傅里叶级数收敛定理及其推论
傅里叶级数收敛定理及其推论
傅里叶级数的形式为:$f(x) = a_0 + sum_{n=1}^{infty} (a_n cos(nx) + b_n sin(nx))$,其中 $a_0, a_n, b_n$ 是常数,取决于原始函数。
傅里叶级数可以用于分析物体的振动模式,通过分析振动信号的频率成分,可以推断物体的振动 性质。
热传导分析
在热传导分析中,傅里叶级数可以用于分析温度场的变化,通过分析温度信号的频率成分,可以 推断热传导的规律。
电磁场分析
在电磁场分析中,傅里叶级数可以用于分析电磁波的传播和散射,通过分析电磁波信号的频率成 分,可以推断电磁场的性质。
02
通过傅里叶级数,可以分析信号的频率成分、进行图像滤波 和增强等操作。
03
在物理学中,该定理用于研究波动方程、热传导方程等偏微 分方程的解的性质。
03 傅里叶级数的收敛性质
收敛速度的讨论
快速收敛
对于具有快速衰减的函数,傅里叶级数可能 以相对较快的速度收敛。
慢速收敛
对于具有振荡或缓慢衰减的函数,傅里叶级 数可能以较慢的速度收敛。
在信号处理中的应用
1 2
信号的频谱分析
傅里叶级数可以将一个复杂的信号分解为多个正 弦波和余弦波的组合,从而分析信号的频率成分 和强度。
信号滤波
通过傅里叶级数,可以将信号中的特定频率成分 进行增强或抑制,实现信号的滤波。
3
信号压缩
傅里叶级数可以用于信号压缩,通过对信号进行 频域变换,去除冗余信息,实现信号的压缩。
傅里叶变换的推论
傅里叶变换的线性
性质
若 $f(t)$ 和 $g(t)$ 是两个函数, 且 $a, b$ 是常数,则有 $a f(t) + b g(t) rightarrow a F(omega) + b G(omega)$。
第三讲 收敛定理
数学分析第十五章傅里叶级数收敛定理第三讲若以数学分析第十五章傅里叶级数注尽管傅里叶级数的收敛性质不如幂级数, 函数的要求却比幂级数要低得多, 所以应用更广. 而且即将看到函数周期性的要求也可以去掉.概念解释1. 若f 的导函数在[,]a b 上连续, 则称f 在[a ,b ]上光滑.2. 如果定义在[,]a b 上函数f 至多有有限个第一类间断点, 在且连续, 极限存在, 但它对其导函数在[a , b ]上除了至多有限个点外都存f 的左、右并且在这有限个点上导函数[,]a b 上按段光滑.则称f 在数学分析第十五章傅里叶级数f '[,]a b (iii) 在补充定义在上那些至多有限个不存在f 'f '导数的点上的值后( 仍记为), 在[a ,b ]上可积.从几何图形上讲, 在区间[a ,b ] 上按段光滑函数, 多有有限个第一类间断点(图15-1).光滑弧段所组成,151-图O x ()y f x =1x 2x 3x 4x b a y 是由有限个它至若数学分析第十五章傅里叶级数表达式,(),(π,π],ˆ()(2π),((21)π,(21)π],1,2,.f x x f x f x k x k k k ∈-⎧=⎨-∈-+⎩=±± 解为它是定义在整个数轴上以2π为周期的函数,但我们认为它是周期函数. 注2在具体讨论函数的傅里叶级数展开式时, 经常只(π,π]-[π,π)-给出函数在(或)上的解析式, (π,π]-上的解析如f 为但应理即函数本身不一定是定义在整个数轴上的周期函数,那么周期延拓后的函数为数学分析第十五章傅里叶级数ˆ152()y fx -=图实线与虚线的全体表示O x()y f x =π3π-π-3π5πy如图15-2所示.ˆf的傅里叶级数.因此当笼统地说函数的傅里叶级数时就是指函数。
傅里叶级数的收敛性
傅里叶级数的收敛性傅里叶级数是数学中一个重要的概念,它在信号处理、图像处理、物理学等众多领域都有着广泛的应用。
本文将讨论傅里叶级数的收敛性及相关的数学证明。
一、傅里叶级数的定义与基本概念傅里叶级数是一种用三角函数进行函数展开的方法。
对于周期为2π的函数f(x),其傅里叶级数表示为:f(x) = a₀/2 + ∑[aₙcos(nx) + bₙsin(nx)]其中,a₀、aₙ和bₙ是常数,n为正整数。
这里的a₀/2表示常数项,∑表示对所有正整数n的求和。
二、傅里叶级数的收敛性问题在讨论傅里叶级数的收敛性之前,我们首先引入一个重要的定义——可积函数的概念。
对于一个周期为2π的函数f(x),如果在一个周期内,f(x)的绝对值的积分存在有限值,则称f(x)为可积函数。
定理1:如果可积函数f(x)在一个周期内连续或几乎处处连续,则其傅里叶级数在其周期内收敛于f(x)。
这一定理说明了可积函数在其周期内的连续性与傅里叶级数的收敛性之间的关系。
根据这一定理,我们可以推导出如下结论:推论1:如果可积函数f(x)在一个周期内有有限个第一类间断点,那么其傅里叶级数在其周期内收敛于f(x)。
上述定理和推论描述了傅里叶级数的一般收敛性。
然而,对于某些特殊函数,傅里叶级数的收敛性可能不够明确。
下面我们将介绍一个经典的例子。
三、傅里叶级数的收敛性举例我们考虑以下方波函数f(x),在区间[-π, π]内的定义如下:f(x) = 1, -π < x < 0f(x) = -1, 0 < x < π这个方波函数是一个周期为2π的函数,其图像是一个在[-π, π]内以0为中心的方波。
根据前面的定理,我们可以推断傅里叶级数应该在其周期内收敛于该方波函数。
但是值得注意的是,傅里叶级数的收敛性是点点收敛而不是均匀收敛的。
具体来说,傅里叶级数在方波的间断点(即x=0和x=π)处的收敛速度较慢,其收敛到的函数是使用傅里叶级数逼近的方波的取值的平均值。
傅里叶级数逐点收敛性1
xi
xi −1 xi
f ( x ) − f * ( x ) dx = ∑ ∫
i =1 n
xi
xi −1
f ( x ) − mi dx
≤ ∑ ∫ ωi dx = ∑ ωi Δxi < ε
i =1 xi −1 i =1
由此,我们可得:
∫ f ( x ) sin pxdx ≤ ∫ f ( x ) − f ( x ) dx + ∫
∫ f ( x ) sin pxdx
a
b
的积分当 p → ∞ 时的性质,为此,先引入一个引理:
Riemann-Lebesgue 引理:设 f ( x ) 在 [ a, b ] 上可积或广义绝对可积,则有:
b ⎧sin px ⎫ lim ∫ f ( x ) ⎨ ⎬ dx = 0 ,其中 p ∈ R 。 a p →∞ ⎩cos px ⎭
证明: 证明思路是分为如下三个步骤进行: ① 对 f ( x ) 为阶梯函数证明结论; ② 对 f ( x ) 为 Riemann 可积函数证明结论; ③ 对 f ( x ) 为广义绝对可积函数证明结论。 ① 假设 f ( x ) 为一阶梯函数,即:
f ( x ) = ci , xi ≤ x < xi +1 , i = 0,1," , n − 1 , a = x0 < x1 < " < xn = b ,
因而 S n f ( x0 ) 之收敛性只与
(
)
1
π
∫
δ
0
⎡ ⎣ f ( x0 + u ) + f ( x0 − u ) ⎤ ⎦
sin ( n + 1 2 )u 2sin 1 2u
数学分析153傅里叶级数收敛定理的证明doc
数学分析15.3傅里叶级数收敛定理的证明.doc傅里叶级数收敛定理是数学分析中的重要定理之一,它可以用于研究周期函数的展开。
下面给出傅里叶级数收敛定理的证明。
设f(x)是一个周期为2π的函数,它在一个周期内可积,即∫[0,2π]|f(x)|dx < ∞。
我们要证明f(x)的傅里叶级数收敛于f(x)。
设f(x)的傅里叶级数为:f(x) = a0 + ∑[n=1,∞] (an cos(nx) + bn sin(nx))其中a0, an, bn分别为f(x)的傅里叶系数。
我们要证明f(x)的傅里叶级数收敛于f(x),即要证明对于任意的x,有f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))为了证明这个结论,我们需要用到以下两个引理:引理1:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)sin(Nx)dx = bn其中bn为f(x)的傅里叶系数。
引理2:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an其中a0, an为f(x)的傅里叶系数。
现在我们来证明傅里叶级数收敛定理。
首先,我们使用引理1和引理2,将f(x)的傅里叶级数展开,并对其进行部分和的计算:∫[0,2π] f(x)sin(Nx)dx = bn = ∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx根据正弦函数的正交性质,我们知道∫[0,2π] sin(Nx)sin(Mx)dx = 0,其中N≠M。
因此,上式中的交叉项∫[0,2π] ansin(Nx)sin(Mx)dx = 0。
所以,我们可以得到:∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx = ∫[0,2π] a0sin(Nx)dx + ∑[n=1,N] ∫[0,2π] ansin(Nx)dx同理,我们可以得到:∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an现在,我们来证明f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))。
傅里叶级数课程及习题讲解
第15章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , , , , n x x x L L线性表出而得.不妨称2{1,,,,,}nx x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b L L 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =L ;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =L ,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果()f x 是以2π]上按 段光滑,则x R ∀∈,有 ()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,]ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩L称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<; 解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰ 222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰ 2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数.由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,2222011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰ 2222200224cos cos d |x nx nx x n n n ππππ=-=⎰,22220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx x n n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰ 2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a bn π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰L, 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰L.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰ c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+211()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+L ;(2) 111111357111317π=+--+-+L;(3)11111157111317=-+-+-+L.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,11cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑U 为所求.(1) 取2x π=,则11114357π=-+-+L;(2) 由11114357π=-+-+L得111112391521π=-+-+L ,于是111111341257111317πππ=+=+--+-+L ;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭L ,11111157111317=-+-+-+L.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x x πππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰101(1)()cos d n f x nx x ππ++-=⎰ 02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x x πππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx x ππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =L 和sin , 1,2,nx n =L 都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx L L , 因为n ∀,1,1d x ππ==⎰,201cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx L L 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx L L , 因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx L L 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx L L 不是 [0, ]π上的正交系. 实因:01,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x xππ-=<<;解:(),02xf x xππ-=<<其按段光滑,故可展开为傅里叶级数.由系数公式得2200011()d d02xa f xx xπππππ-===⎰⎰.当1n≥时,220011cos d d(sin)22nx xa nx x nxnππππππ--==⎰⎰22001sin sin d022|xnx nx xn nπππππ-=+=⎰,220011sin d d(cos)22nx xb nx x nxnππππππ---==⎰⎰220011cos cos d22|xnx nx xn n nπππππ-=--=⎰,所以1sin()nnxf xn∞==∑,(0,2)xπ∈为所求.(2) ()f x xππ-≤≤;解:()f x xππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为2()2xxf xxxππ-≤< ==⎨⎪≤≤⎪⎩,所以由系数公式得1()da f x xπππ-=⎰sin d sin d22x xx xππ-=.当1n≥时,0sin cos d sin cos d 22n x x a nx x nx x ππ-=+sin cos d 2x nx x π=.0sin sin d sin sin d 022n x xb nx x nx x ππππ-=+=⎰.所以211()cos 41n f x nxn∞==-,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得2001()d a f x xππ=⎰22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,2201()cos d n a ax bx c nx xππ=++⎰2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24an =,2201()sin d n b ax bx c nx xππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx x n n ππππππ--=-⎰ 21sh d(cos )x nx n πππ-=⎰ 2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)n na n n ππ=--,所以22sh (1)(1)nn a n ππ=-+.11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx x n n ππππππ--=-+⎰ 121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n nb n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+,故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-=L .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积. 由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =L .则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos n n n u x n a nx n b nx '≤+n n n a n b ≤+22M n ≤.而22Mn∑收敛,所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积. 于是 ()01()cos sin 2n n n a F t a nt b nt ∞=++∑:,其中 1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令xt l π=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑:. 其中1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n x b f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是1()cos d 0l n l n xa f x x l l π-==⎰,012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰. 从而01()sin2n n a n x f x a l π∞=+∑:其只含正弦项,故称为由此可知,函数(),(0,)f x x l ∈要展开为余弦级数必须作偶延拓. 偶延拓() (0,) ()() (,0)f xx l f x f x x l ∈⎧=⎨-∈-⎩%函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩%.二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:函数 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos 2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰202[cos(21)cos(21)]d n x n x xππ=++-⎰2222220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数. 因12l =,所以由系数公式得()()1112100022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,()()1121022[]cos 2d 2[]cos 2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin 2)x n x x x n x n πππ==⎰⎰110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰. ()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=.故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求.(3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos 2d 2x x ππ-⎛⎫= ⎪⎝⎭⎰204311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,204311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx x ππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰22224sin 2n n ππ=024(1)21(21)kn k n k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x x π+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-.2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n xf x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==L .02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰11cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰240211(1)cos d (3)cos d 2424n x n xx x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩ 所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n x n ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭L .解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==L .2arcsin(sin )sin d n b x nx x ππ=⎰20222sin d ()sin d x nx x x nx x ππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:()arcsin(cos )f x x =2π 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰2cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==L .所以2141()arcsin(cos )cos(21)(21)n f x x n xn π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2)211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x f x nx xπππππ=+⎰⎰202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又)x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰2()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑, 故01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n nn a a b ∞=++∑收敛,故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰。
01-收敛定理
f ( x 0) f ( x 0) a0
2
2
(an cos nx bn sin nx),
n1
其中 an ,bn 为f 的傅里叶系数.
定理的证明将在§3中进行.
数学分析 第十五章 傅里叶级数
高等教育出版社
§1 傅里叶级数 三角级数 • 正交函数系 以2π为周期的函数的傅里叶级数
收敛定理
注 尽管傅里叶级数的收敛性质不如幂级数, 但它对 函数的要求却比幂级数要低得多, 所以应用更广. 而且即将看到函数周期性的要求也可以去掉.
§1 傅里叶级数 三角级数 • 正交函数系 以2π为周期的函数的傅里叶级数
收敛定理
第三讲 收敛定理
数学分析 第十五章 傅里叶级数
高等教育出版社
§1 傅里叶级数 三角级数 • 正交函数系
收敛定理
以2π为周期的函数的傅里叶级数
收敛定理
定理15.3(傅里叶级数收敛定理)
若以 2π 为周期的函数 f 在 [π, π]上按段光滑, 则在每一点 x [π, π], f 的傅里叶级数(12)收敛 于f 在点 x 的左、右极限的算术平均值, 即
高等教育出版社
§1 傅里叶级数 三角级数 • 正交函数系
如图15-2所示.
y
以2π为周期的函数的傅里叶级数
y f(x)
收敛定理
3π πO π 3π 5π x
图15 2 实线与虚线的全体表示 y fˆ(x)
因此当笼统地说函数的傅里叶级数时就是指函数 fˆ 的傅里叶级数.
数学分析 第十五章 傅里叶级数
高等教育出版社
概念解释
1.若f 的导函数在[a, b]上连续, 则称f 在[a, b]上光滑.
2.如果定义在[a, b]上函数 f 至多有有限个第一类间 断点, 其导函数在[a, b]上除了至多有限个点外都存
傅里叶级数的定理
傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。
它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。
傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。
傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。
a0是直流分量,对应于频率为0的分量。
傅里叶级数的定理是基于正交函数的思想而来。
正交函数是指在某个区间上两两内积为0的函数。
在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。
傅里叶级数的定理在实际应用中具有重要意义。
首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。
其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。
此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。
傅里叶级数的定理具有一些重要的性质。
首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。
其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。
此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。
傅里叶级数的定理虽然强大,但也有一些限制。
首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。
其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。
傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。
傅里叶级数收敛则傅里叶系数绝对收敛
傅里叶级数收敛则傅里叶系数绝对收敛1. 傅里叶级数是一种非常重要的数学工具,对于描述周期性函数的性质和变化规律具有非常广泛的应用。
而傅里叶系数则是描述傅里叶级数的系数,关于傅里叶级数的收敛性和傅里叶系数的收敛性也是一个非常重要且有趣的数学问题。
2. 让我们来了解一下什么是傅里叶级数和傅里叶系数。
傅里叶级数是指一种表示周期函数为正弦和余弦函数之和的级数,而傅里叶系数则是指在傅里叶级数中正弦和余弦函数的系数。
这里需要特别注意的是,傅里叶级数和傅里叶系数是通过对原始函数进行周期延拓和展开得到的,因此傅里叶级数和傅里叶系数的性质与原始函数的性质密切相关。
3. 接下来,让我们来研究傅里叶级数的收敛性。
傅里叶级数的收敛性是指在什么条件下,傅里叶级数对原始函数进行逼近的效果好,即部分和能逼近原函数。
而傅里叶系数绝对收敛则是指傅里叶级数的系数在绝对值意义下收敛。
根据数学理论,对于绝对收敛的级数,其部分和序列是收敛的,且收敛于该级数的和。
4. 当傅里叶系数绝对收敛时,可以推导出傅里叶级数在每一点收敛于原函数的平均值。
这个结论对于信号处理、图像处理、物理学等领域有着重要的应用。
傅里叶级数收敛则傅里叶系数绝对收敛的结论对于理解和应用傅里叶分析具有重要意义。
5. 个人观点和理解:傅里叶级数收敛则傅里叶系数绝对收敛这一结论的证明涉及到一些复杂的分析和变换技巧,需要对傅里叶级数的性质进行详细的研究和推导。
然而,一旦理解了这个结论,就能够更深刻地理解傅里叶分析的精髓,并将其应用到实际问题中去。
6. 总结回顾:在本文中,我们对傅里叶级数收敛则傅里叶系数绝对收敛这一重要结论进行了深入的讨论。
通过对傅里叶级数和傅里叶系数的定义和性质进行梳理和分析,我们得出了傅里叶级数收敛则傅里叶系数绝对收敛的重要结论。
这一结论对于理解傅里叶分析的本质和应用具有重要的意义。
以上就是我根据您提供的主题“傅里叶级数收敛则傅里叶系数绝对收敛”撰写的文章,希望对您有所帮助。
傅里叶级数均方收敛性
1
均方逼近
命题: ∀f ( x ) ∈ R [ −π , π ] ,则存在三角式项式 Tn ( x ) 均方逼近到 f ( x ) 。
构造出来。证明的思路是先对于连续函数 f ( x ) ,构造三角多项式一致收敛到 f ( x ) ;再对 于可积函数 f ( x ) ,构造连续函数均方收敛到 f ( x ) 。 设 f ( x ) ∈ R [ −π , π ] ,周期为 2π , S n f ( x ) 为其 Fourier 级数之部分和,令: 为了证明这一结论, 我们需要作一些准备工作, 主要目的是想设法将命题中三角多项式
2 i =1
n
15.3
Fourier 级数的均方收敛性
类似地,考虑函数空间 R [ −π , π ] 中的一组基:
⎧ 1 , cos x,sin x, cos 2 x,sin 2 x, ⎨ ⎩ 2
对于 ∀f ( x ) ∈ R [ −π , π ] ,有:
, cos nx,sin nx,
⎫ ⎬ ⎭
所以: ∃N , n > N 时, σ n f ( x ) − f ( x ) < ε 对于 ∀x ∈ [ a, b ] 成立,
(
)
→ f ( x) 。 即: σ n f ( x ) ⎯⎯⎯
15.2
(
)
[ a ,b ]
高等微积分讲义
证毕
引理 3:设 f ( x ) ∈ R [ −π , π ] ,则:
高等微积分讲义
第15讲 Fourier 级数的均方收敛性
本章第二节中我们引入了“均方逼近”的概念。一个函数列 f n ( x ) 在 [ a, b ] 上均方收敛 到 f ( x ) 是指:
fn − f = ( fn − f , fn − f ) 2 → 0 , n → ∞
常用的傅里叶变换+定理+各种变换的规律(推荐)
a + jω (a + jω ) 2 + ω 02
e − at sin ω 0tu (t ), Re{a} > 0
te − at u (t ), Re{a} > 0 t k −1e − at u (t ), Re{a} > 0 (k − 1)!
ω0 (a + jω ) 2 + ω 02
1 ( a + jω ) 2 1 ( a + jω ) k 1 ,τ > 0 (τ − jt ) 2 2πωe −τω u (ω )
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
W
√
⎧ ⎪ 1, t < τ f (t ) = ⎨ ⎪ ⎩0, t > τ ⎧ ⎪1 − t τ , t < τ f (t ) = ⎨ 0, t > τ ⎪ ⎩
τSa (
ωτ
2
)
π
Sa (Wt )
⎧ ⎪ 1, ω < W F (ω ) = ⎨ ⎪ ⎩0, ω > W ⎧ ⎪1 − ω W , ω < W F (ω ) = ⎨ 0, ω > W ⎪ ⎩
㵍㬒⫇䊻㰖⳦巛㠞䄧㬒⭥䊬㰄Ⳟⳉ
㠞䄧巛㰖⳦㉚㬨ⰵ䓵⢅㑠 [ 巛 P 㡑䔘䇤᱄ 㪉
[ f ( x)] F (P ) 䋓
x0 ½ a ® f [ ( x r )]¾ a ¿ ¯ b
ax r x0 [f( )] b
x0 b b exp(r j 2S P ) F ( P ) a a a
= sinc( u)
−1 / 2
∫ exp(− j 2πux )dx
a x ≤ 2 其它
傅里叶级数课程及知识题讲解
第 15 章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数f (x)a n x n在幂级数讨论中 n 1 ,可视为 f (x)经函数系 1, x, x 2 , L , x n , L线性表出而得.不妨称{1,x,x ,L ,x ,L } 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数.1 三角函数系函数列 1, cosx, sinx, cos2x, sin 2x, L , cosnx, sin nx, L称为三角函数系. 其有下 面两个重要性质. (1) 周期性 每一个函数都是以 2 为周期的周期函数;(2) 正交性 任意两个不同函数的积在 [ , ]上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在 [ u n (x),u m (x) 为 , ] 可积的函数系 u n (x): x [a, b], n 1,2,L ,定义两个函数的内积 b u n (x) u m ( x)d x ,u n (x),u m (x) 如果 mn m n ,则称函数系 u n (x): x [a, b], n 1,2,L 为正交系. 由于 1, sinnx sin nxd x m sin mx,sinnx sinmx 0 m cosnxdx m cosmx, cosnx cosmx 0 m sin mx,cosnx sinmx cosnxdx 0 ;1, 1 12dx 21 n n ; ; n ; ; sin nx d x 1 cosnxdx 0 所以三角函数系在 上具有正交性,故称为正交系. 利用三角函数系构成的级数f ?(x)称为三角级数,其中 a 0 , a 1, b 1 ,L ,a n ,b n ,L 为常数2 以 2 为周期的傅里叶级数称为函数 f (x)的傅里叶系数,而三角级数 a 0 称为 f (x) 的傅里叶级数,记作这里之所以不用等号,是因为函数其是否收敛于 f(x) . 二、傅里叶级数收敛定理定理 1 若以 2 为周期的函数 f (x) 在[ , ]上按段光滑,则 其中 a n ,b n 为 f ( x)的傅里叶系数. 定义 2 如果 f (x) C[a, b] ,则称 f(x) 在[a,b] 上光滑.若x [a,b), f ( x 0),f (x 0)存在; x (a,b], f (x 0), f (x 0) 存在,几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果 f(x)是以 2 为周期的连O 续函数,且在 [ ,x ]上按 段光滑,则 x R ,f (x) 0 a n cosnx b n sin nx 2 n 1定义 3 设 f(x)在( , ] 上有定义,函数x ( , ]x (2k ,2k ],k 1, 2,La 0 2 n1 a n cosnxb n sinnx 定义 1 设函数 f (x) 在 a k 上可积, 1 f ( x),cos kx 1 f (x)coskxdx k 0,1,2,L ;b k 1 f (x),sin kx f(x)sinkxdx k 1,2,L, a 0 f (x) ~ 2a n cosnxb n sinnx 1 且至多存在有限个点的左、右极限不相等,则称 f (x) 在[a,b]上按段光滑. a n cosnx b n sinnxf (x) 按定义 1 所得系数而获得的傅里叶级数并不知a 02a n cosnxb n sinnx n1 f(x 0) f (x 0) 2f(x) f(x 2k )y称 f (x)为的周期延拓.习题解答1 在指定区间内把下列函数展开为傅里叶级数(1) f(x) x, (i) x , (ii) 0 x 2sin nxd x 0由系数公式得1 2 1 2a0 f (x)d x xdx 20 0当n其按段光滑,故可展开为傅里叶级数.由系数公式得11a0 f (x)d x xdx 01时,a n x cosnx d xnx d(sin nx)b n x sin nx dxx d(cosnx)x cosnx|cosnx d x ( 1)n 12 n,所以f(x) 2 (n1(ii)1)n 1 sin nxn ,x (, )为所求.其按段光滑,故可展开为傅里叶级数.当n 1 时,x cosnx d x 2 32a n 0 2 x d(sin nx)b n 所以 (2) xsin 2 nx |0 12 n 0sin nx d x 0 xsinnxdxx cos nx n f(x)f (x)= 2 x d(cosnx) 2 |20 sinnx cosnxdx ,x n , (0,2 ) 为所求. 2 x, - π< x< π,(ii) 0 < x< 2π; ; 1 n (i) 由系数公式得22 a 0 f (x)d x 1 dx 1时, x 2 cosnxdxx 2 d(sin nx) b n所以 x 2 sin nx | xd(cosnx) xcosnx | 2x sin nx dx x 2 sin nxd x 2 cosnx | x d(sin nx) xsin nx |f(x) cosnx d x ( x 2 d(cosnx) xcosnxdx 1) n 4 2 n , 1)n sinnxdx sinnx 2 n , ) 为所求.a 0 当 n 1 时,a 0 当nb n所以 解:其按段光滑,故可展开为傅里叶级数. 由系数公式得 12 0 1时, 12 0 f (x)d x 2 x 2 dx 82 3 x 2 cosnx d x 12 x n 2 sin nx | 2 x d(sin nx) 2xsin nxd x xd(cosnx) 2 xcosnx | x 2 sin nx d x 12 x n 2 cosnx | 0 f (x) f (x) 42 2 cosnxdx 42 0 n 2 , 22 x d(cosnx) 2 x cosnx d x 0 x d(sin nx) 2 xsinnx |0 2 sin nxd x 0n , cosnx sinnx x (0,2 ) 为所求. ax bx (3) 解:函数 f(x), x (a b,a 0,b 0) ( , ) 作周期延拓的图象如下. y 3O 其按段光滑3 ,故可展开为傅里叶级数. 由系数公式得 1f (x)d x 1 0 axdx 1 bxdx (b a)02a n 1 0 ax 2 cosnxdx1 111135740 bxcosnxdx [1 ( 1)n ]a 2 bn1 0 1 b n axsin nx d x bxsinnxdxn 0 n 1 sinnx1)n I n , x ( , ) 为所求.2 设f 是以2 为周期的可积函数,证明对任何实数 c ,有 1 c 2 1 a nc f(x)cosnxdx f ( x)cos nxd x,n 0,1,2,L 1 c 2 1 b nf (x)sin nxdx f (x)sin nxdx,n 1,2,L cf (x)f (x)cos nxd x同理可得b n 1 f (x)sin nxd x f ( x)sin nxdx3 把 函数 0x4 展开成傅里叶级 数,并由 它推出(1)( 1)f(x)所以n (b a) 4 2(b a) 1 2 cos(2n 1)x1 (2n 1)2 (a b) ( n1 证: 因为 f(x),sin nxcosnx 都是以 2 为周期的可积函数,所以令 1 f (x)cos nxd x c 2 f (t 2 )cos n(t 2 )d(t 2 )从而 a n a n 1 c+2 1 f (t)cosntdtc2f (x)cosnxdx cf (x)cosnxdx 1 f ( x)cosnx dx c1 f (x)cos nxd xc+2 c+2 f ( x)cos nxd x f (x)cos nxd x11 1 (3)1时,(2)什么特性.(2)1 1 1 L13 17 11(3)111L11 13 17解:(, )作周期延拓的图象如下.x其按段光滑,故可展开为傅里叶级数. 函数f (x),由系数公式得a 0f (x)d xdx 14dx4a nb n[1f (x)(1)cosnx d x 4sinnxdx41)n 1]21nn11sin(2n 2n 12 ,则 4cosnxdx 0 04sin nxd x41)x, 2k 2k,0) U(0,)为所求.1215 21121113 17所以x取36 3 ,则1154 设函数1111 13 1713 17f ( x)满足条件 f (xf (x) ,问此函数在内的傅里叶级数具有11解: 因为 f(x)满足条件所以f(x 2 ) f (xf(x ) f(x),) f(x),即 f (x)是以 2 为周期的函数.于是由系数公式得1af (x)d x 1f (x)d x 1f (x)d xf (t )dt0 f (x)d xf (t )dt 10 f(x)d xf (t)dt0 f (x)d x 0当n1时,10a nf (x)cos nx d x f (x)cos nxd x b n故当 b 2k 0 .1f (t )cos(nx1)d x f(x)cosnxdx1 ( 1)n 1f(x)cosnxdx2f (x)cosnxdx10f(x 2k 1 2kf ( x)sin nx d x0 f (x)sin nxd x ) f(x) 时,函数 5 设函数 f ( x)满足条件: f (x 什么特性.解: 因为所以 f (x 1 f(x) 满足条件 2 ) f (x a 0f (x)d x 1f (t )dt f (tf (x)sin nx d x2k 1 2k , f(x) 在 内的傅里叶级数的特性是 a 2k 0 , ) f (x) ,问此函数在 内的傅里叶级数具有 f(x), f(x),即 f(x)是以 2 为周期的函数.于是由系数公式得 1 f (x)d x f (x)d x f (x ) 2 )dt0 f (x)d x 10 f(x)d x1 1 20 f(t )dt 0 f(x)dx 0 f(x)d x1 ( 1)nf (x)cosnxd x2k 12k 1 ,当n a n1时,1 01f (x)cos nx d x 0f (x)cos nxd x1f (t )cos( nx n )d x1f (x)cos nx d x2 f ( x)cos nxdx2k b n10f ( x)sin nx d xf (x)sin nx d xf (x)sin nxd x 2k故当 0 f(x f (x) 时,函数 f(x)在 内的傅里叶级数的特性是 a 2k 1 0 , cosnx, n 0,1,2,L 和sin nx, n 1,2,L 都是[0, ]上的正交函数系,但 [0, ] 上的正交函数系. 证:就函数系 {1, cosx,cos2x,L , cosnx, L 6 试证函数系 他们合起来的却不是 }, 因为 n ,1,1 0 dx , cosnx,cos nx 0 cos2nxdx 10 (cos2 nx1)dx2,1,cosnx cosnxdx 0 又0;m, n ,m n时,cosmx,cosnx cosmxcosnx d x 11cos(m n)xdx cos(m n)xdx所以{1, cosx, cos2 x, L , cosnx, L } 在[0,就函数系{sinx, sin 2x, L , sin nx, L } ,因为 n ,]上是正交系.sin nx,sin nx210sin 2nxdx 2 0 (1 cos2nx)d x 2又m, n,m n 时所以{sin x, sin 2x, L , sinnx, L } 在[0, ]上是正交系.但{1, sin x, cosx, sin 2x,cos2 x, L , sinnx, cosnx, L } 不是[0,7 求下列函数的傅里叶级数展开式xf (x) , 0 x 2(1) 2 ;xf (x) , 0 x 2解: 2 y作周期延拓的图象如下.2其按段光滑,故可展开为傅里叶级数.由系数公式得12a0 f (x)d x xdx 02当n 1时,12x cosnxdx21 2 xd(sin nx)n02b n所以(2)解:x2n122nf (x)2 sin nx|12nxsin nxd x2x cosnx |2sinnx2sinnxdx 02xd(cosnx)12ncosnxdxn,xf (x) 1 cosx,(0,2 )为所求.x;f (x) 1 cosx,x作周期延拓的图象如下.sin mx,sin nx 0 sin mxsin nxd x0 cos(m n)xdx cos(m n)xdx 0]上的正交系.实因:1,sin x 0 sin xdx 1 0b)sin nxdx其按段光滑,故可展开为傅里叶级数.f(x) 1 cosx 2sin2 x2sin2xx0因为 2sin x2所以由系数公式得 1a0 f (x)d x sin x dx2sin 2xd x42当n 1时, 2 x sin cosnx d x2b n 22 f(x) 所以 而x f (x)故(3)解: a 0 当n a n b nsin xcosnxdx2 sin xsin nx d x2n1x sin cosnxdx2 42 2 (4n 21) .2sin xsinnxdx 0212 cosnx 4n 2 1f ( 0) 2时, 2 2 4 2f(x) ax 2bx (i) 由系数公式得 11时,1f (x)d2(ax (ax 2(ax2n 4a 2 nbx bx f ( 0)1 n 14n 2c, (i) 0 c)d x,xf(,)cosnx 1 ,x]为所求. , (ii)x;2b 2cc)cos nxd xbx c)sin nx |20 (2ax22(ax 2 bx c)sin nxdx212n,(ii)由系数公式得当 n 1 时, 12a n(ax bx c)cos nx d x(ax2bx c)cos nx(2ax b)cos nxd xn 0当n 1时, an 1chxcosnxdx11 ch xsin nx | nn sh xsin nx dx1 2 sh xd(cosnx) n 2chxdx2shf (x) ax 2 bx c 故4 2a4a 2 cosnxn1n4 a 2b sin nx, x n (0,2)为所求.a 0f (x)d x(ax 2 bx c)d x2cb n1(ax 2 bx n( 1) (ax2bx (ax 2bx1 2bn2 axbx c)sin nx |(2ax (2ax b)sin nxdxb)cos nxd x2 2a31)n4a 2 cosnx( 1)n 2bsin nx,n)为所求.(4) f (x) chx,解: 由系数公式得11 a 0 f (x)d x x;c)sin nxdx1 c)cos nx|nf (x)c( 1)n 4a 2 n,sh xsin nxd xsh xd(sin nx)1sh x cos nxchxcosnxdxn 12nshx 1)n 1(n 22nsh 1x)1)n 1)n1)n2sh n 2shn1 2sh nch x d(sinnx)21 ch xsin nx | n 212 b n n,所以b nn 1 112 shxcosnx|chxcosnxdx( 1) n2sh 2n12 a nna n1)n2sh (n 2 1)chxsinnxdx ch x d(cosnx) chxcosnx |shxcosnxdx所以b nf (x) 故(5)解: a 0shxsinnx |chxsinnxdx 1shxsinnx |chxsinnxdx12 b n n,,chx 2sh f (x) shx,由系数公式得f (x)d x(n11)n12 cosnx n 21x ( , )为所求.sh xdx所以b n1f ( x)sin nx d x4a 4 a 2b2 cosnx sin nx, n 2故由收敛定理得f (x) shx1)n 1 2nsh (n 21)sinnx x(, )为所求.解:求函数f(x)1 12(3x2)的傅里叶级数展开式并应用它推出122 n1nf (x)ax 2 bx c4 2a3f(x)1(3x 2 6 x122)n1 12 cosnxn 2n1n12 cosnx (0,2 ) 而f (0 0) f (20)6,x (0,2f (0 0)f (20)12 cos0 1 n 2f (x)cos nx d x b n1f ( x)cos nx|f ( x)sin nxdx nb n1f (x)sin nx |f ( x)cos nxd x na n1f ( x)sin nx d x当 n 1 时,故结论成立.9设f (x)为,上光滑函数, f ( ) f( ).且 a n , b n为 f (x)的傅里叶系数,a n ,b n 为 f(x) 的导 函数f (x)的傅里叶系数 .证明a 0 0,a n nb n , b nna n(n 1,2,L ) .证:因为f(x) 为上光滑函数,所以f (x) 为,上的连续函数,故可积.由系数公式得a 01f (x)d x1f( ) f ( )0a n115. 2 以2l为周期的函数的展开基本内容、以2l 为周期的函数的傅里叶级数x lt设 f (x)是以2l 为周期的函数,作替换x,则F(t)f lt是以 2 为周期的函数,且 f (x) 在( l, l) 上可积F(t)在( , ) 上可积F(t) : a0a n cosnt b n sinnt于是 2 n1其中1 a n 1F (t )cos nt d t , b nF (t)sin ntdt3na证:, n3b nu0(x) 设0Ma02,(x) 在M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数u n(x) a n cosnx b n sin nx ,n 1,2,L .R上连续,且n 0,u nu0 (x) 0,u n(x) na n sin nx nb n cosnx亦在R上连续.又x R,u n(x) n a n sinnx n b n cosnxn a n n b n2M2 n.2M而2 n收敛,所以u n(x)nb n cos nx na n sin nx在R上一致收敛.s(x) a0 (a n cosnx b n sin nx)故设2 n1 ,则s(x) ( na n cosnx nb n sin nx) u n (x)n1 n 1s(x) (na n cosnx nb n sin nx)且n 1 在R 上连续.a0supn(a n cosnx b n sin nx)10 证明:若三角级数2 n 1 中的系数a n,b n 满足关系f (x) x (0,l) f ( x) x ( l,0)习题解答1 求下列周期函数的傅里叶级数展开式t 令x l 得F(t)f lt f (x) n x n xsinnt sin ,cosnt cos ll: a 0nxnxf (x)an cosb n sin从而2n1l l.a n1lf (x)cosnx dx,其中l llb n1lf (x)sin nxdxl ll .上式就是以 2l 为周期的函数 f (x)的傅里叶系数.在按段光滑的条件下,亦有f(x 0) f(x 0) a 0n x n x a n cos b nsin n l nl其只含余弦项,故称为余弦级数. f(x)是以 2l 为周期的奇函数,则 f( x)cos nx奇,同理,设f ( x)sin nx偶.lla nl f (x)cos n l x dx是f %(x) f (x) x (0,l)偶延拓 f(x) f( x) x ( l,0) 函数 f(x),x (0,l) 要展开为正弦级数必须作奇延拓.奇延拓lyO l xf %(x)(1)f (x) cosx(周期 ) ;解: f (x) 按段光滑,所以可展开为傅里叶级数,又 由于 级数. f (x)是偶函数, 故其展开式为余弦2 ,所以由系数公式得 a 02 2 cosx dx 4 2cosxdx 4 20 当n1时,22cosx cos2nxdx 422cosxcos2nxdxb n222[cos(2n 1)x cos(2n1sin(2n 1)x(2n 1)( 1)n 2 ( 1)n 1 2 (2n 1) (2n 1)1)x]d x 1sin(2n 1)x | 02 (2n 1)141)n2 (4n 21)222cosx sin nx d xf (x) cosx 故24( 1)n 1n121 cos2nx 4n 21( , )为所求.(2)f (x) x1 1解:f (x)按段光滑,所以可展开为傅里叶级数.12 ,所以由系数公式得[x](周期 1) ;由于1223 48a 0 2 21 x [x]2dx 2 10 x [x] dx1 xdx 1a n1时,121 x [x]2 cos2n 1xdx 2 x0 [x] cos2n xdxb n1 x cos2n 0xsin2n 1 22 1 2x [x]xdx1x |101x d(sin 2n x)1 sin2n xdx 0sin2n xdx10 x d(cos2n1xcos2n x |0f (x) x[x]1 xsin2n 0xdx(3)f (x)4sin 解: 由于 级数. a 0a nx)x(周期4函数f (x) sin x,0 cos2n 1sin2n n);xdx,x222 )为所求.延拓后的函数如下图.f (x) 按段光滑,所以可展开为傅里叶级数,又 ,所以由系数公式得2sin 4xdx4 1时,42f (x)是偶函数,故其展开式为余弦2sin 4xdx4 2 1 cos2x2dx1cos2x2 1cos2x 21 cos4 x dx 3841cos4x cos2nxd x 821,n 2bn 2 2cosx sin nx d x 04f (x) sin 4 x 故3 1cos2x 1cos4x x (8 2 8 , x ()为所求.(4)解:f (x) sgn(cosx) (周期2 ).函数 f(x) sgn(cosx) ,x ( , )延拓后的函数如下图.y3322Ox22f (x)按段光滑,所以可展开为傅里叶级数,又 由于 级数.因l f (x)是偶函数,故其展开式为余弦a 0,所以由系数公式得2sgn(cosx)d x 0 sgn(cosx)d x 0 当n1时,a nsgn(cosx)cos nx d x02cosnxdxcosnxdx24n sin n2kb n 4n sin2f (x) 1)k(2k 1)2ksgn(cosx)sin nx d x 0sgn(cosx)4(n11)ncos(2n 1)x 2n 1,xf (x)求函数 解:函数 f(x),3的傅里叶级数并讨论其收敛性.yOx (0,3)延拓后的函数如下图.1由于 f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x) 是偶函数,故其展开式为余弦 级数. 2 ,所以由系数公式得 a 0 2332 0 f(x)d x 1 xdx 0 2 dx 13 2 (3 x)d x 1时,12n xcos 0x dx 32 cos12n xd x b n1 xd 02n 1 sin n31 4n sin n332 (3 2n x)cos xdx32n xsin2n2 2 cos 2n 2 2 33 2n2cos 23sin sin2n32 (3 x)d2n x sin 32n x dx 3 1 2n sinn3 2 2 cos2n2 23222n 322n.f (x)sin nxdx3222n x32n 2 21 4n sin n cos2n31 (3 n 32n 2 22n x x)sin 31 4n sin n34n cos 31 2n 2n x2 cos cos n 23 3 ,x ()为所求.1 3 2n x sin dxn 22n x2 2 cos2n 2 2 33 将函数 f (x) 2 x 在 [0, ]上展开成余弦级数.由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦 级数.由系数公式得1时,22a 022dx12x 2n2 sinnxsinnxdxn 022 cosnx n 2b n级数. 4 2n 02k 2kf (x) 21 2cos(2n 1)x, n 1 (2n 1)2x [0, ]解:函数,故其展开式为正弦由于 由系数公式得 a n 0, n x cos[0, ]2在 [0, ]上展开成正弦级数.将函数f (x) 0,1,2,L b n 2 0 n 0cos x sin nx d x2sin sinx dx cos1 x2 1 n2cos1 21 n 2当ncosnx d x18n2(4n 2 1)f (x)5 把函数 在(0, 4)上展开成余弦级数.2x 1在(0, 1)上展开成余弦级数,并推出6 1 22 312 L解:函数 f(x),x (0,1)延拓为以 2为周期的函数如下图.由于 级数.因la 0当n所以解:f (x)按段光滑,所以可展开为傅里叶级数,又,所以由系数公式得 4f(x)d20 (1 x)d x 42(x3)d x1时,a n40 f ( x)cos nx4dxn (1x)sin nx42 sin822 nf (x)nx cos 42cos n2 cosnx 4 1)nf (x)是偶函数, 20 (1 x)cosnx dx4故其展开式为余弦42(x3)cos n xdx4x dx20 16 22 n2 (x n3)sin4422n4n x sin dx 242 cos 1(2n 1)24k 4k(2n 1) x 2为所求.6 把函数 f (x)f(x)故在[0, ] 上x cos 2n2 sinnx 1 4n 1为所求.22由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是偶函数,故其展开式为余弦级数.因 l=0.5 ,所以由系数公式得122 0(x 1)3 4dx1 cosn xdx422nb n12 n 1 n,即1 n 1 n2 67 求下列函数的傅里叶级数展开式(1) f(x) arcsin(sin x) ;由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是奇函数,故其展开式为正弦级数.由系数公式得 a n 0, n 0,1,2,L .2b narcsin(sin x)sin nxdx3 令 x 0得4xsinnxdx21当n1时, a n10(x1) 2cosn xdx2(x n1)2sin n x1(x 1)sin n xdx(x所以 1)212cosnx, 1nx [0,1]12 0 f (x)d xa 0222 n (x 1)cos n 解:函数f(x) arcsin(sin x)是以 2 为周期的函数如下图.x)sin nxdx222x cos nxn 02cosnxdx220 arcsin(cosx)cos nx d x 0 2 x cosnxdx2cos nxd x4n 2 sinn 22k 所以(2) 由于 级数. x)cos nx2 cosnxd xn 22( 1)kn42 n2k 14f (x) arcsin(sin x)( 1)n 2 sin(2n1(2n 1)21)x, x Rf(x) arcsin(cosx)解: f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦由系数公式得 a 02 0 arcsin(cosx)d x 0当n1时,b n2 sinnxn0, n f (x)所以1,2,L 2sin nxd x2k 2k4arcsin(cosx)1 2 cos(2n 1)x1(2n 1)2,x R0,8 试问如何把定义在 2叶级数为如下的形式上的可积函数 f (x)延拓到区间内,使他们的傅里a2n 1 cos(2n 1)x b2n 1 sin(2 n 1)x(1) n 1;(2) n 1解:(1)先把 f (x)延拓到[0, ]上,方法如下:f (x) 0 x2f (x) 2f ( x) x2再把 f (x)延拓到[0,2 ]上,方法如下:f?(x) f (x) 0 xf(2 x) x 2 其图象如下.y y f(x)2 O3 2 x232由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦级数由系数公式得20 f (x)d xa0当n1b n1时,n20 f(x)cosnxd x2f (x)sin nxdx 02 2 22 f (x)cosnxdx f (x)cos nx d x2222 f (x)[cos nx cos(n nx)]d x422 f ( x)cos nx d x n 2k 1n 2k所以f (x) a2n 1 cos(2n 1)x x 0,n 1 2(2) 先把 f (x)延拓到[0, ]上,方法如下.f (x) f (x)f ( x) 0x2再把 f (x)延拓到[0,2 ]上,方法如下.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理 1 设 f(x) 在 [ , ] 上可积,则2a 022 21 a n2 b n 2f 2(x)d x2 n 1其中a n ,b n 为f (x)的傅里叶系数.推论 1设f(x) 在 [ , ] 上可积,则lim f (x)cos nxd x 0 limf ( x)sin nxdx 0f (x)是偶函数,故其展开式为余弦级数.由系数公式得 a0 f (x)d x当nb n1时, 21a n20 f (x)cos nx d x 0f ( x)sin nxdx222f (x)sin nxdx f ( x)sin nxdx22f (x)[sin nx sin(nnx)]d x 42f ( x)sin nxdx n2k 2kf (x) 所以b 2n 1 sin(2 n 1)x x n10,2由于 f (x)按段光滑, 所以可展开为傅里叶级数,又推论 2 设 f(x)在[ , ]上可积,则k11t t 2 tdt2sin 2t此称为 f (x)的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理 3 (收敛性定理 ) 设以 2 为周期的函数 f(x)在[ , ]上按段光滑,则 limf (x 0) f(x 0)S n (x) 0 n 2 2 n,定理 4 如果 f(x)在[ , ]上有有限导数,或有有限的两个单侧导数,则f(x 0) f (x 0) a 0a n cosnxb n sinnx n122定理 5 如果 f(x)在[, ]按段单调,则f(x 0) f (x 0) a 0a n cosnxb n sinnx22n1习题解答1 设 f (x)以 2 为周期且具有二阶连续的导函数,证明( , )上一致收敛于 f(x).证:由题目设知 f(x)与 f (x)是以2 为周期的函数,且光滑,f (x) a 0(a n cosnx b n sin nx)故21f (x)a 0(a n cosnxb n sin nx)2n111a 0 1f (x)d x 1f( ) f ( ) 0 且1 a n f (x)cos nx d x当 n 1 时,lim f (x)sin nn 01xdx 0 2limn1f ( x)sin n xdx 02定理 2 设以 2 n为周期的函数 f (x) 在 [ ]上可积,则S n (x)a 0a k coskxb k sinkxsinf(x t)f (x)的傅里叶级数在1 nf ( x)sin nxdx nb nf ( x)cos nx|b n1nf ( x)sin nx d x1f (x)sin nx| f ( x)cos nxd x nana n 是a nnb n 122an2b n212(a nb n2)由贝塞尔不等式得a0 从而2a nn1(an1b n2)收敛,又12n 1 n收敛,bn收敛,(a n cosnx b n sin nx)n在(2 设f为,上可积函数,证明:若f的傅里叶级数在[, ]上一致收敛于则成立贝塞尔(Parseval) 等式1 f2 (x)d x2a02 2an2b n2 2 n1这里a n ,b n 为f的傅里叶系数.S m a0a n cosnx b n sinnx证:设 2 n 1,因为 f (x)的傅里叶级数在[ , ]上一致收敛于f(x),所以0, N 0 ,“m N, x [ , ]f(x) S m ”.)上一致收敛.1na0故22.而于是f(x) S m, f(x) S mf(x) S m,f (x) S m f (x), f ( x)f 2(x)dx 2 a02 m a n2 n12 f ( x), S m S m,S ma022n1a n2b n2nna n2b n2n12f 2(x)d x所以m N 时,2f2(x)d x 22 a n b n2n11 f 2(x)d x4 其中 an , bn 为 f的傅里叶系数,n , n为 g 的傅里叶系数.2a 022a n 2b n 2 故2 n 13 由于贝塞尔等式对于在, ]上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.2(1) 8n 1(2n11); (2)121n 2(3) 90f (x)解: (1) 取由贝塞尔等式得212即8 n 1 (2n 1)(2) 取 f(x) x, xf(x)2dx16f (x)x 2dx,由§1 习题 3 得sin(2 n 1)x , x ( 2n 1 ,0) U(0, )1 1 (2n 1)2,由§1 习题 1 (1) 得 2 ( 1)n 1 sinnx, x n 1 n( 1)n 12由贝塞尔等式得212故6 n 1nn1(3) 取f (x) 2x,], 2由§1 习题 1 (2) 得x 21)ncosx 2 , x n,)x 4dx由贝塞尔等式得 4( 1)n 4n190收敛于 证明: f和 g,则若 f,g 均为 []上可积函数,且他们的傅里叶级数在[ , ]上分别一致f(x)g(x)d x a020(a n n b n n )n1f (x)f (x)g(x)df(x),g(x)当 n 1 时,a 0证: 由题设知(a n cosnx b n sin nx)1g(x) ( n cosnx n1 nsin nx)f (x), 所以f(x), 20 f (x), 20(n1ncosnx n sin nx)f (x), n cosnx f (x), n sin nx1n 2f (x),a n cosnx na 0 0f (x), 而cosnx b n sin nx, 02b n sinnx ,ncosnxa n cosnx,ncosnxan n,n sinnxa 0a n cosnx 2 n 1 nb n cosnx, n cosnxf (x)g(x)d xa 0 02n(a n1b n sinnx ,n sinnxb nn,b nn)f (x) 2 dxf (x) 2dx .证: 因为 f(x)、f (x) 在,上可积,f(x)dx 0,f( ) f( )f (x) a 0(a n cosnx b n sin nx)设2 n 1a 0f (x)(a n cosnx b n sin nx)2n1由系数公式得a 01f (x)d x 1 f () f ( ) 05 证明若 f 及其导函数 f 均在[ , ]上可积 ,f(x)dx 0 f( ) f( ),且成立贝塞尔等式,则1f (x)cos nx d x1 nf ( x)sin nxdx nb nf ( x)cos nx |傅里叶级数,由系数公式得a 0T n (x),1A2n (A k coskx k1B k sin kx),1A 0当ka k1时, T n (x),coskxn(A k coskx B k sin kx),cos kx k1A kn,b kT n (x),sin kxA20n(A k coskx B k sin kx),sin kx k1B k 0n,故在 () ,T n (x) A 20k(A k coskx B k sinkx) 1的傅里叶级数就是其本身.a 0,a k ,b k (k 1,2,L ,n)为f的傅里叶系数,试证明,当A 0 a 0,A k a k ,B k b k (k 1,2,L ,n) 时,2 设 f为[ , ]上可积函数,b n1nf ( x)sin nx d x1f (x)sin nx |f ( x)cos nxd xna n于是由贝塞尔等式得2f (x) 2dx2 a n 2b n 2 n122n 2an 22an2b n 2n12f (x)2 dx总练习题 151 试求三角多项式A 0T n (x)2n(A k coskx B k sin kx) k1的傅里叶级数展开式.A 0T n (x) 20 解: 因为 2(A k coskx k1B k sin kx)是以 2为周期的光滑函数,所以可展为2f (x) T n(x) dx积分n取最小值,且最小值为2 a 2 nf (x) d x 0(a k2 b k2 )2 k 1上述T n (x)是第1题中的三角多项式, A0, A k ,B k为它的傅里叶系数.f(x) 证:设a02 a n cosnxn1b n sinnxT n(x) A02 (A k coskxk1B k sin kx)且A0a0, A k a k , B k b k (k 1,2,L ,n) ,因为2 f (x) T n(x) dx所以22f 2 (x)d x 2 f ( x)T n ( x)d x T n2(x)d xA anf (x)T n(x)d x A k a k B k b k2 k 1 ,T n2(x)d x A0nA k2B k2n2 k 1,2f (x) T n (x) d x而故当A0积分f 2 (x)d x 2 A0a0222nA k a kk1 B k b kA0n2 2A k2B k22 k12 2 nf(x) dx a0 (a k2b k2)2 k1(A0 a0)2n(A k2 k12 a2 nf (x) dx a0 (a k2b k2)2 k1a0, A k a k,B k b k(k 1,2,L ,n)时,2(x) Tn(x) dx取最小值,且最小值为a k )2 (B kb k)22f (x) d x2 a02k1(a k2b k2)3 设f为以2 周期,且具有二阶连续可微的函数,11b n f ( x)sin nxdx, b n f (x)sin nxdx1 1若级数 bn 绝对收敛,则1b n2 2b nn 1 2 n 1证:因为 f(x)为以 2 周期,且具有二阶连续可微的函数, 1b n f ( x)sin nxdx 所以1 b nsinnx d f (x)1f ( x)sin nx ( x)cos nxd xn cosnx d f (x)b nn1故结论成立.(x)a 0a n cosnxb n sinnx解:设2 n1(x) 0ncosnxnsinnx2n1(1) 则当(x)(x) 时,n,11a n(x)cosnxdx ( t)cos( nt)d( t) 试问 的傅里叶系数a n ,b n与 的傅里叶系数( t)cos nt dt(t)cos nt d tnf ( x)cos nxf (x)sin nxdxn 2b n所以 1 n 1, b n2 n bn绝对收敛,n1b nn1b n ,从而12n 收敛,1, b n2 b nnbn收敛,且b n 1b n4 设周期为 (1)( x)的可积函数 (x);(x)与 (2)(x)满足以下关系式( x) (x).n , n有什么关系?nb n(2)b nn11(x)sin nxdx( t)cosntdt( t)sin( nt)d( t)(t)cos ntdtn1x) (x) 时,(x)cosnxdx( t)cosntdt(x)sin nxdx( t)cos nt dt0,设定义在[a,b]上的连续函数列( t)cos( nt)d( t)(t)cos ntdt( t)sin( nt)d( t)(t)cos nt d tn (x)满足关系bn(x)m(x)d x 1nm对于在[a,b]上的可积函数f,定义a n ba f(x) n(x)d x, n a 1,2,L ,2 a n2 证明n 1 b2 a[ f(x)]2dx a证:2a n2收敛,且有不等式n 1在[a,b]上的所有可积函数构成的集合中定义内积为bf (x)g(x)d xa,f (x), g(x)则函数列n (x)为标准正交系.m a n n (x), m 1,2,Ln 1,则S m(x) 令b2a[ f(x) S m(x)]2dx 又 a mn, a n f (x), n(x) ,2f 2 (x)d x 22f(x)S n(x)d x S n2(x)d xf 2(x)d x 2 f ( x), S n (x) S n(x),S n(x)m m1 x sin nx |f (x), S n ( x) f (x), a n n (x) 而 n 1 a n f (x), n (x) n1 m 2 a n 2n1 S n (x),S n (x) S n (x), a k k (x)k1 m ma k a k k (x), k (x) k1 所以 k 1 , 2 m 2b f 2(x)d x a n 2 a [ f(x) a n1 m m 1, n1 2 S m ( x)]2 dx 0 b 2 a [ f(x)]2dx a 2 2 b a n a n a 1 收敛,且 n 1 a ,即 S m (x) 有上界. [ f (x)]2dx。
傅里叶变换和傅里叶级数的收敛问题
1、傅里叶变换和傅里叶级数的收敛问题由于傅里叶级数是一个无穷级数,因而存在收敛问题。
这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。
关于傅里叶级数的收敛,有两组稍有不同的条件。
第一组条件:如果周期信号()t x 在一个周期内平方可积,即()∞<⎰dt T t x 2则其傅里叶级数表达式一定存在。
第二组条件,与第一组条件稍有不同,就是狄里赫利条件,它包括以下三点:(1)在任何周期内,x 必须绝对可积,即()∞<⎰dt t x T 0(2)在任何周期内,()t x 只有有限个极值点,且在极值点处的级值为有限值。
(3)在任何有限区间内,()t x 只有有限个间断点,且在这些不连续点处,()t x 为有限值。
傅里叶变换的收敛问题也有两组类似的条件:第一组条件:如果()t x 平方可积,即()∞<⎰∞∞-dt t x 2则()t x 的傅里叶变换存在。
满足上式可以保证()ΩX 为有限值。
第二组条件也称为狄里赫利条件,这就是:(1)()t x 绝对可积,即()∞<⎰∞∞-dt t x (2)在任何有限区间内,()t x 只有有限个极值点,且在这些极值点处的极值是有限值。
(3)在任何有限区间内,()t x 只能有有限个间断点,而且这些间断点都必须是有限值。
吉布斯现象:当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。
2、周期序列的傅里叶级数展开和傅里叶变换之间的问题假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有()()∑∞-∞=-=r rN n x n x ~ 或表示为()()()N n x n x =~。
于是()n x ~与()n x 的关系表示为:()()()N n x n x =~()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有:()()kn N N n W k X N n x --=⋅=∑10~~1 ()()kn NN n W n x k X ⋅=∑-=10~~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。
傅里叶级数
上至多有有限个第一类间断点,可积分, 因此ϕ ( t ) 在 [ -π ,π ] 上至多有有限个第一类间断点,可积分, Riemann-Lebesgue引理: 引理: 1 sin( n + )t 1 π 2 dt = 0. lim ∫ [ f ( x + 0) − f ( x + t )] n→∞ π 0 t 2sin 2 因此(3)得证,同理(4)可以证明. Dirichlet定理得证.
π
−π
证明: 证明:任取Tn =
α0
2
+ ∑ (α k cos kx + β k sin kx ) ∈ T
k =1
n
∫π
−
π
( f ( x ) − Tn ( x ) )2 dx = ∫
f ( x )Tn ( x ) dx
π
−π
f 2 ( x )dx − 2∫
π
−π
f ( x )Tn ( x ) dx + ∫ Tn 2 ( x ) dx
对于( 对于(3)假设 f ( x + 0) − f ( x + t ) f ( x + 0) − f ( x + t ) t = ⋅ ϕ (t ) = t t t 2sin 2sin 2 2
t → 0+
lim ϕ ( t ) = − f ' ( x + 0), lim ϕ ( t ) = f ' ( x − 0)
n
则f 在T上的最佳平方逼近元为 a0 Sn = + 2 这里 1 an = π b = 1 n π
∑ (a
k =1
k
cos kx + bk sin kx ) ,
傅里叶级数收敛的充分必要条件
傅里叶级数是数学中的一种重要概念,它可以将任意周期函数表示为一组正弦和余弦函数的无穷级数。
而对于一个给定的函数,我们希望知道其对应的傅里叶级数是否收敛,以及如何判断它的收敛性。
在本文中,我们将讨论傅里叶级数收敛的充分必要条件,以及相关的数学定理和证明。
一、傅里叶级数的定义傅里叶级数可以表示为以下形式:f(x) = a0 + Σ(an*cos(nx) + bn*sin(nx))其中,f(x)为周期为2π的函数,a0为常数项,an和bn为系数。
根据傅里叶级数的定义,我们可以将任意周期函数表示为一组正弦和余弦函数的线性组合。
二、傅里叶级数的收敛性对于一个给定的函数f(x),我们希望知道其对应的傅里叶级数是否收敛。
根据傅里叶级数的收敛性定理,我们可以得到如下结论:1. 当函数f(x)在有限区间上绝对可积时,对应的傅里叶级数收敛于f(x)。
这一定理的证明可以通过分析函数f(x)的积分性质和傅里叶级数的部分和序列得出。
由于绝对可积函数具有有界性和可积性,因此其对应的傅里叶级数在有限区间上是收敛的。
2. 当函数f(x)是分段连续且周期为2π时,对应的傅里叶级数收敛于f(x)。
这一定理的证明可以通过分析分段连续函数的性质和傅里叶级数的逼近性得出。
由于分段连续函数可以用连续函数逼近,而连续函数对应的傅里叶级数是收敛的,因此分段连续函数对应的傅里叶级数也是收敛的。
傅里叶级数收敛的充分必要条件是:函数f(x)在有限区间上绝对可积或者是分段连续且周期为2π。
三、傅里叶级数收敛性的分析在实际的应用中,我们常常需要分析函数对应的傅里叶级数的收敛性。
对于某些特定的函数,我们可以通过具体的分析和计算得到其对应的傅里叶级数,并进一步判断其收敛性。
在实际计算中,我们可以利用傅里叶级数的积分形式和部分和序列的性质,来分析傅里叶级数的收敛性。
另外,在实际的应用中,我们也可以利用傅里叶级数收敛的充分必要条件来判断函数的可积性和连续性。
通过分析函数的性质,我们可以得到对应的傅里叶级数是否收敛的结论。
(完整版)15.3收敛定理的证明
2
2
sin
t 2
[ f ( x t) f ( x 0)]
t 2
,t 0,
t
sin
t 2
首页
上页
下页
返回
结束
(12)
21
铃
Mathematical Analysis
绵阳师范学院
由§1(13)式得
lim(t) f ( x 0) 1 f ( x 0)
t 0
再令(0) f ( x 0),则函数 在点t 0右连续,因
3 把上式化为应用Riemann — Lebesgue定2理的形
,
式,
即令
t
(t)
f
(x
t) t
f
(x
0) 2 sin
t
,
2
t (0 , ]
7
首页
上页
下页
返回
结束
铃
Mathematical Analysis
绵阳师范学院
则
1
lim
n
0
f ( x 0) f ( x t)
sin 2n 1t
f ( x 0) f ( x 0) 2
f ( x 0) f ( x 0) 2
Sn(x 1
) f
(
x
t
)
sin 2n 2
2sin t
1
t
dt
2
3
首页
上页
下页
返回
结束
铃
Mathematical Analysis
绵阳师范学院
f ( x 0) 1
2
0
sin 2n 1t
f (x t)
首页
上页
傅里叶级数收敛定理及其推论
返回
论文主要内容
例 1 求 (1)
n 1 n 1
1 . 3 (2n 1)
例2 设f ( x)为[ , ]上可积函数.证明: 若f ( x)的傅里叶级数在[ , ]上一致收敛于 f ( x),则成立帕赛瓦尔(parseval)等式:
2 a 2 2 2 0 f ( x ) dx ( a b ) n n 2 n 1 这里an , bn为f ( x)的傅里叶系数.
傅里叶级数收敛定理及其推论
论文选题背景
论文基本框架
论文主要内容
论文选题背景
十九世纪初,法国数学家傅里叶开创了“傅里 叶分析”这一重要分支,而傅里叶级数是在研究偏
微分方程的边值问题提出来的.在傅里叶分析的发
展史上,一开始就对傅里叶收敛问题有极大的争
议.而对此问题,在国际上先后有杜布瓦—雷蒙、
费耶尔等人做出了巨大的贡献.
1
返回
致 谢
敬请指正!
返回
论文基本框架
1 引言 2 预备知识 3 傅里叶级数收敛定理及其推论 4 傅里叶级数收敛定理的应用 结束语 致谢
返回
论文主要内容
结合数学分析教材以及参考资料,对傅里叶级
数收敛定理及其推论和应用进行了系统地归纳、总
结.首先,介绍了傅里叶级数,广义左导数、广义
右导数的定义,接着给出了傅里叶级数收敛定理,
并利用贝塞耳不等式和黎曼-勒贝格定理证明了傅 里叶级数收敛定将傅 里叶级数收敛定理的条件中的“f ( x)在[ , ]上 按段光滑”减弱为“函数f ( x)在[ , ]上可积, 并且它每一点x [ , ]处的广义左、右导数 皆存在”,得到了傅里叶级数收敛定理的推 广形式.
无穷级数第三节傅里叶级数
例7 将定义在
展成余弦级数,
其中E 为正常数 .
解:
上函数
将函数
先进行
偶延拓,
在进行周期延拓,
延拓后函数在
连续,
因此展开后的余弦级数收敛到
分别展成正弦级
例8. 将函数
数与余弦级数 .
解: 先求正弦级数.
去掉端点, 将 f (x) 作奇周期延拓,
注意:
在端点 x = 0, , 级数的和为0 ,是周期为2 Fra bibliotek周期函数,它在
解:
在
连续,
因此其傅立叶级数
收敛到
当
时,
收敛到
上函数展开成傅立叶级数
周期延拓
傅里叶展开
上的傅里叶级数,
上讨论级数的收敛性。
其它
最后在
2) 定义在
例5 将定义在
上函数
展开成傅里叶级数。
解
在
上满足收敛定理的条件,
周期延拓,
延拓后的函数在
处不连续,
因此其傅立叶级数
在
收敛到
与给定函数
f (x) = x + 1 的值不同 .
再求余弦级数.
将 则有 作偶周期延拓 ,
说明: 令 x = 0 可得
即
三 一般周期函数展开成傅立叶级数
设周期为2l 的周期函数 f (x)满足收敛定理条件,
则它的傅里叶展开式为
(在 f (x) 的连续点处)
其中
定理.
证明: 令
, 则
令
k 越大振幅越小,
因此在实际应用中展开式取前几项就足以逼近f (x)了.
上述级数可分解为直流部分与交流部分的和.
例10 将定义在
数学分析15.3傅里叶级数收敛定理的证明
第十五章 傅里叶级数 3收敛定理的证明预备定理1:(贝塞尔不等式)若函数f 在[-π,π]上可积,则2a 20+∑∞=1n 2n 2n )b +(a ≤⎰ππ-2(x)f π1dx ,其中a n , b n 为f 的傅里叶系数.证:令S m (x)=2a 0+∑=+m1n n n sinnx )b cosnx (a ,则⎰ππ-2m (x )]S -[f(x )dx=⎰ππ-2(x )f dx-2⎰ππ-m (x )f(x )S dx+⎰ππ-2m (x)S dx. 其中 ⎰ππ-m (x )f(x )S dx=⎰ππ-0f(x)2a dx+dx cosnx f(x )a m1n ππ-n ∑⎰= ⎝⎛+⎪⎭⎫⎰sinnxdx f(x)b ππ-n =20a 2π+π∑=m1n 2n 2n )b +(a . 由三角函数的正交性,有 ⎰ππ-2m (x )S dx=⎰∑⎥⎦⎤⎢⎣⎡++=ππ-2m 1n n n 0sinnx)b cosnx (a 2a dx =⎰⎪⎭⎫ ⎝⎛ππ-202a dx+⎰∑⎰⎰=⎥⎦⎤⎢⎣⎡+ππ-m 1n ππ-22n ππ-22n nx dx sin b nx dx cos a dx=20a 2π+π∑=m 1n 2n 2n )b +(a . ∴⎰ππ-2m (x )]S -[f(x )dx=⎰ππ-2(x )f dx-2πa -2π∑∞=1n 2n2n )b +(a +20a 2π+π∑=m1n 2n 2n )b +(a=⎰ππ-2(x )f dx-⎢⎣⎡20a 2π+π⎥⎦⎤∑=m1n 2n 2n )b +(a ≥0. ∴2a 20+∑=m1n 2n 2n )b +(a ≤⎰ππ-2(x)f π1dx 对任何正整数m 都成立. 又 ⎰ππ-2(x)f π1dx 为有限值,∴正项级数2a 20+∑∞=1n 2n 2n )b +(a 的部分和数列有界, ∴2a 20+∑∞=1n 2n 2n )b +(a 收敛且有2a 20+∑∞=1n 2n 2n )b +(a ≤⎰ππ-2(x)f π1dx.推论1:(黎曼-勒贝格定理)若f 为可积函数,则cosnx f(x )limππ-n ⎰∞→dx=sinnx f(x )lim ππ-n ⎰∞→=0.证:由2a 20+∑∞=1n 2n 2n )b +(a 收敛知,2n 2n b +a →0 (n →∞),∴a n →0, b n →0, (n →∞), ∴cosnx f(x )lim ππ-n⎰∞→dx=sinnx f(x )lim ππ-n ⎰∞→dx=0.推论2:若f 为可积函数,则x 21n sin f(x )lim πn ⎪⎭⎫ ⎝⎛+⎰∞→dx=x 21n sin f(x )lim 0π-n ⎪⎭⎫ ⎝⎛+⎰∞→dx =0. 证:∵x 21n sin ⎪⎭⎫ ⎝⎛+=cos 2x sinnx+sin 2xcosnx , ∴x 21n sin f(x )π⎪⎭⎫ ⎝⎛+⎰dx =sinnx 2x f(x )cos π0⎰⎥⎦⎤⎢⎣⎡dx+cosnx 2x f(x )sin π0⎰⎥⎦⎤⎢⎣⎡dx =sinnx (x )F ππ-1⎰dx+cosnx (x )F ππ-2⎰dx ,其中F 1(x)=⎪⎩⎪⎨⎧≤≤<≤-πx 02x cos )x (f 0x π0,,;F 2(x)=⎪⎩⎪⎨⎧≤≤<≤-πx 02x sin )x (f 0x π0,,.可知F 1与F 2在[-π,π]上可积. 由推论1可知sinnx (x )F lim ππ-1n ⎰∞→dx=cosnx (x )F lim ππ-2n ⎰∞→=0. ∴x 21n sin f(x )lim π0n ⎪⎭⎫ ⎝⎛+⎰∞→dx=0. 同理可证:x 21n sin f(x )lim 0π-n⎪⎭⎫ ⎝⎛+⎰∞→dx =0.预备定理2:若f 是以2π为周期的函数,且在[-π,π]上可积,则它的傅里叶级数部分和S n (x)可写成S n (x)=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin t)f(x π1dt ,当t=0时,被积函数中的不定式由极限 2t 2sint21n sin lim0t ⎪⎭⎫ ⎝⎛+→=n+21确定. 证:在傅里叶级数部分和S n (x)=2a 0+sinkx )b +coskx (a n1k k k ∑=中代入傅里叶系数公式,可得:S n (x)=⎰ππ-f(u)2π1du +∑⎰⎰=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛n 1k ππ-ππ-sinkx sinkudu f(u)+coskx coskudu f(u)π1 =⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n 1k )sinkusinkx +kx coskuducos (21f(u)π1du=⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n 1k x)-cosk(u 21f(u)π1du. 令u=x+t ,得S n (x)=⎰∑⎪⎭⎫⎝⎛++=x -πx -π-n 1k coskt 21t)f(x π1dt ,又被积函数周期为2π,且∑=+n 1k coskt 21=2t 2sint21n sin ⎪⎭⎫ ⎝⎛+, ∴S n (x)=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin t)f(x π1dt. (f 的傅里叶级数部分和积分表示式).收敛定理15.3证明:若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.证:记f 的傅里叶级数的部分和为S n (x)=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin t)f(x π1dt.∵⎰⎪⎭⎫ ⎝⎛+ππ-2t 2sin t 21n sin π1dt=⎰∑⎪⎭⎫ ⎝⎛+=ππ-n 1k coskt 21π1dt=1;又上式左边为偶函数,∴两边同时乘以f(x+0)后得:20)f(x +=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin 0)f(x π1dt.令φ(t)=-2t sin 20)f(x -t)f(x ++=-2t sin2tt 0)f(x -t)f(x ⋅++, t ∈(0,π].则 φ(t)lim 0t +→=-f ’(x+0)·1=-f ’(x+0).再令φ(0)=-f ’(x+0),则φ在点t=0右连续.又φ在[0,π]上至多只有有限个第一类间断点,∴φ在[0,π]上可积. 根据预备定理1的推论2,有2t 2sint21n sin t)]f(x -0)[f(x π1lim π0n ⎪⎭⎫ ⎝⎛+++⎰∞→dt=t 21n sin φ(t)π1lim π0n ⎪⎭⎫ ⎝⎛+⎰∞→dt=0, ∴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎰∞→dt 2t 2sint 21n sin t)f(x π1-20)f(x lim π0n=0,同理可证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++-⎰∞→dt 2t 2sint 21n sin t)f(x π1-20)f(x lim π0n =0;∴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++++⎰∞→dt 2t 2sint 21n sin t)f(x π1-20)-f(x 0)f(x lim π0n=⎥⎦⎤⎢⎣⎡++∞→(x )S -20)-f(x 0)f(x lim n n =0. 即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a . 习题1、设f 以2π为周期且具有二阶连续的导函数,证明f 的傅里叶级数在(-∞,+∞)上一致收敛于f.证:由f 在(-∞,+∞)上光滑,知f ’在[-π, π]上可积, 且f ’的傅里叶系数为:a ’0=0;a ’n =nb n , b ’n =-na n , (n=1,2,…). ∴|a n |+|b n |=n |a |n '+n |b |n '≤)n 1a (2122n +'+)n 1b (2122n +'=)b a (212n 2n '+'+2n1. 由贝塞尔不等式知级数∑∞='+'1n 2n2n)b a (收敛,又级数∑∞=1n 2n1级数, 由正项级数的比较原则知,2|a |0+∑∞=+1n n n |)b ||a (|收敛,由定理15.1知f 的傅里叶级数在(-∞,+∞)上一致收敛于f.2、设f 为[-π,π]上的可积函数. 证明:若f 的傅里叶级数在[-π,π]上一致收敛于f ,则帕塞瓦尔等式成立,即⎰ππ-2(x)f π1dx=2a 20+∑∞=1n 2n 2n )b +(a , 其中a n , b n 为傅里叶系数.证:∵f 的傅里叶级数在[-π,π]上一致收敛于f ,∴f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .∴⎰ππ-2(x)f π1dx=⎰∑⎥⎦⎤⎢⎣⎡+∞=ππ-1n n n 0sinnx)b +cosnx (a 2a )x (f π1dx =2a 2+⎰∑∞=ππ-1n n n sinnx ])x (f b +cosnx )x (f [a π1dx. ∵f 在[-π,π]上可积,∴f 在[-π,π]上有界. ∴∑∞=1n n n sinnx ])x (f b +cosnx )x (f [a 在[-π,π]上一致收敛.∴⎰ππ-2(x)f π1dx=2a 20+dx ]sinnx )x (f b +cosnx dx )x (f [a π1ππ-1n n ππ-n ⎰∑⎰∞=dx=2a 20+∑∞=1n 2n 2n π)b +π(a π1=2a 20+∑∞=1n 2n 2n )b +(a .3、由于帕塞瓦尔等式对于在[-π,π]上满足收敛定理条件的函数也成立. 请应用这个结果证明下列各式:(1)8π2=∑∞=1n 2)1-n 2(1;(2)6π2=∑∞=1n 2n 1;(3)90π4=∑4n 1. 证:(1)对函数f(x)= πx 0 4π0x π- 4π-⎪⎩⎪⎨⎧<≤<<,,在(-π, π)上展开傅里叶级数得: f(x)=∑∞=--1n 12n 1)xsin(2n ,其中a 0=a n =0,b n =2n )1(1n --,n=1,2,…;根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=∑∞=1n 2n b =∑∞=1n 2n 2n (-1)-1=∑∞=1k 21)-(2k 1, 又⎰ππ-2(x)f π1dx=⎰ππ-216ππ1dx=8π2,∴8π2=∑∞=1n 2)1-n 2(1.(2)对函数f(x)=x 在(-π, π)上展开傅里叶级数得:f(x)=2∑∞=+-1n 1n nsinnx)1(. 其中a 0=a n =0,b n =n)1(21n +-,n=1,2,…;根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=∑∞=1n 2n b =4∑∞=1n 2n 1,又⎰ππ-2(x)f π1dx=⎰ππ-2x π1dx=32π2, ∴32π2=4∑∞=1n 2n1,即6π2=∑∞=1n 2n 1.(3)对函数f(x)=x 2在(-π, π)上展开傅里叶级数得:f(x)=31π2+4∑∞=1n 2n n cosnx (-1). 其中a 0=32π2,a n =2n n 4(-1),b n =0,n=1,2,…; 根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=2a 20+∑∞=1n 2n a =92π4+16∑∞=1n 4n 1,又⎰ππ-2(x)f π1dx=⎰ππ-4x π1dx=32π2,∴52π4=92π4+16∑∞=1n 4n 1,即90π2=∑4n 1.4、证明:若f,g 均为[-π,π]上的可积函数,且它们的傅里叶级数在[-π,π]上分别一致收敛于f 和g ,则⎰ππ-f(x)g(x)π1dx=2αa 00+∑∞=+1n n n n n )βb αa (,其中a n , b n 为f 的傅里叶系数,αn ,βn 为g 的傅里叶系数. 证:由f 的傅里叶级数在[-π,π]上一致收敛于f ,有f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a . ∵f,g 均在[-π,π]上可积,∴∑∞=1n n n g(x )sinnx ]b +g(x )cosnx [a 在[-π,π]上一致收敛.∴⎰ππ-f(x)g(x)π1dx=⎰ππ-0g(x)2a π1dx+∑⎰∞=1n ππ-n n g(x )sinnx ]b +g(x )cosnx [a π1dx=2αa 00+∑⎰⎰∞=⎥⎦⎤⎢⎣⎡1n ππ-ππ-n n x g(x )sinnx d π1b +x g(x )cosnx d π1a =2αa 00+∑∞=+1n n n n n )βb αa (.5、证明:若f 及其导函数f ’均在[-π,π]上可积,⎰ππ-f(x )dx=0, f(-π)=f(π),且帕塞瓦尔等式成立,则⎰'ππ-2(x )]f [dx ≥⎰ππ-2[f(x )]dx.证:设a 0,a n ,b n 为f 的傅里叶系数;a ’0,a ’n ,b ’n 为f ’的傅里叶系数. 由⎰ππ-f(x )dx=0, f(-π)=f(π),有a ’0=a 0=0; a ’n =nb n ,b ’n =-na n .根据帕塞瓦尔等式,有⎰ππ-2[f(x)]π1dx=2a 20+∑∞=1n 2n 2n )b +(a =∑∞=1n 2n 2n )b +(a , ⎰'ππ-2(x)]f [π1dx=2a 20'+∑∞=''1n 2n 2n )b +a (=∑∞=1n 2n 2n 2)b +(a n ≥∑∞=1n 2n 2n )b +(a =⎰ππ-2[f(x)]π1dx. ∴⎰'ππ-2(x )]f [dx ≥⎰ππ-2[f(x )]dx.。
§4-5 傅里叶级数逼近
称为f(x)的傅里叶级数,记为
f ( x) a0 2 (an cos nx bn sin nx)
n 1
5
(5)
特别地:如f(x)在[-,]上是奇函数,则
1 a n b 2 n
f ( x ) cos nxdx 0
收敛性及其和函数 周期函数展开成三角级数
首先讨论第二个问题: 设f(x)的周期是2,如果f(x)可以展开成三角函数(2),即
f ( x) a0 2 ( an cos nx bn sin nx)
n 1
为确定系数a0,an,bn,我们假定上式右端可逐项积分
3
由
f ( x )dx
第 步:画出f ( x)的图形; 1
第2步:求f ( x)的傅里叶系数 an bn 1
1
f ( x) cos nxdx
n 0,1, 2, n 1, 2,
f ( x ) sin nxdx
第3步:写出f ( x)的傅里叶级数 f ( x) a0 2 ( an cos nx bn sin nx)
1 3
sin 3x
1 4
sin 4 x
12 ( x 且x , 3 , )
例3 周期为2的周期函数f ( x) 2 sin 级数逼近。 4-5 (3) 1
x 3
( x )用傅里叶
解:
-3
-
y
0
3
x
f ( x) 2 sin
1 1 sin( n ) x sin( n ) x 2 3 3 1 1 n n 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞
n−1
返回
致 谢
敬请指正!
傅里叶级数收敛定理及其推论
论文选题背景
论文基本框架
论文主要内容
论文选题背景
十九世纪初,法国数学家傅里叶开创了“傅里 叶分析”这一重要分支,而傅里叶级数是在研究偏 微分方程的边值问题提出来的.在傅里叶分析的发 展史上,一开始就对傅里叶收敛问题有极大的争 议.而对此问题,在国际上先后有杜布瓦—雷蒙、 费耶尔等人做出了巨大的贡献.
返回
论文基本框架
1 引言 2 预备知识 3 傅里叶级数收敛定理及其推论 4 傅里叶级数收敛定理的应用 结束语 致谢
返回
论文主要内容
结合数学分析教材以及参考资料,对傅里叶级 数收敛定理及其推论和应用进行了系统地归纳、总 结.首先,介绍了傅里叶级数,广义左导数、广义 右导数的定义,接着给出了傅里叶级数收敛定理, 并利用贝塞耳不等式和黎曼-勒贝格定理证明了傅 里叶级数收敛定理.
返回
论文主要内容
讨论了傅里叶级数收敛定理的条件,将傅 里叶级数收敛定理的条件中的“f ( x)在[−π , π ]上 按段光滑”减弱为“函数f ( x)在[−π , π ]上可积, 并且它每一点x ∈[−π , π ]处的广义左、右导数 皆存在”,得到了傅里叶级数收敛定理的推 广形∑(−1) . 3 (2n −1) n=1
例2 设 f ( x )为[ −π , π ]上可积函数.证明: 若 f ( x )的傅里叶级数在[ −π , π ]上一致收敛于 f ( x ),则成立帕赛瓦尔(parseval)等式: a0 2 ∞ f 2 ( x ) dx = + ∑ ( an 2 + bn 2 ) π ∫− π 2 n =1 这里 an , bn为 f ( x )的傅里叶系数. 1
返回
论文选题背景
傅里叶级数是级数理论的重要内容,傅里叶级数 收敛定理是傅里叶级数的一个基本定理.傅里叶分析 的主体研究部分是对三角级数的研究.而在自然界中, 许多现象都具有周期性.如:机械运动、天体运动、 交流电变化等等.因此,傅里叶级数理论在数学物理 以及工程中都具有重要的应用,而且它也是学习调和 分析、小波分析等课程的理论基础.