轴系设计

合集下载

轴系设计与分析实验报告

轴系设计与分析实验报告

轴系设计与分析实验报告1. 引言轴系设计与分析是机械工程中的重要内容之一。

通过对轴系的设计与分析,可以确保机械系统的运行稳定性和效率。

本实验旨在通过实际操作和分析来学习轴系设计与分析的基本原理和方法。

2. 实验目的本实验的主要目的是掌握轴系设计与分析的基本步骤和方法,包括轴的选择、轴的尺寸设计、轴的强度校核等。

3. 实验步骤本实验的具体步骤如下:3.1 确定传动系统参数根据所给的传动要求和实际情况,确定传动系统的参数,包括输入功率、输出转速、传动比等。

3.2 选择轴材料根据所需承受的载荷和工作环境条件,选择合适的轴材料。

考虑诸如强度、刚度、耐磨性等因素,选择最优的轴材料。

3.3 选择轴的类型和形状根据传动系统的需求和工作条件,选择合适的轴类型和形状。

常见的轴类型有实心轴、空心轴、中空轴等,而轴的形状可以是圆柱形、锥形、多边形等。

3.4 设计轴的尺寸根据轴的类型、轴材料和传动系统参数,进行轴的尺寸设计。

首先确定轴的直径或截面尺寸,然后考虑轴的长度和轴上的零件布置。

3.5 进行强度校核根据轴的尺寸和所受载荷,进行强度校核。

使用适当的强度校核方法,如受弯强度校核、疲劳强度校核等,确保轴的强度满足设计要求。

3.6 进行轴的稳定性分析根据轴的尺寸和受力情况,进行轴的稳定性分析。

通过计算轴的弯曲刚度、扭转刚度等参数,评估轴在工作过程中的稳定性。

3.7 优化设计根据实际分析结果,对轴的尺寸和材料进行优化设计。

通过改变轴的尺寸或材料,达到更好的性能和效果。

4. 实验结果与分析根据实际操作和计算分析,得出了轴的最佳尺寸和材料。

经过强度校核和稳定性分析,确认轴的设计满足要求,并具备良好的性能和可靠性。

5. 结论通过本实验,我们掌握了轴系设计与分析的基本步骤和方法。

我们了解了轴的选择、轴的尺寸设计、轴的强度校核等关键内容,并通过实际操作提升了我们的实际能力。

6. 参考文献•张三等,《机械设计与制造》•李四,《轴系设计与分析基础》以上是本次轴系设计与分析实验报告的内容,通过本次实验,我们深入了解了轴系设计与分析的基本原理和方法,并将其运用到实践中。

轴系设计与分析实验报告

轴系设计与分析实验报告

轴系设计与分析实验报告轴系设计与分析实验报告引言:轴系设计与分析是机械工程领域中一个重要的研究方向。

轴系是机械传动中的关键组成部分,其设计合理与否直接影响到机械系统的性能和寿命。

本实验旨在通过对轴系的设计与分析,深入了解轴系的工作原理和设计要点,为机械工程师提供参考和指导。

一、实验目的本实验的主要目的是通过设计和分析轴系,掌握轴系设计的基本原理和方法,深入理解轴系的工作原理和设计要点。

二、实验原理1. 轴系的基本概念轴系是由轴、轴承、传动装置等组成的机械传动系统。

轴承是轴系中的重要组成部分,其作用是支撑轴的转动并承受轴上的载荷。

2. 轴系的设计要点轴系的设计要点包括轴的材料选择、轴的尺寸计算、轴的受力分析等。

轴的材料选择应考虑其强度、刚度和耐磨性等因素;轴的尺寸计算应根据轴上的载荷和转速等参数进行;轴的受力分析可以通过有限元分析等方法进行。

三、实验步骤1. 确定轴系的工作条件和参数,包括载荷、转速等。

2. 根据轴系的工作条件和参数,选择合适的轴材料。

3. 根据轴系的工作条件和参数,计算轴的尺寸。

4. 进行轴的受力分析,包括静态受力分析和动态受力分析。

5. 根据轴的受力分析结果,对轴进行优化设计。

6. 检验轴的设计是否满足要求,包括强度、刚度和耐磨性等方面。

四、实验结果与分析通过实验,我们设计了一台用于传动的轴系,并对其进行了分析。

根据轴系的工作条件和参数,我们选择了合适的轴材料,并计算出了轴的尺寸。

通过有限元分析,我们得到了轴的受力分析结果,并对轴进行了优化设计。

最后,我们对轴进行了检验,结果表明轴的设计满足了要求。

五、实验总结通过本次实验,我们深入了解了轴系的设计原理和方法,掌握了轴系设计的基本要点和步骤。

实验结果表明,轴系的设计对机械系统的性能和寿命有着重要影响,合理的轴系设计可以提高机械系统的工作效率和可靠性。

因此,在实际工程应用中,我们应该重视轴系的设计与分析,确保机械系统的正常运行和长期稳定性。

机械设计--轴系设计

机械设计--轴系设计
滚动轴承型号选择6208尺寸为d=40mm,D=80mm,da=47mm,Da=73mm
B
A
C
D
d1=35mm,d2=38mm,d3=40mm,d4=43mm,d5=50mm,d6=40mm.
L1=82mm,L2=55mm,L3=32mm,L4=48mm,L5=8mm,L6=32mm
RCH
3、画轴的受力分析图,进行轴的强度校核
水平面:
RCH=754.4*46/(54+46)=347.02N,RCV=2072.7*46/(54+46)=953.44N
RDH=754.4*54/(46+54)=407.38N,RDV=2072.7*54/(46+54)=1119.26N
轴受力图:
RDV
RDH
RCV
Ft
Fr
水平面受力:
RDH
Fr
设计步骤
计算内容
计算结果
1、计算作用在齿轮上的力
已知z=110,m=2,d=mz=220mm,输出轴的转矩T=228N·m,切向力Ft=2T/d=2*228*103/220=2072.7N,径向力Fr=Ft*tanɑ=2072.7*tan20°=754.4N
为直齿轮故轴向力不存在
Ft=2072.7N,Fr=754.4N
轴承受到径向力为754.4N,轴承寿命为7.2*106h
2、按扭转强度条件初步估算轴径
d≥C*(P/n)⅓,由之前的设计计算得到P=2.48kw,n=104r/min,查表11-1,取C=112,估算得到d≥32mm,由于有键的存在,故直径需略微取大一些,装、定位和调整要求进行轴的结构
选择联轴器:LT型弹性套柱销联轴器,型号为LT6,由联轴器的轴孔长度可得L1=82mm,d2=d1+(3~6)=38mm,d3=d2+(1~3),由滚动轴承内径尺寸可确定d3=40mm,d4=d3+(1~3)=43mm,d5=d4+(6~8)由之前的齿轮设计计算得到d5=50mm,d6=d3=40mm。轴承端盖的厚度加上25~40的装配距离可定为L2=55mm,考虑轴承的厚度B以及挡油环的厚度,可取L3=32mm,由之前齿轮设计计算齿轮轮毂的长度可得到与之相配合的轴头长度L4=48mm,轴肩长度取为L5=8mm,考虑到轴承的宽度以及挡油环的厚度,与轴承相配合的轴颈长度可取为L6=32mm

轴系设计与分析实验报告

轴系设计与分析实验报告

轴系设计与分析实验报告1. 引言轴系是工程中常见的机械传动元件,其设计和分析对于确保机械系统的正常运转至关重要。

本实验旨在通过对轴系的设计和分析,加深对机械传动的理解,并掌握轴系设计的基本方法和分析技巧。

2. 实验目标本实验的主要目标是设计一个满足给定工况要求的轴系,并对其进行强度和稳定性分析。

具体要求如下: 1. 设计一根适合的轴,使其满足给定的转速、扭矩和工作温度要求; 2. 进行轴的强度分析,确保其能够承受设计工况下的载荷; 3. 进行轴的稳定性分析,判断轴在高速转动时是否会发生振动。

3. 实验步骤3.1 确定设计参数根据给定的工况要求,确定设计轴的转速、扭矩和工作温度。

在设计过程中,还需要考虑材料的强度和热膨胀系数等因素。

3.2 选择轴的材料根据设计参数和要求,选择合适的轴材料。

考虑材料的强度、韧性、热膨胀系数等因素,并进行材料力学性能的分析和比较。

3.3 进行轴的受力分析根据设计参数和轴的几何形状,进行轴的受力分析。

计算轴在设计工况下的受力情况,包括弯矩、剪力和轴向力等。

3.4 进行轴的强度分析基于轴的受力情况和选择的材料,进行轴的强度分析。

计算轴的应力和变形,检查轴的强度是否满足设计要求。

3.5 进行轴的稳定性分析根据轴的几何形状和转速,进行轴的稳定性分析。

计算轴的临界转速和临界转矩,判断轴在高速转动时是否会发生振动。

3.6 优化设计根据强度和稳定性分析的结果,对轴的设计进行优化。

可以调整轴的几何形状、材料和工艺等因素,以满足设计要求并提高轴的性能。

4. 实验结果与分析根据实验步骤中的分析和计算,得到了轴的设计参数、材料选择、受力分析、强度分析和稳定性分析的结果。

经过优化设计后,得到了满足给定工况要求的轴系。

5. 结论通过本实验,我们深入了解了轴系设计和分析的方法和技巧。

通过实际计算和分析,我们成功设计了一个满足工况要求的轴系,并对其进行了强度和稳定性分析。

实验结果证明了我们设计和分析方法的有效性和可靠性。

轴系部件结构设计

轴系部件结构设计

轴系部件结构设计本文介绍了轴系部件结构设计的重要性,以及本文的目的和结构安排。

轴系部件结构设计是机械工程领域中重要的设计任务之一。

轴系部件是指连接和传递动力的轴、轴承、联轴器等部件。

它们的结构设计直接影响到机械设备的性能、寿命和可靠性。

良好的轴系部件结构设计能够保证机械设备的正常运转。

首先,合理设计的轴可以实现传递动力和承载负荷的功能;其次,优化设计的轴承能够减少能量损失和机械设备的故障率;还有,恰当选择的联轴器可以实现动力传递的可靠性和高效性。

本文的目的在于深入探讨轴系部件结构设计的关键要素和原则,并提供相关的设计指导。

首先,我们将介绍轴系部件结构设计的基本原则和考虑因素;然后,我们将详细讨论轴的设计要点和注意事项;接着,我们将重点介绍轴承的选择和安装方法;最后,我们将讨论联轴器的选型和安装步骤。

通过阅读本文,读者将了解到轴系部件结构设计的重要性,并可以获得实用的设计指导,以提升机械设备的性能和可靠性。

参考文献请注意,本文引言部分未引用任何内容,其信息为创造性生成)本部分将介绍轴系部件的不同分类和各自的功能。

轴系部件包括轴承、齿轮、连接件等,它们在机械系统中起着重要的作用。

1.轴承轴承是轴系部件中的重要组成部分,它用于支撑轴的旋转运动并减少摩擦。

根据结构和用途的不同,轴承可以分为滚动轴承和滑动轴承。

滚动轴承采用滚动体(如球、柱体、圆锥体)和轴承座的结构,适用于高速转动、小摩擦、高精度要求的场景。

滑动轴承则采用润滑剂在轴和轴承之间形成薄膜,减少摩擦力,适用于低速大负荷的场景。

2.齿轮齿轮是一种通过齿的啮合传递力和运动的机构,常用于机械传动系统中。

齿轮根据齿的形状和用途可以分为直齿轮、斜齿轮、蜗杆齿轮等。

直齿轮是最常见的齿轮形式,它的齿面与轴线平行,适用于传递旋转运动和转矩的工况。

斜齿轮的齿面与轴线倾斜,可以传递更大的力和转矩。

蜗杆齿轮用于角度传动,具有较高的传动比和安全性。

3.连接件连接件用于连接轴系部件和其他机械部件,保证它们协同工作。

轴系零件结构设计实验

轴系零件结构设计实验

轴系零件结构设计实验
轴系零件结构设计是机械工程学中的重要实验之一,其目的是通过对不同的零件结构
进行设计、制造和测试,以从理论上和实践上理解和掌握轴系的基本原理和性能。

本实验分为以下几个步骤:
1、材料准备:为了保证实验结果的准确性和可靠性,需要选用高质量的材料,如高
强度钢、铜、铝等。

2、设计:根据轴系的要求,进行结构设计。

在设计中,需要考虑轴的应力、变形、
强度、硬度和耐热性等因素,同时还需要考虑生产工艺和运作环境等因素。

3、制造:根据设计方案,进行加工、装配和调试。

在制造过程中,需要保证加工精
度和表面质量,避免出现裂纹、划痕等不良情况。

4、测试:采用拉伸、弯曲、扭转、抗疲劳等实验方法进行测试,以验证轴系零件结
构设计的性能。

通过数据实验,得出性能和强度曲线等,可以对轴系进行进一步分析和改进。

通过轴系零件结构设计实验的学习,可以让学生深入理解轴系的工作原理和结构特点,提高工程设计和制造的能力,培养工程实践操作技能,为日后从事相关工作培养专业素养
和能力。

(完整版)轴系布局与设计

(完整版)轴系布局与设计
2
⑴主机位置布置原则如下
①对称布置:考虑到设备重量的平衡以及布置和操作的便利。 单轴系的轴线一般布置在船舶的纵中剖面上; 双轴系的轴线一般对称布置于船舶纵中剖面两侧,即对称布
置在船舶两舷; 三根轴系的船舶,一根布置在船舶的纵中剖面上,其余两根
对称布置在左右两舷。多轴系的间距由船舶总体设计确定。
当轴线出现倾角和偏角时,将使螺旋桨的推力受到损失,因此必须对倾 角和偏角加以控制。
一般将倾角控制在0°~5°之内,高速快艇轴线的倾角可放大到12°~ 16°;偏角则控制在0°~3°之内。
③主机应尽量靠近机舱后舱壁布置,以缩短轴线长度。
④应考虑主机左、右、前、底与上部空间是否满足船舶规范, 另外还需要考虑拆装与维修要求以及吊缸的高度是否足够等 因素。比如高度方向,一般应使主机的油底壳不碰到船的双 层底或肋骨,并使它们之间留有向隙,还应留出油底壳放油 所需的操作高度。
7
⒉轴承的间距
⑴中间轴承最小间距:lmin=24.9d2/3 (cm) 式中:d—轴径,cm
缘由:中间轴承底座通过螺栓与船体刚性连接, 船体因受水压、装载等因素影响而产生变形 (尤其垂向),轴承随之变位,从而产生附加 负荷。当变位量△一定时,轴承间距愈小,当 轴承变位时,它对轴线的牵制作用愈大,其附 加负荷也愈大,故轴承的间距太小是不利的, 应对它有所限制。
4
⑵螺旋桨的布置与定位
螺旋桨的布置与定位由船体总体设计决定,其原则是保证螺 旋桨可靠而有效地工作。
①螺旋桨应有一定的浸没深度。单桨船的浸没深度e=(0.250.30)D,双桨船的浸没深度e=(0.4-0.5)D。D为螺旋桨直 径;
②螺旋桨不应超出船体中部轮廓之外; ③叶梢应尽量高于船体基线以避免螺旋桨在浅水区域航行时

轴系设计实验报告

轴系设计实验报告

实验者:[姓名]同组者:[姓名]班级:[班级名称]日期:[日期]一、实验目的1. 熟悉并掌握轴系结构设计中轴的结构设计方法。

2. 熟悉并掌握滚动轴承组合设计的基本方法。

3. 了解轴、轴上零件的结构形状及功用。

4. 掌握轴及轴上零件的定位与固定方法。

5. 了解轴承的类型、布置、安装及调整方法以及润滑和密封方式。

二、实验设备1. 组合式轴系结构设计分析试验箱。

2. 测量工具:300mm钢直尺、游标卡尺、内外卡钳、铅笔、三角板等。

3. 绘图工具:绘图仪器、A3白纸若干。

三、实验原理轴系结构设计是机械设计中重要的一环,它关系到整个机械设备的性能和寿命。

轴系设计主要包括轴的结构设计、轴承组合设计、轴上零件的定位与固定、轴承的安装与调整、润滑与密封等方面。

四、实验步骤1. 明确实验内容,理解设计要求首先,根据实验指导书,明确实验内容,包括已知条件、设计要求等。

绘制传动零件支撑原理简图,了解传动系统的基本参数。

2. 复习有关轴的结构设计与轴承组合设计的内容与方法复习《机械设计》教材中有关轴与滚动轴承设计的内容,了解轴的结构设计原则、轴承组合设计方法、轴上零件的定位与固定方法等。

3. 构思轴系结构方案根据齿轮类型选择滚动轴承型号,确定支承轴向固定方式,根据齿轮圆周速度确定轴承润滑方式,确定密封方式,解决轴承间隙调整等问题。

4. 绘制轴系结构方案示意图根据构思的轴系结构方案,绘制轴系结构方案示意图,包括轴、轴承、轴上零件等。

5. 组装轴系部件根据轴系结构方案,从实验箱中选取合适的零件,组装成轴系部件。

6. 检查所设计组装的轴系结构检查所设计组装的轴系结构是否满足设计要求,包括轴的结构、轴承的安装、轴上零件的定位与固定等。

五、实验结果与分析1. 轴的结构设计根据实验要求,设计了满足传动系统要求的轴结构,包括轴的材料、直径、长度等。

2. 轴承组合设计根据齿轮类型和转速,选择了合适的轴承型号,确定了轴承的布置、安装、拆卸、配合、定位、紧固、调整、润滑和密封等问题。

概述轴系的结构方案设计

概述轴系的结构方案设计

概述轴系的结构方案设计轴系的结构方案设计和机器的整体质量息息相关,一旦发生轴失效,将导致严重后果。

轴系的结构方案设计和一般零部件的设计存在很大的差异,不仅包括强度设计,还包括结构设计。

1 基于功能元的结构方案设计分析机械产品概念设计内容主要包括下列三个部分:功能抽象化、功能分解、功能结构图设计。

机器可被视作一个大系统,在这个系统中,各种零件按照某种关系组合在一起,以满足客户的特定需求,其基本功能要素如下:(1)轴承集——支撑功能的功能元;(2)齿轮副集——传递运动的功能元;(3)螺栓集——紧固功能元。

在每一类功能元中,又可根据功能特性的差异而做进一步的细分。

以图1所示的单级减速器为例,扭矩通过轴、键、齿轮、轴承、轴承座进行传递,力的传递过程可以用图2表示。

2 轴系主要功能元的特征属性分析2.1 轴的属性轴发挥着支撑以及传递转矩的功能,其决定性能的因素主要有两个:一是刚度,二是强度。

在轴的设计过程中,不仅要以工作能力准则为基础,而且要兼顾如下要求:(1)轴向定位方法的运用;(2)周向固定轴上的各类零件,使其符合转矩传递的要求;(3)轴和其他部分存在相对滑动的表面要具有良好的耐磨性;(4)符合实际工艺生产要求。

2.2 传动类结构功能元两轴间的运动通常依靠齿轮传动来完成。

齿轮传动不仅效率高,而且持续稳定,因而具有很强的适应性。

齿轮副有以下分类:(1)平面齿轮——直齿/斜齿圆柱齿轮传动;(2)空间齿轮——传递相交轴/交错轴运动。

结合齿轮的特点及使用条件,采用功能元划分的方法将齿轮副的十大特征总结如下:(1)传动比;(2)传动平稳性;(3)传动效率;(4)耐磨性;(5)结构紧凑性;(6)轴向力;(7)承载能力;(8)转速要求;(9)两轴线方向;(10)制造成本。

2.3 支撑类结构功能元在机器中,轴承装置是一种应用广泛且相当关键的部件,其设计质量关系着机器是否能够正常运转。

轴承装置的设计涉及多种知识与技术,表现出了一定的复杂性和灵活性。

轴系结构设计实验报告

轴系结构设计实验报告

轴系结构设计实验报告一、实验目的本实验旨在让学生通过设计轴系结构,掌握轴系结构的设计方法和技巧,了解轴系结构的基本原理,并能够进行轴系结构的计算和分析。

二、实验原理1. 轴系结构的基本概念轴系结构是由若干个轴承、联接件、传动件等组成的机械传动系统。

它主要用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。

2. 轴系结构的设计方法(1)确定传递功率和转速(2)选择合适的电机和减速器(3)根据传递功率和转速确定轴承类型和尺寸(4)设计联接件和传动件,保证其强度和刚度满足要求(5)进行轴系结构的计算和分析,检查其可靠性。

三、实验内容及步骤1. 实验材料准备:电机、减速器、联接件、传动件等。

2. 实验步骤:(1)确定传递功率和转速,选择合适的电机和减速器。

(2)根据传递功率和转速确定轴承类型和尺寸。

(3)设计联接件和传动件,保证其强度和刚度满足要求。

(4)进行轴系结构的计算和分析,检查其可靠性。

(5)制作轴系结构样品,进行实验验证。

四、实验结果及分析1. 实验结果:通过实验,我们成功地设计了一台轴系结构,将电机的旋转运动转化为直线运动,并且能够顺利地传递功率和转速。

在实验过程中,我们还发现了一些问题,并进行了相应的调整和改进。

2. 结果分析:通过本次实验,我们深入了解了轴系结构的设计方法和技巧,并掌握了轴系结构的基本原理。

同时,在实际操作中,我们也发现了一些问题并进行了相应的调整和改进。

这不仅增加了我们对机械传动系统的认识,也提高了我们解决问题的能力。

五、实验总结通过本次实验,我们不仅学习到了轴系结构的基本原理和设计方法,还掌握了相关工具的使用技巧。

同时,在实际操作中遇到问题时,我们也学会了如何快速定位并解决问题。

这对于以后从事机械制造行业有着非常重要的意义。

船舶动力装置轴系设计计算

船舶动力装置轴系设计计算

船舶动力装置轴系设计计算1.轴系布置设计首先,根据船舶的需求和动力装置的安装空间,设计轴系布置,包括主轴、辅助轴、传动轴、联轴器、轴承等的位置和相互关系。

2.动力需求计算根据船舶的设计航速、航行条件和推进方式,计算出所需的功率和转速。

功率可通过船舶阻力和运动学公式计算得到,转速可根据动力装置的输出转速和传动比确定。

3.主轴尺寸计算主轴是船舶动力装置的核心部件,其设计需要考虑强度、刚度和转子动力学特性。

首先根据所需功率和转速计算出主轴的扭矩,然后根据材料的强度参数计算出主轴的直径。

最后,根据主轴的刚度要求和转子动力学要求,确定主轴的长度和材料。

4.辅助轴计算辅助轴一般用于传递不同动力装置之间的功率或转速。

根据实际需求,计算出辅助轴的转矩和转速,并根据需求选择适当的辅助轴。

5.传动轴设计传动轴一般用于将主轴的转动传递给辅助轴或船舶的推进装置。

根据功率、转速和传动方式(直接传动或间接传动)、传动比等参数,设计传动轴的直径、长度和材料。

6.轴承计算轴承的设计需要考虑轴的受力和转动特性。

根据轴系布置和轴的尺寸,计算出轴承的额定载荷和额定寿命,并根据实际需求选择适当的轴承类型和数量。

7.联轴器选型联轴器用于连接不同轴之间,传递转矩和扭矩。

根据轴的直径、转速和扭矩,选择适当的联轴器类型和规格,确保联轴器的刚度和可靠性。

8.尺寸校核最后,对设计的轴系进行尺寸校核,确保各个部件的强度和刚度满足要求。

校核包括材料的强度计算、轴的转子动力学分析和系统的振动分析等。

以上是船舶动力装置轴系设计计算的一般过程。

在实际设计中,还需要考虑船舶的具体情况和要求,并进行系统性能试验和优化设计,以确保轴系的安全可靠性和良好的性能。

轴系部件的选择与设计

轴系部件的选择与设计

目录轴系部件的选择与设计 (1)1. 轴系设计的基本要求 (1)(1)旋转精度、刚度、抗振性、热变形 (1)(2)机床主轴传动齿轮空间布置比较 (1)2. 轴系(主轴)用轴承的类型与选择 (2)(1)标准滚动轴承; (2)(2)深沟球轴承; (2)(3)双列向心短圆柱滚子轴承; (2)(4)圆锥滚子轴承; (2)(5)推力轴承。

(2)3. 提高轴系性能的措施 (5)(1)提高轴系的旋转精度 (5)(2)提高轴系组件的抗振性 (5)轴系部件的选择与设计1.轴系设计的基本要求轴系由轴及安装在轴上的齿轮、带轮等传动部件组成,有主轴轴系和中间传动轴轴系。

轴系的主要作用是传递转矩及精确的回转运动,它直接承受外力(力矩)。

对于中间传动轴系一般要求不高。

而对于完成主要作用的主轴轴系的旋转精度、刚度、热变形及抗振性等的要求较高。

(1)旋转精度、刚度、抗振性、热变形旋转精度是指在装配之后,在无负载、低速旋转的条件下轴前端的径向跳动和轴向窜动量。

轴系的刚度反映了轴系组件抵抗静、动载荷变形的能力。

轴系的振动表现为受迫振动和自激振动两种形式。

其振动原因有轴系组件质量不匀引起的动不平衡、轴的刚度及单向受力等;它们直接影响旋转精度和轴承寿命。

轴系的受热会使轴伸长或使轴系零件间隙发生变化,影响整个传动系统的传动精度、旋转精度及位置精度。

又由于温度的上升会使润滑油的粘度发生变化,使滑动或滚动轴承的承载能力降低。

(2)机床主轴传动齿轮空间布置比较机床主轴传动齿轮空间布置比较2.轴系(主轴)用轴承的类型与选择(1)标准滚动轴承;(2)深沟球轴承;(3)双列向心短圆柱滚子轴承;(4)圆锥滚子轴承;(5)推力轴承。

双列向心短圆柱滚子轴承、圆锥滚子轴承、双列推力球轴承图1)配套应用例上图为其配套应用实例,双列向心短圆柱滚子轴承的径向间隙调整,是先将螺母6松开、转动螺母1,拉主轴7向左推动轴承内圈,利用内圈胀大以消除间隙或预紧。

这种轴承只能承受径向载荷。

实验二轴系结构设计实验

实验二轴系结构设计实验

实验二轴系结构设计实验一、实验目的1.通过实验学习并掌握轴系结构设计的基本原理和方法。

2.利用MATLAB软件进行轴系的结构设计,并掌握MATLAB软件的基本操作方法。

3.实践培养学生的工程实际应用能力和问题解决能力。

二、实验原理轴系是由不同的轴件组成的一种机械传动装置,用于传递功率和动力。

轴系结构设计是指为满足特定工况和设计要求,选择适当的轴材料、直径和长度,以及确定轴上的连接方式和支撑方式的过程。

轴系结构设计需要考虑一系列因素,包括承载能力、刚度要求、传动扭矩等。

实验流程:1.根据给定的传动方式(联轴器、齿轮、皮带等),确定轴系的输入和输出位置。

2.确定轴系的输入功率、传递扭矩等参数。

3.使用MATLAB软件进行轴系结构设计。

4.根据设计结果,选择合适的轴材料、直径和长度,确定轴上的连接方式和支撑方式。

5.绘制轴系结构的图纸。

三、实验设备与材料1.计算机2.MATLAB软件3.原理图纸4.轴材料:钢材四、实验步骤1.在MATLAB软件中创建一个新的工程文件,命名为“轴系结构设计实验”。

2.根据实际情况,确定轴系的输入和输出位置,并在MATLAB中绘制轴系的原理图。

3.根据实验条件,确定轴系的输入功率、传递扭矩等参数,并在MATLAB中输入这些参数。

4.使用MATLAB的计算工具,计算轴系的承载能力和刚度要求。

5.根据计算结果,选择合适的轴材料、直径和长度,并在MATLAB中进行相应的计算。

6.根据设计结果,确定轴上的连接方式和支撑方式,并在MATLAB中进行相应的计算。

7.将设计结果导出为图纸,保存为DWG或DXF格式。

8.检查设计结果,确认无误后打印出轴系结构的图纸。

五、实验注意事项1.进行实验前,需要熟悉MATLAB软件的基本操作方法。

2.实验时,应准确输入轴系的输入功率、传递扭矩等参数。

3.设计结果应符合实际情况和实验要求。

4.实验结束后,应将结果进行检查和确认。

六、实验结果分析实验中获得的轴系结构设计结果应符合实际条件和设计要求。

轴系结构设计实训报告

轴系结构设计实训报告

一、实验目的1. 熟悉轴系结构设计的基本原理和方法。

2. 掌握轴、轴承和轴上零件的结构特点及装配关系。

3. 学会轴系结构设计的计算和绘图方法。

4. 培养实际操作能力和工程意识。

二、实验内容1. 实验原理与计算(1)轴的结构设计:根据轴的受力情况,确定轴的材料、直径、长度和形状。

(2)轴承组合设计:根据轴的转速、载荷和润滑条件,选择合适的轴承类型、型号和安装方式。

(3)轴上零件的固定:根据轴上零件的类型和用途,选择合适的固定方法。

2. 实验步骤(1)分析轴的受力情况,确定轴的材料和直径。

(2)根据轴的转速、载荷和润滑条件,选择合适的轴承类型和型号。

(3)设计轴承组合结构,包括轴承的安装方式、轴向定位和轴向固定。

(4)选择轴上零件的固定方法,并绘制装配图。

三、实验过程1. 分析轴的受力情况(1)根据实验要求,确定轴的转速、载荷和转速范围。

(2)根据转速和载荷,选择合适的材料。

(3)计算轴的直径,满足强度、刚度和稳定性要求。

2. 选择轴承类型和型号(1)根据转速、载荷和润滑条件,选择合适的轴承类型。

(2)根据轴承类型,选择合适的轴承型号。

3. 设计轴承组合结构(1)确定轴承的安装方式,如外圈固定、内圈固定等。

(2)设计轴承的轴向定位和轴向固定,确保轴承在轴向方向的稳定。

4. 选择轴上零件的固定方法(1)根据轴上零件的类型和用途,选择合适的固定方法。

(2)绘制装配图,标注固定方式和尺寸。

四、实验结果与分析1. 实验结果(1)根据实验要求,完成了轴的结构设计。

(2)根据实验要求,完成了轴承组合设计。

(3)根据实验要求,完成了轴上零件的固定设计。

2. 分析(1)实验过程中,对轴的结构设计、轴承组合设计和轴上零件的固定方法有了更深入的了解。

(2)通过实验,掌握了轴系结构设计的基本原理和方法。

(3)提高了实际操作能力和工程意识。

五、实验总结1. 实验过程中,遇到了一些问题,如轴承型号的选择、轴上零件的固定方法等。

轴系设计

轴系设计

轴的强度计算:
1. 按扭转强度计算
2. 按弯扭合成强度计算
机械设计基础
分 目 录
上 一 页
下 一 页
回返
一. 按扭转强度计算
按扭转强度计算时,只考虑轴所受的转 矩,如果轴还受不大的弯矩,则用降低许用 扭转切应力的方法加以解决。 按扭转强度计算适应下列情况: 1)以传递转矩为主的传动轴;
2)对转轴进行结构设计时,初步估算轴径;
返 回
一单级齿轮减速器,已知:
输出轴通过弹性柱销联轴器与工
W
作机相联,单向转动。传递功率 P=4.95 kW,转速 n= 71.64
r/min,试设计该输出轴。

0
机械设计基础
一、选择轴的材料、估算最小轴径 45钢 调质处理
A=118~107
最小轴径:
[-1]=60 MPa
dmin A
3
P 9.41 (107 ~ 118) 3 44 ~ 48 n 93.61
机械设计基础
ห้องสมุดไป่ตู้系结构改错
图中有一处错误, 请改正。
错误原因 r >c 使得轴上零件与轴肩 的配合不够紧密。
r
机械设计基础
分 目 录
上 一 页
下 一 页
返 回
轴系结构改错
图中有三处错误, 请改正。 错误原因 1.轴肩太高,滚动 轴承无法拆卸。
2.轴上未留退刀槽,不便于 螺纹加工。 3.轴左段直径过大,圆螺 母无法装入。
轴的设计例题
一圆锥-圆柱齿轮减速器, 已知:输出轴通过弹性柱销联轴 器与工作机相联,单向转动。传 递功率 P=9.41 kW,转速 n= 93.61 r/min,试设计该输出轴。
S=8 分 目 录
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计课程设计任务书
一.设计题目
某注塑成型机的传动如图一示,4为两级直齿圆柱齿轮减速器,试设计该减速器的高速级齿轮传动,并进行轴系Ⅰ的设计(包括设计轴Ⅰ的结构尺寸,选择滚动轴承3、7的型号并计算其寿命,选择轴承的润滑方式和润滑油(或润滑脂)牌号,设计轴承端盖和选择密封方式)。

1—电动机;2,8—联轴器;3,7—滚动轴承;4—减速器;
5—低速级齿轮传动;6—高速级齿轮传动;9—注塑机
图一带式输送机传动简图
已知减速器输入功率P=10kW,小齿轮转速n1=960r/min,齿数比u=3.2,工作寿命15年(设每天工作300天),两班制,注塑机工作平稳,转向不变。

二、设计目的
1. 综合运用所学课程的理论知识解决工程设计中的实际问题;掌握机械产品设计开发的基本方法和步骤;
2. 通过毕业设计使学生熟练地应用所学课程的理论知识和设计计算手段,完成一个工程技术人员在机械产品设计开发方面所必须具备的全面训练。

三.设计内容
设计大致包括以下内容:
⑴计算高速级齿轮传动的运动和动力参数,即各齿轮传递的扭矩和转速大小等;
⑵高速级齿轮传动的设计计算,包括主要参数的确定,几何尺寸计算,齿轮结构设计;
⑶轴的设计计算,包括轴的结构设计及其强度计算;
⑷滚动轴承、联接件(如键连接)、润滑密封、联轴器的选择和校核计算;
⑸轴承盖结构设计;
⑹绘制轴系装配图及零件工作图;
⑺编写计算说明书。

轴系部件图应包含轴系各零件的结构、装配关系、相对位置、必要的尺寸、标题栏等内容。

为方便学生了解轴系装配图包含哪些内容,给出图二作为参考。

四.设计任务
完成轴系部件图一张,零件图一张(齿轮、轴均可),设计计算说明书一份。

图二轴系示意图
五.参考资料
⑴教材《机械设计基础》
⑵濮良贵主编,机械设计,高等教育出版社
⑶龚溎义主编,机械设计课程设计指导书,高等教育出版社
⑷与本设计内容相同的各种版本的《机械设计课程设计指导书》均可
⑸《机械设计手册》
⑹《减速器图册》
六.完成时间
2012年5月30日。

相关文档
最新文档