数控加工技术
数控加工技术介绍
数控加工技术介绍一、数控加工技术是啥?数控加工技术简单来说,就是用数字信息来控制机床进行加工啦。
就好像是给机床装上了一个超级聪明的大脑。
以前的机床加工啊,全靠师傅的手艺,师傅要在那盯着,手动操作各种手柄啊、按钮啊,可费劲了。
现在有了数控加工技术,只要把加工的要求变成数字代码输入到机床里,机床就像个听话的小机器人一样,按照程序自己动起来,加工出想要的零件。
这就好比你告诉厨师要做什么菜,把菜谱详细地写出来,厨师就按照菜谱做,机床也是这样按照数字菜谱(程序)来加工零件的。
二、数控加工技术的厉害之处它的精度那叫一个高啊!你想啊,人工操作的时候,人的手再稳也难免会有一点点偏差,但是数控加工就不一样了。
它可以精确到头发丝那么细的误差范围呢。
比如说加工一个小小的精密零件,像手表里的小齿轮之类的,数控加工就能做得特别完美。
而且它的效率也很高,只要程序设置好了,机床就可以不停地工作。
不像以前,师傅工作累了还得休息会儿,机床可是不会累的哦。
这就像是一个不知疲倦的小工匠,在那不停地打造东西。
三、数控加工技术里的机床数控加工用到的机床也很有趣呢。
有数控车床、数控铣床、加工中心等等。
数控车床就像是一个擅长转圈加工的小能手,主要用来加工那些圆形的零件,就像车削出一根漂亮的圆柱。
数控铣床呢,就像一个雕刻大师,它可以在零件表面雕出各种各样的形状。
而加工中心就更厉害了,它就像是一个全能选手,不仅能车削、铣削,还能钻孔、攻丝等多种加工操作。
这些机床就像一个个有着特殊技能的小伙伴,组合在一起就能做出超级复杂的零件。
四、数控加工技术的编程编程可是数控加工技术的灵魂所在。
这就像是给机床写一封秘密信件,告诉它要怎么干活。
编程的语言有好多种,不过不管哪种语言,都是为了准确地告诉机床刀具该怎么移动,移动多远,转多快之类的。
对于初学者来说,编程可能有点像在解一个神秘的谜题,但只要掌握了其中的规律,就会发现很有趣。
就像你刚开始玩一个新游戏,有点摸不着头脑,玩熟了就觉得特别好玩。
数控加工专业介绍
数控加工专业介绍
数控加工专业介绍
数控加工技术是一门涉及计算机应用、机械制造技术、机械电子技术等多个学科的新兴技术。
它是一种将计算机技术与机械技术、机械电子技术相结合的新兴技术,它克服了传统机械加工技术中机械精度低、加工时间长、材料耗费大的缺点,实现了快速、精确、高效的加工。
数控加工技术是一门集科学研究、设计、制造、操作、维护于一体的技术。
它根据计算机语言输入的加工程序,利用机床自动完成产品的设计、制造和加工,实现统一规划、精确控制的加工技术。
它已经成为现代机械加工技术的主要手段之一,在机械加工行业得到广泛应用。
数控加工技术主要包括数控设备组成、数控系统构造、数控程序开发及编写、工艺编制、模拟、刀具等加工前准备等内容。
要达到高效率、高精度、低耗能的要求,需要对数控设备、数控系统进行充分的认识,熟悉数控程序的编写原理,熟练掌握工艺编制、模拟及刀具的加工前准备等知识。
数控加工技术主要用于制造机械零部件、机械组合件、机械装配件及微型零件等产品的加工,可以满足微米级的加工精度要求,并具有加工特殊形状与复杂形状件的优势,具有自动化、高效、精度高等特点。
数控加工技术已经在航空航天、汽车、机械制造、模具制造、测
量技术、农业机械、医疗器械、电子机械等行业得到广泛应用,发挥着重要的作用,在科技发展中发挥着重要的作用。
数控加工技术精品课程可编辑全文
5
6
BACK
SPACE
TAB ? 1
2
3 INS CTR
L
电源
步进 点动
单段
手摇
30 40 50 20 10
10
关
开 自动
回零 0
160
1
驱动器
160 XY Z A
电源
报警
方式选择进给修调源自主轴修调机床 NC 超程 主轴
超程解除
Y
10 100
循环驱动 进给保持 冷却液开关 刀松/刀紧 X
Z1
1000
急停
解决高产优质的问题,也可采用专用机床、
组合机床、专用自动化机床以及专用自动生 产线和自动化车间进行生产。但是应用这些 专用生产设备,生产周期长,产品改型不易, 因而使新产品的开发周期增长,生产设备使 用的柔性很差。
精密复杂,加工批量小,改型频繁,
显然不能在专用机床或组合机床上加工。 而借助靠模和仿形机床,或者借助划线和 样板用手工操作的方法来加工,加工精度 和生产效率受到很大的限制。特别对空间 的复杂曲线曲面,在普通机床上根本无法 实现。
FMC构成分两大类:
1、加工中心配上自动托盘系统(APC);
2、数控机床配机器人。
FMC既是柔性制造系统FMS (Flexible Manufacturing System) 的基础,又可以作为独立的自动化加工 设备使用,因此其发展速度较快。
柔性制造系统FMS(Flexible Manufacturing System)。
(2)半闭环控制数控机床
第一章 数控加工技术基础
(3)闭环控制数控机床
此外,按所用数控系统的档次通常把数控机床分为低档、 中档、高档三类数控机床。中档、高档数控机床一般称为全 功能数控或标准型数控。
数控加工技术
(3)已加工表面。工件上经刀具 切去多余金属层后而形成的新表面。
第1章 绪论
1.2 数控加工技术的发展趋势
返回
5.网络化 具有联网功能正逐渐成为现代数控设备的特征之一,如数控机床的远 程故障诊断、远程状态监控、远程加工信息共享、远程操作、远程培训等 都是以网络功能为基础的。
6.集成化 集成化一方面表现为数控机床向柔性自动化发展,即其控制从点(数 控单机、加工中心和数控复合加工机床)、线(柔性制造单元FMC、柔性 制造系统FMS、柔性生产线FTL、柔性制造生产线FML)向面(工段车间 独立制造、工厂自动化FA)、体(计算机集成制造系统CIMS、分布式网 络集成制造系统)的方向发展,另一方面表现为向注重应用性和经济性方 向发展。
第2章 数控加工基本知识
返回
2.1
金属切削运动及其形成的 表面
2.4
数控加工基本知识加工过程中的 主要现象及基本规律
2.2 刀具切削部分的几何参数 2.5 工件的安装、定位与夹紧
2.3 刀具的材料
第2章 数控加工基本知识
2.1 金属切削运动及其形成的表面
返回
金属切削过程是指工件上多
余的金属被刀具切除的过程和已 加工表面形成的过程。在这个过 程中始终存在着刀具与工件(金 属材料)之间切削和抗切削的矛 盾,并产生一系列重要现象,如 切屑的形成、切削力、切削热与 切削温度及积屑瘤等。
数控加工技术
数控加工技术
第1章 绪论 第2章 数控加工基本知识 第3章 数控加工方法 第4章 数控机床夹具
第5章 数控加工工艺 第6章典型零件加工工艺的制订 第7章 机械加工质量
数控加工技术概述
刀架); ➢铣镗钻磨复合—复合加工中心(ATC,动力磨头); ➢可更换主轴箱的数控机床—组合加工中心;
1.2 数控机床的产生与发展
۞控制智能化
随着人工智能技术的不断发展,并为满足制 造业生产柔性化、制造自动化发展需求,数控 技术智能化程度不断提高,具体体现在以下几 个方面:
3. 数控加工编程基础
3.1 机 床 坐 标 系
3.1.1 机床坐标系和主运动方向 1.标准坐标系的规定
对数控机床中的坐标系和运动方向的命名,ISO标准和我 国JB3052—82部颁标准都统一规定采用标准的右手笛卡儿直 角坐标系,一个直线进给运动或一个圆周进给运动定义一个 坐标轴。
(3)由于机床自动化程度大大提高,减轻了工人劳动强度, 改善了劳动条件
(4)加工能力提高,应用数控机床可以很准确的加工出曲线、 曲面、圆弧等形状非常复杂的零件,因此,可以通过编写 复杂的程序来实现加工常规方法难以加工的零件
1.5 数控系统的组成
现 代 数 控 机 床 一 般 由 数 控 装 置 (NC unit) 、 伺 服 系 统 (servo system) 、 位 置 测 量 与 反 馈 系 统 (feedback system)、辅助控制单元(accessory control unit)和机 床主机(main engine)组成,下图是各组成部分的逻辑结 构简图:
2.6 数控加工原理(续)
•当 F>0 时 , NC 发 出 移 动 微 指 令 , 使 控 如 如制何图轴确所向定示控,+制刀X轴具方X由、向OZ至移的A走,动向直一呢线?个OA是步其长理论;轨迹。 •当用F逐<点0比时较,法:N每C走发一出步与移理动论轨微迹指比较令一,下,使 控从制而轴确向定下+一Z步方的向走移向。动一个步长; •当起 于F点是=坐直0标线时(OA,0的,方可0程)以,为规终:点 X定/Z坐=NX标eC/(Z使eXe;,控Ze)制轴向 + X即或:+ZXeZ-方XZe向=0;移动一个步长 这 ① ②样可若 若点点以((不XX,,ZZ断))在在地直 直趋线 线向上 下方 方终, ,点则 则: :,ZZ图XXee--中XXZZee,><00;;带 箭 于头是的:折取F线=ZX轨e-X迹Ze是, 机床实际运动的插 补 在 由轨N插迹C判补,断运F算直的过符线程号O中。,A控是制理轴论每移轨动迹一,步之由前于,插先 补运算所取的步长很小,所以可以近 似地认为插补轨迹就是直线OA的理论
数控加工技术
数控加工技术1. 简介数控加工技术(Computer Numerical Control,简称CNC)是一种利用计算机控制机床进行加工的技术。
相比传统的手工操作和编程加工,数控加工技术具有精度高、生产效率高、重复性好等优点,广泛应用于机械加工、汽车制造、航空航天等领域。
2. 数控加工原理数控加工技术的核心是计算机数值控制系统。
它由计算机、数控系统、输入设备、输出设备和机床组成。
计算机负责接收和处理数控程序,并将指令发送给数控系统。
数控系统根据程序指令,控制机床进行加工操作。
输入设备可通过键盘、鼠标等方式输入加工参数。
输出设备可以显示加工过程和结果。
3. 数控加工的优势3.1 精度高数控加工技术可以实现高精度的加工。
由于加工过程由计算机控制,可以减少人为误差。
同时,数控加工还可以利用数学建模和仿真技术,在加工前进行精确的模拟和优化,提高加工精度。
3.2 生产效率高相比传统的手工操作,数控加工技术可以大大提高生产效率。
数控机床具有快速定位和自动换刀等功能,可以实现自动化连续加工,减少了运输和装卸时间,提高了生产效率。
3.3 重复性好数控加工技术可以实现精确的重复加工。
通过编写数控程序,加工参数可以被准确记录和重复使用。
这样不仅减少了人工调整误差的可能性,还可以实现批量生产,提高了加工的一致性和稳定性。
4. 数控加工的应用数控加工技术在许多领域都有广泛的应用。
4.1 机械加工在机械加工领域,数控加工技术可以应用于钻孔、铣削、车削、切割等操作。
它可以实现复杂形状的加工,提高加工精度和效率。
4.2 汽车制造汽车制造领域需要大量的零部件加工。
数控加工技术可以在一台机床上完成多种加工工序,减少了设备和操作人员的投入,提高了生产效率和质量。
4.3 航空航天航空航天领域对零部件的精度要求极高。
数控加工技术可以实现复杂的五轴加工,同时提高了加工精度和生产效率。
5. 数控加工的发展趋势随着科技的不断进步,数控加工技术也在不断发展。
数控加工技术
2021/7/16
1.1 数控加工简介
1.1.1 数控加工的定义 1.1.2 数控加工的特点
1.2 数控加工中常用术语
1.2.1 两坐标系和多坐标加工 1.2.2 插补 1.2.3 刀具补偿
1.3 数控加工设备
1.3.1 原理 1.3.2 组成 1.3.3 分类
1.4 数控加工技术
两坐标和多坐标加工
三坐标数控铣床
两坐标数控车床
Company L
插补
俗称”填补空白”
Company L
1.3 数控加工设备
数控设备的工作原理
Company L
数控设备的基本组成结构-----输入输出装置、计算机数控 装置、伺服系统、受控设备
Company L
数控加工设备的分类
按工艺用途:金属切削;金属成形;特种加工;测量绘图 按控制运动:点位控制;点位直线控制;轮廓控制 按伺服系统:开环;闭环;半闭环 按所用数控系统的档次:低档;中档;高档
Company L
PLC执行用户程序过程
Company L
数控技术的发展动向
发展趋势
进入九十年代以来, 随着国际上计算机技 术突飞猛进的发展, 数控技术不断采用计 算机、控制理论等领 域的最新技术成就, 使其朝着下述方向发 展
运行高速化 加工高精化 功能复合化 控制智能化 体系开放化
量。
Company L
对刀
就是使“对刀点”与“刀位点”重合的操作
Company L
刀位点
用于确定刀具在机床坐标系中位置的刀具上的特定点 镗刀 钻头 立铣刀、端铣刀 面铣刀 指状铣刀 球头铣刀
Company L
对刀点
从程序执行的一开始,必须确定刀具在工件坐标系下开始 运动的位置,这一位置称为程序的起刀点。该点一般通过 对刀来确定,故又称为对刀点.选择对刀点也是较为关键的 一步
数控加工技术基础知识
高精度、高效率、高柔性、自动 化程度高、适应性强。
数控加工技术的发展历程
起源
20世纪40年代,数控技术的概 念开始出现。
初步发展
20世纪50年代,第一台数控机 床诞生。
成熟阶段
20世纪80年代,随着计算机技 术的发展,数控加工技术逐渐 成熟。
发展趋势
智能化、网络化、复合化、环 保化。
数控加工技术的应用领域
数控加工刀具与材料
刀具材料
刀具磨损与寿命
常用的刀具材料有高速钢、硬质合金、 陶瓷和金刚石等,不同材料具有不同 的硬度、耐磨性和耐热性等特点。
刀具磨损与切削参数、切削材料、刀 具材料等因素有关,合理选择切削参 数和刀具材料可以延长刀具寿命。
刀具种类
数控加工中常用的刀具有铣刀、钻头、 铰刀、丝锥等,根据不同的加工需求 选择合适的刀具。
对零件图样进行工艺性分析,明确加 工要求、定位基准、加工余量等信息。
工艺方案制定
根据零件特点和加工要求,制定合理 的加工工艺方案,包括加工方法、工 序安排、装夹方式等。
数控加工工序设计
对每个工序进行详细设计,包括刀具 选择、切削参数确定、冷却方式等。
数控编程
根据工序设计结果,进行数控编程, 生成加工程序。
感谢您的观看
数控加工切削参数的选择
主轴转速
根据切削材料和刀具材料的不同, 选择合适的主轴转速,以保证切 削效率和加工质量。
进给速度
进给速度应根据切削深度和切削材 料来确定,合理的进给速度可以提 高加工效率和表面质量。
切削深度与宽度
切削深度与宽度应根据加工需求和 刀具承受能力进行选择,过大或过 小的切削参数都可能影响加工质量 和效率。
辅助装置提供必要的加工条件和保障 操作安全。
数控加工技术
数控加工技术数控加工技术是一种现代化的制造技术,它通过计算机控制数控机床进行加工,具有高精度、高效率、高灵活性等特点。
近年来,随着数字化、智能化的快速发展,数控加工技术在各个领域得到了广泛应用,对推动工业制造的发展起到了重要作用。
数控加工技术的核心是数控机床,它是通过计算机控制的运动系统来完成加工操作。
相比传统的机床,数控机床具有更高的精度和更大的加工范围。
在数控机床中,通过输入加工程序和工艺参数,计算机就能够准确地控制机床的移动、定位和加工力度,实现复杂零件的精密加工。
数控加工技术的应用范围非常广泛。
在航空航天、汽车、电子、机械制造等行业中,数控加工技术已经成为不可或缺的工具。
例如,在航空航天领域,数控加工技术被广泛应用于制造发动机零部件、航空铝合金和航天器结构等关键部件。
数控加工技术能够准确地加工复杂形状的零件,提高零件的质量和精度,确保航空器的安全性和可靠性。
在汽车制造领域,数控加工技术能够快速、高效地加工各种汽车零部件。
例如,汽车发动机缸体、曲轴、燃油喷嘴等关键部件的加工,都离不开数控加工技术。
数控加工技术的应用使得汽车制造工艺更加先进,产品质量更加稳定,同时也提高了工作效率和产能。
电子行业也是数控加工技术的重要应用领域。
电子产品的外壳、散热器、电路板等零部件的加工,需要高精度的加工设备和精密的加工工艺。
数控加工技术能够满足这些要求,保证电子产品的稳定性和可靠性。
在机械制造领域,数控加工技术的应用也非常广泛。
机械零件的加工通常需要高精度和复杂的形状,传统的机床往往无法满足这些要求。
而数控加工技术通过计算机的精确控制,可以实现高精度、高效率的加工,提高机械制造的精度和质量。
除了以上这些传统领域外,数控加工技术还在新兴领域中起着重要作用。
例如,3D打印技术中的数控加工技术,能够实现复杂零件的快速打印和制造。
在医疗行业中,数控加工技术也被用于制作高精度的医疗器械和人体模型,为手术和治疗提供更好的辅助。
数控加工技术概述
数控加工技术概述数控加工技术概述随着现代制造业的快速发展,数控加工技术已成为制造业中不可或缺的重要领域。
数控加工技术通过计算机、数控机床等高科技设备,可以实现对各种形状材料的加工,其高精度、高效率的加工特性,不仅能够大幅提升生产效益,也为制造业的现代化提供了强有力的支持。
一、数控加工技术的概念数控加工技术(NC)是一种在机床上利用计算机技术管理、控制加工过程中所有参数的加工技术。
数控加工技术中,通过预先编写加工程序并输入到计算机中,实现加工过程中各轴坐标的自动控制和精确位置的计算,从而控制机床的加工过程。
数控加工技术使得加工过程变得高效、精确、复杂度高,并且具有高度可重启动性和记忆功能。
二、数控加工技术的应用范围1.钢铁加工数控加工技术广泛应用于机械、汽车、轨道交通、航空航天、电子、仪器仪表、化工、生物、医疗器械和电力等领域。
例如,在钢铁加工中,数控加工可以用于车削、铣削、钻孔、车外径等加工过程,可以进行多轴复合运动控制,实现不同轮廓的加工。
数控加工技术可以有效地提高加工质量和效率,缩短加工周期,减少人力和资源消耗,从而提高企业竞争力和经济效益。
2.模具制造在模具制造领域,数控加工同样发挥着重要作用。
数控加工可以应用于各种模具的制造和加工过程中,例如铣模、卡盘、砂轮、钻头、车刀等。
相比传统模具加工方式,数控加工技术可以降低数量大、精度高、形状复杂的模具的加工难度,提高产品的标准化和批量化程度。
3.光电信息在光电信息领域,数控加工技术也有广泛的应用。
例如光纤通信器件、激光加工器件、光学零部件的加工需要高精度的数控加工,此外,机械零部件中的光学元器件等也需要高精度的数控加工。
三、数控加工技术的发展趋势自20世纪60年代以来,随着计算机技术的迅速发展,数控加工技术也得到了快速发展。
目前,随着人工智能技术的不断进步,传感器技术、机器视觉技术、云计算、大数据等辅助技术的加入,数控加工技术的应用前景越来越广阔。
数控加工技术
数控加工技术数控加工技术秉持着一种高效、精确、灵活的理念,广泛应用于机械制造行业。
实质上,数控加工技术指的是利用数控机床来进行各种工件的加工和成型过程。
通过预先编程的方式,将加工要求以指令的形式输入到数控设备中,机床便能按照指令的要求自动完成工件的加工过程。
下面,我们将系统地介绍数控加工技术的原理、应用领域、发展趋势和未来展望。
首先,让我们来了解一下数控加工技术的原理。
数控机床通过控制系统实现对机床运动部分的精确控制,最终达到加工工件的要求。
其中,控制系统是数控技术的核心部分,由计算机和各种控制装置组成。
通过编写加工程序,将加工数据、加工路径和刀具参数等信息输入到控制系统中,并通过数学运算和逻辑控制来实现对机床的指令控制。
这种指令控制方式使得加工过程更加精确、高效。
数控加工技术在各个领域都有广泛的应用。
首先是航空航天领域。
航空航天领域对零部件的精度要求非常高,而数控加工技术能够保证工件尺寸和形状的精确度,在这一领域得到了广泛的应用。
其次是汽车制造领域。
在汽车制造过程中,需要生产大量的汽车零部件,数控加工技术可以高效、批量地进行生产,提高生产效率。
另外,在电子器件制造、机械零配件生产等领域,数控加工技术也得到了广泛应用。
随着科技的不断进步,数控加工技术也在不断发展。
一方面,数控机床的精度和稳定性不断提高,大大增强了加工精度和效率。
另一方面,数控编程软件也在不断创新,使得编程更加简单、便捷。
此外,智能化技术也逐渐应用于数控加工过程中,如自动修补、自动检测等功能的加入,提升了数控加工技术的智能化水平。
未来,数控加工技术将展现更广阔的应用前景。
首先,随着工业4.0的推进,数控加工技术将与物联网、大数据等技术相结合,形成智能制造的新模式。
数控机床之间的信息互联互通,能够实现生产过程的自动优化和监控。
其次,随着高新技术的发展,如激光技术、光学技术等的引入,数控加工技术将进一步拓展应用范围,实现对更加复杂、精细工艺的加工。
《数控加工技术》课件
数控编程的基本概念
数控编程的定义
数控编程是根据零件图样和工艺要 求,使用数控语言或CAD/CAM软件
,编写出用于控制数控机床进行切 削加工的程序。
数控编程的步骤
分析零件图样和工艺要求、确定加 工工艺方案、建立数学模型、进行 加工轨迹的计算、生成数控程序和
程序校验等。
数控编程的语言
数控编程语言是一组用于描述零件 加工过程的指令集合,常见的数控 编程语言有G代码、M代码等。
根据零件的形状、尺寸和材料等要求,选 择合适的加工设备、刀具、夹具和切削参 数,制定出合理的加工工艺路线。
加工余量与切削用量的确定
工艺文件的编制
根据零件的加工精度和表面质量要求,确 定合理的加工余量和切削用量,以提高加 工效率和加工质量。
将制定的加工工艺路线、工艺参数和操作 规程等整理成工艺文件,以便生产部门按 照文件要求进行生产。
详细描述
轴类零件的数控加工实例包括各种传动轴、主轴、轴承座等,这些零件通常需要高精度 和高可靠性的加工要求。在加工过程中,需要采用合适的刀具和切削参数,确保零件的 尺寸精度、表面质量和形位公差达到要求。同时,还需要注意控制热变形和切削振动等
因素对加工精度的影响。
板类零件的数控加工实例
总结词
板类零件通常指平面度要求较高的薄板或厚板,其加工工艺要求相对较低,但也需要精确控制尺寸和形位公差。
详细描述
板类零件的数控加工实例包括各种机架、底座、盖板等,这些零件通常需要大尺寸和高刚性的加工要求。在加工 过程中,需要采用合适的加工策略和装夹方式,确保零件的平面度和形位公差达到要求。同时,还需要注意控制 切削参数和刀具磨损等因素对加工精度的影响。
模具零件的数控加工实例
总结词
数控加工技术(完整课件)
(五)数控机床的选择 1. 平面孔系零件的加工 这类零件或孔数较多,或孔位置精度要求较高,宜用点位直线控制的数 控钻床与镗床加工。
7
8. 提高数控系统的可靠性 可靠性是数控机床用户最为关注的问题,提高可 靠性通常可采取下列一些措施: (1) 提高线路的集成度 采用大规模集成电路、专用芯片及混合式集成 电路,以减少元器件数量,精简外部连线和降低功 耗。 (2) 建立由设计、试制到生产的完整质量保证 体系 例如采取防电源干扰,输入、输出隔离;使数 控系统模块化、通用化及标准化,以便组织批量生 产和维修;在安装制造时注意严格筛选元器件;对 系统可靠性进行全面检查考核等。
③ 缩短走刀路线,减少空行程。
接刀痕
(四)刀具的选择、切削用量的确定 加工刀具的选择,应尽可能选用硬质合金刀具或性能更好的带涂层刀具。 铣平面轮廓用平头立铣刀,铣空间轮廓时选球头立铣刀。
选择刀具时要规定刀具的结构尺寸,供刀具组装预调使用;还要保证 有可调用的刀具文件;对选定的新刀具应建立刀具文件供编程用。
非模态代码是指只有书写了该代码时才有效的代码。 1.与坐标设定有关的指令
表2-1与坐标设定有关的指令
代码
功能
G11 坐标轴的平移和旋转 G10 取消G11 G15 工件坐标系选择(模态) G16 工件坐标系选择(非模态) G52 局部坐标系设定
G53 机床坐标系选择
G54 直线偏移X
G55 直线偏移Y
三、数控编程系统
数控编程可分为机内编程和机外编程。机内编程指利用数控机床本身提供 的交互功能进行编程,机外编程则是脱离数控机床本身在其他设备上进行编程。
数控加工技术
数控加工技术数控加工技术是一种高精度、高效率的机械加工方法,它采用计算机控制机床进行精密加工,对于产品质量、生产效率和成本控制都具有重要意义。
近年来,随着工业自动化程度的不断提高,数控加工技术在各个制造领域得到了广泛应用。
一、数控加工的基本概念数控加工是指利用计算机控制机床进行数控加工操作的一种先进的机械加工方式。
其主要特点是在计算机数控程序的指挥下,根据所需工件形状、尺寸和表面要求等进行加工,减少由人为因素引起的误差,保证产品精度和质量的稳定性。
数控加工的基本工作原理是:首先,将需要加工的工件数据通过计算机绘图软件或CAD软件进行三维建模,然后输入G代码和M代码,控制机床沿规定路线切削和加工。
G代码是控制机床运动的指令,例如定义直线、圆弧、螺旋等的路径和方向;M代码是控制机床辅助装置的指令,如启动、停止、换刀和冷却等。
目前,数控机床已成为现代制造业中不可或缺的重要设备,涵盖了钻床、铣床、加工中心、磨床、车床、线切割机等多种类型。
二、数控加工的主要优势数控加工技术相比传统机械加工具有很多明显的优势,主要集中在以下几个方面:1、加工精度高:数控加工采用计算机控制,精度比人工操作高,可以实现微米甚至亚微米级别的精密加工,保证产品的精度和质量。
2、加工效率高:数控加工中由计算机控制机床进行操作,可以实现无人值守生产,也可以对多台机床进行集中控制,提高生产效率。
3、工艺灵活多样:数控加工可以根据不同的工艺要求进行灵活的加工处理,包括钻孔、铣削、切割、车削、磨削等,同时还能进行多轴联动的复杂立体加工。
4、降低人工误差:由于数控加工过程中机床的操作完全由计算机控制,因此可以大大减少由人员误差引起的加工偏差,保证产品质量的稳定性。
5、成本控制:数控加工生产装备投入成本较高,但由于提高了生产效率、降低了人工成本和产品损耗率,可以有效控制生产成本,适应批量生产的需求。
三、数控加工的应用范围数控加工技术被广泛应用于制造业、航空航天、汽车、船舶、电子、模具、医疗等领域中,对于生产效率和产品质量具有重要意义。
数控加工技术PPT课件
镗
高,一般将主轴转速在10000-20000r/min以上定为高速切削;进给速度很
铣
高,通常达15-50m/min,最高可达90m/min;对于不同的切削材料和所釆
、 加 工 中 心
用的刀具材料,高速切削的含义也不尽相同。其优点在于:
加工时间短,效率高。高速切削的材料去除率通常是常规的3~5倍。 刀具切削状况好,切削力小,主轴轴承、刀具和工件受力均小。切削力 降低大概30%~90%,提高了加工质量。
位置 18 - 76
床
机上激光对刀仪
标准
的
工件托盘转换装置
位置 7, 20, 48
类 型
红外工件测头
可选
重量
包括工件托盘交换装置
6500 kg
7
7
数控镗、铣及加工中心加工工艺
数
控 镗 铣 、
三坐标数控镗铣床与加工中心的共同特点是除具有普通铣床的工艺
性能外,还具有加工形状复杂的二维以至三维复杂轮廓的能力。这些复 杂轮廓零件的加工有的只需二轴联动(如二维曲线、二维轮廓和二维区域 加工),有的则需三轴联动(如三维曲面加工),它们所对应的加工一般相 应称为二轴(或2.5轴)加工与三轴加工。 对于三坐标加工中心(无论是立
19 19
第五章 数控镗、铣及加工中心加工工艺
数
控
镗
铣
、
加
工
中
心 加 工 的
立体曲面类零件:加工面为 空间曲面的零件称为立体 曲面类零件。这类零件的 加工面不能展成平面
箱体类零件:一般是指具 有孔系和平面,内部有一 定型腔,在长、宽、高方 向有一定比例的零件
异型件:外形不规则的 零件,大多要点、线、 面多工位混合加工
数控加工工艺概述
数控加工工艺概述数控加工技术是一种通过机械加工控制系统对加工过程进行自动化控制的技术。
与传统的手动加工相比,数控加工具有高精度、高效率、高稳定性的特点,被广泛应用于制造业的各个领域。
本文将概述数控加工的工艺流程及其在实际应用中的重要性。
一、数控加工工艺流程1. 零件图纸设计:在进行数控加工前,首先需要进行零件图纸的设计。
设计师根据零件的要求和规格,绘制出详细的图纸,包括零件的尺寸、形状、表面要求等。
2. 编程:编程是数控加工的核心环节。
程序员根据零件图纸的要求,利用专门的数控编程软件,将零件的加工路径、切削速度、进给速度等参数进行编写,生成数控加工程序。
3. 设备设置:在进行数控加工前,需要对数控机床进行设置。
包括安装刀具、定位工件、设置机床的各项参数等。
4. 加工过程:当设备设置完成后,就可以进行数控加工了。
数控机床按照预先编写的程序进行加工操作,实现对工件的切削、车削、铣削等加工过程。
5. 检测与修正:加工完成后,需要对零件进行检测。
通过测量工具对零件的尺寸、精度等进行检测,如果不符合要求,需要进行修正,再次进行调试,直至满足要求。
二、数控加工的重要性数控加工在现代制造业中起着至关重要的作用。
以下是数控加工的几个重要性方面:1. 提高生产效率:数控加工具有高效率的特点,可以大幅度提高生产效率。
相比传统的手动加工,数控加工不需要人工重新调整机床和加工工艺,可以实现连续加工,大大缩短了加工周期。
2. 确保加工精度:数控机床可以根据预先编写的程序精确控制刀具和工件的相对位置,从而确保加工的精度。
与人工操作相比,数控加工减少了人为因素的干扰,使得加工误差得到最小化。
3. 降低人工成本:数控加工减少了对人工操作的需求,可以大幅度降低人工成本。
一台数控机床可以同时操作多个工序,不需要额外的人力投入。
4. 提高加工质量:数控加工可以通过精确的加工参数控制,保证每一件零件的加工质量一致性。
不受人工技术水平的限制,减少了因人为因素引起的不良品数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控加工技术文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章数控铣床编程【教学目标】通过本章节的教学:使学生掌握数控铣床加工程序的编制方法;数控铣加工的特点;刀具补偿的设置及其他指令代码;固定循环代码。
【教学重点】编程方法、刀具补偿与固定循环【教学难点】刀具补偿与固定循环【教学时数】理论6学时,实验4学时【课程类型】理论与实验课程【教学方法】理论联系实际,讲、例、练三结合【教学内容】数控铣床加工的特点数控铣床加工的对象数控铣床主要用于加工平面和曲面轮廓的零件,还可以加工复杂型面的零件,如凸轮、样板、模具、螺旋槽等。
同时也可以对零件进行钻、扩、铰、锪和镗孔加工。
数控铣削机床的加工对象与数控机床的结构配置有很大关系。
立式结构的铣床一般适应用于加工盘、套、板类零件,一次装夹后,可对上表面进行铣、钻、扩、镗、锪、攻螺纹等工序以及侧面的轮廓加工;卧式结构的铣床一般都带有回转工作台,一次装平后可完成除安装面和顶面以外的其余四个面的各种工序加工,适宜于箱体类零件加工;万能式数控铣床,主轴可以旋转90°或工作台带着工件旋转90°,一次装夹后可以完成对工件五个表面的加工;龙门式铣床适用于大型零件的加工。
数控铣床加工的特点数控铣削加工除了具有普通铣床加工的特点外,还有如下特点:1、零件加工的适应性强、灵活性好,能加工轮廓形状特别复杂或难以控制尺寸的零件,如模具类零件、壳体类零件等。
2、能加工普通机床无法加工或很难加工的零件,如用数学模型描述的复杂曲线零件以及三维空间曲面类零件。
3、能加工一次装夹定位后,需进行多道工序加工的零件。
4、加工精度高、加工质量稳定可靠。
5、生产自动化程序高,可以减轻操作者的劳动强度。
有利于生产管理自动化。
6、生产效率高。
一7、从切削原理上讲,无论是端铣或是周铣都属于断续切削方式,而不像车削那样连续切削,因此对刀具的要求较高,具有良好的抗冲击性、韧性和耐磨性。
在干式切削状况下,还要求有良好的红硬性。
数控铣床编程时应注意的问题·了解数控系统的功能及规格。
不同的数控系统在编写数控加工程序时,在格式及指令上是不完全相同的。
·熟悉零件的加工工艺。
·合理选择刀具、夹具及切削用量、切削液。
·编程尽量使用子程序。
·程序零点的选择要使数据计算的简单。
数控铣加工的刀具补偿及其他功能指令刀具半径补偿 G40,G41,G42刀具半径补偿指令格式如下:G17 G41(或G42) G00(或G01) X Y D或G18 G41(或G42) G00(或G01) X Z D或G19 G41(或G42) G00(或G01) Y Z D;G40(a) (b)图刀具补偿方向G41是相对于刀具前进方向左侧进行补偿,称为左刀补。
如图所示。
这时相当于顺铣。
G42是相对于刀具前进方向右侧进行补偿,称为右刀补。
如图所示。
这时相当于逆铣。
从刀具寿命、加工精度、表面粗糙度而言,顺铣效果较好,因此G41使用较多。
D是刀补号地址,是系统中记录刀具半径的存储器地址,后面跟的数值是刀具号,用来调用内存中刀具半径补偿的数值。
刀补号地址可以有D01-D99共100个地址。
其中的值可以用MDI方式预先输入在内存刀具表中相应的刀具号位置上。
进行刀具补偿时,要用G17/G18/G19选择刀补平面,缺省状态是XY平面。
G40是取消刀具半径补偿功能,所有平面上取消刀具半径补偿的指令均为G40。
G40,G41,G42是模态代码,它们可以互相注销。
使用刀具补偿功能的优越性在于:·在编程时可以不考虑刀具的半径,直接按图样所给尺寸进行编程,只要在实际加工时输入刀具的半径值即可。
·可以使粗加工的程序简化。
利用有意识的改变刀具半径补偿量,则可用同一刀具、同一程序、不同的切削余量完成加工。
下面结合图来介绍刀补的运动。
图刀补动作按增量方式编程:O0001N10 G54 G91 G17 G00 M03 G17指定刀补平面(XOY平面)N20 G41 D01 建立刀补(刀补号为01)N30 G01 F200N40N50N60N70 G00 G40 M05 解除刀补N80 M02按绝对方式编程:O0002N10 G54 G90 G17 G00 M03 G17指定刀补平面(XOY平面)N20 G41 D01 建立刀补(刀补号为01)N30 G01 F200N40N50N60N70 G00 G40 X0 Y0 M05 解除刀补N80 M02刀补动作为:1、启动阶段2、刀补状态3、取消刀补这里特别提醒要注意的是,在启动阶段开始后的刀补状态中,如果存在有两段以上的没有移动指令或存在非指定平面轴的移动指令段,则可能产生进刀不足或进刀超差。
其原因是因为进入刀具状态后,只能读出连续的两段,这两段都没有进给,也就作不出矢量,确定不了前进的方向。
刀具长度补偿G43、G44、G49刀具长度补偿指令格式如下:格式:G43(G44) Z H其中: Z为补偿轴的终点值。
H为刀具长度偏移量的存储器地址。
把编程时假定的理想刀具长度与实际使用的刀具长度之差作为偏置设定在偏置存储器中,该指令不改变程序就可以实现对Z轴(或X、Y轴)运动指令的终点位置进行正向或负向补偿。
使用G43指令时,实现正向偏置;用G44指令时,实现负向偏置。
无论是绝对指令还是增量指令,由H代码指定的已存入偏置存储器中的偏置值在G43时加,在G44时则是从Z轴(或X、Y轴)运动指令的终点坐标值中减去。
计算后的坐标值成为终点。
取消长度补偿指令格式:G49 Z(或X或Y)实际上,它和指令G44/G43 Z H00的功能是一样的。
G43、G44、G49为模态指令,它们可以相互注销。
下面是一包含刀具长度补偿指令的程序,其刀具运动过程如图所示。
图刀具长度补偿加工H01=(偏移值)N10 G91 G00 M03 S500;N20 G43 H01;N30 G01 F1000;N40 G04 P2000;N50 G00 ;N60 ;N70 G01 ;N80 G00 ;N90 ;N100 G01 ;N110 G04 P2000;N120 G00 H00;N130 M05 M03;由于偏置号的改变而造成偏置值的改变时,新的偏置值并不加到旧偏置值上。
例如,H01的偏置值为,H02的偏置值为时G90 G43 H01 Z将达到G90 G43 H02 Z将达到刀具长度补偿同时只能加在一个轴上,下面的指令将出现报警。
在必须进行刀具长度补偿轴的切换时,要取消一次刀具长度补偿。
G43 Z HG43 X H其他功能指令1、段间过渡方式指令G09,G61,G64。
(1)准停检验指令G09,G61,G64。
格式:G09;一个包括G09的程序段在继续执行下个程序段前,准确停止在本程序段的终点。
该功能用于加工尖锐的棱角。
G09仅在其被规定的程序段中有效。
(2)精确停止检验G61。
格式:G61。
在G61后的各程序段的移动指令都要准确停止在该程序段的终点,然后再继续执行下个程序段。
此时,编辑轮廓与实际轮廓相符。
G61与G09的区别在于G61为模态指令。
G61可由G64注销。
(3)连续切削方式G64。
格式:G64:2、简化编程的指令(1)镜像功能指令G24,G25。
格式:G24 X Y ZM98 PG25 X Y Z例:如图所示的镜像功能程序图镜像功能%0003 主程序N10 G91 G17 M03;N20 M98 P100;加工①N30 G24 X0; Y轴镜像,镜像位置为X=0N40 M98 P100;加工②N50 G24 X0 Y0; X轴、Y轴镜像,镜像位置为(0,0)N60 M98 P100;加工③N70 G25 X0;取消Y轴镜像N80 G24 Y0; X轴镜像N90 M98 P100;加工④N100 G25 Y0;取消镜像N110 M05;N120 M30;子程序(①的加工程序):%100N200 G41 G00 D01;N210N220 ;N230 G01 F100;N240 ;N250 ;N260 G03 ;N270 G01 ;N280 ;N290 G00 ;N300 G40 ;N310 M99;(2)缩放功能指令G50、G51格式:G51 X Y Z PM98PG50例:如图所示的三角形ABC,顶点为A(30,40),B(70,40),C(50,80),若D(50,50)为中心,放大2倍,则缩放程序为G51 X50 Y50 P2图缩放功能执行该程序,将自动计算出A'、B'、C'三点坐标数据为A'(10,30),B'(90,30),C'(50,110)从而获得放大一倍的 A'B'C'。
缩放不能用于补偿量,并且对A、B、C、U、V、W轴无效。
(3)旋转变换指令G68,G69G68为坐标旋转功能指令,G69为取消坐标旋转功能指令。
在XY平面:格式:G68 X Y PG69;例:如图所示的旋转变换功能程序。
图旋转变换功能%1 主程序N10 G90 G17 M03;N20 M98 P100;加工N30 G68 X0 Y0 P45;旋转45°N40 M98 P100; 加工②N50 G69;取消旋转N60 G68 X0 Y0 P90;旋转则90°M70 M98 P100;加工③N80 G69 M05 M30;取消旋转子程序(①的加工程序)%100N100 G90 G01 X20 Y0 F100;N110 G02 X30 Y0 15;N120 G03 X40 Y0 15;N130 X20 Y0-10;N140 G00 X0 Y0;N150 M99;固定循环概述孔加工固定循环指令有G73,G74,G76,G80~G89,通常由下述6个动作构成,如图所示,图中实线表示切削进给,虚线表示快速进给。
动作1:X、Y轴定位;动作2:快速运动到R点(参考点);动作3:孔加工;动作4:在孔底的动作;动作5:退回到R点(参考点);动作6:快速返回到初始点。
固定循环的程序格式包括数据表达形式、返回点平面、孔加工方式、孔位置数据、孔加工数据和循环次数。
其中数据表达形式可以用绝对坐标G90和增量坐标G91表示。
如图所示,其中图(a)是采用G90的表达形式,图(b) 是采用G91的表达形式。
图孔加工固定循环图固定循环数据形式固定循环的程序格式如下:G98(或G99)G73(或G74或G76或G80~G89)X Y Z R Q P I J K F L式中第一个G代码(G98或G99)指定返回点平面,G98为返回初始平面,G99为返回R点平面。
第二个G代码为孔加工方式,即固定循环代码G73,G74,G76和G81~G89中的任一个。