选择适当的统计量描述一组数据的集中趋势
人教版八年级数学下册《20章 数据的分析 选择适当的统计量描述一组数据的集中趋势》教案_10
选择适当的统计量描述一组数据的集中趋势一、情景导入以一个情景表演“阿冲找工作”导入新课,活跃气氛,引起学生的好奇心,调动学生的学习积极性。
二、展示学习目标1、了解平均数、众数、中位数在描述数据时的差异。
2、能灵活应用这三个统计量解决实际问题。
三、自主探究预习课本P119到P120的内容,帮阿冲解答疑惑。
四、探究新知1、该公司员工的月薪如下:问题1:请大家仔细观察表格中的数据,讨论该公司的月平均工资是多少?经理是否欺骗了阿冲?问题2:平均月工资能否客观地反映员工的实际收入?问题3:再仔细观察表中的数据,你们认为用哪个数据反映一般职员的实际收入比较合适?2、出类拔萃为了从张明、王龙两名学生中选拔一人参加“希望杯”数学竞赛,在相同条件下对他们的数学知识进行了5次测验,成绩如下:(单位:分)(1)张明同学成绩的众数是多少?王龙同学成绩的中位数是多少?(2)分别求出这两位同学成绩的平均分数。
(3)3)如果测验分数在95分(含95分)以上为优秀,那么他们的优秀率分别是多少?(4)你认为应选哪名同学去参加“希望杯”数学竞赛?说说你的理由。
3、我来当经理某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售目标,根据目标完成的情况对营业员进行适当的奖惩。
为了确定一个适当的目标,商场统计了30位营业员在某月的销售额,数据如下:(单位万元)17 18 16 13 24 15 28 26 18 19 2217 16 19 32 30 16 14 15 26 15 3223 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由。
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由。
五、智慧集中营平均数、中位数和众数都是用来代表一组数据的一些特征。
描述集中趋势的有哪些
描述集中趋势的有哪些
描述集中趋势的常用统计量有以下几种:
1. 均值(Mean):所有观察值的总和除以观测数量,用于描述数据的平均水平。
2. 中位数(Median):将所有数据按大小排列,处于中间位置的数值,用于描述数据的中间值。
3. 众数(Mode):数据中出现次数最多的数值,可以用于描述数据的最常出现的值。
4. 加权平均数(Weighted Mean):根据每个观测值的权重计算均值。
在某些情况下,某些观测值可能比其他观测值更重要或具有更大的影响力。
5. 几何平均数(Geometric Mean):将所有数据相乘然后开n次方,其中n 为观测数量。
适用于对数增长率大致相等的数据。
6. 调和平均数(Harmonic Mean):观测数量除以所有观测值的倒数之和的倒数。
适用于速率、比率或分数数据。
7. 加权中位数(Weighted Median):根据每个观测值的权重计算中位数。
适用于某些观测值比其他观测值更重要或具有更大的影响力的情况。
这些统计量可以用于提供不同视角的数据集中倾向的描述。
八下 第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】
第二十章《数据的分析》《知识点教案》课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。
本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。
为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。
人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)
第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。
举例说明数据的集中趋势
举例说明数据的集中趋势数据的集中趋势是描述一组数据中值的特征,通常被用来表示这组数据的中心或平均位置。
在统计学中,常见的用于描述数据集中趋势的统计量包括平均数、中位数和众数。
下面我将分别举例说明这些统计量的应用场景和特点。
首先,平均数是指一组数据的所有数值之和除以数据的个数。
它是最常见、最直观的衡量数据集中趋势的指标之一。
平均数的计算相对简单,并且对数据的所有值都有贡献。
一个典型的例子是计算班级学生的平均成绩。
假设某个班级有30名学生,他们的成绩分别为70、75、80、85、90等等。
计算所有学生的成绩之和,然后除以30,即可得到该班级的平均成绩。
平均数的优点是简单易懂,并且对于正态分布的数据集有良好的描述能力。
但是,平均数对极端值非常敏感,可能会被异常值所影响。
其次,中位数是指将一组数据按大小顺序排列后,位于中间位置的数值。
中位数是一种较为稳健的集中趋势统计量,可以减小极端值的影响。
一个典型的例子是计算某个地区社区居民的年收入中位数。
假设某个社区有1000个居民,他们的年收入依次排列为10000、12000、13000、14000等等。
将这些数据按大小顺序排列后,位于中间位置的数值即为中位数。
中位数的优点是不受异常值的影响,对于非正态分布的数据集也有较好的描述能力。
但是,计算中位数需要对数据进行排序,如果数据集较大,则计算量相对较大。
最后,众数是指一组数据中出现频率最高的数值。
众数对于描述离散型数据的集中趋势非常有效。
一个典型的例子是统计某个学校学生的衣服尺码。
假设某个学校有1000名学生,他们的衣服尺码包括XS、S、M、L、XL等。
统计每个尺码出现的频次,出现频次最高的尺码即为众数。
众数的优点是描述离散型数据的集中趋势简单明了,并且不受极端值的影响。
但是,一个数据集可以有多个众数,或者没有众数。
此外,众数对于连续型数据的描述能力相对较弱。
综上所述,平均数、中位数和众数是常用的用于描述数据集中趋势的统计量。
选择适当的统计量描述一组数据的集中趋势
(2)如果想确定一个较高的销售目标,你认为月销售额定为多少 合适?说明理由。
答:这个目标可以定为每月20万元(平均数)。因为从样本数据 看,在平均数、中位数和众数中,平均数最大,可以估计,月销 售额定为每月20万元是一个较高目标,大约会有 的营业员获得 奖励。
人数
1
1
1 4 6 11 1
他们的说辞前后差距很大,是否在说谎? 如果你是税务局的人,你怎么看?
平均数、中位数和众数都可以作为一
组数据的代表,它们各有自己的特点,能 从不同的角度提供信息,在实际应用中, 需要分析具体问题的情况,选择适当的量 来代表数据。
例6 某商场服装部为了调动营业员的积极性,决定实行目标管理, 即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩, 为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,数 据如下(单位:万元)
小鹿组:100, 95, 90, 83, 66, 10 小新组: 95, 92, 90, 79, 69 ,28
归纳
平均数的计算要用到所有数据,它能够充分利用数据提供 的信息,因此在现实生活中较为常用,但它极端值的影响较大。
当一组数据中某个数据多次重复出现时,重数往往是人们 关心的一个量,众数不受极端值的影响,这是它的一个优势。
162, 126, 101, 91, 80, 74, 53, 44, 28 (1)如果想确定一个较高的积分目标,你认为 积分达到多少的获奖合适?说明理由。 (2)想让一半左右的小组都能达到目标,你认 为积分达到多少获奖合适?说明理由。
描述一组观察值的平均水平或集中趋势的指标
描述一组观察值的平均水平或集中趋势的指标
一组观察值的平均水平或集中趋势的指标可以使用以下几种常见的描述性统计量来衡量:
1. 平均值(Mean):观察值的总和除以观察值的数量。
它反映了观测值的中心位置。
2. 中位数(Median):将观察值按照大小排列,位于中间位置的值。
它对异常值不敏感,能更好地描述数据的中心位置。
3. 众数(Mode):出现次数最多的观察值。
它在描述离散型数据的集中趋势时比较常用。
4. 四分位数(Quartiles):将一组观察值按大小排序后,将其分成四个等份,分别是最小值、第一四分位数、中位数和第三四分位数。
它们可以用于描述数据的分布情况。
5. 范围(Range):最大值与最小值之间的差距。
它提供了描述数据变异性的指标。
6. 标准差(Standard Deviation):观察值与平均值之间的差异的平方的平均值的平方根。
标准差衡量了数据的离散程度。
7. 方差(Variance):观察值与平均值之间差异的平方的平均值。
方差也用于衡量数据的离散程度。
8. 平均绝对偏差(Mean Absolute Deviation,MAD):观察值与平均值之差的绝对值的平均值。
MAD可以衡量数据的离散程度。
根据数据的特点和目标,选择合适的描述性统计量来度量一组观察值的平均水平或集中趋势。
简述常用描述数据集中趋势的指标及其使用条件
简述常用描述数据集中趋势的指标及其使用条件在日常的数据分析中,数据集中的趋势是最重要的信息之一。
趋势分析可以帮助我们更好地了解数据集,为决策提供依据。
然而,要正确了解数据趋势,需要使用适当的度量指标。
本文尝试梳理常用的描述数据集中趋势的指标,以及其使用条件。
1.均值(Mean)平均值,也称为期望,是指一组数据的中心趋势,用来反映数据集中变量的算术平均值。
其计算方法是:将所有数据和除以样本数。
使用条件:1.据服从正态分布(normal distribution)或偏态分布(skewed distribution);2.据不存在异常值(outlier);3.本量足够大,能够支撑计算出可靠的平均值。
2.差(Variance)方差是指一组数据的变异度,用来刻画数据集内变量的离散程度,也可以反映数据的波动性。
其计算方法是:计算每个数据与平均值的差值的平方和,然后再除以样本数。
使用条件:1.据服从正态分布;2.据不存在异常值;3.本量足够大。
3.准差(Standard Deviation)标准差是指用方差来衡量数据集合变异度的一种统计量,它是相对方差而言的一种统计度量。
其计算方法是:将方差开根号。
使用条件:1.据服从正态分布;2.据不存在异常值;3.本量足够大。
4. 中位数(Median)中位数,也叫中点数,是一组数据的中间值,可以用来描述一组数值的中心趋势。
其计算方法是:将数据按从小到大的顺序排列后,取中间的一个值。
使用条件:1.据服从任何分布;2.据可存在异常值;3.本量足够大。
5.分位距(Interquartile Range)四分位距是指一组数据中,由上四分位数和下四分位数两个数据组成,可以描述一组数据的变异性和分布形态。
其计算方法是:取出按顺序排列的数据中的上四分位数(Q3)和下四分位数(Q1),然后相减即为四分位距。
使用条件:1.据服从任何分布;2.据可存在异常值;3.本量足够大。
6.线图(Box Plot)箱线图,也叫盒须图,是一种对数据变量及其分布特性的可视化方法,通过绘制出箱线图可以快速提炼数据集中趋势信息。
描述数据集中趋势的特征
描述数据集中趋势的特征数据集是统计学中一个重要的概念,它是指一组数据的集合,用于分析和研究数据的特征和规律。
在数据集中,我们经常关注数据的趋势特征,即数据的变化趋势和分布规律。
本文将介绍描述数据集中趋势的特征的常用方法和技巧。
一、数据集的趋势特征数据集的趋势特征是指数据在时间或空间上的变化趋势。
通过分析数据的趋势特征,我们可以了解数据的发展规律,预测未来的变化趋势,为决策提供依据。
常见的数据趋势特征包括以下几种:1.1 均值均值是描述数据集中集中趋势的最常用统计量之一,它表示数据集中所有数据的平均值。
计算均值的方法是将数据集中的所有数据相加,然后除以数据的个数。
均值能够反映数据的集中程度和平均水平,但它受极端值的影响较大,因此在分析数据集的趋势特征时需要综合考虑其他指标。
1.2 中位数中位数是将数据集中的所有数据按照大小顺序排列后,位于中间位置的数值。
如果数据集中的数据个数为奇数,那么中位数就是中间位置的数值;如果数据集中的数据个数为偶数,那么中位数就是中间两个数值的平均值。
中位数能够反映数据的中间位置和分布情况,相对于均值来说受极端值的影响较小。
1.3 众数众数是数据集中出现次数最多的数值。
数据集中可能存在多个众数,也可能不存在众数。
众数能够反映数据的集中程度和典型值,但它不能反映数据的整体分布情况。
1.4 极值极值是数据集中最大值和最小值。
极值能够反映数据的范围和变化幅度,但它受极端值的影响较大,需要谨慎使用。
1.5 百分位数百分位数是将数据集中的所有数据按照大小顺序排列后,位于指定百分比位置的数值。
常用的百分位数有四分位数、中位数、十分位数等。
百分位数能够反映数据的分布情况和位置。
二、描述数据集趋势特征的方法描述数据集中趋势特征的方法有多种,下面将介绍常用的几种方法。
2.1 统计指标统计指标是描述数据集趋势特征的常用方法,常用的统计指标包括均值、中位数、众数、极值、百分位数等。
通过计算这些统计指标,我们可以了解数据集的集中趋势、分布情况和变化范围。
选择适当的统计量描述一组数据的集中趋势
20. 1. 1平均数与加权平均数一、教学目标通过实例了解加权平均数的意义,会计算加权平均数并对计算结果进行简单分析.二、 教学重点:了解加权平均数的意义,会计算加权平均数教学难点:会计算加权平均数并对计算结果进行简单分析三、 教学过程:(一)平均数和加权平均数1、权的概念(1) . 一组数据88, 72, 86, 90, 75的平均数是;(2) 一组数据 12, 12, 12, 12, 4, 4, 4, 4, 4, 13,的平均数是;(3) 一组数据有5个20, 4个30, 3个40, 8个50,则这20个数的平均数为.归纳:其中50有 个,其中个数8就叫做数据50的权。
如数据20的权是_数据的权表示数据的相对“重要程度”;平均数用符号“项”读作:“x 拔”总结:刀个数的加权平均数:一般说来,如果在刀个数中,明出现,工2出现£次,…,X k 出现九次,则天..... + Xkfkfl + fl +... f k其中fl ' fl .....、fk 叫做权。
2、加权平均数的求法:某市三个郊县的人数及人均耕地面积如下表:郊县人数(万)人均耕地面积(公顷)A 150. 15B70. 21C100. 18求这个市郊县的人均耕地面积是多少?(精确到0. 01公顷))(分析:人均耕地面积=总耕地面积总人口解:.••总耕地面积=__________________________总人口 =_____________人均耕地面积=___________________________________________归纳小结:1、 加权平均的公式:一般地,2、 加权平均数中的“权”的常见见形式:(1)各个数据出现的次数(2)各个数据所占的成分比(3)比例的形式四、反馈检测:1、 某中学举行“红五月”歌咏比赛,六位评委对某位选手的打分为77, 82, 78, 95, 83, 75去掉一个最高分和一个最低分后的平均分是 分。
如何正确选用中位数和平均数
如何正确选用中位数和平均数
北关小学宋训静
平均数、中位数都能代表一组数据的集中趋势,但在具体的问题中,究竟采用哪种统计量来描述一组数据的集中趋势呢?在教学中发现许多学生在做题时模棱两可,很难定夺,现就这个问题谈谈我自己的观点。
平均数反映的是一组数据的总体水平,表示一组数据的集中趋势时,我们用得最多的是平均数。
中位数是一组数据的中间量,在一组数据的数值排序中处于中间位置,扮演着“分水岭”的角色,由中位数可以对事物的大体趋势进行判断和掌控。
在一组数据中如果出现个别的数据过大或过小,“平均数”代表数据整体水平是有局限性的,也就是说个别过大或过小会对平均数产生较大的影响,而对中位数的影响则不那么明显。
所以,这时用中位数来代表整体数据更合适。
例:下面是北关小学五(一)班9位同学家庭的住房面积。
1.这组数据的平均数和中位数各是多少?
2.用哪个数据代表这9位同学家庭的住房面积情况比较合适?
解析:
(1)这组数据的平均数是(43+83+86+50+88+87+80+92+84)÷9=77。
对于求中位数,先按大小顺序排列这组数据:92、88、87、86、84、83、80、50、43,中间的数是84,所以84是这组数据的中位数。
(2)观察数据可以发现:低于平数的只有两个数,而高于平均数的有9个数,所以平均数不能代表这组数据的整体水平。
用中位数84代表这组同学家庭的住房水平比较合适。
(3)由于两位同学家庭面积远小于其他同学,影响平均数的大小,造成平均数比中位数小得多。
人教版八年级数学下册《20章 数据的分析 选择适当的统计量描述一组数据的集中趋势》教案_18
20.1.2 平均数、中位数和众数的应用一、教材分析:1.内容解析:本节课是在学习加权平均数、中位数和众数的基础上,结合具体实例进一步比较这三种统计量在描述数据集中趋势的优势与不足,学习根据实际问题情境选择适当的统计量描述数据的集中趋势。
2.教学目标:(1)在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的统计量;(2)能结合具体情境体会平均数、中位数、众数三者的特点与差异,根据具体问题选择这些统计量来分析数据;(3)经历整理、描述、分析数据的过程,发展数据分析观念。
3.教学重难点:重点:运用平均数、中位数、众数相关知识解决问题;难点:在具体问题中,选择适当量描述数据的集中趋势。
二、教学方法:教法分析:在学生已经学习了平均数、中位数和众数的概念后,可以从学生的生活经验和已有的知识背景出发,提供他们研究数学活动的机会,激发学生的积极性,帮助他们更好地理解数学知识和思考方法.学法分析:数学概念一般比较抽象,学生大多喜欢做活动、完任务,所以在课堂上要让学生们在活动中表现自我、发现自我,最终理解数学内容。
在这里,我会采用自主探究、合作交流的方式让学生参与到课堂中来。
三、教学过程:1.知识回顾:什么是平均数、中位数和众数?它们代表的数据意义是什么?【设计意图】:学生作答,回顾一下这三个统计量的概念和意义,为后面的对比做好铺垫。
2.探究新知:例:某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场统计了每位营业员在某月的销售额,数据如下(单位:万元)17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.【设计意图】:让学生自主思考,探究问题,某些不好理解的点上面老师可以帮忙引导一下。
中位数教学设计及反思
3.通过本节学习,也为以后学习其它统计量(如:众数)积累学习经验。
学情
分析
1,用它来表示一组数据的情况,具有直观、简明的特点。并能从统计表或统计图中获取所需的数据来进行计算一组数据的平均数。理解平均数在统计学上的意义。也已经经历过简单的收集、整理、描述和分析数据的过程,掌握了计算器的使用方法,为本节学习奠定了知识和能力基础。
教师小结求中位数的方法:
a.按大小顺序排列。
b.求中位数。
(2)教师小结:平均数、中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,最好用中位数来表示这组数据的一般水平。
(3)教学例5。
①教师投影出示例5五(2)班7名男生的跳远成绩表。
姓名
李志强
陈文
王文贤
赵军
张鹏
刘卫华
年级
五
学科
数学
教师
授课时间
课型
题目
中位数
课时
1
教材
分析
1.课标中对本节内容的要求是:初步理解中位数的意义,会求一组简单数据的中位数,让学生根据数据的特点,选择适当的统计量表示一组数据的特征,体会不同统计量的特点。学生在三年级已经学过平均数,知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教材在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。在介绍中位数的计算方法时,教材在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。教材在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
描述数据集中趋势的是
描述数据集中趋势的是数据集中的趋势是指一组数据中的值在整体上是如何变化的,以及数据分布的集中程度。
数据集中的趋势反映了数据的中心位置以及数据的分散程度,是统计学中最常用的数据描述方法之一。
数据集中趋势可通过多种统计指标来描述,包括均值、中位数、众数、四分位数等。
以下将对这些指标进行详细的介绍和解释。
1. 均值(Mean):均值是指一组数据的平均值,计算方法是将所有数据相加并除以数据的个数。
均值对于表示整体数据的中心位置非常有用,它对于数据中的极端值有很强的敏感性。
如果数据集中有离群值存在,均值可能会受到影响而不准确。
2. 中位数(Median):中位数是一组数据中的中间值,将数据从小到大排列后,中间的那个数就是中位数。
中位数对于数据中的极端值不敏感,因此它可以用来描述数据集中的趋势。
中位数通常在数据集分布不均匀或者存在离群值的情况下更为常用。
3. 众数(Mode):众数是指一组数据中出现频率最高的数值。
众数对于描述数据集中趋势有一定的参考价值,特别是当数据集中有明显的模式或者集群时。
一个数据集可以有一个或多个众数,也可以没有众数。
4. 四分位数(Quartiles):四分位数将一组数据分成四个部分,分别是下四分位数(Q1),中位数(Q2),上四分位数(Q3),中位数(Q2)也就是第二个四分位数,它将一组数据分成两半。
四分位数可以用来描述数据分布的集中程度,尤其是在数据中存在离群值的情况下。
除了上述统计指标外,数据集中的趋势还可以通过直方图、箱线图等图形工具进行描述。
直方图可以显示数据的分布情况,包括数据的中心位置和分散程度。
箱线图则可以用来展示数据的分散情况和异常值的存在。
需要注意的是,同一个数据集中的趋势指标可能会有所不同。
不同的指标适用于不同类型的数据和不同的分析目的。
因此,在描述数据集中趋势时,需要根据具体情况选择合适的指标进行分析。
同时,结合图形工具可以更加全面地了解数据集中的趋势。
选择适当的统计量描述一组数据的集中趋势
谢谢!
Thank You!
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
1.请根据图中所提供的信息填下表:
平均数 中位数 众数 体能测试成绩合格次数
甲 60
65 65
2
乙 60 57.5 80
4
2.请从不同的角度对运动员体能测试结果进行判断: (1)根据平均数与成绩合格次数比较甲和乙,谁的 成绩最好? 乙 (2)根据平均数与中位数比较甲和乙,谁的成绩最 好? 甲 (3)根据折线统计图和成绩合格的次数,指出哪个 的训练效果最好? 乙
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
知识点 2 众数
众数:一组数据中出现次数最多的数据.
月收入/ 元
人数
45000 18000 10000 5500 5000 3400 3000 1000
1
1
1
3
6
1 11 1
求下列数据的众数.解释意义
5,2,6,7,6,3,3,4,3,7,6
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
这个中位数的意义:根据这个中位数,可以估计 其车间工人日加工零件个数大于或小于这个数的人数 各占一半.
教学反思
中位数和众数是数据分析中的两个重要元素. 从以往的教学经验看,学生容易混淆这两个数的 意义或不能正确找出一组数据的中位数或众数.学 生自学时,应该在这方面给予提醒.本课时的两个 层次中,一定要注意将中位数与众数进行对比, 帮助学生区分其异同,真正理解它们的意义,并 能正确找出一组混乱数据的中位数和众数.在教学 时,应充分发挥学生的主动性,通过与学生的互 动和交流,加深学生对本课时所学知识的认识.
数据的集中趋势怎么描述
数据的集中趋势怎么描述数据的集中趋势是指在一组数据中,数据值向某个中心值靠拢的程度。
常见的描述数据的集中趋势的统计量有均值、中位数和众数。
下面将对这些统计量逐一进行描述。
首先是均值,也称为平均值,是将一组数据所有观测值相加后再除以数据的个数得到的。
均值可以使用算术平均值、几何平均值或加权平均值等不同方法来计算。
算术平均值是最常用的一种计算方法,它能够很好地反映数据的总体水平。
例如,若一组数据为[1, 2, 3, 4, 5],则它们的算术平均值为(1+2+3+4+5)/5=3。
其次是中位数,它是将一组数据按照大小顺序排列后,位于中间位置的数值。
如果数据的个数为奇数,那么中位数就是排列后的中间值;如果数据的个数为偶数,则中位数是中间两个数的算术平均值。
与均值相比,中位数能够更好地反映数据的分布情况,尤其适用于存在离群值的数据集。
例如,若一组数据为[1, 2, 3, 4, 100],则它们的中位数为3。
最后是众数,它是一组数据中出现次数最多的数值。
数据集中可能存在多个众数,也可能没有众数。
众数可以直观地表示数据的主要特征,常用于描述定性或分类变量。
例如,若一组数据为[1, 2, 3, 3, 4, 4, 5],则它们的众数为3和4。
除了上述三种常见统计量,还有其他一些描述数据集中趋势的方法。
例如,四分位数能够将一组数据划分为四个部分,从而描述数据的分布情况。
第一四分位数是将数据划分为四个部分后位于第一个部分的数值,也即是排列后的25%位置的数值;第三四分位数是排列后的75%位置的数值。
这两个四分位数能够通过计算相应的百分位数得到。
四分位数可以用来描述数据集的分布形态、离散程度等特征。
另外,范围是一组数据中最大值与最小值之间的差值。
范围能够简单地反映数据的变异程度,但对于含有离群值的数据集来说,范围可能会受到极端值的影响。
为了克服这种影响,可以使用箱线图来描述数据的集中趋势及离散程度。
箱线图以描述数据的四分位数为核心,通过绘制箱体和上下须线来展示数据整体的分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补充练习
1、某公司销售部有营销人员15人,销售部为了制定某 种商品的月销售额,统计了者15人某月的销售量如下:
每人销售件数 1800 510 250 210 150 120
人数
1 13 5 32
(1)求者15人营销人员该月销售量的平均数、中位数 和众数;平均数为320件,中位数为210件,众数为210件
平均数?中位数?众数?还是方差?标准差?
⑴这15名工人生产的机器零件的平均数是:约—1—0—.1个—; ⑵这15名工人生产的机器零件的中位数是:——9个——; ⑶这15名工人生产的机器零件的众数是:——8个——;
现在你确定的“定额”是————个?说说你的想法!
注意!在实际情景中,车间管理者在决策时可
涿州市孙庄中学 孙少奇
算术平均数的定义:
一般地,对于n个数 x1, x2,, xn
x
1 n
(
x1
x2
ቤተ መጻሕፍቲ ባይዱ
xn
)
x
x1f1
x2f2 xnfk f1+ f2+fk
(1)中位数与数据的排列位置有关,当 一组数据中的 个别数据相差较大时, 可用中位数来描述这组数据的集中趋势;
(2)计算方法:将一组数据按一定的顺序
排列起来,处于最中间位置的一个数 (或两个数的平均数);
众数是对各数据出现频数的考察, 其大小只与数据中部分数据有关,它可 能是其中的一个数或多个数;
平均数、中位数、众数 是描述一组数据集中程度的统计量。
平均数、中位数、众数是描述一组数据 集中程度的统计量;
例:工厂有15名工人,某一天他们生产的机器零件 个数统计如下:
生产零件的个数 (个)
6
7
8
9 10 11 13 15 16
工人人数 1 2 4 1 2 1 1 2 1
为了提高工作效率和工人的积极性,管理者准备实行 每天生产定额,超产有奖的措施。如果你是管理者, 你将如何确定这个“定额”?
你需要考虑哪些统计量?
动动脑:
(2) 某柜台有A、B、C、D、E五种品牌的同 一商品,按销售价格排列顺序为A、B、C、D、 E,经过市场调查发现,对该商品消费的平均 水平与C品牌的价格相同,所以柜台老板到批 发部大量购进C品牌。
错,好比消费者在分别大量购买了价格比C品牌 高和比C品牌低的其他商品后,其平均消费水平也 有可能和C品牌的价格相当。
个数(个)
工人人数 1 2 4 1 2 1 1 2 1
(人)
管理者所确定的“定额”应该是大多 数工人经努力能够完成的生产零件个数. “定额”太低,不利于提高效率; “定额” 高,不利于提高积极性,因此我们可以从 平均数、中位数、众数这几个统计量中 去考虑如何确定定额.
⑴学习了本节课后,你觉得该如何选择 合适的统计量来解决实际问题?
能还需要考虑其他一些因素,如技术的更新、工 人素质的提高等。
甲、乙两个小组各10名学生某次数学测试成绩 如下 (单位:分)
甲组:76、90、84、86、81、87、86、82、85、83;
乙组:82、84、85、89、79、80、91、89、79、74。
请你选用合适的统计量,对这两组学生的这次测试成 绩作出评价。
车间有15名工人,某一天他们生产 的机器零件各数统计如下 :
生产零件的 6 7 8 9 10 11 13 15 16
个数(个)
工人人数 1 2 4 1 2 1 1 2 1
(人)
为了提高工作效率和工人的积极性, 管理者准备实行每天生产定额,超产有 奖的措施。如果你是管理者,你将如何 确定这个定额?
生产零件的 6 7 8 9 10 11 13 15 16
课内练习1、2
综合练习:
1、公园里有甲、乙两组游客正在做团体游戏,两组 游客的年龄如下:(单位:岁) 甲组:13,13,14,15,15,15,15,16,17,17; 乙组:3,4,4,5,5,6,6,6,54,57; 回答下列问题:
(1)甲组游客的平均年龄是 15 岁,中位数是 15 岁, 众数是 15 岁,其中较好地反映甲组游客年龄特征的是 ;
反映数据集中程度的平均数、中位 数、众数各有局限性,因此要对统 计量进行合理的选择和恰当的运用。
动 下列各个判断或做法正确吗? 动 请说明理由。 脑 (1) 篮球场上10人的平均年龄是18岁,
有人说这一定是一群高中(或大学生) 在打球。
解:(1)错,比如2名30岁的老师 带着8名15岁的初中生在一起打球。
(2)假设销售部负责人把每位营销人员的月销售量定 为320件,你认为是否合理,为什么?如果不合理, 请你制定一个较合理的销售定额,并说明理由。
不合理
2、已知一组数据为20,30,40,50, 50,50,60,70,80,其中平均数,中位 数和众数的大小关系是( D )
A、平均数>中位数>众数 B、平均数<中位数<众数 C、中位数<众数<平均数 D、众数=中位数=平均数;
⑵在做出解决问题的决策前,我们应当 做哪些准备工作?
平均数、众数和中位数 (2)乙组游客的平均年龄是 15 岁,中位数是 5.5 岁, 众数是 6 岁,其中较好地反映乙组游客年龄特征的是 ;
中位数和众数
2、已知一组数据为20,30,40,50, 50,50,60,70,80,其中平均数,中位 数和众数的大小关系是( D )
A、平均数>中位数>众数 B、平均数<中位数<众数 C、中位数<众数<平均数 D、众数=中位数=平均数;