第三章 单模光纤传输特性及光纤中非线性效应
光纤技术及应用第三章
Optical Fiber Technology and Its Application
2021/7/22
.
1
第3章
光
纤
Optic fiber
2021/7/22
.
2
引言
1、光纤(optic fiber)----是指能够传导光波的圆柱形介质波 导。它利用光的全反射原理将光波能量约束在其界面内,并引 导光波沿着光纤轴线方向传播。
本章介绍光纤的结构与分类、光波在光纤中的传输原理。 第四章讲光纤的传输特性(损耗、色散、偏振、非线性效应)
2021/7/22
.
6
3、光纤的结构、分类 纤芯(芯层)core:其折射率较高 , (用来导光).
包层coating:其折射率较低,提供在纤芯内发生光全反射的条 件.
保护层jacket——保护光纤不受外界微变应力的作用、防水等作 用。 光纤横截面半径为几十至几百微米,长度从几十厘米到 上千千米。
所以梯度光纤中导模光线的 最大延迟时间为:
ma xmin2nc12
.
25
梯度光纤中导模光线的最大延迟 时间
ma xmin2nc12
与阶跃光纤的最大延迟时间相比较:
max12n c1n1n 2n2n c1
平方律光纤的色散小很多。 (3)梯度光纤的数值孔径 采用近似方法导出:
.
26
将光纤芯层分成许多薄层:每一层内,折射率可近似看成常 数,而且折射率沿径向向外逐层递减
2021/7/22
.
33
.
34
3.2 光纤的波动光学理论
光纤属于介质圆波导,分析导光原理很复杂, 可用两种理论进行:
w用波动理论讨论导光原理(复杂、精确) w采用射线理论分析导光原理(简单、近似)
光纤中的非线性效应的研究
光纤中的非线性效应研究一、引言进入21世纪以来,随着语音、图像和数据等信息量爆炸式的增长, 尤其是因特网的迅速崛起,人们对于信息获取的需求呈现出供不应求的态势。
这对通信系统容量和多业务平台的服务质量提出了新的挑战,也反过来推动了通信技术的快速发展。
1966年,美籍华人高锟博士提出可以通过去杂质降低光纤损耗至20dB/km ,使光纤用于通信成为可能,从而开启了人类通信史的新纪元。
与传统的电通信相比,光纤通信以其损耗低、传输频带宽、容量大、抗电磁干扰等优势备受业界青睐,已成为一种不可替代的支撑性传输技术。
光纤通信自从问世以来,就一直向着两个目标不断发展,一是延长无电中继距离;二是提高传输速率(容量)。
随着掺铒光纤放大器(EDFA )的大量商用,大大增加了无电中继的传输距离;同时,密集波分复用(DWDM )技术的成熟,极大地增加了光纤中可传输信息的容量,降低了成本。
光纤通信技术正朝着超高速超长距离的方向发展,并逐步向下一代光网络演进。
但随着波分复用信道数的增加,单通道速率的提高,光纤的非线性效应成为制约系统性能的主要因素。
高速长距离传输必须克服非线性效应的影响。
因此,如何提高光纤传输系统的容量,增加无电中继的传输距离,克服非线性效应,已经成为光纤通信领域研究的热点。
本文详细介绍了在光纤中的几种重要的非线性现象,引出了非线性折射率相关的自相位调制(SPM )、交叉相位调制(XPM )和四波混频(FWM )等克尔效应,以及与受激非弹性散射相关的受激喇曼散射(SRS )与受激布里渊散射(SBS )效应。
二、光纤的非线性特性在高强度电磁场中,任何电介质对光的响应都会变成非线性,光纤也不例外。
从其基能级看,介质非线性效应的起因与施加到它上面的场的影响下束缚电子的非谐振运动有关,结果导致电耦极子的极化强度P 对于电场E 是非线性的,但满足通常的关系式(1)(2)(3)0(:)P E EE EEE εχχχ=⋅+++ 式中,是真空中的介电常数,阶电极化率,考虑到光的0ε()(1,2,)j j χ=偏振效应, 是 阶张量。
单模光纤的传输原理
单模光纤的传输原理-概述说明以及解释1.引言1.1 概述概述部分内容:光纤通信作为一种高速、高带宽、低损耗的传输方式,在现代通信技术中起着至关重要的作用。
而单模光纤作为光纤通信的重要组成部分,由于其较小的传输损耗和较高的传输带宽,在长距离通信和高速数据传输中得到广泛应用。
本文将介绍单模光纤的传输原理。
单模光纤是一种芯径较小的光纤,其传输模式是只允许基础模式传输,能够传输更多的光信号。
相比之下,多模光纤可以传输多种模式,但由于介质折射率不均引起的模式耦合会导致较大的传输损耗和时延扩展,因此在长距离通信中使用多模光纤效果较差。
单模光纤的传输原理基于全内反射。
光信号在光纤芯线内传播时会发生全内反射现象,即光信号总是沿着光纤芯线的中心传播,不会发生偏离和扩散。
这种特性使得单模光纤能够实现高速、高带宽的传输。
同时,单模光纤的传输距离也得到了有效的提升,可以实现数十公里乃至数百公里的长距离通信。
单模光纤的传输原理还包括衍射、色散和损耗等方面。
衍射是光信号在光纤中传播时发生的一种现象,会导致信号的扩散。
色散是光信号在光纤中传播时由于光的折射率随光波长而不同而引起的信号失真现象。
而光纤的损耗则是光信号在传输过程中受到的能量损失,主要包括吸收损耗、散射损耗和弯曲损耗等。
通过对单模光纤传输原理的深入了解,我们能够更好地理解光纤通信技术的优势和特点,为其应用和发展提供有力支持。
在接下来的内容中,我们将详细介绍单模光纤的结构、性能和应用,并展望其未来在通信领域的发展前景。
1.2文章结构文章结构部分的内容可以如下编写:"1.2 文章结构:本文将按照以下结构进行论述:第2章正文:单模光纤的传输原理2.1 单模光纤简介本节将简要介绍单模光纤的定义、特点以及在通信领域的重要性,以帮助读者对单模光纤有一个初步的了解。
2.2 单模光纤的传输原理本节将详细探讨单模光纤的传输原理,包括光的传播方式、光信号的传输特性以及光纤中的耦合衰减等关键概念。
【精选】光纤通信课后习题解答第3章习题参考答案
第三章 光纤的传输特性1.简述石英系光纤损耗产生的原因,光纤损耗的理论极限值是由什么决定的?答:(1)(2)光纤损耗的理论极限值是由紫外吸收损耗、红外吸收损耗和瑞利散射决定的。
2.当光在一段长为10km 光纤中传输时,输出端的光功率减小至输入端光功率的一半。
求:光纤的损耗系数α。
解:设输入端光功率为P 1,输出端的光功率为P 2。
则P 1=2P 2光纤的损耗系数()km dB P P km P P L /3.02lg 1010lg 102221===α 3.光纤色散产生的原因有哪些?对数字光纤通信系统有何危害?答:(1)按照色散产生的原因,光纤的色散主要分为:模式(模间)色散、材料色散、波导色散和极化色散。
(2)在数字光纤通信系统中,色散会引起光脉冲展宽,严重时前后脉冲将相互重叠,形成码间干扰,增加误码率,影响了光纤的传输带宽。
因此,色散会限制光纤通信系统的传输容量和中继距离。
4.为什么单模光纤的带宽比多模光纤的带宽大得多?答:光纤的带宽特性是在频域中的表现形式,而色散特性是在时域中的表现形式,即色散越大,带宽越窄。
由于光纤中存在着模式色散、材料色散、波导色散和极化色散四种,并且模式色散>>材料色散>波导色散>极化色散。
由于极化色散很小,一般忽略不计。
在多模光纤中,主要存在模式色散、材料色散和波导色散;单模光纤中不存在模式色散,而只存在材料色散和波导色散。
因此,多模光纤的色散比单模光纤的色散大得多,也就是单模光纤的带宽比多模光纤宽得多。
光纤损耗吸收损耗本征吸收杂质吸收原子缺陷吸收紫外吸收 红外吸收氢氧根(OH -)吸收 过渡金属离子吸收散射损耗弯曲损耗5.均匀光纤纤芯和包层的折射率分别为n 1=1.50,n 2=1.45,光纤的长度L=10km 。
试求:(1)子午光线的最大时延差;(2)若将光纤的包层和涂敷层去掉,求子午光线的最大时延差。
解:(1) 1sin 21111⎪⎪⎭⎫ ⎝⎛-=-=n n C Ln n C L n CL c M θτ () s 1.72145.150.110350.1105μ=⎪⎭⎫⎝⎛-⨯⨯=km km (2)若将光纤的包层和涂敷层去掉,则n 2=1.01sin 21111⎪⎪⎭⎫ ⎝⎛-=-=n n C Ln n C L n CL c M θτ () s 5210.150.110350.1105μ=⎪⎭⎫⎝⎛-⨯⨯=km km 6.一制造长度为2km 的阶跃型多模光纤,纤芯和包层的折射率分别为n 1=1.47,n 2=1.45,使用工作波长为1.31μm ,光源的谱线宽度Δλ=3nm ,材料色散系数D m =6ps/nm·km ,波导色散τw =0,光纤的带宽距离指数γ=0.8。
第三章 单模光纤传输特性及光纤中非线性效应
第三章 单模光纤的传输特性及光纤中的非线性效应单模工作模特性及光功率分布 ............................................................. 错误!未定义书签。
单模光纤中LP 01模的高斯近似 ............................................................... 错误!未定义书签。
单模光纤的双折射(单模光纤中的偏振态传输特性) ............................. 错误!未定义书签。
双折射概念 ............................................................................................... 错误!未定义书签。
偏振模色散概念 ..................................................................................... 错误!未定义书签。
单模光纤中偏振状态的演化 ................................................................. 错误!未定义书签。
单模单偏振光纤 ..................................................................................... 错误!未定义书签。
单模光纤色散 ................................................................................................... 错误!未定义书签。
色散概述 ................................................................................................ 错误!未定义书签。
光纤-光缆及其传输特性
光纤\光缆及其传输特性摘要:在广播电视传输网中,同轴电缆传输系统具有设备简单投资少,接入用户方便,因此它在广播电视传输网的接入网部分和小区域的用户中得到了广泛的应用。
但对于远距离传输而言,同轴电缆传输系统就曝露出致命的弱点。
而光纤的出现恰好弥补了这一缺陷,由于光信号在光缆中的传输衰减极小,很小的光功率便可以在光缆中将其传到很远的地方。
因此光纤在现代社会中被广泛应用。
现就光纤、光缆的概念及其传输特性做一介绍。
关键词:光纤、光缆、传输损耗、传输带宽、光纤性能参数1、光纤光纤是用于传导光的介质光波导。
为了能对光信号进行远距离传输,光纤必须具有两个功能:(1)必须具有较低损耗。
(2)必须满足光波导条件。
为了实现这一功能,光纤通常由纤芯和包层两个二氧化硅层组成,包层的折射率必须小于纤芯的折射率,这样在包层与限制你的临界面便形成一个封闭的全反射面,保证了从纤芯向外射出的光能被完全反射回纤芯。
光纤按其传输光波的模式,可分为多模光纤和单模光纤。
光信号是一种特殊的电磁波,它在光纤中传播与电磁波在电波导中传输一样,同样存在着模式的问题。
多模光纤可以允许光信号以多模式传播,而单模光纤只允许光以基模一种模式传播。
多模光纤中,由于多种模式的光信号传播速度不同,而引起时域脉冲展宽,使其信道带宽受到限制。
由于单模光纤只能传输一种单一模式,所以具有很大的信道带宽。
因此,单模光纤被广泛应用于现代通讯系统中。
2、光缆若将若干根光纤并行使用把它们以一定的形式组合到一起,在其外部加以各种保护套便形成了光缆。
通常使用的架空和直埋式光缆有两种结构形式:中心束管式和层绞式。
中心束管式光缆,使用于光纤芯数较少的场合。
通常12 芯以下光缆使用这种结构形式。
中心束光缆就是将所需数量的光纤并行装入充满纤膏的束管内,形成中心束管。
束管内的光纤可以在纤膏内活动,这样的结构称为松套式结构。
3、光纤的传输特性光纤的传输特性包括传输损耗、光纤的传输带宽以及光纤传输性能参数。
光纤的非线性
Optical fiber communications 1-2
2019/3/10
Copyright Wang Yan
二阶非线性系数d导致产生二次谐波及和频等一系列非 线性效应。但它仅缺乏分子量级反转对称的介质才不 为0。对 SiO2 对称分子石英玻璃的d±0,所以光 纤通常不表现出二阶非线性效应,主要讨论其三阶非 线性效应。 A.非线性折射:折射率佼核与光强(弹性效应) 2 2 总折射率:n ( , E ) n( ) n E
Optical fiber communications 1-1
2019/3/10
4.光纤的非线性
Copyright Wang Yan
一、非线性效应 线性介质: P 0 E 非线性介质(强场):
P 0 E 2dE 4
2
( 3)
E
d:二阶非线性系数,对半导体、介质晶体等中的典型 值为 d 10 24 ~ 10 21 ( 3) 三阶非线性系数,对半导体、介质晶体等中的典 ( 3) 10 34 ~ 10 29 型值为
弹性:自相关调制(SPM:self phase modulation) 交叉相关调制(XPM:Cross phase Modulation)
Optical fiber communications 1-3
2019/3/10
Copyright Wang Yan
B、受激非弹性散射:非线性介质有能量交换 1.受激拉曼散射:Stimulated Raman Scattering—— SRS 2.受激布里渊散射: Stimulated Brillouin Scattering——SBS C参量过程: 四波混频:FWM-Four Wave Mixing
光纤的线性与非线性效应概述
光纤的线性与非线性效应概述1. 绪论1.1 光纤的特点1.2 光纤的历史1.3 光纤的应用2. 光纤的线性效应2.1 损耗2.1.1 起因2.1.2 影响2.2 色散2.2.1 空间色散2.2.2 时间色散2.2.3 偏振模色散3. 光纤的非线性效应3.1 非线性效应产生的原因3.2 自相位调制3.3 受激拉曼散射3.4 受激布里渊散射3.5 非线性效应的重要性4. 结论1. 绪论1.1 光纤的特点光纤是光导纤维的简称。
是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光纤有单模光纤和多模光纤之分:单模光纤采用窄芯线,使用激光作为发光源,所以其地散极小;另外激光是发一个方向射入光纤,而且仅有一束,使用其信号比较强,可以应用于高速度、长距离的应用领域中,便也合得它的成本相对更高;而多模光纤则更广泛地应用于短距离或相对速度更低一些的领域中,它采用LED 作为光源,使用宽芯线,所以其散较大;在加上整个光纤内有以多个角度射入的光,所以其信号不如单模光纤好,但相对低的价格是它的优势。
主要的特点:抗干扰性强:由于光纤中传输的是光束,光束是不会受外界电磁干扰影响;保密性强:由于传输的是光束,所以本身不会向外幅射信号,有效地防止了窃听;传输速度快:光纤是至今为止传输速度最快的传输介质,能轻松达到1000Mbps;传输距离长:它的主减极小,在较大的范围内是一个常数,在许多情况下几乎可以忽略不计的,在这方面比电缆优越很多。
1.2 光纤的历史1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。
结果使观众们大吃一惊。
人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。
表面上看,光好像在水流中弯曲前进。
实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。
光纤的非线性效应精选全文完整版
可编辑修改精选全文完整版通常在光场较弱的情况下,可以认为光纤的各种特征参量随光场强弱作线性变化,这时光纤对光场来讲是一种线性媒质。
但是在很强的光场作用下,光纤对光场就会呈现出另外一种情况,即光纤的各种特征参量会随光场呈非线性变化。
光纤的非线性效应是指在强光场的作用下,光波信号和光纤介质相互作用的一种物理效应。
它主要包括两类:一类是由于散射作用而产生的非线性效应,如受激拉曼散射及布里渊散射;另一类是由于光纤的折射指数随光强度变化而引起的非线性效应,如自相位调制、交叉相位调制以及四波混频等。
1.散射产生的非线性效应由于光纤材料的缺陷,有可能使得光通过介质时发生散射。
瑞利散射属于线性散射,即散射光的频率保持不变。
但当输入光功率很强时,任何介质对光的响应都是非线性的,在此过程中,光场把部分能量转移给非线性介质,即在这种非线性散射过程中,光波和介质相互作用时要交换能量,使得光子能量减少。
1)受激拉曼散射(SRS)当强光信号输入光纤后,就会引发介质中分子振动,这些分子振动对入射光调制后就会产生新的光频,从而对入射光产生散射作用,这种现象称为受激拉曼散射。
拉曼散射产生的散射光(斯托克斯波)强度与泵浦功率及光纤长度有关,因此可制成分布式拉曼散射激光器。
2)受激xx散射(SBS)受激布里渊散射和受激拉曼散射的物理过程相似,都是在散射过程中通过相互作用,光波与介质发生能量交换,但本质上也存在差异。
受激拉曼散射产生的斯托克斯波属于光频范畴,其波的方向与泵浦光方向一致。
而受激布里渊散射所产生的斯托克斯波在声频范围,波的方向与泵浦波方向相反,即在光纤中只要达到受激布里渊散射的阈值,就会产生大量的向后传输的斯托克斯波,这将使信号功率降低,反馈回的斯托克斯波也会使激光器的工作不稳定,对系统将产生不良影响。
但是,由于受激布里渊散射的阈值比受激拉曼散射的阈值低很多,可以利用其低阈值功率提高布里渊放大。
2.折射率变化产生的非线性效应折射率随强度的变化引起的非线性效应,最重要的是自相位调制、交叉相位调制及四波混频。
光纤的特性
6. 2 量规R口公差带
• 制造公差和通规公差带位置要素Z是综合考虑了量规的制造工艺水平 和一定的使用寿命,按工件的基本尺寸、公差等级给出的。具体数值 见表6.1。
• 2.验收号规
• 检验部门或用户验收产品时所用的量规。在量规国家标准中,没有单 独规定验收量规的公差带,但规定了量规的使用顺序。
上一页 下一页 返回
6. 3 量规设计
• (2)计算工作量规的极限偏差 • ①φ20 H7孔用塞规 • 通规 上偏差=EI+Z+T/2=0+0.0034+0.0012=+0.0046(mm) • 下偏差=EI+Z-T/2=0+0.0034-0.0012=+0.0022(mm) • 磨损极限=EI=0 • 止规 上偏差=ES=+0.0021mm • 下偏差=ES-T=0.021-0.0024=+0.0186(mm)
• 必须指出,只有在保证被检验工件的形状误差不致影响配合性质的前 提下,才允许使用偏离极限尺寸判断原则的量规。
• 选用量规结构型式时,必须考虑工件结构、大小、产量和检验效率等, 图6. 3给出了量规的型式及其应用。
上一页 下一页 返回
6. 3 量规设计
• 2.量规极限偏差的计算
• 例6. 1计算φ20H7/f6孔、轴用工作量规的极限偏差 • 解:首先确定被测孔、轴的极限偏差。查第2章极限与配合标准,φ20
上一页 下一页 返回
4.1
• 上两式表明,影响光纤系统传输、透过性能的是总损耗。若仅从进入 光纤的光功率考虑计算,即将光纤内的衰减与系统中的耦合损耗分开,
• 在科学研究与工程实用中,通常用对数分贝的标度来定义、计算光纤 的损耗(衰减)。如光纤长度为L,输入光功率为Pin,输出光功率为 Pout,则损耗是量度输出与输入光功率比Pout/Pin 用对数分贝标度方法,则光纤的损耗(衰减)系数A可以用如下单位长 度( km )光纤光功率衰减的分贝数来定义:
光纤的传输特性
光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。
光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。
衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。
其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。
(1)光纤的损耗特性曲线•损耗直接关系到光纤通信系统的传输距离,是光纤最重要的传输特性之一。
自光纤问世以来,人们在降低光纤损耗方面做了大量的工作,1.31μm光纤的损耗值在0.5dB/km以下,而1.55μm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。
总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。
•从图中可以看到三个低损耗“窗口〞:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。
目前光纤通信系统主要工作在1310nm波段和1550nm波段上。
(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。
这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。
包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。
2、光纤的散射损耗光纤部的散射,会减小传输的功率,产生损耗。
散射中最重要的是瑞利散射,它是由光纤材料部的密度和成份变化而引起的。
物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。
光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。
另外,光纤中含有的氧化物浓度不均匀以与掺杂不均匀也会引起散射,产生损耗。
第三章 单模光纤传输特性及光纤中非线性效应
第三章单模光纤的传输特性及光纤中的非线性效应3.1.2 单模工作模特性及光功率分布 (3)3.1.3单模光纤中LP01模的高斯近似 (4)3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (6)3.2.1双折射概念 (6)3.2.2 偏振模色散概念 (8)3.2.3 单模光纤中偏振状态的演化 (9)3.2.4 单模单偏振光纤 (10)3.3单模光纤色散 (11)3.3.1 色散概述 (11)3.3.2 单模光纤的色散系数 (13)3.4 单模光纤中的非线性效应 (15)3.4.1 受激拉曼散射(SRS) (16)3.4.2 受激布里渊散射(SBS) (19)3.5 非线性折射率及相关非线性现象 (21)3.5.1 光纤的非线性折射率 (21)3.5.2 与非线性折射率有关的非线性现象 (22)3.5.3 自相位调制 (23)第三章单模光纤的传输特性及光纤中的非线性效应3.1 单模光纤的传输特性单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。
例如在阶跃型光纤只传播HE11模(或LP01)的光纤。
由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。
长途光纤通信系统都无例外的采用单模光纤作为传输介质。
由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。
单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。
3.1.1 单模条件和截止波长阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为2.405。
单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0<V<2.405。
单模光纤的截止波长也就是LP 11模的截止波长,在光纤结构参数n 1、Δ及a 已知的条件下,其截止波长为: a n U a n cc 112612.222∆=∆=πλ按上式计算截止波长只有理论意义。
光纤的色散与非线性效应
模间色散(Mode Dispersion) 色度色散(Cromatic Dispersion) 偏振色散(Polarization Mode Dispersion)
劣化的程度随数据速率的平方增大 决定了电中继器之间的距离
色散对传输的限制
• Dispersion = 17ps/nm/km × .02 nm × 10 km = 3.4 ps
色散补偿技术
• 控制光源线宽 • 色散位移光纤 • 色散补偿光纤 • 中途谱反转 • 啁啾光纤光栅
Control of Spectral Width
• Simple FP laser: over 5 nm; • External cavity DBR laser: < .01 nm • Modulation adds to the bandwidth of the signal,
三种光纤色散情况比较
18
色散 0 ps/nmkm
普通光纤(SMF) 非色散位移光纤(NDSF,G.652) 已有光纤的>95%
正常色散区
DWDM 波长范围
反常色散区
1310nm
1550nm
波长
色散位移光纤(DSF,G.653) 非零色散位移光纤(NZDSF,G.655)
Calculating Dispersion
• in a typical single-mode fibre using a laser with a spectral width of 6 nm over a distance of 10 km : Dispersion = 17ps/nm/km × 6 nm × 10 km = 1020 ps
Waveguide Dispersion
光纤的非线性传输特性解析
光纤的⾮线性传输特性解析光纤的⾮线性传输特性⼀.简介光纤1. 光纤的历史早期的⼯作:为了得到低损耗的光纤早在19世纪,⼈们已经知道光纤中引导光传播的基本原理是全内反射。
在19世纪20年代制成了⽆包层的玻璃纤维。
直到20世纪50年代,才知道包层的使⽤能够改善光纤的特性,从⽽诞⽣了光纤光学这个领域。
20世纪60年代,当时主要为了利⽤光纤束传输图像,促使光纤领域迅速发展。
这些早期的光纤按现在的标准看具有很⾼的损耗,⽤当时最好的光学玻璃做成的光学纤维损耗也达到1000dB/km。
1966年⾼锟解决了⽯英光纤损耗的理论问题,提出了研制低损耗光纤的可能性。
1970年,美国康宁公司研制成功了第⼀根低损耗光纤,⽯英光纤的损耗下降到了20dB/km的⽔平。
随着光纤制造技术的进⼀步发展,到1979年,已将1.55un波长附近的损耗降低到约0.2dB/km。
低损耗光纤的获得,使得光纤中光传输时的⾮线性效应相对⽽⾔变得不可忽略。
早在1972年,已有⼈研究了单模光纤中的受激拉曼敞射和受激布⾥渊散射,这些上作促进了诸如光感应双折射、参量四波混频和⽩相位调制等其他⾮线性现象的研究。
1973年,有⼈提出了“通过⾊散和⾮线性效应的互作⽤将会导致光纤产⽣类孤⼦脉冲”这样⼀个重要结论。
1980年,在实验中观察到了光孤⼦,并在20世纪80年代导致了超短光脉冲的产⽣和控制⽅⾯的⼀些成就。
另⼀个同样重要的进展是将光纤⽤于光脉冲压缩和光开关。
1987年,利⽤光纤⾮线性效应的压缩技术已产⽣了短到6fs的脉冲。
⾮线性光纤光学领域在20世纪90年代继续得到发展,当在光纤中掺⼈稀⼟元素并⽤其制作放⼤器和激光器时,⼜增添了⼀个新的研究内容。
尽管早在1964年就开始制造光纤放⼤器,但仅在1987年以后才得到快速发展。
由于EDFA能⼯作在1.55um波长区并能补偿光纤通信系统的损耗,因此引起⼈们的极⼤关注。
到1995年,这种器件已达到商品化程度,EDFA的使⽤导致了多信道光波系统设计上的⾰命。
光纤通信第四版课后答案张德民胡庆
光纤通信课后答案第一章基本理论1、阶跃型折射率光纤的单模传输原理是什么?答:当归一化频率V小于二阶模LP11归一化截止频率,即O<V<2.40483时,此时管线中只有一种传输模式,即单模传输。
2、管线的损耗和色散对光纤通信系统有哪些影响?答:在光纤通信系统中,光纤损耗是限制无中继通信距离的重要因素之一,在很大程度上决定着传输系统的中继距离;光纤的色散引起传输信号的畸变,使通信质量下降,从而限制了通信容量和通信距离。
3、光纤中有哪几种色散?解释其含义。
答: (1)模式色散:在多模光纤中存在许多传输模式,不同模式沿光纤轴向的传输速度也不同,到达接收端所用的时间不同,而产生了模式色散。
(2)材料色散:由于光纤材料的折射率是波长的非线性函数,从而使光的传输速度随波长的变化而变化,由此引起的色散称为材料色散。
(3)波导色散:统一模式的相位常数随波长而变化,即群速度随波长而变化,由此引起的色散称为波导色散。
5、光纤非线性效应对光纤通信系统有什么影响?答:光纤中的非线性效应对于光纤通信系统有正反两方面的作用,一方面可引起传输信号的附加损耗,波分复用系统中信道之间的串话以及信号载波的移动等,另一方面又可以被利用来开发如放大器、调制器等新型器件。
6、单模光纤有哪几类?答:单模光纤分为四类:非色散位移单模光纤、色散位移单模光纤、截止波长位移单模光纤、非零色散位移单模光纤。
7、光缆由哪几部分组成?答:加强件、缆芯、外护层。
*、光纤优点:巨大带宽(200THz)、传输损耗小、体积小重量轻、抗电磁干扰、节约金属。
*、光纤损耗:光纤对光波产生的衰减作用。
引起光纤损耗的因素:本征损耗、制造损耗、附加损耗。
*、光纤色散:由于光纤所传输的信号是由不同频率成分和不同模式成分所携带的,不同频率成分和不同模式成分的传输速度不同,导致信号的畸变。
引起光纤色散的因素:光信号不是单色光、光纤对于光信号的色散作用。
色散种类:模式色散(同波长不同模式)、材料色散(折射率)、波导色散(同模式,相位常数)。
光纤的非线性光学效应及其对光纤通信的影响
光纤的非线性光学效应及其对光纤通信的影响随着科学技术的发展,人们对物质和文化生活的要求不断提高,导致待传输的信息量(语音、图像、视频和数据等)爆炸式增长,光纤通信已成为大容量现代传输网的基本组成形式。
近些年由于掺铒光纤放大器(EDFA)的实用化,在信号的传输过程中,光纤的损耗对系统影响已不再是主要因素了,而光纤的非线性光学效应确引起人们的极大关注。
特别是在密集波分复用(DWDM)系统中,随着光纤中信道数量的增多,进入光纤的光功率将随之加大,光纤的非线性光学效应将成为影响系统性能的主要因素。
本文介绍了光纤中常见的几种非线性光学效应及其对光纤通信的影响。
标签:非线性光学效应受激散射效应非线性折射率效应交叉相位调制Abstract:With the development of science and technology,people’s material and cultural life is ever increasing,cause the amount of information to be transmitted(voice,image,video and data,etc.)explosive growth,large-capacity optical fiber communication has become a basic modern communication network composition form. In recent years because of EDFA practical,in the process of signal transmission fiber loss impact on the system is no longer a major factor,while the nonlinear optical effect indeed cause for concern. Especially in DWDM systems,with the increase in the number of channels in optical fibers,The optical power into the fiber increases,nonlinear optical effect will become a major factor affecting system performance. This article describes several common optical fiber nonlinear effects and their impact on the optical fiber communication Key words:nonlinear optical effects;stimulated scattering effects;nonlinear refractive index effects;cross-phase modulation中圖分类号:TN24 文献标识码:A 文章编号:1003-9082(2014)03-0009-03非线性光学效应是光场与传输介质相互作用时发生的一种物理效应,当光纤中传输的光功率较弱时,光纤呈现为线性系统,其各项特征参量随光场作线性变化,但在高强度的电磁场中,任何电介质(包括光纤)都会表现出非线性特性。
光纤的线性与非线性效应概述
光纤的线性与非线性效应概述1. 绪论1.1 光纤的特点1.2 光纤的历史1.3 光纤的应用2. 光纤的线性效应2.1 损耗2.1.1 起因2.1.2 影响2.2 色散2.2.1 空间色散2.2.2 时间色散2.2.3 偏振模色散3. 光纤的非线性效应3.1 非线性效应产生的原因3.2 自相位调制3.3 受激拉曼散射3.4 受激布里渊散射3.5 非线性效应的重要性4. 结论1. 绪论1.1 光纤的特点光纤是光导纤维的简称。
是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
光纤有单模光纤和多模光纤之分:单模光纤采用窄芯线,使用激光作为发光源,所以其地散极小;另外激光是发一个方向射入光纤,而且仅有一束,使用其信号比较强,可以应用于高速度、长距离的应用领域中,便也合得它的成本相对更高;而多模光纤则更广泛地应用于短距离或相对速度更低一些的领域中,它采用LED 作为光源,使用宽芯线,所以其散较大;在加上整个光纤内有以多个角度射入的光,所以其信号不如单模光纤好,但相对低的价格是它的优势。
主要的特点:抗干扰性强:由于光纤中传输的是光束,光束是不会受外界电磁干扰影响;保密性强:由于传输的是光束,所以本身不会向外幅射信号,有效地防止了窃听;传输速度快:光纤是至今为止传输速度最快的传输介质,能轻松达到1000Mbps;传输距离长:它的主减极小,在较大的范围内是一个常数,在许多情况下几乎可以忽略不计的,在这方面比电缆优越很多。
1.2 光纤的历史1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。
结果使观众们大吃一惊。
人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。
表面上看,光好像在水流中弯曲前进。
实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章单模光纤的传输特性及光纤中的非线性效应3.1.2 单模工作模特性及光功率分布 (3)3.1.3单模光纤中LP01模的高斯近似 (4)3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) (6)3.2.1双折射概念 (6)3.2.2 偏振模色散概念 (8)3.2.3 单模光纤中偏振状态的演化 (9)3.2.4 单模单偏振光纤 (10)3.3单模光纤色散 (11)3.3.1 色散概述 (11)3.3.2 单模光纤的色散系数 (13)3.4 单模光纤中的非线性效应 (15)3.4.1 受激拉曼散射(SRS) (16)3.4.2 受激布里渊散射(SBS) (19)3.5 非线性折射率及相关非线性现象 (21)3.5.1 光纤的非线性折射率 (21)3.5.2 与非线性折射率有关的非线性现象 (22)3.5.3 自相位调制 (23)第三章单模光纤的传输特性及光纤中的非线性效应3.1 单模光纤的传输特性单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。
例如在阶跃型光纤只传播HE11模(或LP01)的光纤。
由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因而单模光纤拥有巨大的传输带宽。
长途光纤通信系统都无例外的采用单模光纤作为传输介质。
由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握其传输特性就显得尤为重要。
单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。
3.1.1 单模条件和截止波长阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为2.405。
单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意味着归一化工作频率应满足条件:0<V<2.405。
单模光纤的截止波长也就是LP 11模的截止波长,在光纤结构参数n 1、Δ及a 已知的条件下,其截止波长为: a n U a n cc 112612.222∆=∆=πλ按上式计算截止波长只有理论意义。
这是因为在实际工程中使用单模光纤,其纤芯半径a 往往并不是作为光纤的参数直接给出,而只给出更有实际意义的模场直径。
工程中单模光纤的截止波长是由实验直接测量的。
单模光纤的截止波长的测试方法在ITU-T 的有关建议中规定的非常详细,读者可以查阅相关数据。
工程最常用的G.652单模光纤,其工作波长为1.31微米,ITU-T 的建议规定,其截止波长范围为:1.1微米<λc <1.28微米。
规定最大截止波长为1.28微米,是为了保证所传输的信号中波长最短的成分,也是满足单模传输条件的。
但也不能将截止波长取的过小,太小了,LP 01模的功率将部分进入包层,使得传输过程中弯曲损耗增大,所以规定截止波长的下限在1.1微米。
还需说明,规定的截止波长是指在光纤的始端激励起来各种模式,经一定长度的被测光纤(2m 长的一次涂覆光纤并带有28cm 直径的环,或22m 长的成缆光纤并带有80mm 直径的环)传播以后,各个高阶模所携带的总功率与主模式功率之比降为0.1dB 所对应的波长。
3.1.2 单模工作模特性及光功率分布单模光纤的工作模式就是主模式LP 01模,LP 01模的横向电磁场解为:ar r a W K W K Z An Har r a U J U J Z An Har r a W K W K A E ar r a U J U J AE x x y y >⎪⎭⎫⎝⎛-=≤⎪⎭⎫⎝⎛=>⎪⎭⎫⎝⎛=≤⎪⎭⎫ ⎝⎛=,)(,)(,)(,)(0002200011002001由于对于弱导光纤,纵向场量E z 和H z 都比横向场量E y 和H x 都小的多,所以略去纵向场量。
将m =0代入LP 模的特征方程,得到工作模式的特征方程:)()()()(0101W K W WK U J U UJ =,式中U 、W 满足方程:)(2221220222n n a k VW U -==+在0<V<2.405范围内,特征方程只有唯一一组解U 、W ,这就是主模式的特征参数,它决定了场量在半径方向的分布特点。
LP 01模的横向电磁场解是一个超越方程,只能求得数值解。
在V =2.405时可解得U =1.645,W =1.753。
在V =2.405,U =1.645,W =1.753的条件下,可以计算得到LP 01模所传输的总功率中,纤芯中功率占84%,包层中的功率占16%。
V 越小,包层中的功率就越多,例如:V =1时,纤芯中的功率仅占30%,70%的功率都转移到包层中了。
所以实际的单模光纤,归一化工作频率应选在2.0~2.35,这样既可以保证LP 01模单模传输,又可以保证大部分的光功率是在纤芯中传播的。
功率强度是电场强度的平方,利用前面电场向量解可以得到在纤芯中光功率强度分布为: a r r a U J r P y ≤⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∝,)(2如图所示LP 01模在纤芯中的光功率分布,图中以半径r=a 处的功率P y (a)为参考,表示了在不同r/a 处的功率比R 为:200)()()(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛==U J r a U J a P r P R y yLP 01模在纤芯内的光功率分布(V =2.405)因为在包层中有相当的功率传输,为了得到低衰减,单模光纤必须要有足够厚度的沉积内包层,内包层厚度的大小取决于包层中场强沿r 的分布及剖面的结构。
同样依据电场向量的解可以得到包层中LP 01模的电场强度为:a r r a W K W K AE y >⎪⎭⎫⎝⎛=,)(002根据变态贝塞尔函数的近似式:xm e x x K -⎪⎭⎫ ⎝⎛≈212)(π在相对径向位置t=r/a 及r=a 处的场强比为:ω)1(1)1()(--=t y y etE t E包层中LP 01模的光功率强度分布为:a r a r K r P y >⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∝,)(20ω在相对径向位置t=r/a 及r=a 处的功率强度之比为:ω)1(21)1()(--=t y y e tP t P如果包层厚度r=6a ,那里的光功率密度小于10-8,在这以外的总光功率可以忽略不计。
V 值不同,电场渗透进入包层的厚度也不同,在保证单模传输的情况下,V 值越大越好,V 值大,沉积内包层的厚度可以薄一些。
3.1.3单模光纤中LP 01模的高斯近似在阶跃光纤中,LP 01模的场在纤芯中取零阶贝塞尔函数的形式。
由于对贝塞尔函数的处理复杂,而高斯函数与贝塞尔函数接近,人们就设想能否利用高斯函数来取代贝塞尔函数以简化对基模的分析。
阶跃光纤中的主模LP 01模场量,定性上与高斯分布相近。
因而可以用高斯函数去逼近贝塞尔函数分布,这样可以简化对LP 01模的分布。
也就是说,可以将其电磁场量写成2222/0/wr g xgwr g yg eZ n A He A E --==这里的W 称为LP 01模的模场半径,2W 就是单模光纤的一个重要参量模场直径在r=w 时,场量下降至中心轴处的1/e 处。
用高斯分布去逼近或代替横向电磁场的解的分布,关键是寻找合适的模场半径w ,使得用上式代替解所引起的误差尽可能小。
这个适当的模场半径我们称为最佳模场半径,记为w opt ,可以按下述方法求得。
假设我们用高斯场去激励阶跃单模光纤,则LP 01模与激励场之间的耦合系数为:22021⎥⎦⎤⎢⎣⎡=⎰⎰∞πϕρr d r d H E xg y式中H xg 是由前式给出的高斯分布的磁场,而E y 则是由前面场解给出的LP 01模的电场。
适当选择常数A g 和A ,使得高斯场和LP 01模的传输总功率是归一化的,即:121212020==⎰⎰⎰⎰∞∞ππϕϕr d r d HE r d r d H E xgyg x y则由耦合系数公式给出的耦合系数最大值为1。
当H xg 与实际场量H x 有较大差异时,ρ比起1来将有较大的差异。
由此可知,w opt 应是使耦合系数取最大值的w 值。
由于耦合系数公式计算所得的耦合系数ρ是参量w 的函数,即ρ=ρ(w)。
因而最佳模场半径应是方程:0)(=ωωρd d 的解。
在0.28.0<<cλλ范围内,归一化模场半径可以用下面的经验公式计算,其误差不超过1%,即:6236230149.0434.065.0879.2619.165.0⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=++=---c copt VVaλλλλω一个更简捷的公式是:Vaopt 6.2=ω。
用高斯场来等效精确场的最大限制是不能用来等效光纤包层中的场,这是因为精确场的衰减比高斯场缓慢。
因而包层中的场要寻找另外的近似方法。
当wr/a>2时,包层中的场可用下式近似: ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≈⎪⎭⎫⎝⎛a r r a r a W K ωωπe x p 221210 利用高斯近似法我们来计算LP 01模在光纤中的功率分布,在高斯近似下,它们具有简单的形式:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-≈⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--≈222e x p 2e x p 1ωωaP P a P P t o t a l cltotal core3.2 单模光纤的双折射(单模光纤中的偏振态传输特性) 3.2.1双折射概念在单模光纤中,LP 01模有两种正交的偏振状态,其横向电场分别沿x 轴方向和y 轴方向,分别记为LP 01x 模和LP 01y 模。
如果光纤是理想的,即其截面为标准的同心圆,折射率分布也是理想轴对称的,则这两个正交的模式相位常数完全相等,传输特性完全相同。
这样一对模式称为简并模。
实际的光纤的纤芯的几何形状可能不再是标准的圆柱,纤芯折射率也可能因内部残余应力、扭曲等因素的影响而非理想的轴对称分布。
这种非理想的状态导致LP 01x 模和LP 01y 模的相位常数βx 和βy 不相等,从而导致这两个正交的偏振状态模式在传输过程中产生附加的相位差,这就是单模光纤中的双折射现象。
双折射将引起单模光纤的偏振模色散(或称作极化色散)和LP 01模的偏振状态随传输距离而发生变化。
为了定量描述光纤中双折射现象的程度,引进归一化的双折射参量B ,其定义为:k k B yx βββ∆=-=式中Δβ是两个正交的LP 01模的相位常数之差,也就是两个正交的LP 01模在光纤中传输一个单位距离时产生的相位差,k 0是自由空间波数。
为了加深对B 的理解,我们将双折射参量写成: y x yxyx n n cck B -=-=-=υυββ0式中c 是真空中的光速,v x 、v y 分别是沿x 方向和y 方向偏振的LP 01x 模和LP 01y 模的相速度,而n x 、n y 则分别是LP 01x 模和LP 01y 模的等效折射率。