新人教版高中数学必修四教材分析
高中数学必修四《两角差的余弦公式》优秀教学设计
![高中数学必修四《两角差的余弦公式》优秀教学设计](https://img.taocdn.com/s3/m/7b2a9be5c77da26924c5b04d.png)
3.1.1两角差的余弦公式一、教材分析《两角差的余弦公式》是人教A 版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。
本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。
二、教学目标1.引导学生建立两角差的余弦公式。
通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。
2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。
3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。
三、教学重点难点重点 两角差余弦公式的探索和简单应用。
难点 探索过程的组织和引导。
四、学情分析之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角αβ,的正弦余弦值来表示cos()αβ-,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。
五、教学方法1.自主性学习法:通过自学掌握两角差的余弦公式.2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程.3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距 六、课时安排:2课时 七、教学过程(一)创设情景,揭示课题以文峰塔高度测量为背景素材(见课件)引入问题。
并针对问题中的0cos15用计算器或不用计算器计算求值,以激趣激疑,导入课题。
问题:(1)能不能不用计算器求值 :0cos 45 ,0cos30 ,0cos15(2)0cos(4530)cos 45cos30-=-是否成立?(3)如何用450和300求0cos15?设计意图:由给出的背景素材,使学生感受数学源于生活,又应用于生活,唤起学生解决问题的兴趣,和抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。
(二)、研探新知 1.三角函数线法:问:①怎样作出角α、β、αβ-的终边。
(人教版)高中数学必修四教学三维目标重难点
![(人教版)高中数学必修四教学三维目标重难点](https://img.taocdn.com/s3/m/4f5c345b69eae009581bec68.png)
第一章三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板1.1任意角和弧度制1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点: 理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板1.2 任意角的三角函数1.2.1任意角的三角函数(一)一、教学目标:1、知识与技能(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器第二课时任意角的三角函数(二)【复习回顾】1、三角函数的定义;2、三角函数在各象限角的符号;3、三角函数在轴上角的值;4、诱导公式(一):终边相同的角的同一三角函数的值相等;5、三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.【探究新知】1.引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数——三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角α为第一象限角时,则其终边与单位圆必有一个交点(,)⊥轴交x轴于点M,则请你观P x y,过点P作PM x察:根据三角函数的定义:|||||sin|OM xα====;|||||cos|MP yα随着α在第一象限内转动,MP、OM是否也跟着变化?3.思考:(1)为了去掉上述等式中的绝对值符号,能否给线段MP、OM规定一个适当的方向,使它们的取值与点P的坐标一致?(2)你能借助单位圆,找到一条如MP、OM一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O为始点、M为终点,规定:当线段OM与x轴同向时,OM的方向为正向,且有正值x;当线段OM与x轴反向时,OM的方向为负向,且有正值x;其中x为P点的横坐标.这样,无论那种情况都有==cosOM xα同理,当角α的终边不在x轴上时,以M为始点、P为终点,规定:当线段MP与y轴同向时,MP的方向为正向,且有正值y;当线段MP与y轴反向时,MP的方向为负向,且有正值y;其中y为P点的横坐标.这样,无论那种情况都有==MP yαsin4.像MP OM、这种被看作带有方向的线段,叫做有向线段(direct line segment).5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα== 我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:(1)当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?(2)当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解例1.已知42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质.8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用.【评价设计】1. 作业:比较下列各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒ (2)'cos15018︒、cos121︒ (3)5π、tan 5π2.练习三角函数线的作图.1.2任意角的三角函数1.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影第二章 平面向量第1课时§2.1 平面向量的实际背景及基本概念教学目标:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体或实物投影仪,尺规授课类型:新授课第2课时§2.2.1 向量的加法运算及其几何意义教学目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.学法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律. 教具:多媒体或实物投影仪,尺规第3课时§2.2.2 向量的减法运算及其几何意义教学目标:1.了解相反向量的概念;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.教学重点:向量减法的概念和向量减法的作图法.教学难点:减法运算时方向的确定.学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教具:多媒体或实物投影仪,尺规授课类型:新授课2.3平面向量的基本定理及坐标表示第4课时§2.3.1 平面向量基本定理教学目的:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.授课类型:新授课教具:多媒体、实物投影仪第5课时§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.授课类型:新授课教具:多媒体、实物投影仪第6课时§2.3.4 平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪§2.4平面向量的数量积第7课时一、平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.⑶能用所学知识解决有关综合问题.教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用授课类型:新授课教具:多媒体、实物投影仪第三章三角恒等变换3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1. 学法:启发式教学2. 教学用具:多媒体§3.1.2 两角和与差的正弦、余弦、正切公式一、教学目标理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、学法与教学用具学法:研讨式教学§3.1.3 二倍角的正弦、余弦和正切公式一、教学目标以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.二、教学重、难点教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;教学难点:二倍角的理解及其灵活运用.三、学法与教学用具学法:研讨式教学四3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学《三角恒等变换》复习课(2个课时)一、教学目标进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:二、知识与方法:1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替±ββ、2π代替β、α=β等换元法可以推导出其它公式。
新课程高中数学必修4教案
![新课程高中数学必修4教案](https://img.taocdn.com/s3/m/cbed2665effdc8d376eeaeaad1f34693dbef1049.png)
新课程高中数学必修4教案
教案范本
第一课时
主题:集合与命题
教学目标:学生将能够理解集合的概念,掌握集合的运算及性质,了解命题的基本结构和逻辑运算。
教学内容:
1. 集合的基本概念和表示方法
2. 集合的运算:并集、交集、差集、补集
3. 集合的性质:幂集、空集、全集
4. 命题及逻辑运算:与、或、非、等价、蕴含
教学活动:
1. 引导学生思考日常生活中的集合问题,如班级里喜欢看电影的同学的集合是什么等
2. 讲解集合的基本概念和运算,并进行相关例题讲解
3. 设计讨论题,让学生解答关于集合的问题,巩固学习成果
4. 引导学生掌握命题的基本结构和逻辑运算,进行适当的练习
作业安排:
1. 完成课后习题,复习集合的概念和运算
2. 思考并总结日常生活中的命题,写出具体例子
评价标准:
1. 熟练掌握集合的基本概念和运算
2. 能够准确运用命题的逻辑运算,理解命题间的关系
拓展延伸:
学生可以通过实际场景中的案例,更好地理解集合和命题的应用,同时可以深入学习集合的进阶内容和更复杂的逻辑运算。
人教版高中数学必修4全册
![人教版高中数学必修4全册](https://img.taocdn.com/s3/m/6e6f645202d276a201292e2a.png)
(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ
或
2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
2
2
则α角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)
高中数学_诱导公式教学设计学情分析教材分析课后反思
![高中数学_诱导公式教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/596a7369b80d6c85ec3a87c24028915f804d8485.png)
诱导公式教学设计一、内容分析:1.教材的地位与作用《诱导公式》是高中数学必修四1.2.4, 其主要内容是诱导公式及其应用。
过去学生已经学习了单位圆, 三角函数的定义, 同角三角函数的基本关系式等, 在此基础上来学习诱导公式的推导及其应用, 为今后学习三角函数的图象与性质打好了基础。
因此, 本节的学习有着极其重要的地位。
本节共分三个课时, 本课为第一课时, 主要是利用三角函数的定义推导出诱导公式并且应用。
2.教学重点和难点教学重点: 诱导公式(一)(二)及综合应用。
教学难点: 公式的推导和对称变换思想在学习过程中的渗透。
二、目标分析根据《高中数学教学大纲》的要求和教学内容的结构特征, 依据学生学习的心理规律和素质教育的要求, 结合学生的实际水平, 制定本节课的教学目标如下:1.知识目标:理解正弦, 余弦, 正切的诱导公式。
2、能力目标:(1)会用三角函数的定义和单位圆推导出公式;(2)掌握诱导公式并应用之进行三角函数式的求值, 化简;(3)培养观察能力、分析能力、归纳总结能力;(4)培养数形结合的数学思想方法。
3.德育目标:(1)渗透由抽象到具体的思想, 培养学生辩证唯物主义观点;(2)培养学生合作学习和数学交流的能力;三、教法分析根据上述教材分析和目标分析, 贯彻诱思探究教学原则, 体现以教师为主导, 学生为主体的教学思想, 深化课堂教学改革, 确定本课主要的教法为:1.计算机辅助教学借助多媒体教学手段引导学生理解利用单位圆和定义推导出公式, 使问题变得直观, 易理解;利用多媒体向学生展示, 使学生有直观认识。
2.讨论式教学通过观察课件的演示, 让学生分组讨论、交流、总结, 说出诱导公式(不同层次的组员回答, 教师给予评价不同)。
3.讲练结合教学教师耐心引导、分析、讲解和提问, 并及时对学生的意见进行肯定与评议。
四、学法分析引导学生认真观察教学课件的演示, 指导学生进行分组讨论交流, 促进学生知识体系的建构和数学思想方法的形成, 注意面向全体学生, 培养学生勇于探索、勤于思考的精神, 提高学生合作学习和数学交流的能力。
高中数学必修四《任意角》教学设计
![高中数学必修四《任意角》教学设计](https://img.taocdn.com/s3/m/ff3f5dd0b8f3f90f76c66137ee06eff9aef84915.png)
1.1.1 任意角(教学设计)内容:人教A版高中数学必修④第一章第一节第一课时.适合对象:高一学生【教材分析】三角函数是基本初等函数之一,也是中学数学的重要内容之一,它是研究度量几何的基础,又是研究自然界周期变化规律的最强有力的数学工具.因此,本节课作为高中三角函数的起始课,有着衔接初高中学习,承前启后的作用,也为今后学习任意角的三角函数奠定了基础.本节课主要介绍推广角的概念,引入正角、负角、零角的定义;介绍象限角的概念;终边相同的角的表示方法;帮助学生树立运动变化的观点,并由此深刻理解推广后角的概念.【教学目标分析】根据新课程标准和上述教材分析,本节课的教学目标设计如下:1.知识与技能目标:(1)使学生理解用“旋转”定义角;(2)理解“正角”、“负角”、“零角”、“象限角”、“终边相同的角”的含义;(3)掌握所有与角α终边相同的角(包括角α)的表示方法.2.过程与方法(1)通过问题情境,让学生自己完成角的概念的推广这一认知过程,培养学生观察、分析、运用所学知识解决问题的能力;(2)指导学生通过各种角表示法的训练,提高分析、抽象、概括的能力.3.情感态度价值观(1)通过对角的定义的推广过程的教学使学生感受到数学的应用性和知识的力量,增强学习数学的兴趣和信心,激发学生学习数学的热情;(2)重视知识的形成过程教学,让学生知其然并知其所以然,同时体会到创新的乐趣;(3)通过对角的集合表示的严密化,培养学生形成扎实严谨的科学作风.【教学重难点】1.教学重点:理解并掌握正角、负角、零角及象限角的定义,会表示终边相同的角的集合;2.教学难点:把终边相同的角用集合的符号语言表示出来.【教学问题诊断分析】学生在初中已学过0360范围内的角,这可能对角的概念的推广在认识上有一定的困难,因此,在教学中可结合生活中的具体例子,以学生熟悉的背景,引起学生的认知冲突,让学生体会角的概念有推广的必要.接着给出有关角的概念,在已有的认知条件下,学生是可以接受的.值得注意的是,终边相同的角的概念并不难理解,但用集合表示终边相同的角时,部分学生还是会有一些障碍,针对这一问题,在教学时应多举实例将特殊问题推广到一般情况,最好能让学生自己总结.【教学方法分析】新课程要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.本节课可采用问题引领的方式让学生思考、自主探究及教师启发的教学方法.教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,并以多媒体辅助教学为手段,构建学生自主探究的平台,激发学生的求知欲,促使学生解决问题.【信息技术分析】多媒体教室及PowerPoint2003.【教学过程】导入新课师:今天这节课,我想和大家共同探讨一个话题:角(教师板书)师:对于角,我们并不陌生,初中就学过角的概念.问题1:初中我们是如何定义一个角的?所学的角的范围是什么?师生活动:教师提问,学生思考、回答.设计意图:回忆初中所学角的概念,为接下来角的推广作准备.新课讲解内容一:角的定义问题2:体操名词“程菲跳”是“踺子后手翻转体180度接前直转体空翻540度”的动作命名.这里的540度是一个什么样的角,能描述它吗?设计意图:用体操情境引发学生思考,激发学生探究新知的欲望,调动学生参与教学的积极性,由此引出用“旋转”来定义角.师生活动:师:540度角初中学过吗?怎么描述呢?生:初中没学过,我认为540度实际上就是旋转了一周半.师:那540度角能画出来吗?生:我目前画不出来.师:现在540度角还画不出来,说明初中角的概念不能满足我们进一步学习的需要,所以本节课的首要任务就是将角推广到任意角.(教师板书:1.1.1任意角,同时PPT给出角的定义)角的定义:平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的的图形.(接着用PPT演示角的形成过程并给出角的表示方法以及角的顶点、始边和终边的概念)内容二:正角、负角和零角师:好,我们接着看下一个问题.问题3:跳水运动员向内、向外转体两周半,这是多大角度?设计意图:使学生认识到角的推广不仅考虑要用旋转量,还应考虑旋转方向,为接下来正角、负角和零角的概念做好准备.师生活动:生:这是900度的角(教师追问:你是怎么想到的?学生继续作答)师:那向内旋转和向外旋转完全一样吗?生:不完全一样,空中旋转过程不一样(因为方向不同)师:也就是说,我们不仅需要从数量的角度将角推广,还需要根据旋转方向不同将角加以区分.在新的定义下,我们继续探讨与角有关的概念.(教师板书,同时PPT给出概念)1.正角、负角和零角我们规定,按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成了一个零角.师:这样,我们就把角的概念推广到了任意角,包括正角、负角和零角.内容三:象限角师:前面我们讲了这么多,现在请大家动手画出120的角.设计意图:利用新概念重新认识角的问题,通过画120角发现位置可能不同,让学生感受没有统一标准时,角的表示不方便. 通过画图探究、交流,不难给出合理的规定,让学生感知把角放到平面直角坐标系中的好处.师生活动:教师让学生把所画的图形在黑板上展示,最好有位置不同的图形作对比.如果没有的话,教师自己画一个和学生所画位置不同的角.师:可以看出,由于选取始边的位置不同,可能同样大小的角画出来的位置不同,我们更好的管理任意角,我们要给任意角加以规定.为了后续学习的需要,我们常在平面直角坐标系中讨论角,那么怎么呢把角放到坐标系中比较合理?生:把角的顶点放在坐标原点,始边放在x 轴的正半轴.(教师纠正为x 轴非负半轴) 教师在总结分析角的始边和顶点规定的基础上,给出象限角的概念.(教师板书:象限角.同时PPT 上给出象限角的概念)2.象限角为了讨论问题的方便,我们使角的顶点与原点重合,角的始边与x 轴非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.内容四:终边相同的角师:学习了这些概念,我们再画几个角.问题4:在平面直角坐标系中作出32-,328,392-的角,观察这些角之间有什么内在联系?设计意图:从具体问题入手,了解终边相同的角的关系.师生活动:学生独立画图.教师巡视后,学生回答.生:这些角的终边相同.(教师追问:为什么?能解释一下吗?)师:与32-角终边相同的角有多少个?(学生回答:无数个)师:这些与32-角终边相同的角,包括32-的角在内,能用集合表示出来吗?教师给足时间让学生思考、作图,教师巡视后请学生(可找多个学生)在黑板上写出自己的答案,教师归纳总结,得出终边相同的角的集合.(教师板书,PPT 展示下面文字)3.终边相同的角一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合{}=360,k k Z ββα+⋅∈即任一与角α终边相同的角,都可以表示成角α与整数 个周角的和.例题分析例 1 在0360(即0360α≤<)范围内,找出与95012'-角终边相同的角,并判定它是第几象限角.解:95012129483360''-=-⨯,所以在0360范围内,与95012'-角终边相同的角是12948',它是第二象限角.设计意图:通过例题,使学生进一步理解任意角的概念以及象限角和终边相同的角的概念. 师生活动:学生独立完成后回答,教师点评总结.学生练习1.下列说法正确的是( )参考答案:DA .第一象限的角小于第二象限的角B .若90180α≤≤,则α是第二象限的角C .小于90的角都是锐角D .有些角不是任何象限的角2.与460-角终边相同的角可以表示成( )参考答案:CA .460360,k k Z +⋅∈B .100360,k k Z +⋅∈C .260360,k k Z +⋅∈D .260360,k k Z -+⋅∈设计意图:通过练习,检验是否掌握的任意角的概念.师生活动:学生独立思考,教师巡视、个别辅导后请学生回答,教师再点评. 课堂小结通过本节课的学习,你有哪些收获?设计意图:让学生复习本节课的主要内容,完善学生的认知结构,体会数学思想方法. 师生活动:学生回答,教师补充.同时解决学生提出的疑惑布置作业必做题:课本第9页 习题1.1 A 组 1、2、3选做题:已知α是第一象限角,那么2α和2α是第几象限角? 板书设计。
最新高中数学必修4-必修4第三章教材分析优秀名师资料
![最新高中数学必修4-必修4第三章教材分析优秀名师资料](https://img.taocdn.com/s3/m/e7d53f5d31b765ce050814ec.png)
高中数学必修4-必修4第三章教材分析必修4第三章教材分析(一) 编写特色1( 用向量证明和角公式,引导学生用向量研究和差化积公式。
2( 建立和角公式与旋转变换之间的联系。
3( 融入算法,引导学生找出求正弦函数值的算法。
4( 引导学生独立的由和角公式推导出倍角公式与和差化积、积化和差公式。
5( 和角公式在三角恒等变换及三角计算中的应用。
(二) 内容结构1(内容编排本章的主要内容是和角公式、倍角公式和半角公式、三角函数的积化和差公式与和差化积公式,为了引起学生学习本章的兴趣,同时为了加强三角变换的实际应用,本章的开篇从一个实际问题出发,通过数学化,得到一个必须通过三角变换才能解决的数学问题,从而激发学生对本章内容的学习兴趣和求知欲。
全章共分三大节。
第一大节,首先利用向量的方法证明了两角差的余弦公式,接着导出两角和的余弦公式,再利用诱导公式推出两角和、差的正弦公式,又利用同角三角函数关系式推出两角和、差的正切公式;第二大节,推导出倍角公式和半角公式。
第三大节,推导出积化和差与和差化积公式,并通过例题讲解以上各公式的应用。
2,地位与作用变换是数学的重要工具,也是数学学习的主要对象之一。
代数变换是学生熟悉的,与代数变换一样,三角变换也是只变其形不变其质,它可以揭示那些外形不同但实质相同的三角函数式之间的内在联系。
在本册第一章,学生接触了同角三角函数式的变换。
在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角恒等变换公式,并运用这些公式进行简单的三角恒等变换,通过本章学习,学生的推理能力和运算能力将得到进一步提高。
三角恒等变换在数学及应用科学中应用广泛,同时有利于发展学生的推理能力和计算能力,本章将通过三角恒等变形揭示一些问题的数学本质。
3(重点与难点本章的重点是掌握和角公式的推导过程;难点是理解和角公式的几何意义。
4(本章知识结构SS2a a-bSTa+bTa-ba+b向量的数量积Ca-b及其坐标运算Ca+b积化和差C2a T2aaT,aa和差化积CS222(三)课时分配本章教学时间约8课时,具体分配如下: 3(1 和角公式3(1(1 两角和与差的余弦 2课时3(1(2 两角和与差的正弦 1课时3(1(3 两角和与差的正切 1课时 3(2 倍角公式和半角公式3(2(1 倍角公式 1课时3(2(2 半角的正弦、余弦和正切 1课时 3(3 三角函数的积化和差与和差化积1课时本章小结 1课时3(1(1两角和与差的余弦(一) 课题(一)教学目标:知识目标:理解并掌握两角和、差的余弦公式及其推导过程,理解公式的使用条件;会用公式求值能力目标:培养学生观察分析、类比、联想能力;推理能力及交流探讨能力。
2019年秋人教版高中新教材解读(数学)
![2019年秋人教版高中新教材解读(数学)](https://img.taocdn.com/s3/m/90a04dfd71fe910ef02df84d.png)
2019年秋人教版高中新教材解读(数学)普通高中《数学》全套教材共5册,其中必修教材分必修一、必修二两册,选择性必修教材分选择性必修(一)、(二)、(三)3册。
此次高中数学新教材,是依据2017年12月教育部组织修订并颁布的《普通高中课程方案和数学学科课程标准(2017年版)》编写的。
下面我们先睹为快,看看新教材内容都有哪些变化——一、高中数学新教材有哪些变化?必修第一册的教学内容其实与改革前的内容与顺序基本一致,必修第一册将原版人教A版教材中的必修一、必修四的三角函数与三角恒等变换以及必修五不等式部分合在一起,还将命题、常用逻辑用语原先出自选修的内容合并成第一册的内容。
必修第二册的内容也融合了原先人教A版中必修四的向量部分、必修二的立体几何初步以及必修三的统计与概率部分,同时还加入了原先在选修出现的复数部分,从新教材的内容可以看出,原先三视图以及程序框图部分已经彻底删掉,现在只是给大家介绍直观图的概念。
选择性必修第一册可以明显感受到,新教材的编写者将有关坐标系以及解析几何相关内容融合在一起,而且这一册的难度和重点为计算,难度相对必修内容,难度有所上升。
必修第二册内容相对少一些,只有两章,所对应的内容是数列与导数的相关知识,这一改革还是很重大的,将原本必修五的数列部分直接划入选修模块,并且和导数合并为一册。
选修最后一册主要内容是计数原理与概率,还有一小部分是线性回归方程,其实总体的要求是想让学生学会如何进行数据处理,在之前一直宣传的数学建模,也在选择性必修第三册中出现,说明改革之后的教学内容,更加注重培养学生数学应用方面的能力。
通过对新教材每一本书的介绍,可以发现改革之后的教材与现阶段的教材区别主要有以下几点:(1)整合知识点。
相较于原版教材,新版教材的知识点与体系更加集中,模块之间分类很清晰,这可以方便学生理解和练习。
(2)难度区分明显。
改革之后的教材,将必修第一册和第二册定义为基础练习,让学生在必修阶段完成高中数学的基础知识练习,并且帮助学生从高一开始,完成初中和高中之间的衔接与转化,但是同时,学生的压力逐渐平移到选修部分。
高中数学必修4教资教案
![高中数学必修4教资教案](https://img.taocdn.com/s3/m/cedc4e7d3868011ca300a6c30c2259010302f36d.png)
高中数学必修4教资教案
课程名称:高中数学必修4
课时安排:共40课时,每周3课时,共13周完成
教学目标:通过本教材的教学,使学生能够有效掌握高中数学必修4的相关知识和技能,提高学生的数学素养和解决问题的能力。
第一课时:集合与常用逻辑符号
教学内容:
1. 了解集合的概念和性质。
2. 掌握集合的表示方法和常用符号。
3. 学习常用的逻辑符号及其意义。
教学重点:理解集合的概念和常用逻辑符号的含义。
教学难点:如何用常用逻辑符号表示命题、复合命题的判断。
教学方法:示例分析法、讨论交流法
教学过程:
1. 引入集合的概念,讲解集合的定义和性质。
2. 介绍集合的表示方法和常用符号,并通过例题进行讲解。
3. 学习常用的逻辑符号及其含义,讲解逻辑符号的运用。
4. 练习题目,巩固学生对集合和逻辑符号的理解。
作业:完成课后习题,熟练掌握集合和逻辑符号的用法。
课后反思:本节课主要是介绍集合的概念和常用逻辑符号,学生在掌握这些基本知识的基础上,可以更好地理解后续内容。
备注:本教案为高中数学必修4教材第一章的教学内容,旨在帮助学生建立良好的数学基础,为以后更深入的学习打下坚实的基础。
高中数学 第一章《三角函数》正弦、余弦函数的周期性教案 新人教版必修4-新人教版高一必修4数学教案
![高中数学 第一章《三角函数》正弦、余弦函数的周期性教案 新人教版必修4-新人教版高一必修4数学教案](https://img.taocdn.com/s3/m/f5ea6d9148d7c1c709a14583.png)
正弦、余弦函数的周期性教案一、教材分析:《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用.二、教学目标:学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期.(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sin x 的周期性,通过类比研究余弦函数y=cosx的周期性.(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.三、教学重点:周期函数的定义和正弦、余弦函数的周期性.四、教学难点:周期函数定义及运用定义求函数的周期.五、教学准备:三角板、多媒体课件六、教学流程:求下列函数的周期: (1)3sin4x y =,x R ∈;(2)sin()10y x π=+,x R ∈;(3)cos(2)3y x π=+,x R ∈(4)1sin()24y x π=-,x R ∈ 课外思考:1. 求函数()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期.2.求下列函数的周期:(1)|sin |x y =,x R ∈;(2)|2cos |x y =,x R ∈ 附:板书设计附:1.本节课预计学生建构周期函数概念时有困难,特别是“正弦函数图象的周而复始变化实际上是函数值的周而复始变化” 的本质学生理解有一定困难.为了突破这个难点,借助了几何画板来帮助学生从形象思维过渡到抽象思维.2.预计部分学生对周期函数定义的自变量的任意性的理解有困难,为了突破这个难点,设计了三道判断题让学生分组讨论交流,通过学生思维碰撞来体会数学概念的严谨,通过学生互动建构自己对周期函数概念的认识.3.预计部分学生运用周期函数定义求函数周期有一定困难,为了解决这个困难,在设计中,例1第1问由师生共同完成,完成后小结解题的思路方法.再由学生完成第2问和第3问,再由师生共同点评.教案设计说明 《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.本课的重点为周期函数的定义和正弦、余弦函数的周期性,难点为周期函数定义及运用定义求函数的周期.本课的教学设计分为六个部分,包括:教材分析,目标分析(含学情分析),教学重难点,教学准备,教学流程,教学过程.设计反映了由学生熟悉的生活的周期现象出发,通过概括、抽象,并结合正弦函数的图象引导学生感受周期函数概念的形成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节.以这些分析为基础从而确定教学目标,而过程设计则针对目标从九个环节进行具体的设计.教学过程设计自始至终贯穿数形结合思想.下面从如下几个方面进行详细说明.一、教学内容的数学本质及教学目标定位本节课主要内容是周期函数的概念及正弦、余弦函数的周期性.通过对正弦函数图象“周而复始”的变化规律特征的感知,使学生建立比较牢固的理解周期性的认知基础,然后再引导学生了解用代数表达式刻画图象“周而复始”的变化规律.本节课要探究的周期函数的概念的数学本质是从形和数两个方面去刻画“周而复始”的变化规律.学生在知识上已经学习了函数概念与基本初等函数等知识,已经掌握了三角函数图象的画法及五点法作图;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经接触过数形结合、类比、特殊到一般等数学思想.另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识与技能”、“过程与方法”和“情感态度与价值观”设定目标.其中知识与技能目标为:理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期.过程与方法则是:从学生实际中的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念. 运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.并且在过程中渗透了本课的情感态度目标:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.以上是对教学目标定位的说明.二、教学流程入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.正弦函数、余弦函数的周期性,与后面高中物理研究的《单摆运动》、《简谐运动》、《机械波》等知识有着密切相关的联系.在数学和其它领域(物理学、生物学、医学等)中具有重要的作用,所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁.四、教学诊断分析1.学习正弦、余弦函数的周期性时,用图象法求周期学生容易理解;建构周期函数概念时学生有困难,特别是“正弦函数图象的周而复始的变化实际上是函数值的周而复始的变化”的本质学生感到有一定困难. 我首先让学生回顾如何利用正弦线画正弦函数y=sin x图象(动画演示),通过动画演示,让学生感知正弦函数图象“周而复始”的变化规律,再引导学生用代数表达式刻画图象“周而复始”的变化规律.2.部分学生对周期函数定义中的任意性理解容易出现错误,需要在教学中反复强调.3.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去.五、教法特点及预期效果分析结合教学目标以及学生的实际情况,我采用了启发引导与小组合作交流相结合的教学方式,而在知识构建过程中,在教师引导下,使学生经历了直观感知、观察发现、抽象概括等思维活动,提高数学思维能力;注重信息技术与数学课程的整合,提倡利用信息技术呈现以往教学中难以呈现的课程内容,鼓励学生运用信息技术进行探索和发现.本节课遵循学生的认知规律,通过典型具体例子的分析和学生自主地观察、探索活动,使学生理解周期概念的形成过程,体会蕴含在其中的数形结合的思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,教学内容利用生活中的问题和课本上已有的知识创设情境,使教学内容不仅贴近生活,并且来源于旧知识,设计内容一环扣一环,使学生对周期函数的概念理解和应用步步深入.在教学方法上运用多种方法,如观察、分析、归纳、讨论;在知识的学习过程中,重视知识的形成过程和概括过程.在解决问题中,引导学生分析、归纳方法,注意优化学生的思维品质;在教学手段上采用多媒体和黑板重点板书结合的教学方法.通过本节课学习,我力求达到:1 、形成学生主动参与,自主探究,合作交流的课堂气氛.2、学生进一步了解数学来源于生活,理解周期函数和周期的定义.3、让学生体会从感性到理性的思维过程,体会数形结合思想,让学生领悟问题探究的学习方法.由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标.。
最新新人教版高中数学必修四教材分析(1)
![最新新人教版高中数学必修四教材分析(1)](https://img.taocdn.com/s3/m/a11c7728650e52ea55189896.png)
新人教版高中数学必修四教材分析一、教材分析的理论本文分析的内容为新人A教版高中数学(必修四),运用系统理论进行研究,其出发点就是将教材看成是一个系统。
分析系统的要素之间整体与部分的构成关系,以及形成的不同质态的分系统及其排列次序。
进行教材分析,首先从整个数学教育发展到教师个人专业成长,再到课堂教学等方面研究教材分析的意义;然后,按照树立正确教材观、深刻理解课标、分析教材特点、分析教材内容结构、处理教材等步骤研究如何科学分析高中数学教材,其中的案例均来自人教A版高中数学(必修四);最后,结合典例分析的感悟,提出了高中数学教材分析时应坚持的思想性、实践性、整体性及发展性原则,以提升教材分析的效果。
二、数学必修四第三章的教材分析从系统上看作为新课程高中数学非常重要的必修四,它是由“第一章三角函数、第二章平面向量、第三章三角恒等变换”三部分内容组成。
内容层层递进,逐步深入,这对于发展学生的运算和推理能力都有好处。
本章内容以三角恒等变换重点,体会向量方法的作用,并利用单位圆中的三角函数线、三角形中的边角关系等建立的正弦、余弦值的等量关系。
在两角差的余弦公式的推导中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦和正切公式的过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、特殊化、化归等思想方法。
特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导。
教材还对三角变换中的数学思想方法作了明确的总结。
本章还强调了用向量方法推导差角的余弦公式,并用三角函数之间的关系推导和(差)角公式、二倍角公式。
要把重点放在培养学生的推理能力和运算能力上,降低变换的技巧性要求。
教学时应当把握好这种“度”,遵循“标准”所规定的内容和要求,不要随意补充知识点(如半角公式、积化和差与和差化积公式,这些公式只是作为基本训练的素材,结果不要求记忆,更不要求运用)。
高中数学 直线与双曲线的位置关系教案 新人教版必修4
![高中数学 直线与双曲线的位置关系教案 新人教版必修4](https://img.taocdn.com/s3/m/8ca8e3fdf605cc1755270722192e453610665b2a.png)
教学方式探索与实践——问题与猜想教学方法课题:直线与双曲线的位置关系一、教学目标:〔一〕知识目标:掌握直线的斜率对其与双曲线位置关系的影响,学会用根的判别式判断两者位置关系。
〔二〕能力目标:培养学生观察、发现、分析、探索知识能力,培养学生数形结合和化归等数学思想。
〔三〕情感目标:通过问题情境,培养学生自主参与意识,及合作精神,激发学生探索数学的兴趣,体验数学学习的过程和成功后的喜悦。
二、教学重点:引导学生探究直线与双曲线相关知识。
三、教学难点:应用数学思维及直线与双曲线位置关系等知识来解决数学问题。
四、教学方法:MM 教学方式探索与实践——问题与猜想教学方法 五、教学过程体验:问题:如果直线1-=kx y 与双曲线422=-y x 没有公共点,求k 的取值X 围。
〔高二数学上复习参考题八13题〕分组探讨,解决问题:解:由联立方程⎩⎨⎧=--=4122y x kx y 得:052)1(22=-+-kx x k ∵直线1-=kx y 与双曲线422=-y x 没有公共点 ∴01620)1((204222<-=-+=∆k k k 解之得:25,25-<>k k∴k 的取值X 围为25,25-<>k k 或 让学生在对这一问题独立思考的基础上,安排学生分组交流,提出让学生对该题可进行如何变式,然后再去研究、探讨、猜想、解决问题。
变式一:如果直线1-=kx y 与双曲线422=-y x 有一个公共点,求k 的取值X 围。
变式二:如果直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值X 围。
变式三:如果直线1-=kx y 与双曲线422=-y x 在左支上有两个公共点,求k 的取值X 围。
变式四:如果直线1-=kx y 与双曲线422=-y x 在右支上有两个公共点,求k 的取值X 围。
变式五:如果直线1-=kx y 与双曲线422=-y x 每一支上都有一个公共点,求k 的取值X 围。
2021年人教版高中数学新教材与旧教材对比
![2021年人教版高中数学新教材与旧教材对比](https://img.taocdn.com/s3/m/fa569bc0b90d6c85ed3ac63c.png)
高中数学新教材改版之后的详细对比(彭凤海2018.08.18)2019年5月9日,新教材正式发布!新版教材将于2019年秋季在全国范围内正式使用,具体消息等待各地官方通知为准。
1.必修第一册的教学内容其实与改革前的内容与顺序基本一致,必修第一册将原版人教A版教材中的必修一、必修四的三角函数与三角恒等变换以及必修五不等式部分合在一起,还将命题、常用逻辑用语原先出自选修的内容合并成第一册的内容。
2.必修第二册的内容也融合了原先人教A版中必修四的向量部分、必修二的立体几何初步以及必修三的统计与概率部分,同时还加入了原先在选修出现的复数部分,从新教材的内容可以看出,原先三视图以及程序框图部分已经彻底删掉,现在只是给大家介绍直观图的概念。
3.选择性必修第一册可以明显感受到,新教材的编写者将有关坐标系以及解析几何相关内容融合在一起,而且这一册的难点和重点为计算,难度相对必修内容,难度有所上升。
4.必修第二册内容相对少一些,只有两章,所对应的内容是数列与导数的相关知识,这一改革还是很重大的,将原本必修五的数列部分直接划入选修模块,并且和导数合并为一册。
原先选修中的数学归纳法证明也合并到数列模块中。
5.选修最后一册主要内容是计数原理与概率,还有一小部分是线性回归方程,其实总体的要求是想让学生学会如何进行数据处理,在之前一直宣传的数学建模,也在选择性必修第三册中出现,说明改革之后的教学内容,更加注重培养学生数学应用方面的能力。
总结通过对新教材每一本书的介绍,可以发现改革之后的教材与现阶段的教材区别主要有以下几点:1.整合知识点相较于原版教材,新版教材的知识点与体系更加集中,模块之间分类清晰,这可以方便学生理解和练习。
2.难度区分明显改革之后的教材,将必修第一册和第二册定义为基础练习,让学生在必修阶段完成高中数学的基础知识练习,并且帮助学生从高一开始,完成初中和高中之间的衔接与转化,但是同时,学生的压力逐渐平移到选修部分。
2019人教版高中数学必修4全套教案(80页)
![2019人教版高中数学必修4全套教案(80页)](https://img.taocdn.com/s3/m/68b9ff20bb68a98271fefa75.png)
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有
人教版高中数学必修四教案
![人教版高中数学必修四教案](https://img.taocdn.com/s3/m/c1dc1556974bcf84b9d528ea81c758f5f61f29b1.png)
人教版高中数学必修四教案
科目:数学
年级:高中必修四
课时:第一课时
教学内容:函数的基本概念和性质
教学目标:
1. 了解函数的基本概念和表示方法;
2. 掌握函数的性质和分类;
3. 能够应用函数解决实际问题。
教学重点:函数的定义和性质。
教学难点:函数的分类和应用。
教学过程:
一、引入(5分钟)
教师通过引入例子,让学生了解函数在日常生活中的应用,并引出函数的概念。
二、讲解(15分钟)
1. 函数的定义:函数是一种映射关系,每个自变量对应唯一的因变量。
2. 函数的表示方法:函数通常用f(x)表示,其中x为自变量,f(x)为因变量。
3. 函数的性质:单调性、奇偶性、周期性等。
三、练习(20分钟)
1. 通过例题让学生练习判断函数的性质;
2. 让学生解决实际问题,使用函数进行建模和求解。
四、总结(5分钟)
教师对本节课的内容进行总结,强调函数的重要性和应用。
五、作业布置(5分钟)
布置相关习题作业,以巩固学生对函数的理解和掌握。
教学反思:
本节课采用了引入、讲解、练习、总结和作业布置等教学方法,使学生在理解函数的基本概念和性质的同时,能够应用函数解决实际问题。
希望通过本节课的教学,学生能够更深入地理解和掌握函数的相关知识。
人教版高中数学必修四指导思想和理论依据
![人教版高中数学必修四指导思想和理论依据](https://img.taocdn.com/s3/m/728529124a35eefdc8d376eeaeaad1f3469311da.png)
人教版高中数学必修四指导思想和理论依据
人教版高中数学必修四的指导思想是充分体现素质教育的要求,从提高学生的数学素养、数学思维能力和实际问题解决能力出发,致力于培养有独立思考、自主学习能力和合作精神的现代人才。
其理论依据主要有以下几点:
1. 数学素养理论:数学素养是指个体在数学领域中所拥有的、与生活和工作密切相关的基本技能、知识和思维方式。
人教版高中数学必修四以培养学生的数学素养为目标,把重点放在数学的概念、方法和思想方面,使学生能够更深刻地理解数学知识,更加灵活地运用数学方法。
2. 课程标准:人教版高中数学必修四的教学内容和教学方法都是按照国家课程标准来设计和实施的。
该标准明确了高中数学课程的目标、数量、质量、教育价值以及实施的主要原则和要求,从而为教学提供了科学、规范、可操作的依据。
3. 面向未来:人教版高中数学必修四的目标是让学生具备现代科技中所需的数学知识和技能。
该教材通过引入微积分、三角函数等现代数学知识,拓展学生的数学视野,提高其数学思维和实际问题解决能力,使其具备面向未来的应用能力。
4. 教育改革:人教版高中数学必修四是在国家教育改革的背景下编写的,该教材反映了当今时代教育变革的新要求。
以学生为中心,教师为主导的教育理念和教育方式得到广泛应用,加强团队教学、省时省力的信息技术工具参与教育等等 new ideas 也常被贯彻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版高中数学必修四教材分析
一、教材分析的理论
本文分析的内容为新人A教版高中数学(必修四),运用系统理论进行研究,其出发点就是将教材看成是一个系统。
分析系统的要素之间整体与部分的构成关系,以及形成的不同质态的分系统及其排列次序。
进行教材分析,首先从整个数学教育发展到教师个人专业成长,再到课堂教学等方面研究教材分析的意义;然后,按照树立正确教材观、深刻理解课标、分析教材特点、分析教材内容结构、处理教材等步骤研究如何科学分析高中数学教材,其中的案例均来自人教A版高中数学(必修四);最后,结合典例分析的感悟,提出了高中数学教材分析时应坚持的思想性、实践性、整体性及发展性原则,以提升教材分析的效果。
二、数学必修四第三章的教材分析
从系统上看作为新课程高中数学非常重要的必修四,它是由“第一章三角函数、第二章平面向量、第三章三角恒等变换”三部分内容组成。
内容层层递进,逐步深入,这对于发展学生的运算和推理能力都有好处。
本章内容以三角恒等变换重点,体会向量方法的作用,并利用单位圆中的三角函数线、三角形中的边角关系等建立的正弦、余弦值的等量关系。
在两角差的余弦公式的推导中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦和正切公式的过程中,始终引导学生
体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、特殊化、化归等思想方法。
特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导。
教材还对三角变换中的数学思想方法作了明确的总结。
本章还强调了用向量方法推导差角的余弦公式,并用三角函数之间的关系推导和(差)角公式、二倍角公式。
要把重点放在培养学生的推理能力和运算能力上,降低变换的技巧性要求。
教学时应当把握好这种“度”,遵循“标准”所规定的内容和要求,不要随意补充知识点(如半角公式、积化和差与和差化积公式,这些公式只是作为基本训练的素材,结果不要求记忆,更不要求运用)。
三、数学必修四第三章第一课时的教材分析
3.1教学要求:
基本要求:
①能利用和、差、倍角的公式进行基本的变形,并证明三角恒等式。
②能利用三角恒等变换研究三角函数的性质。
③能把一些实际问题化为三角问题,通过三角变换解决。
发展要求:
①了解和、差、倍角公式的特点,并进行变形应用。
②理解三角变换的基本特点和基本功能。
③了解三角变换中蕴藏的数学思想和方法。
3.2重点难点:
重点:掌握三角变换的内容、思路和方法,体会三角变换的特点。
难点:公式的灵活应用。
3.3教学建议:
三角恒等变换与代数恒等变换、圆的几何性质等都有紧密联系,推导两角差的余弦公式的过程比较集中地反映了这种联系,从中体现了丰富的数学思想。
从数学变换的角度看,三角恒等变换与代数恒等变换既有相同之处又有各自特点。
相同之处在于它们都是运用一定的数学工具对相应的数学式子作“只变其形不变其质”的数学运算,对其结构形式进行变换。
由于三角函数式的差异不仅表现在其结构形式上,而且还表现在角及其函数类型上,因此三角恒等变换常常需要先考虑式子中各个角之间的关系,然后以这种关系为依据来选择适当的三角公式进行变换,这是三角恒等变换的主要特点。
教学中应当引导学生以一般的数学(代数)变换思想为指导,加强对三角函数式特点的观察,在类比、特殊化、化归等思想方法上多作引导,同时要注意体会三角恒等变换的特殊性。
3.4教学中要注意的问题:
1.积化和差、和差化积、半角公式只作为练习,不要求记忆。
2.两角和与差的正弦、余弦和正切公式教学时,要控制好拆分角度的难度,题型的变化不宜过多。