等离子体分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等离子体物理
姓名:
摘要:本文简要介绍了等离子体的概念,等离子体的发展史,等离子体按焰温度和所处状态的分类,并且例举了在地球上和地球外的常见等离子体,也简单介绍了等离子体在冶炼、喷涂、焊接、刻蚀、隐身和核聚变各个方面的应用。另外,对等离子体的现状做了介绍,对其前景也做了展望。而主要介绍了等离子体物理学的理论,包括粒子轨道理论,磁流体力学和等离子体动力论三个方面,并一一展开详细介绍了这三个理论,最后得出三大理论相互联系的结论。
关键词:等离子体;粒子轨道理论;漂移;等离子体动力论;湍流;孤立子;等离子体中波;
引言:
大家早已熟知物体的固体、液体和气体三态。将固体加热到熔点时,粒子的平均动能超过晶格的结合能,固体会变成液体;将液体加热到沸点时,粒子的动能会超过粒子之间的结合能,液体会变成气体。如果把气体进一步加热,气体则会部分电离或者完全电离,则原子变成离子。如果正离子和负离子数目相等即为等离子体。自20世纪50年代以来,等离子体物理学已发展成为物理学的一个十分活跃的分支。在实验上,已经取得很大的成就。在理论上,利用粒子轨道理论、磁流体力学和动力论已经阐明等离子体的很多性质和运动规律,相信随着人们对等离子体性质研究的不断深入,我们会能够将其应用在更多领域。
一.等离子体概念
从广义上说,等离子体是泛指一些具有足够的能量自由的带电粒子,其运动以受电磁场力作用为主的物质,例如,半导体、电解液都是等离子体。
从狭义上讲,等离子体是普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离.电离出的自由电子总的负电量与正离子总的正电量相等.这种高度电离的、宏观上呈中性的气体叫等离子体【1】。
等离子体又叫做电浆,它广泛存在于宇宙中,常被视为是除去固﹑液﹑气外,物质存在的第四态。
在现有的等离子体理论中,无论磁流体力学方程或动力论方程,
都是非线性的偏微分方程,难于严格求解析解。为了求得解析解,只能采用经过大大简化的物理模型,其结果往往是许多过程和效应都被掩盖了。因而借助于计算机的数值计算在等离子体研究中的作用越来越大,已经成为与实验研究和理论研究相配合的重要研究方法。
随着天体和空间观测的进一步开展,以及受控热核聚变和低温等离子体应用的进一步研究,等离子体物理学将继续在人类的发展史上留下浓墨重彩的每一笔。
处于磁场中的带电粒子绕磁力线作圆周运动,它们形成了一个个“小电流圈”,正负电荷旋转的方向相反,但形成的电流是相同的,迎着磁场方向看时,做回旋运动的带电粒子所形成的电流是沿顺时针方向流动的。
但是如果除磁场外,还有其他外力F,则粒子除沿磁场运动外,在垂直磁场方向,一面作回旋运动,一面作漂移运动【11】。
漂移运动是拉莫尔圆的圆心(即导向中心)垂直于磁场的运动。如在均匀恒定磁场条件下,带电粒子受洛伦兹力作用,沿着以磁力线为轴的螺旋线运动(见带电粒子的回旋图2)
如果还有静电力或重力则带电粒子除了以磁力线为轴的螺旋线运动外,还有垂直于磁力线的运动即漂移运动。对于非均匀磁场,漂移也可以有磁场梯度和磁场的曲率等引起。
而漂移是粒子轨道理论的重要内容,在这分别讨论在均匀磁场与非均匀磁场两种情况下的漂移:
1.2在均匀磁场中的漂移
对于曲线的CD段,由于电子受到减速电位(-)的作用,只有能量比e
(-)大的那部分电子能够到达探针。假定等离子区内电子的速度服从麦克斯韦分布,则减速电场中靠近探针表面处的电子密度,按玻耳兹曼分布应为
(1)
式中no为等离子区中的电子密度,Te为等离子区中的电子温度,k为玻耳兹曼常数。在电子平均速度为ve时,在单位时间内落到表面积为S的探针上的电子数为:
(2)
将(1)式代入(2)式得探针上的电子电流:
(3)其中
(4)
对(3)式取对数
其中
故
可见电子电流的对数和探针电位呈线性关系。
作半对数曲线,如图3所示,由直线部分的斜率,可决定电子温度:
若取以10为底的对数,则常数11600应改为5040。
电子平均动能和平均速度分别为:
式中为电子质量。
由(4)式可求得等离子区中的电子密度:
式中I0为UP=Us时的电子电流,S为探针裸露在等离子区中的表面面
积。
(2)双探针法。单探针法有一定的局限性,因为探针的电位要以放电管的阳极或阴极点位作为参考点,而且一部分放电电流对探极电流有所贡献,造成探极电流过大和特性曲线失真。
双探针法是在放电管中装两根探针,相隔一段距离L。双探针法的伏安特性曲线如图4所示。在坐标原点,如果两根探针之间没有电位差,它们各自得到的电流相等,所以外电流为零。然而,一般说来,由于两个探针所在的等离子体电位稍有不同,所以外加电压为零时,电流不是零。
随着外加电压逐步增加,电流趋于饱和。最大电流是饱和离子电流Is1,Is2。
1.磁流体力学
磁流体力【15】学是结合经典流体力学和电动力学的方法研究导电流体和磁场相互作用的学科,包括磁流体静力学和磁流体动力学两个分支。
磁流体静力学研究导电流体在磁场力作用下静平衡的问题;磁流体动力学研究导电流体与磁场相互作用的动力学或运动规律。但磁流体力学通常即指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形。
其基本思想是在运动的导电流体中,磁场能够感应出电流。磁流体力学不讨论单个粒子的运动,而是把等离子体当作导电的连续媒质来处理,在流体力学方程中加上电磁作用项,再和麦克斯韦方程组联立,就构成磁流体力学方程组,这是等离子体的宏观理论。
2.1磁流体力学简史
--1832年M.法拉第首次提出有关磁流体力学问题。
--1937年J.F.哈特曼根据法拉第的想法,成功地提出粘性不可压缩磁流体力学流动的理论计算方法。
--1940~1948年H.阿尔文提出带电单粒子在磁场中运动轨道的"引导中心"理论、磁冻结定理、磁流体动力学波和太阳黑子理论。
--1950年S.伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。
--1950年,N.赫罗夫森和范德胡斯特论证了有三种扰动波存在。
2.2磁流体力学研究方法
磁流体力学是在非导电流体力学的基础上研究导电流体中流场和磁场的相互作用的。进行这种研究必须对经典流体力学加以修正,以便得到磁流体力学基