分式函数的图像与性质
常见分式函数的研究
03 分式函数的运算与变换
分式函数的加减法
分式函数的加减法可以通过通分实现,将分母统一后再进行加减运算。 在进行分式函数的加减法时,需要注意分母不能为零的情况,避免出现无意义的情况。 对于分式函数的加减法,需要注意运算的顺序,先进行乘除运算再进行加减运算。 在进行分式函数的加减法时,可以利用等价无穷小替换简化计算过程。
分式函数的极限与连续性
分式函数的极限:研究分式函数在某点的极限值,以及极限的运算法则
分式函数的连续性:探讨分式函数在某点的连续性,以及连续性的性质和判定方法
分式函数极限与连续性的关系:分析极限与连续性之间的联系,以及在数学分析中的应 用
分式函数极限与连续性的应用:举例说明分式函数极限与连续性在解决实际问题中的应 用
分式函数极值的几 何意义
分式函数极值在实 际问题中的应用
分式函数的凹凸性及拐点问题
分式函数的凹凸性 定义
拐点及其判定条件
分式函数凹凸性的 判别方法
分式函数拐点的求 法
06 分式函数的综合题解析
分式函数的解析几何问题
涉及直线与圆的位 置关系
涉及点到直线的距 离公式
涉及直线的斜率公 式
涉及圆的半径和弦 长公式
分式函数的优化问题
分式函数的极值条件 分式函数的单调性分析 分式函数的凹凸性判断 分式函数的最值求解方法
分式函数的极值问题
分式函数的极值条件 分式函数的极值计算方法 分式函数的极值应用场景 分式函数的极值与连续性的关系
分式函数的最大值与最小值问题
分式函数的极值条 件
分式函数的最大值 与最小值的求解方 法
04 分式函数的应用
分式函数在物理中的应用
力学中速度与时间的关系
电学中电流与电压的关系
专题11 一次分式函数
专题11 一次分式函数【方法点拨】1. 一次分函数的定义我们把形如(0,)cx dy a ad bc ax b +=≠≠+的函数称为一次分式函数. 2. 一次分式函数(0,)cx dy a ad bc ax b+=≠≠+的图象和性质(1)图象:.(2)性质:①定义域:⎭⎬⎫⎩⎨⎧-≠a b x x ;2.3 值域:⎭⎬⎫⎩⎨⎧≠a c y y ; ②对称中心:⎪⎭⎫⎝⎛-a c ab ,; ③渐近线方程:b x a =-和cy a=; ④单调性:当ad>bc 时,函数在区间(,)ba-∞-和(,)ba-+∞分别单调递减;当ad<bc 时,函数在区间(,)b a -∞-和(,)ba-+∞分别单调递增. 【典型例题】例1 设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b ](a <b ),集合N ={M x x f y y ∈=),(},则使M =N 成立的实数对(a ,b )有几个?【解析】函数f (x )= (0)11(0)1x x x x xx x x ⎧-≥⎪⎪+-=⎨+⎪-<⎪-⎩其图象如下图所示,由图象可知,y =f (x )在R上是连续单调递减函数。
而N ={y |y =f (x ),x ∈M }表示函数定义域为M=[a ,b ]时其值域为N。
由M=N得解得a =b =0,这与a <b 矛盾,所以0个.例2 已知函数2()1ax af x x +-=+,其中a R ∈.(1)当函数()f x 的图象关于点P(-1,3)成中心对称时,求a 的值; (2)若函数()f x 在(-1,+∞)上单调递减,求a 的取值范围. 【答案】(1)a =3; (2){}1a a <. 【分析】(1)部分分式2(1)2222()111ax a a x a af x a x x x +-++--===++++ 所以()f x 的对称中心为(-1,a ),与P(-1,3)比较得a =3. (2)由2()1ax af x x +-=+知x =-1为()f x 的一条渐近线,又由一次分函数的性质知,当且仅当1(2)1a a ⨯->⨯,即a <1时,()f x 在(-1,+∞)上单调递减,故a 的范围是{}1a a <. 点评:一次分式型函数的最常用变形手段“部分分式”(其核心就是分子‘凑’分母),其常用方法有凑配、换元、长除法等.例3 求函数2121x x y -=+的值域.【答案】(-1,1)【分析】令2(0)xt t =>,则2121x x y -=+为11t y t -=+与2(0)x t t =>复合而成而12111t y t t -==-++,故在0t >递增,所以1y >- 又当t →+∞时,1y →故2121x x y -=+的值域是(-1,1).【巩固练习】1.函数y=432-+x x 的值域 .2.函数y=432-+x x (21><x x 或)的值域 .3.函数y=42-+-x x 的对称中心是 .4.函数y=42-+-x x 的单调增区间是 .5.已知函数()x f =ax x -+-2,若*∈∀N x ,()()5f x f ≤恒成立,则a 的取值范围是 .5.若函数2+-=x b x y 在区间()4,+b a 上的值域为()+∞,2,则=ba ______________. 6.记函数)(x f 的定义域为D ,若存在D x ∈0,使()00x x f =成立,则称以()00,y x 为坐标的点是函数)(x f 的图象上的“稳定点”.若函数()ax x x f +-=13的图象上有且只有两个相异的“稳定点”,求实数a 的取值范围.()2-<b【答案与提示】1.【答案】 13y y ⎧⎫≠⎨⎬⎩⎭2.【答案】 ()()2,11,3⋃- 3.【答案】(4,-1)4.【答案】 ()()+∞∞-,4,4, 5.【答案】65<<a 5.【答案】1616.【答案】【解析】由题意:方程x ax x =+-13,即()0132=+-+x a x 有两个不等于-a 的相异实根, ()()()()⎪⎩⎪⎨⎧≠+--+->--=∆∴01304322a a a a 3115-≠<>⇒a a a 且或.。
第二节 分式线形函数及其映射性质
注:
(1)分式线性函数的定义域可以推广到扩充复平
面 C。 (2)当 0时,规定它把 z 映射成 w ;
(3)当 0 时,规定它把z , z 映射成
w , w
二、分式线性函数的拓广
由此,我们可以解出分式线性函数。显然 这样的分式线性函数也是唯一的。
注:
z z1 : z3 z1 和 w w1 : w3 w1 分别称为 z z2 z3 z2 w w2 w3 w2 及 z1, z2, z, z3 的交比。w1, w2, w, w3 分别记为 (z1, z2 , z, z3 ) ,(w1, w2 , w, w3 )
2
2i
则得圆的复数表示:
azz z z d 0,
其中a,b,c,d是实常数,
1 2
(b
ic)
是复常数。
函数 w 1 把圆映射成为 z
dww w w a 0,
即w平面的圆(如果d=0,它表示一条直线, 即扩充w平面上半径为无穷大的圆)。
注解:
(1)、设分式线性函数把扩充z平面上的圆C映射 成扩充w平面上的圆C‘。于是,C及C’把这两个 扩充复平面分别分成两个没有公共点的区域, D1, D2 及 D1', D2 ',其边界分别是C及C'。
(3)、w rz 确定一个以原点为相似中心的相 似映射;
(4)、w
1 z
是由 z1
1 z
映射及关于实轴的对称
映射 w z1 叠合而得。
四、映射的性质
1、保圆性
规定:在扩充复平面上,任一直线看成半径是无 穷大的圆。 定理6.6 在扩充复平面上,分式线性函数把圆映射 成圆。
有理分式函数的图象及性质
有理分式函数的图象及性质【知识要点】1.函数(0,)ax b y c ad bc cx d+=≠≠+(1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c-∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c- (5)奇偶性:当0a d ==时为奇函数。
(62.函数(0,0)b yax a b x =+>>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。
3.函数(0,0)b y ax a b=+><的图象和性质:【例题精讲】1.函数11+-=x y 的图象是 ( )A B C D2.函数23(1)1x y x x +=<-的反函数是 ( ) 3333.(2) . (2) . (1) .(1)2222x x x x A y x B y x C y x D y x x x x x ++++=<=≠=<=≠---- 3.若函数2()x f x x a+=+的图象关于直线y x =对称,则a 的值是 ( ) . 1 . 1 . 2 .2A B C D --4.若函数21()x f x x a-=+存在反函数,则实数a 的取值范围为 ( ) 11. 1 . 1 . .22A aB aC aD a ≠-≠≠≠- 5.不等式14x x>的解集为 ( ) 1111111. (,0)(,) . (-,)(,) . (,0)(0,,+) .(,0)(0,)2222222A B C D -+∞∞-+∞-∞-6.已知函数2()ax b f x x c+=+的图象如图所示,则,,a b c 的大小关系为 ( ) . . . .A a b c B a c b C b a c Db c a >>>>>>>>7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。
复变函数7.2第7.2节分式线性函数
注解:
注解1、设分式线性函数把扩充z平面上的圆C映 射成扩充w平面上的圆C‘。于是,C及C’把这两 个扩充复平面分别分成两个没有公共点的区域 ,D1, D2 及D1', D2',其边界分别是C及C'。
注解2、此分式线性函数把 D1映射成之中 D1', D2' 的一个区域;
注解3、利用此定理也可以解释关于直线的对称点 。
y
w1
z x
w 1/ z
引理4.1:
引理4.1 不同两点 z1 及 z2 是关于圆C的对称点的 必要与充分条件是:通过 z1 及 z2 的任何圆与圆 C直交。
证明:如果C是直线(半径为无穷大的圆);或 者C是半径为有限的圆, z1 及 z2 之中有一个是 无穷远点,则结论显然。
w az b , cz d
定理 4.2的证明:
那么,由
w1
az1 cz1
b d
,
w2
az2 cz2
b d
,
w2
az2 b cz2 d
得
w
w1
(az
b)(cz1 d ) (az1 b)(cz (cz d )(cz1 d )
d
)
(z z1)(ad bc)
分式线性函数的反函数为 z w , w
它也是分式线性函数,其中 ( )() 0
注解:
注解1、当 0 时,所定义的分式线性函数是 把z平面双射到w平面,即把C双射到C的单叶解 析函数;
分式方程与反比例函数知识点总结
分 式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(完整版)分式函数的图像与性质
分式函数的图像与性质1、分式函数的概念形如22(,,,,,)axbx c y a b c d e fR dx ex f ++=∈++的函数称为分式函数。
如221x y x x +=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,23y x =+等。
※ 学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞U ; 对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定?【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c=-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
多项式函数与分式函数的性质与应用
05
多项式函数与分式函数的求解方法
多项式函数的求解方法
代数法
通过因式分解、配方法、公式法等代数手段求解多项 式函数的根。
图形法
利用多项式函数的图像,通过观察图像与x轴的交点 来求解函数的根。
数值法
采用迭代法、牛顿法等数值计算方法逼近多项式函数 的根。
分式函数的求解方法
消元法
通过分子分母同乘以某个式子消去分母,将分 式函数转化为整式函数进行求解。
THANKS
感谢观看
多项式函数与分式函数的应用
在数学领域的应用
代数运算
多项式函数与分式函数在代数运 算中广泛应用,如因式分解、化 简求值等。
函数性质研究
通过研究多项式函数与分式函数 的单调性、奇偶性、周期性等性 质,可以深入了解函数的内在规 律。
方程与不等式的求解
多项式函数与分式函数经常出现 在方程与不等式中,掌握它们的 性质有助于求解相关问题。
多项式函数的图像可能具有拐点,即函数图像的 凹凸性发生变化的点。
多项式函数的根与零点
多项式函数的零点与根是等价的,都是指函数 值为零的点。
多项式函数的根的个数(包括重根)等于多项式的次 数。
多项式函数的根是指使得多项式函数值为零的 自变量 x 的值。
多项式函数的根可以通过代数方法(如因式分解 、求根公式等)或数值方法(如牛顿迭代法)来 求解。
一般形式为:f(x) = a_nx^n + a_{n1}x^{n-1} + ... + a_1x + a_0,其中 a_n, a_{n-1}, ..., a_1, a_0 是常数,n 是非负整数。
多项式函数的图像与性质
多项式函数的图像是一条连续且光滑的曲线。
分式函数的图像与性质(又称作双钩函数、奈克函数、对号函数)
学习是件快乐的事情分式函数的图像与性质形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。
如221x y x x+=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,23y x =+等。
二、新课导学 ※ 学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x=的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下:单调减区间:(,1),(1,)-∞+∞;值域:(,2)(2,)-∞+∞U ; 对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,数学有时候是折磨人的工具需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
浅谈分式线性变换的性质及应用
浅谈分式线性变换的性质及应用1 分式线性变换的定义在复变函数中,如果)(z f w =在区域D 内是单叶且保角的,则称它为D 内的共形映射. 形如dcz baz w ++=(1)其中0≠-bc ad 且R d c b a ∈,,,,称为分式线性变换,简记为)(z L w =,可变形为acw bdw z -+-=('1)且(1)式总可以分解成下列简单类型变换的组合: (Ⅰ)h kz w += (0≠k ) 称为整线性变换 (Ⅱ)zw 1=称为反演变换 由上可知分式线性变换是共形映射中的一种常见的基本变换,是扩充复平面到自身的一对一的映射.德国数学家A.F.Mobius 对此作过大量的研究,所以在很多文献中分式线性变换也称为Mobius 变换.2 分式线性变换的性质分式线性变换作为共形映射的一种基本变换,具有四个重要的性质,这些性质使它具有了很多的优点:在处理边界为圆弧或直线的区域变换中发挥了重要的作用,使复杂问题简单化.下面将给出它的四个重要性质.2.1 分式线性变换的保形性 定义1)289](1[P 二曲线在无穷远点处的交角为α,就是指它们在反演变换下的像曲线在原点处的交角为α.按照上面的定义,反演变换在0=z 及∞=z 处是保角的,且整线性变换在扩充z 平面上是保角(形)的,由此我们得出 定理1)290](1[P 分式线性变换(1)在扩充z 平面上是保形的.2.2 分式线性变换的保交比性 定义2)291290](1[-P 扩充z 平面上有顺序的四个相异点1z ,2z ,3z ,4z 构成下面的量,称为它们的交比,记为(1z ,2z ,3z ,4z )(1z ,2z ,3z ,4z )=2414z z z z --:2313z z z z --注 当四点中有一个点为∞时,应将包含此点的项用1代替. 定理2 在分式线性变换下,四点的交比不变. 证明 设 dcz baz w i i i ++= 4,3,2,1=i则))(())((d cz d cz z z bc ad w w j i j i j i ++--=- (j i ≠)利用上式可得(1w ,2w ,3w ,4w )=23132414:w w w w w w w w ----=2414z z z z --:2313z z z z --=(1z ,2z ,3z ,4z ) 证完.2.3 分式线性变换的保对称点性 定义3)294](1[P 1z ,2z 关于圆周γ:R a z =-对称是指1z ,2z 都在过圆心a 的同一条射线上,且合221R a z a z =--.此外,我们规定圆心a 与点∞关于γ对称. 在介绍定理之前先引入一引理如下: 引理)295](1[P 扩充z 平面上两点1z ,2z 关于圆周γ对称的充要条件是通过1z ,2z 的任意圆周都与γ正交.定理3 设扩充z 平面上两点1z ,2z 为关于圆周C 的一对对称点,那么在分式线性变换)(z L w =下,它们的象点1w =)(),(221z L w z L =两点也是关于圆周C 的象曲线圆周Γ的一对对称点.证明 设 过1w 及2w 的任何圆周'Γ,都是过1z ,2z 的圆周'C 由分式线性变换(1)变换而来,由上面的引理, 过1z ,2z 的任意圆周'C 都与C 正交,根据分式线性变换的保形性,过1w ,2w 的任何圆周'Γ与圆周Γ正交,又由引理知1w ,2w 关于Γ对称.证完.2.4 分式线性变换的保圆(周)性定理4 在分式线性变换(1)下,扩充z 平面上的圆周共形映射成扩充w 平面上的圆周. 证明 在圆周方程0)(22=++++D Cy Bx y x A (2) 中,令2_z z x +=,iz z y 2_-=,_22z z y x =+则(2)变为0___=+++D z z z Az ββ (3) 注 ,,,,R D C B A ∈AD >2β(在0=A 时,表示一直线),)(21iC B -=β. 在分式线性变换(1)下,利用('1)及 _______aw c b w d z -+-=(3)式变成扩充w 平面上的圆周0___=+++F w w w Ew γγ 其中Aba Dab a b a b Ab F cDc d c d c d Ad E -=++-=++-=γββββ__________)()(都是实数(在0=E 时,方程表示直线) 证完.3 分式线性变换的应用分式线性变换从几何角度“形”的方面对解析函数进行研究,是复变函数的重要组成部分,在复变函数中它在处理边界为圆弧或直线的区域变换中具有重要的作用,即任给两个圆周(或直线)C 及Γ,必存在一个分式线性变换,它把C 保形变换到Γ,若在C 上按逆时针方向取三个点)3,2,1(=i z i 相应地变到Γ上也是按逆时针方向的三个点)3,2,1(=i w i ,且这个分式线性变换将C 所围的左(右)侧区域变到Γ所围的左(右)侧区域;若在C 上按逆时针方向取的三个点)3,2,1(=i z i 相应地变到Γ上按顺时针方向的三个点)3,2,1(=i w i ,则这个分式线性变换将C 所围的左(右)侧区域变到Γ所围的右(左)侧区域.下面是几个典型的分式线性变换.3.1 将上半平面共形映射成上半平面的分式线性变换例1 把上半z 平面共形映射成上半w 平面的分式线性变换可以写成dcz baz w ++=,其中R d c b a ∈,,,且0>-bc ad (4)证明 )(21Im _w w iw -=)(21__dz c b z a dcz b az i ++-++=)(21_2z z d cz bcad i -+-=z dcz bc ad Im 2+-=此时它必将下半平面共形映射成下半平面.注将上半z 平面共形映射成下半w 平面的分式线性变换dcz baz w ++=只需让上式(4)中条件0<-bc ad ,它必将下半z 平面共形映射成上半w 平面.3.2 将上半平面共形映射成单位圆周内部的分式线性变换例2 求出将上半平面0Im >z 共形映射成单位圆1<w 的分式线性变换,并使上半平面上一点)0(Im >=a a z 变为0=w .解 如图根据分式线性变换的保对称点性,点a 关于实轴的对称点_a ,应该变到0=w 关于单位圆周的对称点∞=w ,这个变换应当具有形式_az a z kw --=其中k 是常数, k 值的确定,可使实轴上的点,例如0_=z 共形映射成单位圆周上的一点_aa kw =所以k aa k==_1因此,可以令βi e k =(β是实数),最后得到所求的变换为 _az a z e w i --=β(0Im >a ) (5)此时它必将下半平面0Im <z 共形映射成单位圆外部1>w .注 如果将上半平面0Im >z 共形映射成单位圆周外部1>w ,只需将(5)式中括号里的条件变为0Im <a ,同时它必将下半平面0Im <z 共形映射成单位圆内部1<w .3.3 将单位圆周内部共形映射成单位圆周内部的分式线性变换例3 求将单位圆周1<z 共形映射成单位圆周1<w 的分式线形变换,并使一点)1(<=a a z 变到0=z .解 如图)(z L w =由题意,所求的映射应将z 平面上的单位圆1:=z C 变为w 平面上的单位圆1:'=w C .由于要把点)1(<=a a z 变为点0=w ,而关于圆周C 与点a 对称的点是_1a,关于圆周'C 与点0=w 对称点是∞,由分式线形变换的保对称点性知,所求映射应将点a z =共形映射成点0=w ,将点_1az =共形映射成点∞=w .不妨设所求分式线性变换为_'1az az kw --=,'k 为待定系数. 即za a z k a w _'_1---=令'_k a k -=得za a z kw _1--=为确定k ,利用C 上的点的象在'C 上,取点1=z 代入上式应满足1=w ,即111_=--=aa kw所以1=k ,从而得θi e k =,(θ为任意实数).所以 za a z e w i _1--=θ,(1<a ,θ为任一实数). (6)此时它必将单位圆周外部1>z 变到单位圆周外部1>w .注 求将单位圆周1<z 共形映射成单位圆周外部1>w 的分式线性变换只需让(6)式括号中1>a 即可;同时,它必将单位圆周外部1>z 共形映射成单位圆周内部1<w .3.4 分式线性变换的综合应用综上所述,我们可求出任意圆形区域(含半平面)到圆形区域的线性变换,若没有任何其它要求,这种线性变换的表达式中包含了两个任意常数,因此,这种变换有无穷多个;如果指定区域内某点的象,则相应的这一点关于圆周(或直线)的对称点应变到相应象点关于象圆周的对称点,这样线性变换中就剩下一个任意复常数;圆的位置变换可经平移得到,圆心在原点的圆可用)0(>=ααz w 使圆放大或缩小,这样我们就可以将任意圆形域(含半平面)变成任意的圆形域(含半平面).例4 求将上半z 平面共形映射成圆R w w <-0的分式线性变换)(z L w =,使符合条件0)(w i L =,.0)('>i L解 做分式线性变换Rw w 0-=ξ 将圆R w w <-0共形映射成单位圆1<ξ.然后,作出上半平面0Im >z 到单位圆1<ξ的共形映射,使i z =变成0=ξ,该分式线性变换为iz iz ei +-=θξ (为了应用以上三例的结果,我们在z 平面与w 平面间插入一个“中间”平面——ξ平面.)复合以上两个分式线性变换得iz iz e R w w i +-=-θ0 它将上半z 平面共形映射成圆R w w <-0,i 变成0w .又由条件0)('>i L 可得()ie i z iz i z e dzdw R i iz i iz 2112θθ=++-+=== 也就是 ()⎪⎭⎫⎝⎛-=⋅=2'221Re πθθi i e R i i L所以 i e i ===-θπθπθ,2,02故所求分式线性变换为 0w iz iz Riw ++-= 从以上讨论得到分式线性变换作为一类特殊的共形映射有很好的性质,保圆性、保对称点性、保形性、保交比性,并且分式线性变换能将圆形区域(含半平面)变成规则的区域,它有很多用途.总结分式线性变换的这些特性对我们以后的学习会很有帮助的.而上述这些从性质和应用两方面说明了分式线性变换的重要性,鉴于此,我尝试对该领域内主要贡献者的观点进行归纳整理,力求使该部分内容更加清晰、系统,并从几何角度对分式线性变换作全面分析,更加体现出分式线性变换的重要作用.参考文献:[1] 钟玉泉. 复变函数论[M].北京:高等教育出版社,2005[2] 余家荣. 复变函数[M]. 北京:高等教育出版社,2005[3] 肖荫庵. 复变函数论[M].吉林: 东北师范大学出版社,1987[4] 于慎根、杨永发、张相梅. 复变函数与积分变换[M].天津:南开大学出版社,2006[5] 钟玉泉. 复变函数学习指导[M].北京: 高等教育出版社,2005[6] 杨林生. 复变函数[M].北京: 高等教育出版社,2001[7] 郑建华. 复变函数[M]. 北京: 清华大学出版社,2005[8] 方企勤. 复变函数教程[M]. 北京: 北京大学出版社,2003[9] James Ward Brown、Ruel V. Churchill (邓冠铁译)复变函数及应用[M].机械工业出版社,2006[10] 郭洪芝、腾桂兰. 复变函数[M]. 天津:天津大学出版社,2002。
常见分式函数的研究
复合分式函数
定义
形如f(x)=p(g(x))/q(h(x))的函数,其中g(x)和h(x)是一次 或多次多项式,p(u)和q(v)是多项式或分式函数。
01
性质
具有更复杂的性质和形态,可能存在多 个转折点、极值点等。
02
03
应用
在解决复杂数学问题、工程优化等领 域有应用,如电路分析、控制系统等。
03 分式函数的运算
分式函数在经济增长的研究中也有应用,例如GDP的增长率。通过将经
济增长表示为分式函数,可以方便地分析经济增长的规律和影响因素。
THANKS FOR WATCHING
感谢您的观看
角度计算
分式函数在几何学中还可以用于 计算角度,例如三角形的内角和、 两直线之间的夹角等。通过将角 度表示为分式函数,可以方便地 求解角度。
分式函数在物理学中的应用
速度与加速度
分式函数在物理学中常用于描述物体的速度和加速度,例如匀速运动和匀加速运动。通过将速度和加速度表示为分式 函数,可以方便地求解物体的运动轨迹和时间。
要点二
详细描述
代入法是求分式函数值的一种常用方法。首先,我们需要找 到分式函数的分子和分母,然后将自变量代入分子和分母中, 计算出函数值。例如,对于函数 f(x) = 2x^2 + 3x + 5,当 x = 2 时,我们代入 x 的值,得到 f(2) = 2*2^2 + 3*2 + 5 = 17。
消去法求值
常见分式函数的研究
目录
• 分式函数的基本概念 • 分式函数的分类 • 分式函数的运算 • 分式函数的求值 • 分式函数的应用
01 分式函数的基本概念
分式函数的定义
总结词
分式函数的像和性质
分式函数的像和性质分式函数是指形式为f(x)=\frac{P(x)}{Q(x)}的函数,其中P(x)和Q(x)都是多项式函数,且Q(x)≠0。
分式函数的像是指定义域中所有满足f(x)=y的x值构成的集合,即函数的所有可能的输出值。
分式函数的性质包括定义域、值域、奇偶性、单调性和图像。
1. 分式函数的定义域:分式函数的定义域由Q(x)≠0确定,因为分母不能为零。
可以通过求解Q(x)≠0的方程来确定定义域的范围。
2. 分式函数的值域:分式函数的值域包括所有满足f(x)=y的y值,其中x是定义域中的值。
对于一些特定的分式函数,可以通过变换或者观察分子、分母的特点来确定值域的范围。
3. 分式函数的奇偶性:对于分子和分母都是偶函数或者奇函数的分式函数,其奇偶性与分子和分母相同。
如果分子是奇函数而分母是偶函数,或者分母是奇函数而分子是偶函数,则分式函数是奇函数。
4. 分式函数的单调性:对于分式函数f(x)=\frac{P(x)}{Q(x)},其单调性取决于P(x)和Q(x)的符号变化。
如果P(x)和Q(x)都大于零或者都小于零,那么分式函数是单调的。
如果P(x)比Q(x)先变号,那么分式函数在这个区间上是增函数;如果P(x)和Q(x)同时变号,那么分式函数在这个区间上是减函数。
5. 分式函数的图像:分式函数的图像可以通过绘制图像或者利用分子和分母的零点、极值点、拐点等特点来分析。
- 当分式函数的分子的次数小于分母的次数时,函数的图像在水平方向上趋近于零。
- 当分式函数的分子的次数等于分母的次数时,函数的图像在水平方向上存在水平渐近线。
- 当分式函数的分子的次数大于分母的次数时,函数的图像在水平方向上存在斜渐近线。
分式函数的像和性质对于理解和分析分式函数的性质和行为具有重要意义。
通过对分式函数的像和性质进行研究,可以更好地理解分式函数的定义和特点,并且能够应用于解决实际问题和数学推理中。
2023必修一人教版高考调研数学
2023必修一人教版高考调研数学数学作为一门基础学科,在高考中占据了重要地位。
为了适应社会的发展需求,2023年高考对数学的要求也进行了调整。
本文将对2023年必修一人教版高考调研数学进行分析和解读。
第一章分式函数与图像的性质1. 分式函数的定义与性质分式函数在高中数学中扮演着重要的角色,其定义为两个多项式函数的商。
分式函数的性质包括定义域、值域、奇偶性以及图像的特点等等。
2. 分式函数的图像与解析式分式函数的图像形态各异,通过对解析式的推敲和分析,可以准确绘制分式函数的图像。
同时,了解分式函数的图像特点有助于解决实际问题。
第二章平面上的向量1. 向量的基本概念向量是空间中的一个有方向和大小的量,可以通过起点和终点来表示。
向量的加法、减法和数量积等运算是研究向量的基础。
2. 平面上的向量运算利用向量的基本运算,可以求解向量的大小、夹角以及向量之间的关系。
这些技巧在几何问题和物理问题中都有广泛的应用。
第三章空间解析几何1. 空间点与向量空间中的点可以由坐标表示,同时向量也可以定义为点的有序组。
空间点与向量之间有着密切的联系,可以通过向量表示点的位置关系和几何性质。
2. 空间中直线与平面的方程直线和平面是空间几何中的重要概念,其方程形式各异。
掌握直线和平面的方程可以推导出几何关系和求解问题。
第四章三角比与三角函数1. 角度与弧度的换算角度和弧度是度量角的单位,两者之间可以进行换算。
在高考数学中,要灵活运用角度和弧度概念,解决与三角函数相关的题目。
2. 三角函数的图像与性质通过对正弦函数、余弦函数和正切函数的图像分析,可以总结出它们的基本性质,并应用到实际问题中。
第五章函数的应用1. 函数的模型建立在实际问题中,我们可以通过观察问题的特点和已知条件,建立数学模型。
掌握函数的应用技巧,可以将实际问题转化为数学问题进行求解。
2. 函数的最值与增减性函数的最值和增减性对于求解优化问题至关重要。
通过对函数的增减性及最值的分析,可以确定函数的取值范围和最优解。
分式函数的图像与性质
ax + b 【反思】 y = ax + b(a ,b ,c ,d R )的图像绘制需要考虑哪些要素?该函数的单调性由哪些 cx + d条件决定?ax + b 小结】 y = ax + b(a ,b ,c ,d R )的图像的绘制,可以经由反比例函数的图像平移得到, cx +d分式函数的图像与性质学习过程 1、分式函数的概念 ax 2+bx +c 形如y =ax +bx +c (a ,b ,c ,d ,e , f R )的函数称为分式函数。
如y = 2x +1,y = x 2 +1 dx 2 +ex +f x 2 + x x -24x +1 y = 等。
x +3 2、分式复合函数形如y =a [f (x )] +bf (x )+c (a ,b ,c ,d ,e , f R )的函数称为分式复合函数。
如y = 2+1 d [f (x )]2 +ef (x )+f sin x + 2 x -1+2y = , y = 等。
3sin x -3 x +3 1-2x ※ 学习探究 探究任务一:函数 y = ax + b (ab 0) 的图像与性质 xax + b 问题1: y = ax + b(a ,b ,c , d R )的图像是怎样的? cx + d 2x -1例1、画出函数y = 2x -1的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
x - 1【分析】y = 2x -1= 2(x -1)+1= 1 + 2,即函数y = 2x -1的图像可以经由函数y = 1 x -1 x -1 x -1 x - 1 x的图像向右平移 1 个单位,再向上平移 2个单位得到。
如下表所示: 1y = x x -1 x -1 值域:(-,2)U (2,+); 对称中心:(1,2)。
需要借助“分离常数”的处理方法。
ax + b 分式函数y = ax + b(a,b,c, d R)的图像与性质cx + d(1)定义域:{x| x- };c(2)值域:{y| y a};c(3)单调性:单调区间为(-,-d),(-d,+);ccda da(4)渐近线及对称中心:渐近线为直线x= - , y= ,对称中心为点(- , );cc cc(5)奇偶性:当a = d = 0时为奇函数;(6)图象:如图所示问题 2:y = ax + b(ab0)的图像是怎样的?x例 2、根据y= x与y = 1的函数图像,绘制函数y=x+1的图像,并结合函数图像指出函xx数具有的性质。
(完整版)分式函数的图像与性质.docx
分式函数的图像与性质学习过程1、分式函数的概念ax 2 bx c 2x形如 yexf (a,b,c, d ,e, f R) 的函数称为分式函数。
如 ydx 2 x 2y4x 1等。
x 32、分式复合函数a[ f (x)]2bf (x) c (a, b, c, d, e, f R) 的函数称为分式复合函数。
如形如 yef ( x) fd[ f (x)]2ysin x 2, yx 1 2等。
3sin x3x 31,yx 2 1 , xx 22 x y2x1,1 2※ 学习探究探究任务一 :函数 yaxb(ab0) 的图像与性质x问题 1: yax b(a, b, c, d R) 的图像是怎样的?cx d例 1、画出函数 y2 x1的图像, 依据函数图像, 指出函数的单调区间、 值域、对称中心。
x1【分析】 y2x 1 2( x 1) 1 12 ,即函数 y2x 1的图像可以经由函数 y1x1 x 1x 1x1x的图像向右平移1 个单位,再向上平移2 个单位得到。
如下表所示:1右1 1 上 2y1yy12xx x1由此可以画出函数y2 x 1的图像,如下:x 1yyyOx O12xO1x单调减区间: ( ,1),(1,) ;值域: (,2) U (2,) ;对称中心: (1,2) 。
【反思】 yaxb(a,b, c, d R ) 的图像绘制需要考虑哪些要素?该函数的单调性由哪些cx d条件决定?【小结】 yaxb(a,b, c, d R) 的图像的绘制,可以经由反比例函数的图像平移得到,cx d需要借助“分离常数”的处理方法。
分式函数 y axb(a,b,c,dR) 的图像与性质cx dd }(1)定义域: { x | x;c (2)值域: { y | ya} ;cd),(d, + ) ;(3)单调性: 单调区间为 (,cc d, ya,对称中心为点 (d , a) ;( 4)渐近线及对称中心:渐近线为直线xccc c( 5)奇偶性:当 a d 0 时为奇函数; ( 6)图象:如图所示yyO x O x问题 2: yaxb(ab 0) 的图像是怎样的?x例 2、根据 y1的函数图像, 绘制函数 y x1 x 与 y的图像, 并结合函数图像指出函xx数具有的性质。
分式线性变换及其映射性质
当四点中有一点为,应当将包含此点项用1代替. 如:z1 ,即有
1 1 (, z2 ,z3 ,z4 )= : . z4 z2 z3 z2
定理6.2.2 对于扩充z上任意三个不同的点 z1 , z2 , z3以及扩充w平面上任意三个不同的点w1 , w2 , w3 ,
存在唯一的分式线性函数, 把z1 ,z2 ,z3分别映射成 w1 , w2 , w3 .
~~~~~~~~
P'
x
~~~~~~~~~~~~~~~~~
规定无穷远点的对称点为圆心o
T
设给定圆C :| z z0 | R(0 R ),如果两个有限点 z1与z2在过点z0的同一条射线上, 且 |z1 z0 | | z2 z0 | R 2 . 则称z1与z2为关于圆C的对称点.
w w1 w3 w1 z z1 z3 z1 : : . w w2 w3 w2 z z2 z3 z2 w w1 z z1 z3 z1 : . w w2 z z2 z3 z2
(6.2.4) (6.2.5)
上两式左右两边分别称为w1 , w2 , w3及z1 ,z2 ,z3的交比, 记作( w1 , w2 , w3 , w)及( z1 , z2 , z3 , z ).
z0
z1
z2
引理6.2.1 不同两点z1与z2是关于C的对称点 通过z1与z2的任何圆与圆C直交. 证 如果C是直线或者C是半径为有限的圆, 而且 z1与z2之中有一个是无穷远点,引理显然成立.
现在考虑C :| z z0 | R(0 R ), 且 z1与z2是有限点的情形.
必要性() 设z1与z2是关于C的对称,
P'
《认识分式》分式与分式方程
《认识分式》分式与分式方程汇报人:日期:•分式的基本概念•分式方程的介绍•分式的图形表示•分式与分式方程的进阶话题01分式的基本概念定义描述分式通常表示为 $\frac{分子}{分母}$ 或 分子 / 分母 的形式。
符号表示例子说明简化性质分式可以通过约分进行简化,即使分子和分母都除以它们的最大公约数,得到更简洁的形式。
等价性质若两个分式的分子和分母分别相乘后相等,则称这两个分式等价。
等价性质是分式运算的基础。
运算性质分式可以进行加法、减法、乘法和除法等基本运算,运算规则与整式类似,但需注意分母不能为0。
加减法运算01乘法运算02除法运算0302分式方程的介绍定义示例示例与其他数学知识的联系03分式的图形表示函数图像概述绘制方法图像特点030201分式的函数图像渐近线定义垂直渐近线求解方法渐近线与垂直渐近线图像变换与分式函数性质的关系0102030404分式与分式方程的进阶话题超越分式方程是分式方程的一种,其中含有三角函数、指数函数或其他超越函数。
求解超越分式方程通常需要结合代数方法与数值方法。
无理分式与超越分式方程超越分式方程无理分式分式的极限当分式的分子或分母趋近于零时,分式的值可能趋近于一个有限数、无穷大或无穷小。
研究分式的极限有助于了解分式在特定条件下的行为。
分式的连续性在实数范围内,分式函数通常是连续的,除非分母为零的点。
研究分式的连续性有助于分析分式函数的性质,如单调性、凹凸性等。
分式的极限与连续性复数解的存在性:对于某些分式方程,在实数范围内无解,但在复数域内可能存在解。
这需要通过扩展解的范围到复数域来探讨。
求解方法:求解复数域内的分式方程,通常需要先将其转化为整式方程,然后运用复数代数的基本定理和技巧进行求解。
通过以上进阶话题的讨论,我们可以更深入地理解分式和分式方程的性质与求解方法,为数学学习和应用打下更坚实的基础。
分式方程在复数域内的解THANK YOU。
(2024年)分式课件
2024/3/26
1
2024/3/26
• 分式基本概念与性质 • 分式化简与求值 • 分式方程及其解法 • 分式在几何中的应用 • 分式在函数中的应用 • 分式在生活实际问题中的应用
2
01
分式基本概念与性质
2024/3/26
3
分式定义及表示方法
2024/3/26
分式定义
分式是两个整式相除的商式,其 中分子是被除数,分母是除数, 分数线相当于除号。
拆分法
对于某些复杂的分式,可以将其拆分成几个简单的分式之和或差,从而方便进行化简。
8
分式求值技巧
01
代入法
当分式中包含字母时,可以将已知的字母值代入分式,然后进行计算。
2024/3/26
02
整体法
对于某些复杂的分式求值问题,可以将整个表达式看作一个整体,然后
进行运算。
03
特殊值法
在某些情况下,可以通过取特殊值的方法来简化计算。例如,当分式的
03
运用分式求解二次函数的最值问题,理解最值的求解
方法和步骤。
2024/3/26
21
复杂函数图像中分式识别和处理
1 2
复杂函数图像中的分式识别
学习如何在复杂函数图像中识别出分式的存在, 并分析其对函数图像的影响。
分式的处理技巧和方法
掌握处理复杂函数中分式的技巧和方法,如分离 常数法、配方法等。
3
分式在函数性质分析中的应用
03
利用分式求解一次函数与反比例函数的交点,掌握相关计算方
法和技巧。
20
二次函数与分式关系探讨
二次函数中的分式形式
01
研究二次函数中分式的表达形式,以及分式对二次函
分式函数的图像与性质(又称作双钩函数、奈克函数、对号函数)
分式函数的图像与性质一、课前准备1、分式函数的概念形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。
如221x y x x+=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,y =等。
二、新课导学 ※ 学习探究探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x=的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上由此可以画出函数211x y x -=-的图像,如下:单调减区间:(,1),(1,)-∞+∞;值域:(,2)(2,)-∞+∞U ; 对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式函数的图像与性质1、分式函数的概念形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。
如221x y x x +=+,212x y x +=-,413x y x +=+等。
2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。
如22112x xy +=-,sin 23sin 3x y x +=-,y =等。
※ 学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。
【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。
如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下:单调减区间:(,1),(1,)-∞+∞;值域:(,2)(2,)-∞+∞; 对称中心:(1,2)。
【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定?【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。
分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。
【分析】画函数图像需要考虑函数的定义域、值域、单调性与单调区间,奇偶性,周期性,凸凹性(此点不作要求),关键点坐标(最值点、与坐标轴交点)、辅助线(对称轴、渐近线)。
绘图过程中需综合考虑以上要素,结合逼近与极限思想开展。
解:函数的定义域为:{|0}x x ≠; 根据单调性定义,可以求出1y x x=+的单调区间 增区间:(,1][1,)-∞-+∞ 减区间:[1,0),(0,1]-函数的值域为:(,2][2,)-∞-+∞ 函数的奇偶性:奇函数函数图像的渐近线为:,y x =0x =函数的图像如下:x OyxO y【反思】如何绘制陌生函数的图像?研究新函数性质应从哪些方面入手? 【小结】分式函数(,0)by ax a b x=+>的图像与性质: (1)定义域:{|0}x x ≠;(2)值域:{|2,2}y y ab y ab ≥≤-或; (3)奇偶性:奇函数; (4)单调性:在区间(,[,+)b ba a-∞∞上是增函数, 在区间,0)b ba a上为减函数; (5)渐近线:以y 轴和直线y ax =为渐近线;(6例3、根据y x =与1y x =的函数图像,绘制函数1y x x=-的图像,并结合函数图像指出函数具有的性质。
【分析】结合刚才的绘图经验,不难绘制出1y x x=-的图像 解:函数的定义域为:{|0}x x ≠; 根据单调性定义,可以判断出1y x x=-的单调性,单调增区间为:(,0),(0,)-∞+∞xOyy x =xOyy x=1y x=y ax=b ab a-2ab2ab-xOy函数的值域为:R 函数的奇偶性:奇函数函数图像的渐近线为:,y x =0x = 函数的图像如下:【反思】结合刚才的两个例子, 1y x x =--与1y x x=-的图像又是怎样的呢?思考12+y x x =与23y x x =-的图像是怎样的呢?(,,0)by ax a b R ab x=+∈≠的图像呢?函数1y x =--的图像如下,绘制的过程可以根据刚才的绘图经验。
【注】()y x x x x =--=-+,由于()y f x =与()y f x =-的图像关于x 轴对称,所以还可以根据1y x x =+的图像,对称的画出1y x x =--的图像。
同样的道理1y x x =-的图像与1y x x=-的图像关于x 轴对称,所以图像如下:xO yxOyy x=1y x=xOyy x=-x Oyy x=-1y x=-【小结】(,,0)by ax a b R ab x=+∈≠的图像如下: (i )(0,0)by axa b x=+>>(ii) (0,0)by ax a b x=+>< (iii) (0,0)by ax a b x=+<>(iv) (0,0)by ax a b x=+<<[来源:学+科+网Z+X+X+K] (,,0)by ax a b R ab x=+∈≠的单调性、值域、奇偶性等,可以结合函数的图像研究。
探究任务二:函数22(,,,,,)ax bx cy a b c d e f R dx ex f++=∈++的图像与性质 问题3:函数2211x x y x ++=+的图像是怎样的?单调区间如何?【分析】22212(1)3(1)222(1)3111x x x x y x x x x +++-++===++-+++ 22y x x =+122(1)1y x x −−→=+++左23211x x y x ++−−→=+下 所以2211x x y x ++=+的图像与22y x x=+的图像形状完全相同,只是位置不同。
图像的对称中心为:(1,3)--单调增区间为:(,2][0,)-∞-+∞ 单调减区间为:[2,1),(1,0]--- 值域:(,7][1,)-∞-+∞图像如下:y ax=xOy xOyy ax=【反思】函数2121x y x x +=++的性质如何呢?单调区间是怎样的呢? 【小结】对于分式函数22(,,,,,)ax bx cy a b c d e f R dx ex f++=∈++而言,分子次数高于分母时,可以采用问题3中的方法,将函数表达式写成部分分式,在结合函数的图像的平移,由熟悉的四类分式函数的图像得到新的函数图像,再结合函数的图像研究函数的性质。
对于分子的次数低于分母的次数的时候,可以考虑分子分母同时除以分子(确保分子不为0),再着力研究分母的性质与图像,间接地研究整个函数的性质。
如:22111(1)221212(1)311x y x x x x x x x x +===≠-++++++-++二次分式函数具有形式22(,()0)Ax Bx Cy f x Dx A Ex B F++==++不同时为. 我们将要研究它的定义域,值域,单调性,极值.1. 定义域和有界性20Dx Ex F ++=当方程有解,设12122,0(=Dx Ex x x x x F ++≤)是两个根 .则函数定义域12{|}x x x x x ∈≠∧≠R .当122211220,lim 0,lim x x x x Ax Bx C Ax Bx C →→++≠=∞++≠=∞或.此时函数无界.当221122=0=0Ax Bx C Ax Bx C ++++且,函数有界且为常值函数(很少遇到的情况,比如2211x y x -=- ).所以通常当240E DF -≥ ,二次分式函数是无界的.12,x x x x == 是函数的渐近线.当240E DF -<,函数定义域为R .函数有界.2. 单调性,极值,值域当240E DF -<,20Dx Ex F ++≠,可以将函数化为()22=.y Dx Ex F Ax B x x C ++++的方程 .()()2B 0x Dy A x Ey Fy C -+-+-=即.对于值域中的每一个y,方程都有实数解,0,=00,,Dy A Dy A -≠-∆≥当验当证是否有解 .这样就可以求出值域.值域的两个端点(方程的两个解)为函数极大值和极小值.但为了计算在何处取得极值,需将极值代入()()2B 0xDy A x Ey Fy C -+-+-=函数解出x ,计算可能有点慢.下文会给出一个简便的计算方法.lim ()x A f x D →∞=,根据极值与AD的大小即可判断单调区间.240E DF -<这种情况最多有三个单调区间.当240E DF -≥,用判别式法可能会产生增根.此时通常会解出y ∈R .出现这种情况,求解20Dx Ex F ++=和20Ax Bx C ++= .分式可化为一次分式,根据定义去求出这个一次分式值域.比如()()()()2221121311221222x x x x y x x x x x x x x-+-+-+====-≠≠--++-++++且 {}1,0,0.|1x y y y y ==≠≠取所以函数值域且分离变量和换元再用基本不等式求解也是解决二次分式的常规方法,再.下面给出一个具体例子.223325x x x y x +--++=.首先定义域2{|50}x x x -++≠ 解得((111){|(1}22x x x ∧≠≠.分离分子中的二次项得261335x y x x +=-+-++ . 13613,6t t x x -=+=令 .代入得 ()()222135613131151313636136732361367836369y x x x t t tt t t t t =-+-+++=-++-+--+=-+-+-=--+-()013367836369671313,,363666013133678213636967,,3636t y t t t t t x t t y t t t t x t >=--≥--=+--====<+=-+≤-+=--++-===当当当当函数值域(-)∞∞Ç根据2233m2l 35i x x x x x →∞+-++=--, 3<-<1311316262+-<<<可判断出单调区间((((((((1111(-,13),(13,1),(1,+) 66221111(13,1),(1,13)6226∞∞--+++----增区间减区间 共有5个单调区间顺便再算一下函数零点((212113320=3,=366x x x x +---+解得= 有了这些信息,我们很容易画出函数大致图像。