B 的函数f (x )有________个.解析:抓住函数的 "取元任意性 ,取值唯一性〞 ,利用列表方法确定函数的个数.f (1) 4 4 4 4 5 5 5 5 f (2) 4 4 5 5 4 4 5 5 f (3)45454545由表可知 ,这样的函数有8个 ,故填8. 答案:8 4.函数y =x +26-2x -1的定义域为________.(并用区间表示)解析:要使函数解析式有意义 ,需满足⎩⎪⎨⎪⎧ x +2≥06-2x ≥0 6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇒-2≤x ≤3 ,且x ≠52.∴函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3.答案:⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3三、解答题5.(本小题总分值10分)将长为a 的铁丝折成矩形 ,求矩形面积y 关于边长x 的解析式 ,并写出此函数的定义域.解:设矩形一边长为x ,那么另一边长为12(a -2x ) ,所以y =x ·12(a -2x )=-x 2+12ax .由题意可得⎩⎪⎨⎪⎧0<x <a 2 0<12a -2x <a2解得0<x <a2,即函数定义域为⎝ ⎛⎭⎪⎪⎫0 a 2.活页作业(七) 函数概念的综合应用(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.函数f (x )=x +1x,那么f (1)等于( ) A .1 B .2 C .3D .0解析:f (1)=1+11=2.答案:B2.以下各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1 ,x ∈Z 与y =2x -1 ,x ∈Z解析:A 中两函数定义域不同 ,B 、D 中两函数对应关系不同 ,C 中定义域与对应关系都相同.答案:C3.函数y =x +1的值域为( ) A .[-1 ,+∞) B .[0 ,+∞) C .(-∞ ,0]D .(-∞ ,-1]解析:∵x +1≥0 ,∴y =x +1 ≥0. 答案:B二、填空题(每题4分 ,共8分) 4.函数y =x +1x的定义域为________. 解析:要使函数式有意义 ,需使⎩⎪⎨⎪⎧x +1≥0x ≠0 ,所以函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}5.函数f (x )=2x -3 ,x ∈{x ∈N |1≤x ≤5} ,那么函数的值域为__________________. 解析:函数的定义域为{1,2,3,4,5}. 故当x =1,2,3,4,5时 ,y =-1,1,3,5,7 ,即函数的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7} 三、解答题6.(本小题总分值10分)假设f (x )=ax 2- 2 ,且f (f (2))=- 2 ,求a 的值. 解:因为f (2)=a (2)2-2=2a - 2 ,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,2a -2=0或a =0 ,所以a=22或a =0.一、选择题(每题5分 ,共10分)1.以下函数中 ,值域为(0 ,+∞)的是( ) A .y =x B .y =100x +2C .y =16xD .y =x 2+x +1解析:A 中y =x 的值域为[0 ,+∞); C 中y =16x的值域为(-∞ ,0)∪(0 ,+∞);D 中y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34的值域为⎣⎢⎢⎡⎭⎪⎪⎫34 +∞;B 中函数的值域为(0 ,+∞) ,应选B. 答案:B2.假设函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,那么a 的值是( )A .-1或3B .-1C .3D .不存在解析:由⎩⎪⎨⎪⎧a 2-2a -3=0 a -3≠0得a =-1.答案:B二、填空题(每题5分 ,共10分)3.函数f (x )=x -1.假设f (a )=3 ,那么实数a =________. 解析:因为f (a )=a -1=3 ,所以a -1=9 ,即a =10. 答案:104.给出定义:假设m -12<x ≤m +12(其中m 为整数) ,那么m 叫做离实数x 最|近的整数 ,记作{x } ,即{x }=m .在此根底上给出以下关于函数f (x )=|x -{x }|的四个结论.①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎢⎡⎦⎥⎥⎤-1212. 那么其中正确的序号是________.解析:由题意得f ⎝ ⎛⎭⎪⎫-12=-12--12=-12-(-1)=12 ,①正确; f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4 ,②错误; f ⎝ ⎛⎭⎪⎫-14=-14--14=⎪⎪⎪⎪⎪⎪-14-0=14,f ⎝ ⎛⎭⎪⎫14=14-14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14 ,③正确; y =f (x )的定义域为R ,值域为⎝ ⎛⎦⎥⎥⎤-1212 ,④错误.答案:①③ 三、解答题5.(本小题总分值10分)函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12 ,f (3)+f ⎝ ⎛⎭⎪⎫13的值. (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x是定值.(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+ f (2 017)+f ⎝⎛⎭⎪⎫12 017的值.(1)解:∵f (x )=x 21+x2 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解:由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1 ,f (3)+f ⎝ ⎛⎭⎪⎫13=1 ,f (4)+f ⎝ ⎛⎭⎪⎫14=1 ,… ,f (2 017)+f ⎝⎛⎭⎪⎫12 017=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017=2 016.活页作业(八) 函数的表示法(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.小明骑车上学 ,开始时匀速行驶 ,途中因交通堵塞停留了一段时间 ,后为了赶时间加快速度行驶.与以上事件吻合得最|好的图象是( )解析:方法一:出发时距学校最|远 ,先排除A ,中途堵塞停留 ,距离不变 ,再排除D ,堵塞停留后比原来骑得快 ,因此排除B ,选C.方法二:由小明的运动规律知 ,小明距学校的距离应逐渐减小 ,由于小明先是匀速运动 ,故前段是直线段 ,途中停留时距离不变 ,后段加速 ,直线段比前段下降得快 ,故应选C.答案:C 2.f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,那么f (x )=( )A.x +1x -1B .1-x 1+x C.1+x1-xD .2x x +1解析:设t =1-x 1+x ,那么x =1-t 1+t ,f (t )=1-t 1+t ,即f (x )=1-x1+x .答案:B3.函数f (x )是一次函数 ,2f (2)-3f (1)=5,2f (0)-f (-1)=1 ,那么f (x )=( ) A .3x +2 B .3x -2 C .2x +3D .2x -3解析:设f (x )=kx +b (k ≠0) ,那么⎩⎨⎧22k +b -3k +b =52b --k +b =1.解得⎩⎪⎨⎪⎧k =3 b =-2∴f (x )=3x -2. 答案:B4.f ⎝ ⎛⎭⎪⎫12x -1=2x +3 ,且f (m )=6 ,那么m 等于( )A .-14B.14C.32D .-32解析:设12x -1=m ,那么x =2m +2 ,∴f (m )=2(2m +2)+3=4m +7=6 ,∴m =-14.答案:A5.函数f (2x +1)=3x +2 ,且f (a )=2 ,那么a 的值等于( ) A .1 B .3 C .5D .-1解析:由f (2x +1)=3x +2 ,令2x +1=t , ∴x =t -12.∴f (t )=3·t -12+2.∴f (x )=3x -12+2.∴f (a )=3a -12+2=2.∴a =1.答案:A二、填空题(每题5分 ,共15分)6.如图 ,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0) ,(1,2) ,(3,1) ,那么f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵f (3)=1 ,1f 3=1 ,∴f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2.答案:27.函数f (x ) ,g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321那么f (g (1))=____________. 解析:∵g (1)=3 ,∴f (g (1))=f (3)=1. 又∵x ,f (g (x )) ,g (f (x ))的对应值表为x 1 2 3 f (g (x ))131g (f (x ))3 1 3∴f (g (x ))>g (f (x ))答案:1 28.假设f (x )是一次函数 ,f (f (x ))=4x -1 ,那么f (x )=______.解析:设f (x )=kx +b (k ≠0) ,那么f (f (x ))=kf (x )+b =k (kx +b )+b =k 2x +kb +b =4x ⎩⎪⎨⎪⎧k 2=4 kb +b =-1解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎨⎧k =-2b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:2x -13或-2x +1三、解答题(每题10分 ,共20分) 9.下表表示函数y =f (x ).x0<x <5 5≤x <1010≤x <1515≤x ≤20y =f (x )-46810(1)写出函数的定义域、值域; (2)写出满足f (x )≥x 的整数解的集合.解:(1)从表格中可以看出函数的定义域为(0,5)∪[5,10)∪[10,15)∪[15,20]=(0,20].函数的值域为{-4,6,8,10}.(2)由于当5≤x <10时 ,f (x )=6 ,因此满足f (x )≥x 的x 的取值范围是5≤xx ∈Z ,故x ∈{5,6}.10.函数f (x )=g (x )+h (x ) ,g (x )关于x 2成正比 ,h (x )关于x 成反比 ,且g (1)=2 ,h (1)=-3 ,求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1≠0) ,h (x )=k 2x(k 2≠0) , 由于g (1)=2 ,h (1)=-3 , 所以k 1=2 ,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0 ,+∞). (2)由(1)得f (4)=2×42-34=612.一、选择题(每题5分 ,共10分)1.正方形的周长为x ,它的外接圆的半径为y ,那么y 关于x 的解析式为( )A .y =12xB .y =24xC .y =28x D .y =216x 解析:正方形边长为x4 ,而(2y )2=⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫x 42,∴y 2=x 232.∴y =x 42=28x .答案:C2.以下函数中 ,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x );对于C ,f (2x )=2x +1≠2f (x );对于D ,f (2x )=-2x =2f (x ).答案:C二、填空题(每题5分 ,共10分)3.观察以下图形和所给表格中的数据后答复以下问题:梯形个数 1 2 3 4 5 … 图形周长58111417…当梯形个数为. 解析:由表格可推算出两变量的关系 ,或由图形观察周长与梯形个数关系为l =3n +2(n ∈N *).答案:l =3n +2(n ∈N *)4.R 上的函数f (x )满足:(1)f (0)=1;(2)对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,那么f (x )=________.解析:因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,所以令y =x ,有f (0)=f (x )-x (2x -x +1) ,即f (0)=f (x )-x (x +1) ,又f (0)=1 ,所以f (x )=x (x +1)+1=x 2+x +1 ,即f (x )=x 2+x +1.答案:x 2+x +1三、解答题(每题10分 ,共20分)5.画出函数f (x )=-x 2+2x +3的图象 ,并根据图象答复以下问题: (1)比拟f (0) ,f (1) ,f (3)的大小;(2)假设x 1<x 2<1 ,比拟f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.解:因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线 ,描点 ,得函数图象如图:(1)根据图象 ,容易发现f (0)=3 ,f (1)=4 ,f (3)=0 ,所以f (3)<f (0)<f (1). (2)根据图象 ,容易发现当x 1<x 2<1时 ,有f (x 1)<f (x 2).(3)根据图象 ,可以看出函数的图象是以(1,4)为顶点 ,开口向下的抛物线 ,因此 ,函数值域为(-∞ ,4].6.函数f (x )=xax +b(a ,b 为常数 ,且a ≠0)满足f (2)=1 ,方程f (x )=x 有唯一解 ,求函数f (x )的解析式 ,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x , 即ax 2+(b -1)x =0.因为方程f (x )=x 有唯一解 , 所以Δ=(b -1)2=0 ,即b =1. 又f (2)=1 , 所以22a +1=1 ,a =12.所以f (x )=x 12x +1=2x x +2.所以f (f (-3))=f (6)=128=32.活页作业(九) 分段函数、映射(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合M ={x |0≤x ≤6} ,P ={y |0≤y ≤3} ,那么以下对应关系中 ,不能构成M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析:由映射定义判断 ,选项C 中 ,x =6时 ,y =6∉P . 答案:C2.在给定映射f :A →B ,即f :(x ,y )→(2x +y ,xy )(x ,y ∈R )的条件下 ,与B 中元素⎝ ⎛⎭⎪⎪⎫16 -16对应的A 中元素是( ) A.⎝ ⎛⎭⎪⎪⎫16 -136 B.⎝ ⎛⎭⎪⎪⎫13 -12或⎝ ⎛⎭⎪⎪⎫-14 23 C.⎝ ⎛⎭⎪⎪⎫136 -16 D.⎝ ⎛⎭⎪⎪⎫12 -13或⎝ ⎛⎭⎪⎪⎫-23 14 解析:由⎩⎪⎨⎪⎧ 2x +y =16 xy =-16 得⎩⎪⎨⎪⎧ x =13y =-12或⎩⎪⎨⎪⎧x =-14y =23.应选B.答案:B3.以下图象是函数y =⎩⎪⎨⎪⎧x 2x <0x -1 x ≥0的图象的是( )解析:由于f (0)=0-1=-1 ,所以函数图象过点(0 ,-1);当x <0时 ,y =x 2,那么函数图象是开口向上的抛物线y =x 2在y 轴左侧的局部.因此只有图象C 符合.答案:C4.f (x )=⎩⎨⎧ x -5x ≥6f x +2x <6那么f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.f (x )=⎩⎨⎧2xx >0f x +1x ≤0那么f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于( ) A .-2 B .4 C .2D .-4解析:∵f ⎝ ⎛⎭⎪⎫43=2×43=83 ,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43 ,∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:B二、填空题(每题5分 ,共15分)6.函数f (x )的图象如下图 ,那么f (x )的解析式是____________________.解析:由图可知 ,图象是由两条线段组成.当-1≤x <0时 ,设f (x )=ax +b ,将(-1,0) ,(0,1)代入解析式 ,那么⎩⎨⎧ -a +b =0 b =1.∴⎩⎨⎧a =1b =1.∴f (x )=x +1.当0≤x ≤1时 ,设f (x )=kx ,将(1 ,-1)代入 ,那么k =-1 ,∴f (x )=-x .。

高中数学同步辅导

高中数学同步辅导

高中数学同步辅导引言学生的学业成绩一直是家长和学校关注的焦点,高中数学作为升学和职业发展关键科目,对学生来说尤为重要。

但是,由于各种原因,不同的学生对数学的认知和理解程度存在差异。

这就导致了学生在学习数学的过程中遇到各种各样的困难。

因此,高中数学的同步辅导应运而生,它为学生提供了有效的补充和支持,帮助学生提高数学知识和技能,从而提高数学成绩。

一、同步辅导的定义同步辅导是指学生在学校课程的基础上,通过有针对性的指导所学科目的知识和技能,增强对知识的理解和掌握,提高成绩的辅导方式。

二、为何需要高中数学同步辅导1.班级学习进度和个人学习进度不一致在班级教学中,学生的数学学习进程是按照学校的教学计划来进行的,但对于某些学生来说,学校的进度可能太快或者太慢。

如果学校的进度太快,学生会出现掌握不牢固的现象;如果学校的进度太慢,学生会失去学习的信心和积极性,甚至会放弃数学学习。

而同步辅导可以让学生按照自己的学习进度来学习。

2.课堂教学难以满足学生的需求在课堂上,老师要面对不同学生的不同需求,缺少针对性教学。

有些学生容易掌握数学的知识和技能,而有些学生则需要更多的练习和辅导来弥补自身的不足。

而同步辅导可以适应不同的学生需求,满足学生个性化的需求。

3.缺乏对数学知识的深层理解数学知识和技能需要通过深层理解才能掌握,而课堂教学通常不能够深入到这个层面。

同步辅导则可以通过对数学知识的深入解析,让学生对数学知识和技能有一个更深入的理解和掌握,从而提高数学成绩。

三、高中数学同步辅导的重要性1.能够提高学生的自信心和积极性数学是一门久经考验的科目,许多学生在学习数学过程中会出现自信心不足、积极性不高的问题。

而同步辅导可以让学生在熟悉数学知识点和技能的同时,也提高他们的自信心和积极性,让学生更加愿意学习数学。

2.能够提高学生的学习效率在学生自我学习的过程中,因各种原因导致学习效率低下的情况时有发生。

而同步辅导则能够有效地提高学生的学习效率,让学生更好的掌握数学知识和技能,从而提高数学成绩。

1.1 集合的概念及表示-【新教材】人教A版(2019)高中数学必修一同步讲义

1.1 集合的概念及表示-【新教材】人教A版(2019)高中数学必修一同步讲义

人教版(A 版)新高一 集合的概念及表示审核人签字: 审核时间:学员编号: 年 级:高一 课时数:3 学员姓名: 辅导科目:数学 学科教师:边德龙授课类型T-集合的概念及表示★★★授课日期及时段2020.07. 00:00-0:00教学目标1、理解集合中元素的性质2、掌握元素与集合的关系3、理解集合的表示法 重点难点1、集合中元素的性质2、集合的表示教学内容1、集合的概念:一般的我们把研究对象统称为 ,把一些元素组成的总体叫做 。

2、集合的3个性质:⎪⎩⎪⎨⎧的元素顺序无关无序性:集合与组成它元素是互不相同的互异性:集合中任两个必须是确定的确定性:集合中的元素3、元素与集合的表示:我们通常用 来表示集合,用 来表示元素。

4、元素与集合的关系:①如果a 是集合A 的元素,就说a A ,记作:A a ∈②如果a 不是集合A 的元素,就说a 不属于A ,记作:注意:属于或不属于(∉∈,)一定是用在表示元素与集合间的关系上。

5、集合的分类: (集合含有有限个元素);无限集(集合含有 个元素);空集(不含任何元素的集合,用记号 表示)。

6、常用集合的表示:自然数集(非负整数集)记作N ; 正整数集记作()+N N *;T-集合的概念及表示知识梳理整数集记作Z ; 有理数集记作Q ; 实数集记作R 。

注意:(这些特定集合外面不用加{})7、集合的表示:(1) :把集合中的元素一一列举出来,并用花括号“{}”括起来的表示方法。

注意:一般用列举法,元素是有限的,在不产生歧义的情况下,无限集合也可以用列举法,例:正整数集合{1,2,3,4,…}.(2) :在花括号内先写上表示这个集合一般元素的符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

例:{}4>=x x B (如果元素的取值范围是全体实数,范围可省略不写)。

(3) :用平面内一条封闭曲线的内部表示一个集合。

题型一 基本概念例1 下列各组对象中能构成集合的是( ) A .充分接近3的实数的全体 B .数学成绩比较好的同学 C .小于20的所有自然数 D .未来世界的高科技产品【答案】C1、判断下面例子能否组成集合?(1)大于3小于12的所有偶数; (2)我国的小河流。

人教版高一数学必修一集合一对一个性化教案(3次课)(新课内容配套练习与单元测试)

人教版高一数学必修一集合一对一个性化教案(3次课)(新课内容配套练习与单元测试)

必修一第一章预习教案(第1次)1.1集合 1.1.1 集合的含义及其表示姓名: 班级: 联系方式: 授课老师:教学目标:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“非负整数集”、“正整数集”、“整数集”的含义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我; 我来南京市第九中学;金陵中学高一(1)班; 我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)金陵中学高一(1)班全体学生;(3)较大的数(4)young 中的字母; (5)大于100的数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集N *或N +。

高一数学《第1-3章》全册同步练习(人教B版必修4)1-3-1-1

高一数学《第1-3章》全册同步练习(人教B版必修4)1-3-1-1

1.3.1.11.函数y =sin2x 的单调减区间是( ) A.⎣⎡⎦⎤π2+2k π,32π+2k π(k ∈Z)B.⎣⎡⎦⎤k π+π4,k π+34π(k ∈Z)C .[π+2k π,3π+2k π](k ∈Z) D.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z)[答案] B[解析] 由2k π+π2≤2x ≤2k π+32π,k ∈Z 得 y =sin2x 的单调减区间是[k π+π4,k π+34π](k ∈Z).2.函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1D .-2[答案] B[解析] f (a )=a 3+sin a +1=2. f (-a )=-a 3-sin a +1=-f (a )+2=0. 3.y =sin x -|sin x |的值域是( ) A .[-1,0]B .[0,1]C .[-1,1]D .[-2,0][答案] D[解析] 当sin x ≥0即2k π≤x ≤2k π+π,k ∈Z 时, y =0;当sin x <0,即2k π+π<x <2k π+2π,k ∈Z 时,y =2sin x , ∴-2≤y <0.综上,y ∈[-2,0].4.在同一平面直角坐标系中,函数y =cos(x 2+3π2)(x ∈[0,2π])的图象和直线y =12的交点个数是( )A .0B .1C .2D .4[答案] C[解析] y =cos ⎝⎛⎭⎫x 2+32π=sin x2,当x ∈[0,2π]时,y =sin x 2∈[0,1],与y =12有两个交点.5.若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[答案] B[解析] ∵A 、B 是锐角△ABC 的两个内角,∴A +B >π2,从而π2>A >π2-B >0,π2>B >π2-A >0.∴y =sin x 在⎝⎛⎭⎫0,π2上是增函数,∴sin A >sin ⎝⎛⎭⎫π2-B ,sin B >sin ⎝⎛⎭⎫π2-A ,∴sin A >cos B ,sin B >cos A ,∴点P 在第二象限. 6.函数y =sin ⎝⎛⎭⎫x +π4在闭区间( )A.⎣⎡⎦⎤-π2,π2上是增函数B.⎣⎡⎦⎤-34π,π4上是增函数C .[-π,0]上是增函数 D.⎣⎡⎦⎤-π4,34π上是增函数[答案] B[解析] 增函数的区间符合2k π-π2≤x +π4≤2k π+π2,k ∈Z ,∴2k π-34π≤x ≤2k π+π4,令k =0得B 正确.7.已知方程cos 2x +4sin x -a =0有解,则a 的范围是( )A .[-2,5]B .(-∞,5]C .[-4,4]D .[0,5][答案] C[解析] 原式可化为:(sin x -2)2=5-a . ∵-1≤sin x ≤1,∴1≤(sin x -2)2≤9, ∴1≤5-a ≤9,解得a ∈[-4,4].8.函数y =74+sin x -sin 2x 的最大值是( ) A.74B .-14C .2D .不存在[答案] C[解析] y =-⎝⎛⎭⎫sin x -122+2≤2.二、填空题9.f (x )是奇函数,当x >0时,f (x )=x 2-sin x ,则当x <0时,f (x )=________. [答案] -x 2-sin x [解析] ∵x <0,∴-x >0,∴f (-x )=(-x )2-sin(-x )=x 2+sin x , ∵f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-sin x .10.函数f (x )=cos ⎝⎛⎭⎫π2+2x ·cos(π2+x )是________函数.(奇、偶性)[答案] 偶函数 [解析] f (x )=sin2x sin x ∵f (-x )=sin(-2x )·sin(-x ) =sin2x ·sin x =f (x ), ∴f (x )为偶函数.11.函数y =a +b sin x 的最大值是32,最小值为-12,则a =________,b =________.[答案] 12 ±1[解析]当b >0时,由题意得⎩⎨⎧a +b =32a -b =-12,∴⎩⎪⎨⎪⎧a =12b =1.当b <0时,由题意得⎩⎨⎧a -b =32a +b =-12,∴⎩⎪⎨⎪⎧a =12b =-1.12.函数y =sin ⎝⎛⎭⎫-x +π4的单调递减区间为________. [答案] ⎣⎡⎦⎤-π4+2k π,3π4+2k π(k ∈Z)[解析] y =sin ⎝⎛⎭⎫-x +π4=-sin ⎝⎛⎭⎫x -π4,函数y =sin ⎝⎛⎭⎫-x +π4的递减区间,即为函数y ′=sin ⎝⎛⎭⎫x -π4的递增区间,令-π2+2k π≤x -π4≤π2+2k π,k ∈Z ,得-π4+2k π≤x ≤3π4+2k π,k ∈Z. 三、解答题13.不求值,比较下列各组中两个三角函数值的大小: (1)sin14°与sin156°; (2)cos115°与cos260°; (3)sin194°与cos160°.[解析] 利用三角函数单调性比较. (1)∵sin156°=sin(180°-24°)=sin24°. ∵-90°<14°<24°<90°,∵y =sin x 在[-90°,90]上是增函数, ∴sin14°<sin24°,即sin14°<sin156°;(2)cos115°=cos(90°+25°)=-sin25°,cos260°=cos(180°+80°)=-cos80°=-sin10°, ∵sin10°<sin25°,∴-sin10°>-sin25°, 即cos260°>cos115°;(3)sin194°=-sin14°,cos160°=-cos20°=-sin70°, ∵sin14°<sin70°,∴-sin14°>-sin70°, ∴sin194°>cos160°.14.已知函数f (x )=log 12⎝⎛⎭⎫12sin2x .(1)求f (x )的定义域、值域和单调区间; (2)判断f (x )的奇偶性.[解析] (1)要使函数有意义,须sin2x >0, ∴2k π<2x <2k π+π, ∴k π<x <k π+π2(k ∈Z),∴f (x )定义域为⎝⎛⎭⎫k π,k π+π2,k ∈Z ,∵0<sin2x ≤1,∴0<12sin2x ≤12,∴log 12⎝⎛⎭⎫12sin2x ≥1,即值域为[1,+∞),函数在⎝⎛⎦⎤k π,k π+π4(k ∈Z)内单调递减,在⎣⎡⎭⎫k π+π4,k π+π2(k ∈Z)内单调递增.(2)定义域关于原点不对称,故既不是奇函数,也不是偶函数. 15.已知函数f (x )=3sin(x 2+π6)+3(1)用五点法画出它在一个周期内的闭区间上的图象; (2)求f (x )的单调递减区间.[解析] (1)列表!(2)T =2π12=4π,由(1)中表格及图象可知在一个周期[-π3,11π3]内,函数在[2π3,8π3]上单调递减,故函数在R 上的单调递减区间为 [4k π+2π3,4k π+8π3](k ∈Z).16.若函数y =cos 2x +a sin x -12a -32的最大值为1,求a 的值. [解析] y =cos 2x +a sin x -12a -32=-sin 2x +a sin x -12a -12 =-(sin x -a 2)2+a 24-12a -12, 设sin x =t ,∵-1≤sin x ≤1, ∴-1≤t ≤1.∴y =-(t -a 2)2+a 24-12a -12,-1≤t ≤1.(1)当a 2<-1,即a <-2时,t =-1时,y 取最大值-32a -32,∴-32a -32=1,∴a =-53>-2(舍去).(2)当-1≤a2≤1,即-2≤a ≤2时,t =a 2时,y 取最大值为a 24-12a -12,∴a 24-12a -12=1, 解得a =1±7,a =1+7>2(舍去), ∴a =1-7.(3)当a 2>1,即a >2时,t =1时,y 取最大值a 2-32,∴a 2-32=1, ∴a =5.综上所述,a =1-7或a =5.。

(精校版)(精品)高中数学必修1全套同步练习册

(精校版)(精品)高中数学必修1全套同步练习册

1。1。3(2)集合的基本运算(补集及综合运算)
1.设全集 U=R,A={x|0≤x≤6},则∁RA=( ). A.{ 0,1,2,3,4,5,6} B.{x|x<0 或 x〉6}
C.{x|0<x〈6}
D.{x|x≤0 或 x≥6}[来源:学科网 ZXXK]
2.已知全集 U={2,5 ,8},且∁UA={2},则集合 A 的真子集个数为( ).
4.直线 y=2x+1 与 y 轴的交点所组成的集合为( ).[来源:学§科§网 Z§X§X§K]
A.{0,1}
B.{(0,1)}
C。Error!
D. {(1f,0)})
5.集合 A={y|y=x2+1},集合 B={(x,y)|y=x2+1}(A、B 中 x∈R,y∈R ).选项中元
素与集合的关系都正确的是( ).
9.以方程 x2-5x+6=0 和方程 x2-x-2=0 的解为元素的集合中共有________个元素.
10.设 1,0, x 三个元素构成集合 A,若 x2∈A,求实数 x 的值.
11.已知集合 M 中含有三个元素 2, a,b,集合 N 中含有三个元素 2a ,2,b2,且 M=N,求 a,b 的值.
A.3
B.4
C.5
D.6
3.若 A 为全体正实数的集合,B={-2,-1,1,2},则下列结论中正确的是( ).
A.A∩B={-2,-1}
B.(∁RA)∪B={-2,- 1,1}
C.A∪B={1,2}
D.(∁RA)∩B={-2,-1}
4.在如图中 , 用阴影表示出集合(∁UA)∩(∁U B).
5.已知 U 为全集,集合 M、N 是 U 的子集,若 M∩N=N,则( ).

【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修

【金版学案】2013-2014学年度高中数学 3.1.2 概率的意义同步辅导与检测课件 新人教A版必修
解析:设水库中鱼的尾数为n,n是未知的,现在要 估计n的值,将n的估计值记作n.假定每尾鱼被捕的可能性 是相等的,从库中任捕一尾,
设事件 A={带有记号的鱼},易知 P(A)≈20n00① 第二次从水库中捕出 500 尾,观察其中带有记号 的鱼有 40 尾,即事件 A 发生的频数 m=40,由概率的 统计定义可知 P(A)≈54000② 由①②两式,得20n00≈54000, 解得 n≈25000,即 n=25000. 所以,估计水库中约有鱼 25000 尾.
(1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.
解析:(1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4). (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).
答案:C
点评:本题易错选为A或B,其原因是错误理解 概率的意义,概率只是说明事件发生的可能性大小, 其发生具有随机性.
概率的简单应用
为了估计水库中鱼的尾数,可以使用以下的方 法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾 鱼作上记号,不影响其存活,然后放回水库,经过适当时 间,让其和水库中其余的鱼充分混合,再从水库中捕出一 定数量的鱼,例如500尾,查看其中有记号的鱼,设有40 尾,试根据上述数据,估计水库内鱼的尾数.

交集与并集2

交集与并集2

一、重要知识点
名称 定 义 记号 交集 由所有属于A且属于B 的元素所组成的集合 叫做A与B的交集 并集 由所有属于A或属于B 的元素所组成的集合 叫做A与B的并集
(读作“A交B”)
A B
A B
(读作“A并B”)
简而 言之
图 示
A B x x A且x B A B x x A或x B
ห้องสมุดไป่ตู้
四、练习:
) 则A B A x x 2=( 2,
A -2 B
4.设A x x 2 , B x x 3 ,
5.设A x x是平行四边形 , B x x是矩形 .
3
x
则A B
x x是平行四边形, A B x x是矩形
例3 已知集合,M = {(x,y)|x + y = 2 }, N = {(x,y)|x-y = 4},求M∩N。 解:∵集合M,N为二元一次方程的解集, 或为直线上的点集,求M ∩N,即求二次一次 方程组的解集. ∴M∩N = {(x,y)| x + y = 2且x -y=4}
x y 2 x 3 由 解得 x y 4 y 1
再见!
思是说你要把身体养得好好的。”“娘亲,女儿身体好好的呢,只是有壹事,要与您相商。”“什么事情还能比你养好身子, 踏踏实实、平平安安地嫁进王府更重要?”“娘亲,含烟从小就服侍女儿,比女儿还要大四岁,今年已经十七了。如果这次随 女儿陪嫁进王府,壹时半会儿女儿又离不开她,那含烟的婚事还不就被耽误了?而且,壹旦随女儿进了王府,名义上她是女儿 的丫环,可是,包括女儿在内,哪壹个人,哪壹样物件,不都是王府的?搜霸天下女儿哪里还能当得了含烟的主子, ; 搜霸天下 lgh10neh 别说大事了,就是壹点点小事也做不了含烟的主。所以,女儿断断不能带含烟嫁进王府!”“可是,含烟从小就服侍你,伺候 你最精心,你用着也最顺手,这进了王府,本来就人生地不熟,搜霸天下再没有了含烟这个得力的帮手,你在那王府可怎么过 啊!”“可是,含烟跟了女儿进王府,这壹辈子可就被女儿毁了啊!现在都十七了,再耽误两年,不要说如意郎君,就是适龄 婚配的男子都找不到啊!不是上年纪没了妻的,就是要给人做二房,含烟与女儿,名为主仆,实为姐妹,这让女儿如何安 心?”“不管怎么样,娘亲就是不能同意!含烟的婚事,娘亲会记着,可是,你初来乍到王府,又是侧福晋,手边再没有自己 的人,你让娘亲如何放心得下?!”“娘亲要是不同意,女儿,女儿,女儿就不嫁这个什么破王爷!”“你给我闭嘴!你这个 小祖宗,还想无法无天了!那是你的夫君!在家从父,出嫁从夫,你跟师傅都是怎么学的?这种混帐话也是你能说得出口 的?”“娘,女儿意决,您若不同意,女儿就……”冰凝的脾气禀性年夫人哪里不知道?宁为玉碎不为瓦全,她是做得出来的。 为了年家,为了这个大婚如期顺利进行,她唯有妥协:“好,好,女儿大了,也会威逼娘亲了。”“娘,女儿不孝,望您成 全。”“行吧,含烟就不随你陪嫁了。不过,你手边总得有咱们年府的陪嫁丫头,否则,王府的水那么深,你哪里是那些个福 晋、格格们的对手?搜霸天下把娘的大丫环吟雪拨给你,她今年十四,虽然也不小,但总归能比含烟多陪你几年……”“娘亲 啊!女儿本已不孝,怎么还能要您的大丫头?”“除了吟雪,娘谁也不放心!另外,再给你拨壹个丫头,就月影吧,她今年才 十岁,虽然年岁小壹些,还没有调教好,但至少能陪你个十年八年的!”“娘啊!”冰凝已经哽咽得说不出来话,娘亲为她考 虑得这么周到,不但把吟雪拨给了她,还想到了更长久的将来,自己不但不能尽孝搜霸天下 ,还要娘亲为自己如此精心考虑, 她此生,欠了娘亲太多,太多。第壹卷 第五十三章 誓言五月初十就这么飞快地到来。年总督终于抢在五月初九那天,风尘 仆仆地赶到了京城。那天晚上,冰凝足足实实地给爹娘拜了又拜,从今以后,她就是王爷的侧福晋,她与

高一数学复习教案通用5篇

高一数学复习教案通用5篇

高一数学复习教案通用5篇高一数学复习教案通用5篇高一数学教案怎么写。

如果教师有一份明确的说课稿,将会大大提升教学效率,提升课堂活跃性,提升学生学习兴趣。

下面小编给大家带来关于高一数学复习教案,希望会对大家的工作与学习有所帮助。

高一数学复习教案(篇1)高一第一学期是初中向高中的重要转折点,学生能否在短期内快速适应高中英语学习是摆在我们面前的重要任务,特制定高一英语教学计划如下:一、指导思想以学校工作计划为指导思想,全面贯彻落实新课程改革和素质教育的精神,落实学科教学常规,营造良好的教研氛围,不断改革课堂教学,探究科学有效的教学形式。

针对高一新生普遍英语底子差,基础薄的实际,打算在高一起始阶段的英语教学中,本着低起点,爬坡走,抓习惯的原则,长期不懈地抓好学生的学习英语的的兴趣和习惯养成。

在本学期的英语教学中,要坚持以下理念的应用:1、坚定不移地突出学生主体,让学生成为学习的主人。

2、面向全体学生,关注每个学生的情感,激发他们学习英语的兴趣,帮助他们建立学习的成就感和自信心。

3、尊重个体差异,让学生在老师的指导下构建知识,提高技能,磨练意志,活跃思维,展现个性,发展心智和拓展视野;4、让学生在使用英语中学习英语,让他们在使用和学习英语的过程中,体味到轻松和成功的快乐。

二、工作重点全面做好初高中衔接工作初中和高中在教学对象、教学内容、教学要求、教学方式和学习方式方面均存在着一定的差异,因此,帮助高一新生了解这些差异,引导他们尽快适应高中的学习与生活,是摆在新学期高一教师面前的迫在眉睫的任务。

具体来说我们要做好以下工作:知识衔接(词汇补充、语法回顾)。

在开新课之前,拿出一周左右的时间搞好高初中之间的词汇衔接和语法衔接,为开新课做好准备。

1、培养习惯,打好基础。

培养基础与指导学法是一致的,培养习惯的过程也是打下扎实基础的过程。

高一起始教学阶段,除重视基础知识的落实巩固,基本技能的培养训练外,最主要的是培养良好的学习习惯和正确的学习方法。

第7讲 复数的概念-高一数学新教材专题讲义同步辅导+课堂检测(人教A版2019必修第二册)

第7讲 复数的概念-高一数学新教材专题讲义同步辅导+课堂检测(人教A版2019必修第二册)

第7讲 复数的概念一、考点梳理考点1 复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示 复数通常用字母z 表示,即(,)z a bi a b R =+∈ 3. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R)是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当a ≠0且b ≠0时,z =bi 叫做非纯虚数的纯虚数;当且仅当a =b =0时,z 就是实数0.4. 复数集与其它数集之间的关系:N Z Q R C.5. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 当两个复数不全是实数时不能比较大小例1.(1)已知复数z=6﹣4i,则它的实部是6,虚部是﹣4.【分析】利用复数实部和虚部的定义求解.【解答】解:∵复数z=6﹣4i,∴它的实部是6,虚部是﹣4,故答案为:6,﹣4.(2)若复数z=(m+1)+(2﹣m)i(m∈R)是纯虚数,则m=﹣1.【分析】直接利用复数的定义的应用求出结果.【解答】解:复数z=(m+1)+(2﹣m)i(m∈R)是纯虚数,则m+1=0,解得m=﹣1.故答案为:﹣1.(3)i2020=()A.1B.﹣1C.i D.﹣i 【分析】直接利用虚数单位i的运算性质求解.【解答】解:i2020=i4×505=(i4)505=1.故选:A.【变式训练1】.设复数z=3﹣2i,则z的虚部是()A.i B.3C.2D.﹣2【分析】直接由复数的基本概念得答案.【解答】解:复数z=3﹣2i,则z的虚部是:﹣2.故选:D.【变式训练2】.若复数m(m﹣2)+(m2﹣3m+2)i是纯虚数,则实数m的值为0.【分析】由实部为0且虚部不为0列式求解.【解答】解:∵m(m﹣2)+(m2﹣3m+2)i是纯虚数,∴,即m=0.故答案为:0.【变式训练3】.i为虚数单位,i2019=()A.i B.﹣i C.1D.﹣1【分析】直接利用虚数单位i的运算性质求解.【解答】解:∵i4=1,∴i2019=i4×504+3=i3=﹣i.故选:B.考点2 复数的几何意义1. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R)可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示实数 (2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0) 2. 复数的两种几何意义:3. 复数的模:复数bi a Z +=的模22b a Z +=4. 共轭复数 i z a b =+时,i z a b =-.(1)实数的共轭复数仍然是它本身 (2)22Z Z ZZ ==⋅ (3)两个共轭复数对应的点关于实轴对称例2.(1)已知复数z 满足iz =1﹣i (i 为虚数单位),则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】利用复数的运算法则、几何意义即可得出.【解答】解:iz =1﹣i ⇒z =﹣1﹣i ,故z 在复平面内对应的点为(﹣1,﹣1),在第三象限,故选:C .点向量一一对应 一一对应 一一对应 复数(2)在平行四边形ABCD中,对角线AC与BD相交于点O,若向量,对应的复数分别是3+i,﹣1+3i,则对应的复数是()A.2+4i B.﹣2+4i C.﹣4+2i D.4﹣2i【分析】由==,代入向量,对应的复数计算即可.【解答】解:因为向量,对应的复数分别是3+i,﹣1+3i,所以===3+i﹣(﹣1+3i)=4﹣2i,故选:D.(3)若z=1﹣2i+i2021,则|z|=()A.0B.1C.D.2【分析】化简复数z,再求它的模长|z|.【解答】解:因为z=1﹣2i+i2021=1﹣2i+i=1﹣i,所以|z|==.故选:C.(4)已知复数z=2i,则z的共轭复数等于()A.0B.2i C.﹣2i D.﹣4【分析】直接根据共轭复数的定义求解即可.【解答】解:因为复数z=2i,则z的共轭复数=﹣2i;故选:C.(5)(多选)对于复数z=a+bi(a,b∈R),下列结论错误的是()A.若a=0,则a+bi为纯虚数B.若a﹣bi=3+2i,则a=3,b=2C.若b=0,则a+bi为实数D.纯虚数z的共轭复数是﹣z【分析】复数z=a+bi(a,b∈R),(1)若a=0,且b≠0时,a+bi为纯虚数;(2)若b=0,则为实数;(3)其共轭复数为a﹣bi;(4)两个复数相等,则实部和虚部分别相等.【解答】解:对于A:复数z=a+bi(a,b∈R),若a=0,且b≠0时,a+bi为纯虚数.故A错误.对于B:两个复数相等,则实部和虚部分别相等,所以a=3,b=﹣2,故B错误.由复数定义及运算知,C、D正确.故选:AB.【变式训练1】.在复平面内,复数z=﹣1﹣i的对应点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】求出z在复平面内对应的点的坐标得答案.【解答】解:z=﹣1﹣i在复平面内对应的点的坐标为:(﹣1,﹣1),位于第三象限.故选:C.【变式训练2】.在复平面内点P对应的复数z1=2+i,将点P绕坐标原点O逆时针旋转到点Q,则点Q对应的复数z2的虚部为()A.B.C.D.【分析】由题意求得点Q对应的复数z2,则其虚部可求.【解答】解:设P点对应的向量为,向量绕坐标原点O逆时针旋转得到对应的复数为(2+i)(cos i sin)=(2+i)()=()+()i,∴点Q对应的复数z2的虚部为.故选:B.【变式训练3】.已知a∈R,若有(i为虚数单位),则a=()A.1B.﹣2C.±2D.±1【分析】根据复数模的定义得到关于a的方程,再解出a即可.【解答】解:∵,∴1+a2=5,解得a=±2,故选:C.【变式训练4】.若复数z=(m﹣1)﹣(m+2)i(m∈R)为纯虚数,则复数z的共轭复数为()A.﹣3i B.3i C.4i D.﹣4i【分析】先利用纯虚数的定义可得:m﹣1=0且m+2≠0,求出m的值,求出复数z,再利用共轭复数概念即可求解.【解答】解:∵复数z=(m﹣1)﹣(m+2)i(m∈R)为纯虚数,∴m﹣1=0且m+2≠0,∴m=1,∴z=﹣3i,∴复数z的共轭复数为3i,故选:B.【变式训练5】.(多选)下列关于复数的说法,其中正确的是()A.复数z=a+bi(a,b∈R)是实数的充要条件是b=0B.复数z=a+bi(a,b∈R)是纯虚数的充要条件是b≠0C.若z1,z2互为共轭复数,则z1z2是实数D.若z1,z2互为共轭复数,则在复平面内它们所对应的点关于y轴对称【分析】利用实数和纯虚数的概念即可判定选项A正确,选项B错误,再利用共轭复数的定义即可判定选项C 正确,选项D错误.【解答】解:对于选项A:复数z=a+bi(a,b∈R)是实数的充要条件是b=0,所以选项A正确;对于选项B:复数z=a+bi(a,b∈R)是纯虚数的充要条件是a=0且b≠0,所以选项B错误;对于选项C:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,所以,所以选项C正确;对于选项D:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,则它们在复平面内所对应的点分别为(a,b)和(a,﹣b),关于x轴对称,所以选项D错误,故选:AC.二、课堂检测1.已知a是实数,则复数(a2﹣2a)+(a2+a﹣6)i为纯虚数的充要条件是()A.a=0或a=2B.a=0C.a∈R,且a≠2且a≠﹣3D.a∈R,且a≠2【分析】由实部为0且虚部不为0列式求得a值,则答案可求.【解答】解:∵a是实数,则复数(a2﹣2a)+(a2+a﹣6)i为纯虚数需满足:,解得:a=0,故选:B.2.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅【分析】利用虚数单位i的运算性质化简A,然后利用交集运算得答案.【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.3.实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.4.已知复数z,“z+=0”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件【分析】由充分必要条件的判断方法,结合两复数和为纯虚数的条件判断.【解答】解:对于复数z,若z+=0,z不一定为纯虚数,可以为0,反之,若z为纯虚数,则z+=0.∴“z+=0”是“z为纯虚数”的必要非充分条件.故选:B.5.已知i为虚数单位,则z=i+i2+i3+…+i2017=()A.0B.1C.﹣i D.i【分析】利用等比数列的求和公式、复数的周期性即可得出.【解答】解:z====i,故选:D.6.(多选)已知复数z=1+i,则下列命题中正确的为()A.B.=1﹣iC.z的虚部为i D.z在复平面上对应点在第一象限【分析】利用复数的模、共轭复数、虚部及复数与平面内点的对应关系即可判断出正误.【解答】解:复数z=1+i,则.故A正确;,故B正确;z的虚部为1,故C错误;z在复平面上对应点的坐标为(1,1),在第一象限,故D正确.∴命题中正确的个数为3.故选:ABD.7.(多选)已知复数z在复平面上对应的向量,则()A.z=﹣1+2i B.|z|=5C.=1+2i D.z•=5【分析】由题意可得z=﹣1+2i,再由复数的模的公式和共轭复数的定义、复数的乘法运算,可判断正确结论.【解答】解:由题意可得z=﹣1+2i,|z|==,=﹣1﹣2i,z•=(﹣1+2i)(﹣1﹣2i)=1+4=5,则A、D正确,B、C错误.故选:AD.8.若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是[].【分析】由于复数的模不大于2,可得不等式,然后求解即可.【解答】解:复数z=1+ai(i是虚数单位)的模不大于2,即:1+a2≤4即a2≤3可得a∈故答案为:9.复数3+4i(i为虚数单位)的实部是3.【分析】根据复数的定义判断即可.【解答】解:复数3+4i(i为虚数单位)的实部是3,故答案为:3.10.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是(1,).【分析】由复数z的实部为a,虚部为1,知|z|=,再由0<a<2,能求出|z|的取值范围.【解答】解:∵复数z的实部为a,虚部为1,∴|z|=,∵0<a<2,∴1<|z|=<.故答案为:(1,).11.在复平面内,复数z=1﹣2i对应的点到原点的距离是.【分析】利用复数的几何意义、两点之间的距离公式即可得出.【解答】解:复数z=1﹣2i对应的点(1,﹣2)到原点的距离d==.故答案:.12.在复平面内,O是原点,向量对应的复数是2+i,若点A关于实轴的对称点为B,则向量对应的复数是2﹣i.【分析】由已知求得A的坐标,再由对称性求得B点坐标,则向量对应的复数可求.【解答】解:由题意,A(2,1),则B(2,﹣1),∴向量对应的复数是2﹣i.故答案为:2﹣i.13.若复数z=(m2+m﹣6)+(m2﹣m﹣2)i,当实数m为何值时(1)z是实数;(2)z是纯虚数;(3)z对应的点在第二象限.【分析】(1)令复数z的虚部为0,即可求解;(2)令复数z的实部为0且虚部不为0,即可求解;(3)根据第二象限点的符号特征,列出不等式,即可求出m的范围.【解答】解:(1)由题意可得:m2﹣m﹣2=0,解得:m=﹣1或2;(2)由题意可得:m2+m﹣6=0,且m2﹣m﹣2≠0,∴m=2或﹣3,且m≠﹣1且m≠2,∴m=﹣3;(3)由题意可得:,解得:﹣3<m<﹣1.。

高一数学逻辑关联词1

高一数学逻辑关联词1
《华夏名师网同步辅导课程》
人教版高一数学上学期 第一章第六节 逻辑关联词(1)
主讲:特级教师 王新敞
教学目的:
1.理解逻辑联结词“或”、“且”、“非”的含义 2.了解含有“或”、“且”、“非”的复合命题的 教学重点: “或”、“且”、“非”的含义
王新敞
奎屯 新疆
教学难点: 对“或”、“且”、“非”的含义的理解
本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
; /junxianzhanfa/ 135均线战法
h歉意。 “来来来,让我们兄弟共同敬弟妹一杯„„”二哥第一个端起了酒杯。肖燕执意不过哥嫂们的 一再催让,只好端起酒杯招呼起大家来,“依我看„„我们全家还是共同敬爹妈一杯,祝二老健康长寿,越活越年轻„„” “好!这酒喝 的真香„„有滋有味!”我不禁脱口而出,二十五年了,我还是第一次同肖燕坐在一起喝酒,这也是她人生之中第一次喝酒,喝下后,用 手扇着嘴巴,向我做个鬼脸。 “来来来,把酒都倒满,我们兄弟八个共同敬老爹一杯„„”我招呼着大家把肖燕解脱出来。 “老六啊, 娘可把丑话说在前头,明天小荷和娇娇一起回南方,荷花也要回山西„„一大堆儿的事等着你处理,今晚你可不准喝多了„„”母亲打断 了我的话一板一眼地说:“不管是谁说话要有分寸,喝了酒不能说一句醉话!”母亲环视着大家,我清楚地感觉到母亲是在提醒知情的人, 有关娇娇的身世谁也不能提起!然而,家宴才开始不久,我们爷们的气氛刚刚进入状态,我的父亲却声称他喝多了„„这是我有生以来第 一次见父亲喝多了酒,也是第一次听父亲说他喝醉了的话„„其实,在我的记忆里这是父亲喝酒最少的一次。俗话说‘醉汉子醉死都不认 半壶酒钱’,我那从来不认输的父亲却承认自己醉了„„把父亲安顿好,等全家人回到了餐厅。父亲握着我的那双手才慢慢松开,一骨碌 从床上坐了起来,颤抖地对我说:“六儿啊„„你认为爹真的喝多了吗?爹喝了一辈子的酒从来不知喝醉了酒是啥滋味„„今天„„爹面 对我的孙女们„„无地自容„„心里添堵啊„„” “爹„„你这是说哪儿的话呢„„”我虽然极力地控制着自己的心情,但是还是情不自 禁地流出了泪;通过泪眼,我依稀地看到父亲已是泪流满面„„月白风清,天空中传来了大雁的叫声。抬头望去,在洁白的月光下,三只 大雁摆成人字形欢叫着飞向南方。听老人们说,大雁是有灵气的,他们无论是三个一簇或五个一群,总是有一个领头的飞在最前面,每当 一个领头的累了,就立刻换上另一个去领飞。 他们这种团结友爱的精神不禁使我想起了这样一句话:喜悦分给两个人就变成了两份喜悦; 痛苦分给两个人就减少了一半的痛苦。大雁都知道这种有福同享有难共当的道理,更何况是我们人类呢! “苏林,天晚了,回屋睡吧„„” 不知何时,妻子已来到我的身旁。 “肖燕,我心里很乱„„想一个人静一静„„” “小心别着凉„„女儿的屋里还亮着灯,也许她们还 在收拾行装,我去看看„„”肖燕说着便去了女儿的卧室。我知道这是她的借口而已,因为女儿的背包她已检查过无数遍了。现在她只不 过是再去多看女儿一眼,她实在是舍不得女儿们离开„„月白风清,我的思绪随风而去。回想起二十多年来走过的路,虽然没

高一数学同步辅导教材(第1讲)

高一数学同步辅导教材(第1讲)

高一数学同步辅导教材(第1讲)高一数学同步辅导教材(第1讲)1.1 实数在数学中,实数是指所有实数构成的集合,实数包括有理数和无理数。

有理数是可以表示为两个整数的比例(例如注:2/3),而无理数是不能用有限或重复的小数表示的数字,例如圆周率π。

实数有不同的性质,其中一个重要的性质就是实数可以相互比较大小。

实数可以在数轴上表示,可以用一个点表示。

例如,0就是一个实数,可以用数轴上的一个点来表示。

1.2 代数式与方程代数式是由数、字母和运算符号组成的表达式。

例如,3x+4就是一个代数式。

方程是等式,其中包括未知数和已知量,等式左右两边相等。

例如,3x+4=10就是一个方程。

方程的解是满足该方程的未知数的值,对于方程3x+4=10,x=2就是方程的解。

方程的解可以通过变形或代数上的计算求出。

变形是指将方程变形成另一个等价的方程,而不改变方程的解。

代数计算是指使用代数式的运算规则,对方程进行运算来求解它的未知数。

1.3 函数函数是将一个集合中的元素映射到另一个集合中的元素的一种数学关系。

简单地说,函数将输入数据(自变量)映射到输出数据(因变量)。

在函数中,通常用f(x)表示函数,其中f是函数名,而x则是自变量。

在函数解题中,重要的是求出函数的域和值域。

域是指自变量的所有可能取值,值域是指函数的输出值的所有可能值。

函数的定义域和值域可以使用集合的符号表示。

1.4 三角函数三角函数是三角形内角的函数。

三角函数很广泛应用于物理学、工程学、建筑学和数学等领域。

三角函数的三个基本函数是正弦、余弦和正切,它们分别表示三角形中的对边、邻边和斜边的比率。

正弦函数(sin)、余弦函数(cos)和正切函数(tan)的定义都涉及到三角形中的角度。

三角函数可以用函数图像或三角表表示。

在三角函数的解题中,常常需要使用三角函数的性质和公式。

常用的三角函数公式包括勾股定理、余弦定理和正弦定理等。

1.5 指数和对数指数和对数是数学中的两个重要概念。

5.5.2三角恒等变换(典例精讲)-【巅峰课堂】2021-2022学年高一数学同步精讲+检测(人教A

5.5.2三角恒等变换(典例精讲)-【巅峰课堂】2021-2022学年高一数学同步精讲+检测(人教A

1.向量的有关概念名称 定义备注向量 具有大小和方向的量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量零向量 长度为0的向量;其方向不确定记作0单位向量 长度等于1个单位的向量非零向量a 的单位向量为±a|a |平行向量(共线向量) 共线向量的方向相同或相反0与任意向量平行或共线 相等向量 大小、方向都相同的向量 两向量只有相等或不等,不能比较大小 相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律 向量的加法求两个向量和的运算(1)交换律: a +b =b +a .(2)结合律: (a +b )+c =a +(b +c ).向量的减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘向量求实数λ与向量a 的积的运算(1)|λa |=|λ||a |; (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0或a =0时,λa =0(1)(λ+μ)a =λa+μa ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa+λb3.平行向量基本定理如果a =λb ,则a ∥b ;反之,如果a ∥b ,且b ≠0,则一定存在唯一一个实数λ,使a =λb . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( √ )1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.① B.③ C.①③ D.①②答案 A解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误. 2.如图所示,向量a -b 等于( )A.-4e 1-2e 2B.-2e 1-4e 2C.e 1-3e 2D.3e 1-e 2解析 由题图可得a -b =BA →=e 1-3e 2.3.(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.4.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案 -13解析 由已知得a +λb =-k (b -3a ),∴⎩⎪⎨⎪⎧λ=-k ,3k =1.解得⎩⎨⎧λ=-13,k =13.题型一 平面向量的概念例1 下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④两个向量不能比较大小,但它们的模能比较大小.解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反; ③不正确,共线向量所在的直线可以重合,也可以平行;④正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.思维升华 (1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A.0 B.1 C.2 D.3答案 D解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 题型二 平面向量的线性运算 命题点1 向量的线性运算例2 (1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD →D.12BC → (2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 答案 (1)C (2)A解析 (1)EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →. (2)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+AB →,∴AD →=23AC →+13AB →=23b +13c .命题点2 根据向量线性运算求参数例3 (1)在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13C.-13D.-23(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 (1)A (2)D 解析 (1)∵AD →=2DB →, 即CD →-CA →=2(CB →-CD →), ∴CD →=13CA →+23CB →,∴λ=23.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略 (1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F两点,且交对角线AC 于K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为( ) A.29 B.27 C.25 D.23答案 A解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29,故选A.题型三 平行向量基本定理的应用 例4 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线.(2)解 ∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是两个不共线的非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( )A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 (1)B (2)12解析 (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →、AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B. (2)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.10.方程思想在平面向量线性运算中的应用典例 (12分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.思维点拨 (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去求解.(2)既然OM →能用a 、b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. 规范解答解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b .[3分]又∵A 、M 、D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →, 即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .[5分] ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t2,消去t 得,m -1=-2n , 即m +2n =1.① [7分]又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎫m -14a +n b , CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.[10分] ∴存在实数t 1,使得CM →=t 1CB →, ∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b , ∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1. 消去t 1得,4m +n =1. ②由①②得m =17,n =37,∴OM →=17a +37b .[12分]温馨提醒 (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A 、M 、D 三点共线和B 、M 、C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[方法与技巧]1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1. [失误与防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.A 组 专项基础训练 (时间:30分钟)1.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A.相等的向量 B.平行的向量 C.有相同起点的向量 D.模相等的向量答案 D解析 这四个向量的模相等.2.设a 0,b 0分别是与a ,b 同向的单位向量,则下列结论中正确的是( ) A.a 0=b 0 B.a 0·b 0=1 C.|a 0|+|b 0|=2 D.|a 0+b 0|=2 答案 C解析 因为是单位向量,所以|a 0|=1,|b 0|=1.3.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝⎛⎭⎫AD →-23AB →=23AB →+12AD →. 4.已知平面内一点P 及△ABC ,若P A →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( ) A.点P 在线段AB 上 B.点P 在线段BC 上 C.点P 在线段AC 上 D.点P 在△ABC 外部答案 C解析 由P A →+PB →+PC →=AB →得P A →+PC →=AB →-PB →=AP →,即PC →=AP →-P A →=2AP →,所以点P 在线段AC 上. 5.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于( ) A.30° B.60° C.90° D.120° 答案 B解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心, 又∵O 为△ABC 外接圆的圆心, ∴△ABC 为等边三角形,A =60°.6.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为________. 答案 平行四边形解析 由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →, 所以BA →=CD →.所以四边形ABCD 为平行四边形.7.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________. 答案 2解析 由|AB →+AC →|=|AB →-AC →|可知,AB →⊥AC →,则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM →|=12|BC →|=2.8.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________. 答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →,∴x =12,y =-16.9.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b .10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.(1)证明 ∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2=-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)解 AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧ 3=2λ,-2=-λk ,解得λ=32,k =43.B 组 专项能力提升(时间:15分钟)11.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是() A.-2 B.-1 C.1 D.2答案 B解析 ∵BC →=a +b ,CD →=a -2b ,∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线.设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1.12.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A.a -12bB.12a -bC.a +12b D.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a , 所以AD →=AC →+CD →=b +12a . 13.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则B 的大小为( )A.45°B.60°C.30°D.15°答案 B解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sinC ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c ,∴△ABC 是等边三角形,则角B =60°.故选B.14.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=____________.(用a ,b 表示)答案 -14a +14b 解析 由AN →=3NC →得AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM → =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 15.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ→=nOB →,m ,n ∈R ,则1n +1m的值为________. 答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧ -m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学同步辅导:函数的性质
1、若函数m x y -=
与其反函数的图象有公共点,则m 的取值范围是 ( ) (A)m ≥41
(B)m ≤41
(C)m ≥0 (D)m ≤0
2、函数y=x 2+2x(x <-1)的反函数是 ( ) (A)y=
1+x -1(x <-1 ) (B)y=1+x -1(x >-1) (C)y=-1+x -1(x <-1) (D)y=-1+x -1(x >-1)
3、若函数f(x)=m x x +-2
的反函数f -1
(x)=f(x),则m 的值是 ( ) (A)1 (B)-1 (C)2 (D)-2
4、设f(x)=
3412++x x (x ∈R,且x ≠-43),则f -1(2)的值等于 ( ) (A)65
- (B)52- (C)52 (D)115
5、已知函数y=f(x)是偶函数,其图象与x 轴有四个交点,则方程f(x)=0的所有实数根之和为 ( )
(A)4 (B)2 (C)1 (D)0
6、奇函数y=f(x)在区间[3,7]上是增函数,且最小值为-5,那么f(x)在区间[-7,-3]上( )
(A)是增函数且最小值为5 (B)是增函数且最大值为5
(C)是减函数且最小值为5 (D)是减函数且最大值为5
7、当21
≤x ≤2时,函数y=x+
x 1的值域为 ( ) (A)[2,+∞] (B)[2
21
,+∞] (C)[2,221 ] (D)(0,+∞) 8、若x x x f 1
)(-=,则对任意不为零的实数x 恒成立的是 ( )
(A)f(x)=f(-x) (B)⎪⎭⎫
⎝⎛=x f x f 1)( (C)⎪⎭⎫ ⎝⎛-=x f x f 1)( (D)f(x)·01=⎪⎭⎫ ⎝⎛x f
9、若函数y=f(x)是函数)10(222≤≤--=x x y 的反函数,则y=f(x)的图象是( )
10、给定如下四个命题:
(1)奇函数必有反函数;
(2)由于函数 y = f (x )和其反函数y = f -1(x )的图象关于直线y = x 对称,所以y =f (x )
与y = f -1(x )的图象不能相交;
(3)关于直线y = x 成轴对称的两个函数图象一定是互为反函数的一对函数的图象;
(4)互为反函数的两个函数具有相同的增减性。

其中正确的命题是 ( )
(A ) (1)、(2) (B ) (3)、(4) (C ) (1)、(4) (D ) (1)、(3)、(4)
11、函数y=f(x)与f -1(x)的图象关于直线_______对称。

12、如果函数f(x)满足f(
x 1)=21x x -,则f(x)= __________. 13、若函数f(x)=2x 2-4x +9(x ≥1),且满足f -1(a +1)=3,则f(a)=________.
14、已知函数21x y --=的反函数是21x y --=,则原函数的定义域是_________
15、若点(1,2)既在函数b ax y +=的图象上,又在其反函数的图象上,则a=______,b=______.
16、求函数的反函数:若x
x
y -+=11(x ≠1),则f -1(x)= ______. 17、求函数的反函数:若f(x)=42-x (x ≤-2),则f -1(x)=______.
18、求函数的反函数:若f(x)=⎩⎨⎧>-≤),
0(3),0(2x x x x 则f -1(x)=______.
19、已知f(x +y)=f(x)+f(y)对于任何实数x,y 都成立,①求证f(2x)=2f(x);②求f(0)的值;③求证f(x)为奇函数.
20、已知函数f(x)=b ax x
+(a ,b 为常数,a 0≠)满足f(2)=1,且方程f(x)=x 的根
只有一个,则f(x)的解析式为________
21、函数y=f (x )及y=g(x)有相同的定义域, 且对定义域中的任意x 都有f(x)·f(-x)=1及g(x)+g(-x)=0, 则函数)(1)(1
)()(x g x f x f x F ++-=的奇偶性为____________
22、若一次函数)(x f 的反函数仍是它本身,求f (x )的解析式。

23、已知点(1,2)在函数b ax x f +=
)(的图象上,又其反函数)(1x f -的图象过
(4,-3)点,求a ,b 的值。

24、已知对于任意a,b ∈R,有f(a+b)+f(a -b)=2f(a)·f(b),且f(0)≠0
(1)求证:f(x)为偶函数;
(2)若存在正数m 使得f(m)=0,求满足f(x+T)=f(x)的一个T 值(T ≠0).
答案:
1、B
2、D
3、 B
4、A
5、 D
6、 B
7、C 8、 C 9、 B 10、⑴错如x x y 1+
=⑵错⑶对⑷对B 11、y=x 12、 12-x x
13、f(a)=345 14、 [-1,0] 15、a=-3,b=7.
16、 11
+-x x (x ≠-1).
17、 42+-x (x ≥0)
18、 ⎪⎩⎪⎨⎧<-≥-).0(3
1),0(x x x x
19、 (1)令y=x 得 f(2x)=f(x)+f(x)=2f(x)
(2) 令y=x=0得 f(0)=2f(0)→f(0)=0
(3) 令y=-x 得 f(0)=f(x)+f(-x) →f(-x)=-f(x)
20、22)(+=x x
x f
21、奇函数
22、或)()(R b b x x f ∈+-=)(x f =x .
23、 a =-3,b =7
24、证明:(1)由已知f(a+b)+f(a -b)=2f(a)·f(b),令a=b=0,得f(0)+f(0)=2[f(0)]2
∵f(0)≠0得f(0)=1.又令a=0,得f(b)+f(-b)=2f(0)f(b),
∴f(b)=f(-b) 即f(x)=f(-x),∴函数f(x)为偶函数。

(2)在f(a+b)+f(a-b)=2f(a)·f(b)中,取a=a+m,b=m 得f(x+2m)+f(x)=2f(x+m)·f(m). ∵f(x)=0,于是f(x+2m)+f(x)=0,∴f(x+2m)=-f(x).
∴f(x+2m+2m)=-f(x+2m)=-[-f(x)]=f(x).故取T=4m 即可。

相关文档
最新文档