2020年高考数学试题分类汇编之立体几何

合集下载

2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

(八) 大题考法——立体几何1.如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1.∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32, EF =42+(3-1)2=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM . ② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y 轴,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),E (0,0,3),B (3,3,0),F (0,4,1), ∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2). ∵EA ⊥平面ABC ,∴取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,AE ―→〉|=622×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22. 2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,∴CD =4, ∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为坐标原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217.3.如图,在四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴建立如图所示的空间直角坐标系C -xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1. ① 由|BS ―→|=2,得y 2+z 2-4y +1=0.②由①②,解得y =12,z =32.∴S ⎝⎛⎭⎫1,12,32,AS ―→=⎝⎛⎭⎫-1,-32,32,BS ―→=⎝⎛⎭⎫1,-32,32,DS ―→=⎝⎛⎭⎫0,12,32, ∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2). ∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n | AB ―→||n |=-2×(-3)2×7=217.故AB 与平面SBC 所成角的正弦值为217. 4.(2018·诸暨高三适应性考试)如图,四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是边长为2的等边三角形,底面ABCD 是直角梯形,∠BAD =∠CDA =90°,AB =2DC =22,E 是CD 的中点.(1)求证:AE ⊥PB ;(2)设F 是棱PB 上的点,EF ∥平面PAD ,求EF 与平面PAB 所成角的正弦值. 解:(1)证明:取AD 的中点G ,连接PG ,BG ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PG ⊥AD , ∴PG ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴AE ⊥PG . 又∵tan ∠DAE =tan ∠ABG =24, ∴∠ABG +∠EAB =∠DAE +∠EAB =∠DAB =90°, ∴AE ⊥BG .∵BG ∩PG =G ,BG ⊂平面PBG ,PG ⊂平面PBG , ∴AE ⊥平面PBG , ∴AE ⊥PB .(2)法一:作FH ∥AB 交PA 于H ,连接DH ,则HF ∥DC . ∵EF ∥平面PAD ,平面FHDE ∩平面PAD =DH , ∴EF ∥DH ,∴四边形FHDE 为平行四边形, ∴HF =DE .易知DC ∥AB ,DC =12AB ,∴HF =14AB ,即H 为PA 的一个四等分点.取PA 的中点K ,连接DK ,则DK ⊥PA .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , ∴AB ⊥平面PAD . ∵DK ⊂平面PAD , ∴AB ⊥DK , ∵PA ∩AB =A , ∴DK ⊥平面PAB .∴∠DHK 为EF 与平面PAB 所成的角, 由已知得DK =3,DH =DK 2+HK 2=132, ∴sin ∠DHK =DK DH =3132=23913,∴EF 与平面PAB 所成角的正弦值为23913.法二:以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系.则A (0,0,0),B (22,0,0),P (0,1,3),E ⎝⎛⎭⎫22,2,0,PB ―→=(22,-1,-3),EP―→=⎝⎛⎭⎫-22,-1,3. 设PF ―→=λPB ―→,则EF ―→=EP ―→+λPB ―→=⎝⎛⎭⎫22λ-22,-1-λ,3-3λ.由(1)知PG ⊥平面ABCD ,∴PG ⊥AB . ∵AD ⊥AB ,PG ⊥AD =G , ∴AB ⊥平面PAD ,∴AB ―→=(22,0,0)为平面PAD 的一个法向量. ∵EF ∥平面PAD ,∴EF ―→·AB ―→=22×⎝⎛⎭⎫22λ-22=0,解得λ=14. ∴EF ―→=⎝⎛⎭⎫0,-54,334.设平面PAB 的一个法向量为n =(x ,y ,z ), 又AB ―→=(22,0,0),PB ―→=(22,-1,-3), 则⎩⎪⎨⎪⎧n ·AB ―→=0,n ·PB ―→=0,即⎩⎨⎧22x =0,22x -y -3z =0,取y =3,得z =-1,∴n =(0,3,-1). ∴|cos 〈n ,EF ―→〉|=⎪⎪⎪⎪-534-3342×132=23913,∴EF 与平面PAB 所成角的正弦值为23913.5.(2019届高三·镇海中学检测)如图,在三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,AB =BC =2,∠ACB =30°,∠C 1CB =60°,BC 1⊥A 1C ,E 为AC 的中点,CC 1=2.(1)求证:A 1C ⊥平面C 1EB ;(2)求直线CC 1与平面ABC 所成角的余弦值. 解:(1)证明:因为AB =BC =2,E 为AC 的中点, 所以AC ⊥BE .又因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , 所以BE ⊥平面A 1ACC 1,所以BE ⊥A 1C .又因为BC 1⊥A 1C ,BC 1∩BE =B ,BC 1⊂平面C 1EB ,BE ⊂平面C 1EB , 所以A 1C ⊥平面C 1EB .(2)法一:因为平面A 1ACC 1⊥平面ABC , 所以直线CC 1与平面ABC 所成角为∠C 1CA . 因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=BC =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面A 1ACC 1,所以BE ⊥EC 1,所以EC 1= 3. 在△CC 1E 中,根据余弦定理可知,cos ∠C 1CE =33. 所以直线CC 1与平面ABC 所成角的余弦值为33. 法二:以E 为坐标原点,EC 为x 轴,EB 为y 轴建立如图所示的空间直角坐标系.因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=CB =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面AA 1CC 1,所以BE ⊥EC 1,所以EC 1= 3. 所以|CC 1―→|=2,|C 1E ―→|=3, 设C 1(x,0,y ),又C (3,0,0),所以⎩⎨⎧(x -3)2+y 2=4,x 2+y 2=3,解得⎩⎨⎧x =33,y =263,所以C 1⎝⎛⎭⎫33,0,263,则CC 1―→=⎝⎛⎭⎫-233,0,263, 易知平面ABC 的一个法向量为n =(0,0,1), 设直线CC 1与平面ABC 所成的角为α, 则sin α=|cos 〈CC 1―→,n 〉|=63,所以cos α=33.即直线CC 1与平面ABC 所成角的余弦值为33.6.如图所示,四棱锥P -ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD 交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD 的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ), 所以PB ―→=2EO ―→,所以PB ―→∥EO ―→, 即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0). 因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c ,所以m =⎝⎛⎭⎫1,0,-ac ∥m ′=(c,0,-a ). 所以cos 60°=|n ·m ′||n ||m ′|=c 2(a 2+c 2)=12,得a =c .故当AP 与正方形ABCD 的边长相等时,二面角C -AF -D 的大小为60°.。

北京市高考数学联考试题分类大汇编(8)立体几何试题解析.doc

北京市高考数学联考试题分类大汇编(8)立体几何试题解析.doc

北京市 2020 年高考数学最新联考试题分类大汇编一、选择题:(3) ( 北京市东城区 2020 年 1 月高三考试文科)一个几何体的三视图如图所示,则该几何体的体积为( A)(B)( C)(D)【答案】 C【解析】该几何体为底面是直角边为的等腰直角三角形,高为的直三棱柱,其体积为。

7. ( 北京市西城区2020 年 1 月高三期末考试理科) 某几何体的三视图如图所示,该几何体的体积是()(A)(B)(C)(D)【答案】 D【解析】将三视图还原直观图,可知是一个底面为正方形(其对角线长为2),高为 2 的四棱锥,其体积为A.且,则B.且,则C.且,则D.且,则【答案】 C体的体积为.(9) ( 北京市城区 2020 年 4 月高考一模文科 ) 已知一个四棱的三如所示,四棱的体是 .10. (2020 年 4 月北京市房山区高三一模理科一个几何体的三如所示,个几何体的体 .三、解答:(17) ( 北京市城区2020 年 1 月高三考文科)(本小共14 分)如,在四棱中,底面是正方形,平面,是中点,段上一点.(Ⅰ)求:;(Ⅱ)确定点在段上的位置,使// 平面,并明理由.【命分析】本考垂直和面探索性等合。

考学生的空想象能力。

明垂直的方法:(1)异面直所成的角直角;( 2)面垂直的性定理;( 3)面面垂直的性定理;( 4)三垂定理和逆定理;( 5)勾股定理;( 6)向量垂直 . 要注意面、面面垂直的性定理的成立条件 . 解程中要特体会平行关系性的性,垂直关系的多性 . 本第一利用方法二行明;探求某明(Ⅰ)因平面,所以.又四形是正方形,所以,,所以平面 ,又平面,所以 .⋯⋯⋯⋯⋯⋯7分. ⋯⋯⋯⋯⋯⋯ 14 分(16) ( 2020 年 4 月北京市海淀区高三一模理科)(本小分14 分)在四棱中,//,,,平面,.(Ⅰ)平面平面,求://;(Ⅱ)求:平面;(Ⅲ)点段上一点,且直与平面所成角的正弦,求的.(16)(本小分 14 分)所以,,,所以,.所以, .因,平面,平面,所以平面 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分由(Ⅱ)知平面的一个法向量 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分17. (2020 年 3 月北京市朝阳区高三一模文科⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分zPA D⋯⋯ ⋯yCBx⋯⋯ ⋯) (本分13 分)在如所示的几何体中,四形平行四形,,平面,,,,,且是的中点 .(Ⅰ)求:平面;(Ⅱ)在上是否存在一点,使得最大?若存在,求出的正切;若不存在,明理由 .(17)(本小分 13 分)(Ⅱ)解:假在上存在一点,使得最大. 因平面,所以 .又因,所以平面.⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分在中, .17. ( 北京市西城区 2020 年 4 月高三第一次模文 ) (本小分 14 分)如,矩形中,,.,分在段和上,∥,将矩形沿折起.折起后的矩形,且平面平面.(Ⅰ)求:∥平面;(Ⅱ)若,求:;(Ⅲ)求四面体体的最大.17.(本小分 14 分)(Ⅰ)明:因四形,都是矩形,所以∥∥,.所以四形是平行四形,⋯⋯⋯⋯⋯ 2 分所以∥,⋯⋯⋯⋯⋯⋯ 3 分因平面,所以∥平面.⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)明:接,.因平面平面,且,所以平面,⋯⋯ 5 分所以.⋯⋯⋯⋯ 6 分9 分(Ⅲ)解:,,其中.由(Ⅰ)得平面,所以四面体的体.⋯⋯⋯ 11 分所以.⋯⋯⋯⋯⋯13 分当且当,即,四面体的体最大.(17) ( 北京市城区2020 年 4 月高考一模理科⋯⋯⋯⋯⋯⋯) (本小共14 分13 分)1(17)(共 13 分)(Ⅰ)明:取中点,.因,,所以,而,即△是正三角形又因 ,所以.⋯⋯⋯⋯2分所以在 2 中有, . ⋯⋯⋯⋯ 3 分所以二面角.的平2面角.1又二面角直二面角,所以. ⋯⋯⋯⋯ 5 分又因 ,所以⊥平面 , 即⊥平面 .⋯⋯⋯⋯6分(Ⅱ)解:由(Ⅰ)可知⊥平面,,如,以原点,建立空直角坐系,,,,.在1中,.因,所以∥,且 .所以四形平行四形.所以∥,且 .故点的坐(1,, 0) . 2 所以,, .⋯⋯⋯⋯8分不妨平面的法向量,即令,得 .⋯⋯⋯⋯10分所以 .⋯⋯⋯⋯12分故直与平面所成角的大小.⋯⋯⋯⋯13分(17) ( 北京市城区 2020 年 4 月高考一模文科 ) (本小共 14 分)如,在的正三角形中,,,分,,上的点,且足 . 将△沿折起到△的位置,使平面平面,,. (如)(Ⅰ)若中点,求:∥平面;(Ⅱ)求: .1 2(17)(共 14 分)明:(Ⅰ)取中点, .在△中,分 的中点,所以∥,且.因 ,所以∥ , 且,所以∥,且.所以四 形 平行四 形.所以∥.⋯⋯⋯⋯ 5 分又因 平面,且平面, 所以∥平面.(Ⅱ)取中点, .因 ,,所以,而,即△是正三角形 又因 , 所以 .所以在2 中有 . 因 平面平面,平面平面,.⋯⋯⋯⋯ 9 分⋯⋯⋯⋯ 7 分所以⊥平面 .⋯⋯⋯⋯ 12 分17. (2020又平面, 所以⊥ .年 3 月北京市丰台区高三一模文科) (本小 共⋯⋯⋯⋯ 14 分)14 分如 ,四棱 P-ABCD 中,底面 ABCD 是菱形, PA =PD ,∠ BAD =60o , E 是 AD 的中点,点Q在 棱 PC 上.(Ⅰ)求 : AD ⊥平面 PBE ; (Ⅱ)若 Q 是 PC 的中点,求 : PA // 平面 BDQ ;(Ⅲ)若 V P-BCDE =2 V Q - ABCD , 求的 .17. 明:(Ⅰ)因E 是 AD 的中点, PA =PD ,所以AD⊥PE .⋯⋯⋯⋯⋯⋯⋯⋯ 1 分因 底面 ABCD 是菱形,∠ BAD =60o ,所以 = ,又因 E 是 的中点,AB BD AD所以⊥.⋯⋯⋯⋯⋯⋯⋯⋯ 2 分AD BE因 PE∩BE=E,⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以 AD⊥平面 PBE.⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)接 AC交 BD于点 O, OQ.⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因O 是中点,Q 是的中点,AC PC所以 OQ△ PAC中位.所以 OQ //因,所以.⋯⋯⋯⋯⋯⋯⋯⋯14分17. (2020年4月北京市房山区高三一模理科(本小共14 分)在直三棱柱中,=2 ,.点分是,的中点,是棱上的点.(I )求:平面;(II)若 // 平面,确定点的位置,并出明;(III)求二面角的余弦 .17.(本小共 14 分)(I)明:∵在直三棱柱中,,点是的中点,∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分, ,∴⊥平面⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分平面∴,即⋯⋯⋯⋯⋯⋯⋯ 3 分又∴平面⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( II )当是棱的中点, // 平面 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分明如下 :, 取的中点H,接 ,的中位∴∥,⋯⋯⋯⋯⋯⋯⋯ 6 分∵由已知条件,正方形∴∥,∵ 的中点,(III)∵ 直三棱柱且又平面的法向量,==,⋯⋯⋯⋯⋯⋯⋯⋯13 分二面角的平面角,且角.⋯⋯⋯⋯⋯⋯⋯⋯14 分。

2020高考数学分类汇编--立体几何

2020高考数学分类汇编--立体几何

2020年普通高等学校招生全国统一考试理科数学3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .1210.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π16.如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD =AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = .18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 3.C 10.A16.14-18.解:(1)设DO a =,由题设可得,,63PO a AO a AB a ===,2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,从而PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)22E A C P -.所以31(,,0),(0,2EC EP =--=-.设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即2023102y z x y⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(,1,2)=-m . 由(1)知2(0,1,)2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为25.2020年普通高等学校招生全国统一考试理科数学4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块7.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为ME F GHA .EB .FC .GD .H10. 已知ABC △是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为π16,则球O 到平面ABC 的距离为( ) A .3B .23 C .1 D .23 16.设有下列四个命题: 1P :两两相交且不过同一点的三条直线必在同一平面内. 2P :过空间中任意三点有且仅有一个平面. 3P :若空间两条直线不相交,则这两条直线平行. 4P :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥.则下述命题中所有真命题的序号是________. ①41p p ∧②21p p ∧③32p p ∨⌝④ 43p p ⌝∨⌝20.(12分)如图,已知三棱柱111C B A ABC -的底面是正三角形,侧面C C BB 11是矩形,M ,N 分别为BC ,11C B 的中点,P 为AM 上一点,过11C B 和P 的平面交AB 于E ,交AC 于F .(1)证明:MN AA ∥1,且平面F C EB AMN A 111平面⊥;(2)设O 为△111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.2020年普通高等学校招生全国统一考试理科数学8.下图为某几何体的三视图,则该几何体的表面积是A .B .C .D .15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.19.(12分)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.8.C15 19.解:设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.2020年普通高等学校招生全国统一考试文科数学3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .1211.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为 A .72B .3C .52D .212.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π19.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC △是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积. 3.C11.B12.A19.解:(1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l .由题设可得rl 222l r ==.解得r =1,l从而AB 1)可得222PA PB AB +=,故PA PB PC ===所以三棱锥P -ABC 的体积为311113232PA PB PC ⨯⨯⨯⨯=⨯⨯=.2020年普通高等学校招生全国统一考试文科数学11.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ① 14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝20.(12分)如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 12.A16.①③④20.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ⋂平面EB 1C 1F = PN , 故AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP = ON =13AM PM =23AM EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B -EB 1C 1F 的体积为1243243⨯⨯=.2020年普通高等学校招生全国统一考试文科数学9.如图为某几何体的三视图,则该几何体的表面积是A .B .C .D .16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 19.(12分)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内. 9.C16.2π 19.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 2020年普通高等学校招生全国统一考试(北京卷)(3)某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为(A )63+(B )623+(C )123+(D )1223+(16)(本小题13分) 如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1BC ∥平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.2020年普通高等学校招生全国统一考试(江苏卷)9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 cm.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.9.1232π 15.满分14分.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB . 22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD 5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 2020年普通高等学校招生全国统一考试(天津卷)5.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为 A .12π B .24πC .36πD .144π17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 5.C17.满分15分.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,6|A CA C CA ⋅〈〉==n n n ,于是30sin ,CA 〈〉=n . 所以,二面角1B B E D --的正弦值为306. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 32020年普通高等学校招生全国统一考试新高考4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A.20°B.40°C.50°D.90°D16.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以1的球面与侧面BCC1B1的交线长为________.20.(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.4.B 1620.解:(1)因为PD⊥底面ABCD,所以PD AD⊥.⊥,因此AD⊥底面PDC.又底面ABCD为正方形,所以AD DC∥,AD⊄平面PBC,所以AD∥平面PBC.因为AD BC∥.因此l⊥平面PDC.由已知得l AD(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D xyz -.则(0,0,0),(0,1,0),(1,1,0),(0,0,1)D C B P ,(0,1,0)DC =,(1,1,1)PB =-. 由(1)可设(,0,1)Q a ,则(,0,1)DQ a =.设(,,)x y z =n 是平面QCD 的法向量,则0,0,DQ DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.ax z y +=⎧⎨=⎩ 可取(1,0,)a =-n . 所以cos ,||||3PB PB PB ⋅〈〉==⋅n nn . 设PB 与平面QCD 所成角为θ,则sin θ==当且仅当1a =时等号成立,所以PB 与平面QCD 所成角的正. 2020年普通高等学校招生全国统一考试(浙江卷)5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B.143C .3D .614.已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 19.(本题满分15分)如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.5.A 14.119.满分15分。

2020年高考数学真题汇编 7:立体几何 理

2020年高考数学真题汇编 7:立体几何 理

2020高考真题分类汇编:立体几何一、选择题1.【2020高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B2.【2020高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C3.【2020高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 3()C 23 ()D 22【答案】A4.【2020高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C5.【2020高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45o角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=o ,则A 、P两点间的球面距离为( )αCAODBPA 、2arccos 4R B、4R π C 、3arccos 3R D 、3R π 【答案】A6.【2020高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A.55 B.53 C. 255D. 35【答案】A.7.【2020高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D8.【2020高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π【答案】B9.【2020高考真题广东理6】某几何体的三视图如图所示,它的体积为A.12π B.45π C.57π D.81π【答案】C10.【2020高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.11.【2020高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,12和a,且长为a2的棱异面,则a的取值范围是(A )(0,2) (B)(0,3) (C )(1,2) (D )(1,3)【答案】A12.【2020高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B13.【2020高考真题全国卷理4】已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 【答案】D二、填空题14.【2020高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.【答案】115.【2020高考真题四川理14】如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)课标理数12.G1[2020·福建卷] 三棱锥P -ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.课标理数12.G1[2020·福建卷] 【答案】 3【解析】 由已知,S △ABC =12×22sin π3=3,∴ V P -ABC =13S △ABC ·PA =13×3×3=3,即三棱锥P -ABC 的体积等于 3.课标文数8.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80课标文数8.G2[2020·安徽卷] C 【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.课标理数6.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80图1-3课标理数7.G2[2020·北京卷] 某四面体的三视图如图1-3所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 2课标理数7.G2[2020·北京卷] C 【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°,且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62,从而面积最大为10,故应选C.图1-4课标文数5.G2[2020·北京卷] 某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( )图1-1A .32B .16+16 2C .48D .16+32 2课标文数5.G2[2020·北京卷] B 【解析】 由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,所以其表面积为4×4+4×12×4×22=16+162,故选B.课标理数7.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )图1-2A .6 3B .9 3C .12 3D .18 3课标理数7.G2[2020·广东卷] B 【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3.课标文数9.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2课标文数9.G2[2020·广东卷] C 【解析】 由三视图知该几何体为四棱锥,棱锥高h=232-32=3,底面为菱形,对角线长分别为23,2,所以底面积为12×23×2=23,所以V =13Sh =13×23×3=2 3.图1-1课标理数3.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18课标理数3.G2[2020·湖南卷] B 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18, 故选B.课标文数4.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )图1-1A .9π+42B .36π+18 C.92π+12 D.92π+18 课标文数4.G2[2020·湖南卷] D 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2的长方体所构成的几何体,则其体积为: V=V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,故选D.课标理数6.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标理数 6.G2 [2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如下图,故侧视图选D.图1-5课标理数15.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-5所示,左视图是一个矩形,则这个矩形的面积是________.课标理数15.G2[2020·辽宁卷] 2 3 【解析】 由俯视图知该正三棱柱的直观图为图1-6,其中M ,N 是中点,矩形MNC 1C 为左视图.由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为2 3.图1-6图1-3课标文数8.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3课标文数8.G2[2020·辽宁卷] B 【解析】 由俯视图知该正三棱柱的直观图为下图,其中M ,N 是中点,矩形MNC 1C 为左视图.图1-4 由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为23,故选B.课标文数8.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标文数8.G2[2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.图1-4图1-2课标理数11.G2[2020·山东卷] 如图1-2是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-2;②存在四棱柱,其正(主)视图、俯视图如图1-2;③存在圆柱,其正(主)视图、俯视图如图1-2.其中真命题的个数是( )A .3B .2C .1D .0课标理数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.图1-3课标文数11.G2[2020·山东卷] 如图1-3是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-3;②存在四棱柱,其正(主)视图、俯视图如图1-3;③存在圆柱,其正(主)视图、俯视图如图1-3.其中真命题的个数是( )A .3B .2C .1D .0课标文数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.课标理数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积是( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标理数5.G2[2020·陕西卷] A 【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13π×12×2=8-23π.课标文数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积为( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标文数5.G2[2020·陕西卷] A 【解析】 主视图与左视图一样是边长为2的正方形,里面有两条虚线,俯视图是边长为2的正方形与直径为2的圆相切,其直观图为棱长为2的正方体中挖掉一个底面直径为2的圆锥,故其体积为正方体的体积与圆锥的体积之差,V正=23=8,V 锥=13πr 2h =2π3(r =1,h =2),故体积V =8-2π3,故答案为A.课标理数10.G2[2020·天津卷] 一个几何体的三视图如图1-5所示(单位:m),则该几何体的体积为________ m 3.图1-5课标理数10.G2[2020·天津卷] 6+π 【解析】 根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V =3×2×1+13π×1×3=6+π.课标文数10.G2[2020·天津卷] 一个几何体的三视图如图1-4所示(单位:m),则该几何体的体积为________ m 3.图1-4课标文数10.G2[2020·天津卷] 4 【解析】 根据三视图还原成直观图,可以看出,其是由两个形状一样的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.图1-2课标理数3.G2[2020·浙江卷] D 【解析】由正视图可排除A、B选项,由俯视图可排除C选项.课标文数7.G2[2020·浙江卷] 若某几何体的三视图如图1-1所示,则这个几何体的直观图可以是( )图1-1图1-2课标文数7.G2[2020·浙江卷] B 【解析】由正视图可排除A,C;由侧视图可判断该该几何体的直观图是B.大纲理数3.G3[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲理数3.G3[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线时而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.图1-5【解答】 (1)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA=1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B ,C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF .(向量法)过点F 作FQ ⊥AD ,交AD 于点Q ,连QE .由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED .以Q 为坐标原点,QE →为x 轴正向,QD →为y 轴正向,QF →为z 轴正向,建立如图所示空间直角坐标系.图1-6由条件知E (3,0,0),F (0,0,3),B ⎝ ⎛⎭⎪⎫32,-32,0,C ⎝ ⎛⎭⎪⎫0,-32,32.则有BC →=⎝ ⎛⎭⎪⎫-32,0,32,EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标文数17.G4[2020·北京卷]图1-4如图1-4,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.课标文数17.G4[2020·北京卷] 【解答】 (1)证明:因为D ,E 分别为AP ,AC 的中点,图1-5所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP , 所以DE ∥平面BCP .(2)因为D 、E 、F 、G 分别为AP 、AC 、BC 、PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG ,所以平行四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC 、AB 的中点M ,N ,连接ME 、EN 、NG 、MG 、MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG .所以Q 为满足条件的点.图1-3课标文数15.G4[2020·福建卷] 如图1-3,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.课标文数15.G4[2020·福建卷] 2 【解析】 ∵ EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22= 2.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD ,因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .课标文数4.G4[2020·浙江卷] 若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交课标文数4.G4[2020·浙江卷] B 【解析】 在α内存在直线与l 相交,所以A 不正确;若α内存在直线与l 平行,又∵l ⊄α,则有l ∥α,与题设相矛盾,∴B 正确,C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.图1-6课标理数16.G5,G11[2020·北京卷] 如图1-6,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.课标理数16.G5,G11[2020·北京卷] 【解答】 (1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD , 所以PA ⊥BD ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,OB 、OC 所在直线及点O 所在且与PA 平行的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).图1-7所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. (3)由(2)知BC →=(-1,3,0). 设P (0,-3,t )(t >0), 则BP →=(-1,-3,t ).设平面PBC 的法向量m =(x ,y ,z ), 则BC →·m =0,BP →·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0,令y =3,则x =3,z =6t, 所以m =⎝ ⎛⎭⎪⎫3,3,6t .同理,可求得平面PDC 的法向量n =⎝ ⎛⎭⎪⎫-3,3,6t .因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0.解得t = 6.所以当平面PBC 与平面PDC 垂直时,PA = 6.大纲理数6.G5、G11[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( )A.23B.33C.63D .1 大纲理数6.G5、G11[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则平面ABC ⊥β,在平面β内过D 作DE ⊥BC ,则DE ⊥平面ABC ,DE 即为D 到平面ABC 的距离,在△DBC 中,运用等面积法得DE =63,故选C.大纲理数19.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.图1-1大纲理数19.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角. 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32. 作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB =217,α=arcsin 217.解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ), 则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin 217.大纲文数8.G5[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( )A .2 B. 3 C. 2 D .1 大纲文数8.G5[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则AC ⊥CB ,∵AB =2,AC =1,可得BC =3,又BD ⊥l ,BD =1,∴CD =2,故选C.大纲文数20.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,图1-1AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.大纲文数20.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角.由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB=217,α=arcsin 217. 解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ),则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin217.课标理数20.G5,G10,G11[2020·福建卷] 如图1-7,四棱锥P -ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,图1-7AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°. (1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到P 、B 、C 、D 的距离都相等?说明理由. 课标理数20.G5,G10,G11 [2020·福建卷] 【解答】图1-8(1)证明:因为PA ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .图1-9(2)①以A 为坐标原点,建立空间直角坐标系A -xyz (如图1-9). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD →,n ⊥PD →,得⎩⎪⎨⎪⎧-x +y =0.4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又PB →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得c os60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|PB →|, 即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12. 解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →=(0,-m ,t ).由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;① 由|GD →|=|GP →|得(4-t -m )2=m 2+t 2.②由①、②消去t ,化简得m 2-3m +4=0.③由于方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 法二:假设在线段AD 上存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,图1-12从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABG 中, GB =AB 2+AG 2=λ2+3-λ2=2⎝⎛⎭⎪⎫λ-322+92>1.这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.课标理数18.G5,G10[2020·广东卷] 如图1-3,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,PA =PD =2,PB =2,E ,F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P -AD -B 的余弦值.图1-3课标理数18.G5,G10[2020·广东卷] 【解答】 法一:(1)证明:设AD 中点为G ,连接PG ,BG ,BD .图1-1因PA =PD ,有PG ⊥AD ,在△ABD 中,AB =AD =1,∠DAB =60°,有△ABD 为等边三角形,因此BG ⊥AD ,BG ∩PG =G ,所以AD ⊥平面PBG ,所以AD ⊥PB ,AD ⊥GB .又PB ∥EF ,得AD ⊥EF ,而DE ∥GB 得AD ⊥DE ,又FE ∩DE =E ,所以AD ⊥平面DEF . (2)∵PG ⊥AD ,BG ⊥AD ,∴∠PGB 为二面角P -AD -B 的平面角.在Rt △PAG 中,PG 2=PA 2-AG 2=74,在Rt △ABG 中,BG =AB ·sin60°=32, ∴cos ∠PGB =PG 2+BG 2-PB 22PG ·BG=74+34-42·72·32=-217. 法二:(1)证明:设AD 中点为G ,因为PA =PD ,所以PG ⊥AD , 又AB =AD ,∠DAB =60°,所以△ABD 为等边三角形,因此,BG ⊥AD ,从而AD ⊥平面PBG . 延长BG 到O 且使PO ⊥OB ,又PO ⊂平面PBG ,所以PO ⊥AD ,又AD ∩OB =G ,所以PO ⊥平面ABCD .以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图1-2所示的空间直角坐标系.设P (0,0,m ),G (n,0,0),则A ⎝⎛⎭⎪⎫n ,-12,0,D ⎝ ⎛⎭⎪⎫n ,12,0.图1-2∵|GB →|=|AB →|sin60°=32,∴B ⎝ ⎛⎭⎪⎫n +32,0,0,C ⎝ ⎛⎭⎪⎫n +32,1,0,E ⎝⎛⎭⎪⎫n +32,12,0,F ⎝ ⎛⎭⎪⎫n 2+34,12,m 2. ∴AD →=(0,1,0),DE →=⎝ ⎛⎭⎪⎫32,0,0,FE →=⎝ ⎛⎭⎪⎫n 2+34,0,-m 2,∴AD →·DE →=0,AD →·FE →=0, ∴AD ⊥DE ,AD ⊥FE ,又DE ∩FE =E ,∴AD ⊥平面DEF .(2)∵PA →=⎝ ⎛⎭⎪⎫n ,-12,-m ,PB →=⎝ ⎛⎭⎪⎫n +32,0,-m , ∴m 2+n 2+14=2,⎝⎛⎭⎪⎫n +322+m 2=2,解得m =1,n =32. 取平面ABD 的法向量n 1=(0,0,-1), 设平面PAD 的法向量n 2=(a ,b ,c ),由PA →·n 2=0,得32a -b 2-c =0,由PD →·n 2=0,得32a +b 2-c =0,故取n 2=⎝ ⎛⎭⎪⎫1,0,32.∴cos〈n1,n2〉=-32 1·74=-217.即二面角P-AD-B的余弦值为-217.课标理数18.G5,G11[2020·湖北卷] 如图1-4,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图1-4课标理数18.G5,G11[2020·湖北卷] 【解答】解法1:过E作EN⊥AC于N,连结EF.(1)如图①,连结NF、AC1,由直棱柱的性质知,底面ABC⊥侧面A1C,又底面ABC∩侧面A1C=AC,且EN⊂底面ABC,所以EN⊥侧面A1C,NF为EF在侧面A1C 内的射影,在Rt△CNE中,CN=CE co s60°=1,则由CFCC1=CNCA=14,得NF∥AC1.又AC1⊥A1C,故NF⊥A1C,由三垂线定理知EF⊥A1C.(2)如图②,连结AF,过N作NM⊥AF于M,连结ME,由(1)知EN⊥侧面A1C,根据三垂线定理得EM⊥AF,所以∠EMN是二面角C-AF-E的平面角,即∠EMN=θ,设∠FAC=α,则0°<α≤45°.在Rt△CNE中,NE=EC·sin60°=3,在Rt△AMN中,MN=AN·sinα=3sinα,故tanθ=NEMN=33sinα.又0°<α≤45°,∴0<sinα≤22,故当sinα=22,即当α=45°时,tanθ达到最小值,tanθ=33×2=63,此时F与C1重合.解法2:(1)建立如图③所示的空间直角坐标系,则由已知可得A(0,0,0),B(23,2,0),C(0,4,0),A1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1), 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0,故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ),AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0,取m =(3λ,-λ,4),又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2, 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63, 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.图1-2课标文数18.G5,G11[2020·湖北卷] 如图1-2,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.课标文数18.G5,G11[2020·湖北卷]【解答】 解法1:(1)证明:由已知可得CC 1=32,CE =C 1F =22+222=23,EF =C 1E =22+22= 6.于是有EF 2+C 1E 2=C 1F 2,CE 2+C 1E 2=CC 21. 所以C 1E ⊥EF ,C 1E ⊥CE .又EF ∩CE =E ,所以C 1E ⊥平面CEF . 又CF ⊂平面CEF ,故CF ⊥C 1E .(2)在△CEF 中,由(1)可得EF =CF =6,CE =23,于是有EF 2+CF 2=CE 2,所以CF ⊥EF . 又由(1)知CF ⊥C 1E ,且EF ∩C 1E =E , 所以CF ⊥平面C 1EF .又C 1F ⊂平面C 1EF ,故CF ⊥C 1F .于是∠EFC 1即为二面角E -CF -C 1的平面角.由(1)知△C 1EF 是等腰直角三角形,所以∠EFC 1=45°,即所求二面角E -CF -C 1的大小为45°图1-3解法2:建立如图1-3所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2).(1)C 1E →=(0,-2,-2),CF →=(3,-1,2), ∴C 1E →·CF →=0+2-2=0, ∴CF ⊥C 1E . (2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ). 由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0,可取m =(0,2,1).设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32),可取n =(1,3,0),设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m ||n |=63×2=22,所以θ=45°,即所求二面角E -CF -C 1的大小为45°.图1-6课标理数19.G5,G11[2020·湖南卷] 如图1-6,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.课标理数19.G5,G11[2020·湖南卷] 【解答】 解法一:(1)连结OC ,因为OA =OC ,D 是AC 的中点,所以AC ⊥OD .图1-7又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO .因为OD ,PO 是平面POD 内的两条相交直线,所以AC ⊥平面POD ,而AC ⊂平面PAC ,所以平面POD ⊥平面PAC .(2)在平面POD 中,过O 作OH ⊥PD 于H ,由(1)知,平面POD ⊥平面PAC ,所以OH ⊥平面PAC . 又PA ⊂面PAC ,所以PA ⊥OH .在平面PAO 中,过O 作OG ⊥PA 于G ,连结HG ,则有PA ⊥平面OGH .从而PA ⊥HG . 故∠OGH 为二面角B -PA -C 的平面角.在Rt △ODA 中,OD =OA ·sin45°=22.在Rt △POD 中,OH =PO ·ODPO 2+OD 2=2×222+12=105.在Rt △POA 中,OG =PO ·OA PO 2+OA 2=2×12+1=63.在Rt △OHG 中,sin ∠OGH =OH OG =10563=155. 所以cos ∠OGH =1-sin 2∠OGH =1-1525=105. 故二面角B -PA -C 的余弦值为105. 解法二:(1)如图1-8所示,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则图1-8O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0.设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2.从而平面POD ⊥平面PAC . (2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量为n 3=(0,1,0).由(1)知,平面PAC 的一个法向量为n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -PA -C 的平面角与θ相等,所以二面角B -PA -C 的余弦值为105.课标文数19.G5,G11[2020·湖南卷] 如图1-5,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面PAC 所成角的正弦值.图1-5课标文数19.G5,G11[2020·湖南卷] 【解答】 (1)因为OA =OC ,D 是AC 的中点,所以AC ⊥OD . 又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO . 而OD ,PO 是平面POD 内的两条相交直线, 所以AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面PAC , 所以平面POD ⊥平面PAC .在平面POD 中,过O 作OH ⊥PD 于H ,则OH ⊥平面PAC .图1-6连结CH ,则CH 是OC 在平面PAC 上的射影, 所以∠OCH 是直线OC 和平面PAC 所成的角.在Rt △ODA 中,OD =OA ·sin30°=12.在Rt △POD 中,OH =PO ·OD PO 2+OD 2=2×122+14=23.在Rt △OHC 中,sin ∠OCH =OH OC =23. 故直线OC 和平面PAC 所成角的正弦值为23.图1-9课标理数18.G5,G10,G11[2020·课标全国卷] 如图1-9,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.课标理数18.G5,G10,G11[2020·课标全国卷] 【解答】 (1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD .故PA ⊥BD .图1-10(2)如图,以D 为坐标原点,AD 的长为单位长,DA 、DB 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.图1-8课标文数18.G5,G11[2020·课标全国卷] 如图1-8,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高.课标文数18.G5,G11[2020·课标全国卷] 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD ,故PA ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD.图1-9故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2.根据DE ·PB =PD ·BD 得DE =32.即棱锥D -PBC 的高为32. 课标理数16.G5,G9[2020·陕西卷] 如图1-6,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.图1-6(1)证明:平面ADB ⊥平面BDC;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值.课标理数16.F2[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D , ∴AD ⊥平面BDC , ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .cos 〈AE →,DB →〉=AE →·DB →|AE →|·|DB →|=121×224=2222.课标文数16.G5[2020·陕西卷] 如图1-8,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥D -ABC 的表面积.图1-8课标文数16.G5[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D . ∴AD ⊥平面BDC . ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA , DB =DA =DC =1. ∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12.S △ABC =12×2×2×sin60°=32. ∴表面积S =12×3+32=3+32.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.大纲文数6.G5[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲文数6.G5[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标理数4.G5[2020·浙江卷] 下列命题中错误..的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β课标理数4.G5[2020·浙江卷] D 【解析】若面α⊥面β,在面α内与面β的交线不相交的直线平行于平面β,故A正确;B中若α内存在直线垂直平面β,则α⊥β,与题设矛盾,所以B正确;由面面垂直的性质知选项C正确.由A正确可推出D错误.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标理数17.G4,G7[2020·安徽卷]如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、。

2020高考真题数学分类汇编—立体几何

2020高考真题数学分类汇编—立体几何

2020高考真题数学分类汇编—立体几何一、选择题(共10小题)1.(2020•天津)若棱长为2的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π2.(2020•北京)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+B.6+2C.12+D.12+23.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°4.(2020•新课标Ⅲ)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+25.(2020•上海)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD6.(2020•新课标Ⅱ)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.B.C.1 D.7.(2020•新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.F C.G D.H8.(2020•浙江)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.B.C.3 D.69.(2020•新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.10.(2020•新课标Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二.填空题(共6小题)11.(2020•浙江)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是.12.(2020•山东)已知直四棱柱ABCD﹣A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,为半径的球面与侧面BCC1B1的交线长为.13.(2020•江苏)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm3.14.(2020•新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的表面积为.15.(2020•新课标Ⅰ)如图,在三棱锥P﹣ABC的平面展开图中,AC=1,AB=AD=,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.16.(2020•新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.三.解答题(共14小题)17.(2020•天津)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E 分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B﹣B1E﹣D的正弦值;(Ⅲ)求直线AB与平面DB1E所成角的正弦值.18.(2020•上海)已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转至ABC1D1,求线段CD1与平面ABCD所成的角.19.(2020•北京)如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求直线AA1与平面AD1E所成角的正弦值.20.(2020•山东)如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.(2020•江苏)在三棱锥A﹣BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F﹣DE﹣C的大小为θ,求sinθ的值.22.(2020•浙江)如图,在三棱台ABC﹣DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC=2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.23.(2020•江苏)在三棱柱ABC﹣A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.24.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF =2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.25.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA⊥平面PBC;(2)求二面角B﹣PC﹣E的余弦值.26.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO 上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为π,求三棱锥P﹣ABC的体积.27.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO=AB=6,AO∥平面EB1C1F,且∠MPN=,求四棱锥B﹣EB1C1F的体积.28.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF =2FB1.(1)证明:点C1在平面AEF内;(2)若AB=2,AD=1,AA1=3,求二面角A﹣EF﹣A1的正弦值.29.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.30.(2020•上海)已知四棱锥P﹣ABCD,底面ABCD为正方形,边长为3,PD⊥平面ABCD.(1)若PC=5,求四棱锥P﹣ABCD的体积;(2)若直线AD与BP的夹角为60°,求PD的长.。

2020年高考试题分类汇编(立体几何)

2020年高考试题分类汇编(立体几何)

2020年高考试题分类汇编(立体几何)考法1空间中的点、线、面的位置关系1.(2020·全国卷Ⅰ·文理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状科视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥的一个侧面三角形的面积,则其侧面三角形底边上的高于底面正方形的边长的比值为 A .514- B .512- C .514+ D .512+2.(2020·全国卷Ⅰ·理科)如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥, 30CAE ∠=,则cos FCB ∠= .3.(2020·全国卷Ⅱ·文理科)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一个平面内. 2p :过空间任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则l m ⊥.则下列命题中所以真命题的序号是 .①14p p ∧ ②12p p ∧ ③23()p p ⌝∨ ④34()()p p ⌝∨⌝ 4.(2020·浙江卷)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,ABCD (P )E (P )F (P )l 在同一平面”是“m ,n ,l 两两相交”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考法2三视图1.(2020·全国卷Ⅱ·理科)右图是一个多面体的三视图,这个多面体某天棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H2.(2020·全国卷Ⅲ·文理科)右图为某几何体的三视图,则该几何体的表面积为A .642+B .442+C .623+D .423+3.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几 何体的体积(单位:3cm )是A .73B .143C .3D .64.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱M N EF GH222的表面积为A .63+B .623+C .123+D .1223+考法3与球的组合体1.(2020·全国卷Ⅰ·文理科)已知A ,B ,C 为球O 的球面上三点,1O 为ABC ∆的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48π C .36π D .32π2.(2020·山东卷)日冕是中国古代用来测定时间的仪器,利用与冕面垂直的冕针投射到冕面的影子来测定时间,把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成的角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日冕,若冕面与赤道所在的平面平行,点A 的纬度为北纬40,则冕针与点A 处的水平面所成的角为A .20B .40C .50D .903.(2020·全国卷Ⅱ·文理科)已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的面积112正(主)视图 侧(左)视图俯视图AB .32C .1 D.24.(2020·全国卷Ⅲ·文理科)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .5.(2020·山东卷)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=.以1D11BCC B 的交线长为 .6.(2020·天津卷)若棱长为则该球的表面积为A .12πB .24πC .36πD .144π考法4解答题1.(2020·全国卷Ⅰ·理科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内角正三角形,P 为DO上一点,6PO DO =. (Ⅰ)证明:PA ⊥平面PBC ; (Ⅱ)求二面角B PC E --的余弦值.2.(2020·全国卷Ⅰ·文科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC ∆是底面的内角正三角形,P 为DO 上一点,90ABC ∠=. (Ⅰ)证明:平面PAB ⊥平面PAC ;(Ⅱ)设DO =,求三棱锥P ABC -的体积.P ABO E CDP ABO C D3.(2020·全国卷Ⅱ·理科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.4.(2020·全国卷Ⅱ·文科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若6AO AB ==,AO ∥平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.5.(2020·全国卷Ⅲ·理科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =. (Ⅰ)证明:点1C 在平面AEF 内;ABC E F O MNA 1B 1C 1PABC E FO MNA 1B 1C 1P(Ⅱ)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.6.(2020·全国卷Ⅲ·文科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =.(Ⅰ)当AB BC =时,EF AC ⊥. (Ⅱ)证明:点1C 在平面AEF 内;7.(2020·山东卷)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l . (Ⅰ)证明:l ⊥平面PDC ;(Ⅱ)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.A BCDEF A 1B 1C 1D 1ABCDEFA 1B 1C 1D 1PABCD8.(2020·天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,AC BC ⊥,2AC BC ==,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,M 为棱11A B 的中点. (Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(2020·浙江卷)如图,三棱台DEF ABC -中,面ADFC ⊥面ABC ,45ACB ACD ∠=∠=,DC =2BC .(Ⅰ)证明:EF DB ⊥;(Ⅱ)求DF 与面DBC 所成角的正弦值.A BCDEMB 1A 1C 1ABCDEF10.(2020·北京卷)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点. (Ⅰ)求证:1BC ∥平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.ABCDE A 1B 1C 1D 1。

2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。

2020年高考数学分类汇编:立体几何

2020年高考数学分类汇编:立体几何

2020年高考数学分类汇编:立体几何4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A.20°B.40°C.50°D.90°8.右图为某几何体的三视图,则该几何体的表面积是A. 6+42+B. 442+C. 623+D. 4239.右图为某几何体的三视图,则该几何体的表面积是A. 6+42B. 4+42C. 6+23D. 4+237.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A .EB .FC .GD .H16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表面积为11.已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ① 14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为②③ A B C D3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .1212.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ① 14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .66.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为____.10.已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是▲ cm.4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6+B .6+C .12+D .12+5.若棱长为A.12πB.24πC.36πD.144πD为半径的球面与侧面BCC1B1 16.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以1的交线长为________.16.如图,在三棱锥P–ABC的平面展开图中,AC=1,AB AD=AB⊥AC,AB⊥AD,∠CAE=30°,则cos ∠FCB=.14.已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是_______.19.(本题满分15分)如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC=2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.如图,在长方体ABCD -1111A B C D 中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =. (1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.19.(12分)如图,在长方体1111ABCD A B C D -中,在E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =,证明:(1) 当AB BC =时,EF AC ⊥; (2) 点1C 在平面AEF 内.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.20.(12分)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.18.(12分)△是底面的内接正如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD=.ABC三角形,P为DO上一点,PO=.(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC△是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO,求三棱锥P−ABC的体积.22.(本小题满分10分)在三棱锥A—BCD中,已知CB=CD,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.16.(本小题13分)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.。

2020年高考数学试题分项版解析专题08 立体几何(学生版) 理

2020年高考数学试题分项版解析专题08 立体几何(学生版) 理

2020年高考试题分项版解析数学(理科)专题08 立体几何(学生版)一、选择题:1.(2020年高考广东卷理科6)某几何体的三视图如图1所示,它的体积为()A.12π B.45π C.57π D.81π2. (2020年高考北京卷理科7)某三棱锥的三视图如图所示,该三梭锥的表面积是()3.(2020年高考福建卷理科4)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球 B.三棱锥 C.正方体 D.圆柱4.(2020年高考浙江卷理科10)已知矩形ABCD,AB=1,BC2将 ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直7. (2020年高考湖南卷理科3)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()8.(2020年高考新课标全国卷理科7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 189.(2020年高考新课标全国卷理科11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36 ()C 23 ()D 2210.(2020年高考江西卷理科10)如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为( )11.(2020年高考安徽卷理科6)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件()C 充要条件 ()D 即不充分不必要条件13. (2020年高考四川卷理科6)下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行15.(2020年高考全国卷理科4)已知正四棱柱1111ABCD A B C D -中,12,22,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2B .3C .2D .116.(2020年高考重庆卷理科9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )(A )(0,2) (B )(0,3) (C )(1,2) (D )(1,3)二、填空题:2.(2020年高考辽宁卷理科16)已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的求面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为_______.3.(2020年高考江苏卷7)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.4.(2020年高考天津卷理科10)―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .8.(2020年高考上海卷理科8)若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .9.(2020年高考上海卷理科14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是.11.(2020年高考全国卷理科16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.三、解答题:2. (2020年高考广东卷理科18)(本小题满分13分)如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

2020全国卷二数学理科立体几何

2020全国卷二数学理科立体几何

2020全国卷二数学理科立体几何
全国卷二数学理科立体几何的内容主要包括:
一、立体几何的基本概念:
1. 空间的概念:空间的维数、空间的直角坐标系、空间的坐标变换、空间的参数方程等。

2. 立体几何的基本概念:点、直线、面、体、立体图形的分类、立体图形的基本性质、立体图形的基本关系等。

二、立体几何的基本公式:
1. 空间的距离公式:点到直线的距离、点到平面的距离、直线到平面的距离、点到点的距离等。

2. 空间的体积公式:正多面体的体积、球体的体积、椎体的体积等。

3. 空间的面积公式:正多面体的表面积、球体的表面积、椎体的表面积等。

三、立体几何的基本定理:
1. 空间三角形的关系:直角三角形的定理、锐角三角形的定理、钝角三角形的定理等。

2. 空间四边形的关系:正方形的定理、矩形的定理、平行四边
形的定理、平行六边形的定理等。

3. 空间多面体的关系:正多面体的定理、正八面体的定理、正十二面体的定理等。

2020年高考数学 立体几何试题分类汇编 理

2020年高考数学 立体几何试题分类汇编 理

2020年高考数学 立体几何试题分类汇编 理(安徽)(A ) 48 (B)32+817 (C) 48+817 (D) 80(北京)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C.10D .82(湖南)设图一是某几何体的三视图,则该几何体的体积为( )A .9122π+B .9182π+ C .942π+ D .3618π+答案:B3 正视图侧视图解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。

(广东)如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B.93C.123D.183(江西)已知321,,ααα是三个相互平行的平面,平面21,αα之间的距离为1d ,平面32,αα之间的距离为2d .直线l 与321,,ααα分别交于321,,P P P .那么”“3221P P P P =是”“21d d =的 ( ) A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案:C解析:平面321,,ααα平行,由图可以得知:如果平面距离相等,根据两个三角形全等可知3221P P P P = 如果3221P P P P =,同样是根据两个三角形全等可知21d d =(辽宁)如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是 A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角(辽宁)已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC的体积为 A .33B .32C .3D .1(全国2)已知直二面角l αβ--,点,A AC l α∈⊥,C 为垂足,,,B BD l D β∈⊥为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)2 (B)3 (C)6 (D) 1 【思路点拨】本题关键是找出或做出点D 到平面ABC 的距离DE ,根据面面垂直的性质不难证明AC ⊥平面β,进而β⊥平面平面ABC,所以过D 作DE BC ⊥于E ,则DE 就是要求的距离。

2020高考数学模拟试题(理)《立体几何》分类汇编(含答案)

2020高考数学模拟试题(理)《立体几何》分类汇编(含答案)

2020高考数学模拟试题(理)《立体几何》分类汇编1.(2020•广州一模)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722)π+B .(1022)π+C .(1042)π+D .(1142)π+2.(2020•桥东区校级模拟)胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以2倍的塔高,恰好为祖冲之发现的密率355113π≈.若胡夫金字塔的高为h ,则该金字塔的侧棱长为( )A .221h π+B .224h π+C .216hπ+ D .2216h π+ 3.(2020•桥东区校级模拟)已知P 为一圆锥的顶点,AB 为底面圆的直径,PA PB ⊥,点M 在底面圆周上,若M 为¶AB 的中点,则异面直线AM 与PB 所成角的大小为( )A .6πB .4πC .3πD .2π 4.(2020•梅河口市校级模拟)如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关5.(2020•东宝区校级模拟)如图,已知四面体ABCD 为正四面体,22AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .1B 2C .2D .226.(2020•宜昌模拟)已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( )A .3πB .23πC .πD .43π 7.(2020•龙岩一模)已知四棱锥S ABCD -的所有顶点都在球O 的球面上,SA SB =,SA SB ⊥,底面ABCD 是等腰梯形,//AB CD ,且满足222AB AD DC ===,则球O 的表面积是( )A .43πB .823C .4πD .8π8.(2020•眉山模拟)已知腰长为3,底边长2为的等腰三角形ABC ,D 为底边BC 的中点,以AD 为折痕,将三角形ABD 翻折,使BD CD ⊥,则经过A ,B ,C ,D 的球的表面积为( )A .10πB .12πC .16πD .20π9.(2020•五华区校级模拟)已知圆锥SO 的底面半径为3,母线长为5.若球1O 在圆锥SO 内,则球1O 的体积的最大值为( )A .92πB .9πC .323πD .12π10.(2020•垫江县校级模拟)过球的一条半径的中点,作与该半径所在直线成30︒的平面,则所得截面的面积与球的表面积的比为( )A .15256B .45256C .1564D .456411.(2020•内蒙古模拟)如图:空间四边形P ABC -中,13PM AN PB AC ==,4PA BC ==,3MN =,异面直线PA 与BC 所成角的余弦值为( )A .14-B .164-C .164D .1412.(2020•凯里市校级模拟)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?“其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的体积为( )A .140立方尺B .280立方尺C .2803立方尺D .1403立方尺 13.(2020•龙岩一模)已知正三棱柱111ABC A B C -的底面边长为2,用一平面截此棱柱与侧棱1AA ,1BB ,1CC 分别交于M ,N ,Q ,若MNQ ∆为直角三角形,则MNQ ∆面积的最小值为( )A 7B .3C .27D .614.(2020•咸阳二模)正四棱锥P ABCD -的五个顶点在同一个球面上,6,高为3,则它的外接球的表面积为( )A .4πB .8πC .16πD .20π15.(2020•重庆模拟)如图,四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E ,F 分别在线段DB ,1DD 上,且112DE DF EB FD ==,G 在1CC 上且平面//AEF 平面1BD G ,则1(CG CC = )A .12B .13C .23D .1416.(2020•邯郸模拟)如图一,在ABC ∆中,AB AC =,120A ∠=︒,D 为BC 中点,DE AC ⊥,将CDE ∆沿DE 翻折,得到直二面角C DE B --,连接BC ,F 是BC 中点,连接AF ,如图二,则下列结论正确的是( )A .AD CD ⊥B .//AF DEC .DE ⊥平面ACED .//AF 平面CDE17.(2020•福清市一模)已知正方体1111ABCD A B C D -的棱长为2,1AC ⊥平面α.平面α截此正方体所得的截面有以下四个结论:①截面形状可能是正三角形②截面的形状可能是正方形③截面形状可能是正五边形④截面面积最大值为33则正确结论的编号是( )A .①④B .①③C .②③D .②④18.(2020•道里区校级一模)已知三棱锥S ABC -的外接球为球O ,SA 为球O 的直径,且2SA =,若面SAC ⊥面SAB ,则三棱锥S ABC -的体积最大值为( )A .13B .23C .1D .219.(2020•焦作一模)某三棱柱的平面展开图如图,网格中的小正方形的边长均为1,K 是线段DI 上的点,则在原三棱柱中,AK CK +的最小值为( )A .65B .73C .45D .8920.(2020•吉林二模)等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD ∆沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A .3B .2C .3D .2321.(2020•眉山模拟)如图,在长方体1111ABCD A B C D -中,1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r ,F 为MC 的中点. (1)求证://EF 平面1A DC ;(2)求三棱锥1C FCN -的体积;(3)求直线1A D 与直线CF 所成角的余弦值.22.如图,在长方体1111ABCD A B C D -中,1:224AB BC AA ===,E 为11A D 的中点,N 为BC的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r ,F 为MC 的中点. (1)求证://EF 平面1A DC ;(2)求二面角1N AC F --的余弦值.23.(2020•宜昌模拟)如图,在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.24.(2020•五华区校级模拟)如图所示的几何体中,正方形ABCD 所在平面垂直于平面APBQ ,四边形APBQ 为平行四边形,G 为PC 上一点,且BG ⊥平面APC ,2AB =.(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥P ABC -体积最大时,求平面APC 与平面BCQ 所成二面角的正弦值.25.(2020•龙岩一模)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,4AB =,2BC CD ==,顶点1D 在底面ABCD 内的射影恰为点C .(1)求证:BC ⊥平面1ACD ;(2)若直线1DD 与底面ABCD 所成的角为4π,求平面11ABC D 与平面ABCD 所成锐二面角的余弦值.答案解析1.(2020•广州一模)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )A .(722)π+B .(1022)π+C .(1042)π+D .(1142)π+【解答】解:由题意可知几何体的直观图如图:上部是圆柱,下部是圆锥, 几何体的表面积为:1442223(1042)2ππππ+⨯⨯+⨯=+. 故选:C .2.(2020•桥东区校级模拟)胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以2倍的塔高,恰好为祖冲之发现的密率355113π≈.若胡夫金字塔的高为h ,则该金字塔的侧棱长为( )A 221h π+B 224h π+C 216hπ+ D 2216h π+ 【解答】解:设该金字塔的底面边长为a ,则42a h π=,可得:2h a π=. ∴该金字塔的侧棱长22222222162()244a h h h ππ+=+=+⨯=. 故选:D .3.(2020•桥东区校级模拟)已知P 为一圆锥的顶点,AB 为底面圆的直径,PA PB ⊥,点M 在底面圆周上,若M 为¶AB 的中点,则异面直线AM 与PB 所成角的大小为( )A .6πB .4πC .3πD .2π 【解答】解:如图所示,建立直角坐标系.不妨设1OB =.PA PB ⊥Q ,OP OB OA ∴==,OP ⊥底面AMB .则(0O ,0,0),(0B ,1,0),(1M ,0,0),(0P ,0,1),(0A ,1-,0), ∴(1AM =u u u u r ,1,0),(0PB =u u u r ,1,1)-,cos AM ∴<u u u u r ,1222PB >==⨯u u u r , AM ∴<u u u u r ,3PB π>=u u u r , ∴异面直线AM 与PB 所成角的大小为3π. 故选:C .4.(2020•梅河口市校级模拟)如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )A .23B .163C .6D .与点O 的位置有关【解答】解:如图:还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O 在平面11ADD A 上,高为2,所以四棱锥的体积为184233⨯⨯=,所以该几何体的体积为816833-=, 故选:B .5.(2020•东宝区校级模拟)如图,已知四面体ABCD 为正四面体,22AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .1B 2C .2D .22【解答】解:把正四面体补为正方体,如图,根据题意,//KL BC ,//LM GH ,,KL AL LM BL BC AB AD AB==, 所以KL AL =,LM BL =,故22KL LM AL BL +=+=, 2()22KL LM S KL LM +=⋅=截面…,当且仅当KL LM =时成立, 故选:C .6.(2020•宜昌模拟)已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( ) A .3πB .23π C .π D .43π 【解答】解:设圆心到截面距离为d ,截面半径为r ,由O ACM M AOC V V --=,即111112222233323AMC AOC S d S ∆∆==g g g g g g gg g ,2ACM d S ∆∴=, 122362ACM S ∆==g g故6d =221d r +=,213r ∴=,所以截面的面积为23r ππ=,故选:A .7.(2020•龙岩一模)已知四棱锥S ABCD -的所有顶点都在球O 的球面上,SA SB =,SA SB ⊥,底面ABCD 是等腰梯形,//AB CD ,且满足222AB AD DC ===,则球O 的表面积是( ) A .43πB 82C .4πD .8π【解答】解:底面ABCD 是等腰梯形,//AB CD ,且满足222AB AD DC ===, 可知底面ABCD 的外心为AB 的中点O ,到顶点的距离为1,因为SA SB =,SA SB ⊥,2AB =,所以2SA SB ==,AB 的中点O 到S 的距离为1, 所以O 是四棱锥的外接球的球心,外接球的半径为1, 所以球O 的表面积是:2414ππ⨯=. 故选:C .8.(2020•眉山模拟)已知腰长为3,底边长2为的等腰三角形ABC ,D 为底边BC 的中点,以AD 为折痕,将三角形ABD 翻折,使BD CD ⊥,则经过A ,B ,C ,D 的球的表面积为( ) A .10πB .12πC .16πD .20π【解答】解:如图所示,由题意可得:DB ,DC ,DA 两两相互垂直. 222318AD =-=.设经过A ,B ,C ,D 的球的半径为R . 则222411810R =++=.∴球的表面积10π=.故选:A .9.(2020•五华区校级模拟)已知圆锥SO 的底面半径为3,母线长为5.若球1O 在圆锥SO 内,则球1O 的体积的最大值为( ) A .92πB .9πC .323πD .12π【解答】解:设圆锥SO 的轴截面为等腰SAB ∆,则球1O 的体积最大时,球1O 的轴截面是SAB ∆ 的内切圆,所以11()22SAB S AB SO SA SB AB r ∆==++g g g , 解得:32r =,所以球1O 的体积的最大值为3439()322ππ=,故选:A.10.(2020•垫江县校级模拟)过球的一条半径的中点,作与该半径所在直线成30︒的平面,则所得截面的面积与球的表面积的比为()A.15256B.45256C.1564D.4564【解答】解:画大圆O,设半径为R,取半径OB的中点A,过A做截面,CD为直径,取中点E,连接OE,OE⊥截面CD,由题意可得30OAE∠=︒,所以33132224AE OA R R===g,在三角形OAC中,2222cosOC OA AC OA AC OAC=+-∠g g g,即222()2cos15022R RR AC AC=+-︒g g g,整理可得:2242330AC R AC R+-=g,解得:23124831584R RAC R-++-+==,所以331515444CE AC AE R R R-+=+=+=,所以所得截面的面积与球的表面积的比为2215()154464RRπ=,故选:C.11.(2020•内蒙古模拟)如图:空间四边形P ABC-中,13PM ANPB AC==,4PA BC==,3MN=,异面直线PA与BC所成角的余弦值为()A .14-B .164-C .164D .14【解答】解:如图,过N 作//ND BC ,交AB 于D ,并连接MD ,则AN ADAC AB=, Q13PM AN PB AC ==, ∴13PM AD PB AB ==, //MD AP ∴,23MD PA =,13DN BC =, ∴84,33MD DN ==,且3MN =, MDN ∴∠为异面直线PA 与BC 所成角或其补角,∴在MDN ∆中,根据余弦定理得,64169199cos 8464233MDN +-∠==-⨯⨯,∴异面直线PA 与BC 所成角的余弦值为164. 故选:C .12.(2020•凯里市校级模拟)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?“其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的体积为( ) A .140立方尺B .280立方尺C .2803立方尺 D .1403立方尺 【解答】解:由题意可得:这个四棱锥的体积128075833=⨯⨯⨯=立方尺,故选:C .13.(2020•龙岩一模)已知正三棱柱111ABC A B C -的底面边长为2,用一平面截此棱柱与侧棱1AA ,1BB ,1CC 分别交于M ,N ,Q ,若MNQ ∆为直角三角形,则MNQ ∆面积的最小值为( ) A .7B .3C .27D .6【解答】解:如图,以AC 中点O 为坐标原点,OB 所在直线为x 轴,AC 所在直线为y 轴, 建立空间直角坐标系,设(0M ,1-,)a ,(3N ,0,)b ,(0Q ,1,)c , 不妨设N 为直角,(3,1,)MN b a =-u u u u r ,(3,1,)QN b c =--u u u r, ∴()()20MN QN b a b c =--+=u u u u r u u u rg, 2211||||4()4()22S MN QN b a b c ==+-+-u u u u r u u u r g g 2221164[()()][()()]2b a bc b a b c =+-+-+-- 11616432++=…. 故选:B .14.(2020•咸阳二模)正四棱锥P ABCD -的五个顶点在同一个球面上,6,高为3,则它的外接球的表面积为( ) A .4πB .8πC .16πD .20π【解答】解:正四棱锥P ABCD -的五个顶点在同一个球面上,6,高为3,设它的外接球的半径为R ,球心为O ,底面ABCD 的中心为M . 设OM x =.则222(3)R x =+,3R x +=.解得:24R =. 可得球的表面积为16π. 故选:C .15.(2020•重庆模拟)如图,四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E ,F 分别在线段DB ,1DD 上,且112DE DF EB FD ==,G 在1CC 上且平面//AEF 平面1BD G ,则1(CGCC =)A .12B .13C .23D .14【解答】解:Q 四棱柱1111ABCD A B C D -中,ABCD 为平行四边形,E ,F 分别在线段DB ,1DD 上,且112DE DF EB FD ==, 1//EF BD ∴,平面11//ADD A 平面11BCC B ,G Q 在1CC 上且平面//AEF 平面1BD G ,//AF BG ∴,∴1113CG DE CC DD ==. 故选:B .16.(2020•邯郸模拟)如图一,在ABC ∆中,AB AC =,120A ∠=︒,D 为BC 中点,DE AC ⊥,将CDE ∆沿DE 翻折,得到直二面角C DE B --,连接BC ,F 是BC 中点,连接AF ,如图二,则下列结论正确的是()A .AD CD ⊥B .//AF DEC .DE ⊥平面ACED .//AF 平面CDE【解答】解:Q 在ABC ∆中,AB AC =,120A ∠=︒,D 为BC 中点,DE AC ⊥, 将CDE ∆沿DE 翻折,得到直二面角C DE B --,连接BC ,F 是BC 中点,连接AF ,DE AE ∴⊥,DE CE ⊥,AE CE E =Q I ,DE ∴⊥平面ACE .故选:C .17.(2020•福清市一模)已知正方体1111ABCD A B C D -的棱长为2,1AC ⊥平面α.平面α截此正方体所得的截面有以下四个结论: ①截面形状可能是正三角形 ②截面的形状可能是正方形 ③截面形状可能是正五边形 ④截面面积最大值为33 则正确结论的编号是( ) A .①④B .①③C .②③D .②④【解答】解:对①当α截此正方体所得截面为11B CD 时满足,故①正确.对②,由对称性得截面形状不可能为正方形,故②错误. 对③,由对称性得截面形状不可能是正五边形,故③错误. 对④,当截面为正六边形时面积最大,为36233=故选:A .18.(2020•道里区校级一模)已知三棱锥S ABC -的外接球为球O ,SA 为球O 的直径,且2SA =,若面SAC ⊥面SAB ,则三棱锥S ABC -的体积最大值为( )A .13B .23C .1D .2【解答】解:如图,连接OC ,OB ,则S ABC S OBC A OBC V V V ---=+, 两三棱锥高的和的最大值为2SA =. 要使三棱锥S ABC-的体积最大,则OBC ∆面积最大为111sin 111222OB OC BOC ⨯⨯⨯∠=⨯⨯⨯=. ∴三棱锥S ABC -的体积最大值为1112323⨯⨯=. 故选:A .19.(2020•焦作一模)某三棱柱的平面展开图如图,网格中的小正方形的边长均为1,K 是线段DI 上的点,则在原三棱柱中,AK CK +的最小值为( )A .65B .73C .45D .89【解答】解:将展开图折成立体图形,如图①,然后再把空间最短距离问题转化为平面两点间的距离最短问题,如图②所示. 因为8AJ =,3CJ =,所以223873AC =+=,即AK CK +的最小值为73. 故选:B .20.(2020•吉林二模)等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD ∆沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A 3B 2C 3D 23【解答】解:设E 为BD 中点,连接AE 、CE , 由题可知AE BD ⊥,CE BD ⊥, 所以BD ⊥平面AEC ,过A 作AO CE ⊥于点O ,连接DO ,则AO ⊥平面BDC , 所以ADO ∠即为直线AD 与平面BCD 所成角的平面角, 所以2sin 2AOADO AD∠==,可得32AO = 在AOE ∆中可得3OE =, 又132OC BD ==,即点O 与点C 重合,此时有AC ⊥平面BCD , 过C 作CF AE ⊥于点F ,又BD ⊥平面AEC ,所以BD CF ⊥, 所以CF ⊥平面ABD ,从而CAE ∠即为直线AC 与平面ABD 所成角,33sin 333CE CAE AE ∠===. 故选:A .21.(2020•眉山模拟)如图,在长方体1111ABCD A B C D -中,1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r,F 为MC 的中点.(1)求证://EF 平面1A DC ; (2)求三棱锥1C FCN -的体积;(3)求直线1A D 与直线CF 所成角的余弦值.【解答】(1)证明:在长方体1111ABCD A B C D -中,建立如图所示空间直角坐标系, 由1224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r ,得(0D ,0,0),(1E ,0,2),(0F ,72,1),1(2A ,0,2),(0C ,4,0),1(2,0,2)DA =u u u u r ,(0DC =,4,0),(1EF =-u u u r ,72,1)-.设平面1A DC 的一个法向量为(,,)n x y z =r.由122040n DA x z n DC y ⎧=+=⎪⎨==⎪⎩u u u u r r g u u u r r g ,取1z =-,得(1,0,1)n =-r , Q 0EF n =u u u r rg ,且EF ⊂/平面1A DC ,//EF ∴平面1A DC ;(2)解:设F 到平面1CC N 的距离为d ,则12d =. ∴111111111233226C FCN F CC N CC N V V S d --===⨯⨯⨯⨯=V g ; (3)解:由(1)知,1(2,0,2)DA =u u u u r,又1(0,,1)2CF =-u u u r ,11110cos ,||||5222DA CF DA CF DA CF ∴<>===⨯u u u u r u u u ru u u u r u u u r g u u uu r u u u r g . ∴直线1A D 与直线CF 所成角的余弦值10.22.如图,在长方体1111ABCD A B C D -中,1:224AB BC AA ===,E 为11A D 的中点,N 为BC 的中点,M 为线段11C D 上一点,且满足11114MC D C =u u u u r u u u u u r,F 为MC 的中点.(1)求证://EF 平面1A DC ; (2)求二面角1N AC F --的余弦值.【解答】解:(1)证明:作1DD 的中点H ,连接EH ,FH , 又E 为11A D 的中点,EH ∴为△11A DD 的中位线,1//EH A D ∴,又F 为MC 的中点,FH ∴为梯形1D DCM 的中位线,//FH CD ∴,在平面1A DC 中,1A D CD D =I ,在平面EHF 中,EH FH H =I ,∴平面1//A DC 平面EHF ,又EF 在平面EHF 内, //EF ∴平面1A DC .(2)以点D 为坐标原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则17(1,4,0),(2,0,2),(0,4,0),(0,,1)2N A C F ,设平面1A CN 的一个法向量为(,,)m x y z =r ,则11(,,)(1,4,2)420(,,)(2,4,2)2420m A N x y z x y z m AC x y z x y z ⎧=--=-+-=⎪⎨=--=-+-=⎪⎩u u u u r r g g u u u u rr g g ,可取(0,1,2)m =r,同理可求得平面1A FC 的一个法向量为(3,2,1)n =r,∴270cos ,||||m n m n m n <>==r r g r rr r ,又二面角1N AC F --的平面角为钝角,故二面角1N AC F --的余弦值为27023.(2020•宜昌模拟)如图,在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,22MB MD ==.(1)证明:AM ⊥平面ABCD ;(2)若//CD AB ,2CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.【解答】(1)证明:Q 在四棱锥M ABCD -中,AB AD ⊥,2AB AM AD ===,22MB MD ==222AB AM BM ∴+=,222AD AM DM +=,AB AM ∴⊥,AD AM ⊥,AD AB A =Q I ,AM ∴⊥平面ABCD .(2)解:AB AD ⊥Q ,AM ⊥平面ABCD ,∴以A 为原点,AD 为x 轴,AM 为y 轴,AB 为z 轴,建立空间直角坐标系,//CD AB Q ,2CD AB =,E 为线段BM 上一点,且2BE EM =,2AB AM AD ===,22MB MD ==.(0E ∴,43,2)3,(2C ,0,1),(2D ,0,0),(0B ,0,2),(0M ,2,0), (2EC =u u u r ,43-,1)3,(2BD =u u u r ,0,2)-,(0BM =u u u u r ,2,2)-,设平面BDM 的法向量(m x =r,y ,)z ,则220220m BD x z m BM y z ⎧=-=⎪⎨=-=⎪⎩u u u r r g u u u u r r g ,取1x =,得(1m =r ,1,1), 设直线EC 与平面BDM 所成角为θ, 则直线EC 与平面BDM 所成角的正弦值为:||159sin ||||5339m EC m EC θ===u u u r r g u u u r r g g.24.(2020•五华区校级模拟)如图所示的几何体中,正方形ABCD 所在平面垂直于平面APBQ ,四边形APBQ 为平行四边形,G 为PC 上一点,且BG ⊥平面APC ,2AB =.(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥P ABC -体积最大时,求平面APC 与平面BCQ 所成二面角的正弦值.【解答】(1)证明:因为平面ABCD ⊥平面APBQ ,平面APBQ ⋂平面ABCD AB =, 四边形ABCD 为为正方形,即BC AB ⊥,BC ⊂平面ABCD , 所以BC ⊥平面APBQ ,又因为AP ⊂平面APBQ ,所以AP BC ⊥, 因为BG ⊥面APC ,AP ⊂平面PAC , 所以AP BG ⊥,因为BC BG B =I ,BC ,BG ⊂平面PBC , 所以AP ⊥平面PBC , 因为AP ⊂平面PAD , 所以平面PAD ⊥平面PBC .(2)解:111323P ABC C APB V V PA PB BC PA PB --===g g g g ,求三棱锥P ABC -体积的最大值,只需求PA PB g 的最大值. 令PA m =,PB n =, 由(1)知AP PB ⊥,所以224m n +=,当且仅当2m n = 即2PA PB =时,22112()3323P ABC minm n V mn -+==g …. 以AB 中点O 为坐标原点建立空间直角坐标系如图,则 (0A ,1-,0),(0B ,1,0),(0C ,1,2),(1P ,0,0). 设1(,,)n x y z =u u r为平面APC 的一个法向量,则110220n AP x y n BP x z ⎧=+=⎪⎨=+=⎪⎩u u r u u u r g u u r u u u r g ,可取1x =,则1(1,1,1)n =-u u r,因为四边形APBQ 为平行四边形,APB ∆为等腰直角三角形,所以四边形APBQ 为正方形,取平面BCQ 的一个法向量为2(1,1,0)n BP ==-u u r u u u r,所以1cos n <u u r ,1221263||||n n n n n >==u u r u u ru u r g u u r u u r g ,所以1sin n <u u r ,233n >=u u r ,即平面APC 与平面BCQ 所成二面角的正弦值为3325.(2020•龙岩一模)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,4AB =,2BC CD ==,顶点1D 在底面ABCD 内的射影恰为点C .(1)求证:BC ⊥平面1ACD ;(2)若直线1DD 与底面ABCD 所成的角为4π,求平面11ABC D 与平面ABCD 所成锐二面角的余弦值.【解答】解:(1)证明:如图,连接1D C ,则1D C ⊥平面ABCD , BC ⊂Q 平面ABCD ,1BC D C ∴⊥,在等腰梯形ABCD 中,连接AC ,过点C 作CG AB ⊥于点G ,4AB =Q ,2BC CD ==,//AB CD ,则3AG =,1BG =,CG =AG ∴=, 因此满足22216AC BC AB +==,BC AC ∴⊥, 又1D C ,AC ⊂平面1AD C ,1D C AC C =I , BC ∴⊥平面1AD C .(2)解:由(1)知AC ,BC ,1D C 两两垂直, 1D C ⊥Q 平面ABCD ,∴14D DC π∠=,12D C CD ∴==,以C 为坐标原点,分别以CA ,CB ,1CD ,所在直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系,则(0C ,0,0),A ,0,0),(0B ,2,0),1(0D ,0,2),∴(AB =-u u u r ,2,0),1(AD =-u u u u r 0,2),设平面11ABC D 的法向量(n x =r,y ,)z ,由12020AB n y AD n z ⎧=-+=⎪⎨=-+=⎪⎩u u u r r g u u u u r r g ,取1x =,得n =r , 又1(0CD =u u u u r ,0,2)为平面ABCD 的一个法向量,设平面11ABC D 与平面ABCD 所成锐二面角为θ,则11||cos 7||||CD n CD n θ===u u u u r rg u u u u r r g .∴平面11ABC D 与平面ABCD所成锐二面角的余弦值为7.。

新高考地区专用2020_2022三年高考数学真题分项汇编专题04立体几何

新高考地区专用2020_2022三年高考数学真题分项汇编专题04立体几何

专题04 立体几何1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.【答案】C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【解析】依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0k m2=140×106m2,下底面积S'=180.0k m2=180×106m2,∴V=13ℎ(S+S'+√S S')=13×9×(140×106+180×106+√140×180×1012)¿3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,814]C.[274,643]D.[18,27]【答案】C【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【解析】∵ 球的体积为36π,所以球的半径R=3,设正四棱锥的底面边长为2a,高为ℎ,则l2=2a2+ℎ2,32=2a2+(3−ℎ)2,所以6ℎ=l2,2a2=l2−ℎ2所以正四棱锥的体积V=13Sℎ=13×4a2×ℎ=23×(l2−l436)×l26=19(l4−l636),所以V'=19(4l3−l56)=19l3(24−l26),当3≤l≤2√6时,V'>0,当2√6<l≤3√3时,V'<0,所以当l=2√6时,正四棱锥的体积V取最大值,最大值为64 3,又l=3时,V=274,l=3√3时,V=814,所以正四棱锥的体积V的最小值为274,所以该正四棱锥体积的取值范围是[274,643].故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A.100πB.128πC.144πD.192π【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径r1,r2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【解析】设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=3√3sin60∘,2r2=4√3sin60∘,即r 1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=√R2−9,d2=√R2−16,故|d1−d2|=1或d1+d2=1,即|√R2−9−√R2−16|=1或√R2−9+√R2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.4.【2021年新高考1卷】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .B.C.D.【答案】B【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【解析】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.5.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.B.C.D.【答案】D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【解析】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积,上底面面积,所以该棱台的体积.故选:D. 6.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )A.20°B.40°C.50°D.90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.【解析】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知、根据线面垂直的定义可得..由于,所以,由于,所以,也即晷针与点处的水平面所成角为.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.7.【2022年新高考1卷】已知正方体ABCD−A1B1C1D1,则( )A.直线BC1与D A1所成的角为90°B.直线BC1与C A1所成的角为90°C.直线BC1与平面B B1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【分析】数形结合,依次对所给选项进行判断即可.【解析】如图,连接B1C、BC1,因为D A1/¿B1C,所以直线BC1与B1C所成的角即为直线BC1与D A1所成的角,因为四边形B B1C1C为正方形,则B1C⊥BC1,故直线BC1与D A1所成的角为90°,A 正确;连接A1C,因为A1B1⊥平面B B1C1C,BC1⊂平面B B1C1C,则A1B1⊥B C1,因为B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1C,又A1C⊂平面A1B1C,所以BC1⊥C A1,故B正确;连接A1C1,设A1C1∩B1D1=O,连接BO,因为B B1⊥平面A1B1C1D1,C1O⊂平面A1B1C1D1,则C1O⊥B1B,因为C1O⊥B1D1,B1D1∩B1B=B1,所以C1O⊥平面B B1D1D,所以∠C1BO为直线BC1与平面B B1D1D所成的角,设正方体棱长为1,则C1O=√22,BC1=√2,sin∠C1BO=C1OB C1=12,所以,直线BC1与平面B B1D1D所成的角为30∘,故C错误;因为C1C⊥平面ABCD,所以∠C1BC为直线BC1与平面ABCD所成的角,易得∠C1BC=45∘,故D正确.故选:ABD8.【2022年新高考2卷】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则( )A.V3=2V2B.V3=V1 C.V3=V1+V2D.2V3=3V1【答案】CD【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=VA−EFM+VC−EFM计算出V3,依次判断选项即可.【解析】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√2(√)2√6a,FM=√2(√)2√3a,EF=√2(√)23a,E M2+F M2=E F2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.9.【2021年新高考1卷】在正三棱柱中,,点满足,其中,,则( )A .当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面【答案】BD【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数;对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数.【解析】易知,点在矩形内部(含边界).对于A,当时,,即此时线段,周长不是定值,故A错误;对于B,当时,,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.对于C,当时,,取,中点分别为,,则,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则,,,所以或.故均满足,故C错误;对于D,当时,,取,中点为.,所以点轨迹为线段.设,因为,所以,,所以,此时与重合,故D正确.故选:BD.【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.10.【2021年新高考2卷】如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )A.B.C.D.【答案】BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线构造所考虑的线线角后可判断AD的正误.【解析】设正方体的棱长为,对于A,如图(1)所示,连接,则,故(或其补角)为异面直线所成的角,在直角三角形,,,故,故不成立,故A错误.对于B,如图(2)所示,取的中点为,连接,,则,,由正方体可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正确.对于C,如图(3),连接,则,由B的判断可得,故,故C正确.对于D,如图(4),取的中点,的中点,连接,则,因为,故,故,所以或其补角为异面直线所成的角,因为正方体的棱长为2,故,,,,故不是直角,故不垂直,故D错误.故选:BC.11.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.【答案】.【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【解析】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面A1B1C1D1,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.12.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N 分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________【答案】【分析】利用计算即可.【解析】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以,故答案为:【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 13.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,A A1=AB,平面A1BC⊥平面AB B1A1,求二面角A−BD−C 的正弦值.【答案】(1)√2;(2)√3 2【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC⊥平面AB B1A1,建立空间直角坐标系,利用空间向量法即可得解.【解析】(1)在直三棱柱ABC−A1B1C1中,设点A到平面A1BC的距离为h,则V A−A1BC=13S△A1BC⋅ℎ=2√23ℎ=VA1−ABC=13S△ABC⋅A1A=13VABC−A1B1C1=43,解得ℎ=√2,所以点A到平面A1BC的距离为√2;(2)取A1B的中点E,连接AE,如图,因为A A1=AB,所以AE⊥A1B,又平面A1BC⊥平面AB B1A1,平面A1BC∩平面AB B1A1=A1B,且AE⊂平面AB B1A1,所以AE⊥平面A1BC,在直三棱柱ABC−A1B1C1中,B B1⊥平面ABC,由BC⊂平面A1BC,BC⊂平面ABC可得AE⊥BC,B B1⊥BC,又AE,B B1⊂平面AB B1A1且相交,所以BC⊥平面AB B1A1,所以BC,BA,B B1两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以A A 1=AB =2,A 1B =2√2,所以BC =2,则A (0,2,0),A 1(0,2,2),B (0,0,0),C (2,0,0),所以A 1C 的中点D (1,1,1),则⃗B D =(1,1,1),⃗B A =(0,2,0),⃗BC =(2,0,0),设平面ABD 的一个法向量⃗m =(x ,y ,z ),则{⃗m ⋅⃗BD =x +y +z =0⃗m ⋅⃗BA =2y =0,可取⃗m =(1,0,−1),设平面BDC 的一个法向量⃗n =(a ,b ,c ),则{⃗m ⋅⃗BD =a +b +c =0⃗m ⋅⃗BC =2a =0,可取⃗n=(0,1,−1),则cos 〈⃗m ,⃗n 〉=⃗m ⋅⃗n¿⃗m ∨⋅∨⃗n ∨¿=√√=12¿,所以二面角A −BD−C 的正弦值为√1−(12)2=√32.14.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,P A =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE /¿平面P AC ;(2)若∠ABO =∠CBO =30°,PO =3,P A =5,求二面角C −AE −B 的正弦值.【答案】(1)证明见解析;(2)11 13【分析】(1)连接BO并延长交AC于点D,连接OA、PD,根据三角形全等得到OA=OB,再根据直角三角形的性质得到AO=DO,即可得到O为BD的中点从而得到OE//PD,即可得证;(2)过点A作Az//OP,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;【解析】(1)证明:连接BO并延长交AC于点D,连接OA、PD,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,AO,BO⊂平面ABC,所以PO⊥AO、PO⊥BO,又P A=PB,所以△POA≅△POB,即OA=OB,所以∠OAB=∠OBA,又AB⊥AC,即∠BAC=90°,所以∠OAB+∠OAD=90°,∠OBA+∠ODA=90°,所以∠ODA=∠OAD所以AO=DO,即AO=DO=OB,所以O为BD的中点,又E为PB的中点,所以OE//PD,又OE⊄平面P AC,PD⊂平面P AC,所以OE//平面P AC(2)解:过点A作Az//OP,如图建立平面直角坐标系,因为PO=3,AP=5,所以OA=√A P2−P O2=4,又∠OBA=∠OBC=30°,所以BD=2OA=8,则AD=4,AB=4√3,所以AC=12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C(0,12,0),所以E(3√3,1,32),则⃑AE=(3√3,1,32),⃑AB=(4√3,0,0),⃑AC=(0,12,0),设平面AEB的法向量为⃑n=(x,y,z),则¿,令z=2,则y=−3,x=0,所以⃑n=(0,−3,2);设平面AEC的法向量为⃑m=(a,b,c),则¿,令a=√3,则c=−6,b=0,所以⃑m=(√3,0,−6);所以cos⟨⃑n,⃑m⟩=⃑n⋅⃑m|⃑n||⃑m|=√√−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为11 13;15.【2021年新高考1卷】如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【解析】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.16.【2021年新高考2卷】在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【分析】(1)取的中点为,连接,可证平面,从而得到面面.(2)在平面内,过作,交于,则,建如图所示的空间坐标系,求出平面、平面的法向量后可求二面角的余弦值.【解析】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量,则即,取,则,故.而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.17.【2020年新高考1卷(山东卷)】如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】(1)证明见解析;(2).【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面所成角的正弦值的最大值.【解析】(1)在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面.(2)[方法一]【最优解】:通性通法因为两两垂直,建立空间直角坐标系,如图所示:因为,设,设,则有,设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB与平面QCD所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.[方法二]:定义法如图2,因为平面,,所以平面.在平面中,设.在平面中,过P点作,交于F,连接.因为平面平面,所以.又由平面,平面,所以平面.又平面,所以.又由平面平面,所以平面,从而即为与平面所成角.设,在中,易求.由与相似,得,可得.所以,当且仅当时等号成立.[方法三]:等体积法如图3,延长至G,使得,连接,,则,过G点作平面,交平面于M,连接,则即为所求.设,在三棱锥中,.在三棱锥中,.由得,解得,当且仅当时等号成立.在中,易求,所以直线PB与平面QCD所成角的正弦值的最大值为.【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB与平面QCD所成角的正弦值即为平面的法向量与向量的夹角的余弦值的绝对值,即,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB与平面QCD所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用,将线转移,再利用等体积法求得点面距,利用直线PB与平面QCD所成角的正弦值即为点面距与线段长度的比值的方法,即可求出.18.【2020年新高考2卷(海南卷)】如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为.(1)证明:平面PDC;(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值.【答案】(1)证明见解析;(2).【分析】(1)利用线面平行的判定定理以及性质定理,证得,利用线面垂直的判定定理证得平面,从而得到平面;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得,即可得到直线与平面所成角的正弦值.【解析】(1)在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面;(2)如图建立空间直角坐标系,因为,则有,设,则有,因为QB=,所以有设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于所以直线与平面所成角的正弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编11 立体几何

近五年(2017-2021)高考数学真题分类汇编十一、立体几何一、多选题1.(2021·全国高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P二、单选题2.(2021·浙江高考真题)如图已知正方体1111ABCD A BC D -,M ,N 分别是1A D ,1D B 的中点,则( )A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCDB .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDDB C .直线1A D 与直线1D B 相交,直线//MN 平面ABCDD .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDDB 3.(2021·浙江高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .4.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A .12BC .4D 5.(2021·全国高考真题(文))在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .6.(2021·全国高考真题(理))在正方体1111ABCD A BC D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π67.(2021·全国高考真题)圆锥的母线长为( )A .2B .C .4D .8.(2020·天津高考真题)若棱长为面积为( )A .12πB .24πC .36πD .144π 9.(2020·北京高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .6B .6+C .12D .12+10.(2020·浙江高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .611.(2020·海南高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°12.(2020·全国高考真题(文))下图为某几何体的三视图,则该几何体的表面积是( )A .B .C .D .13.(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 14.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .14B .12C .14D .1215.(2020·全国高考真题(理))已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .216.(2020·全国高考真题(理))如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 17.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32418.(2019·全国高考真题(理))如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线19.(2019·浙江高考真题)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .3220.(2019·浙江高考真题)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<21.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 22.(2019·全国高考真题(文))设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面23.(2019·上海高考真题)已知平面αβγ、、两两垂直,直线a b c 、、满足:,,a b c αβγ⊆⊆⊆,则直线a b c 、、不可能满足以下哪种关系A .两两垂直B .两两平行C .两两相交D .两两异面 24.(2018·浙江高考真题)已知直线,m n 和平面α,n ⊂α,则“//m n ”是“//m α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件25.(2018·上海高考真题)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1626.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤ 27.(2018·全国高考真题(文))在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为A .8B .C .D .28.(2018·北京高考真题(理))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.429.(2018·全国高考真题(文))某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.B.C.3D.2,,,是同一个半径为4的球的球面上四点,30.(2018·全国高考真题(理))设A B C D体积的最大值为ABC为等边三角形且其面积为D ABCA.B.C.D.31.(2018·全国高考真题(理))中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .32.(2018·浙江高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8 33.(2018·全国高考真题(文))在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2BCD .2 34.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π35.(2018·全国高考真题(理))在长方体1111ABCD A BC D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为A .15BCD .2 36.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 37.(2017·全国高考真题(文))如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面 MNQ 不平行的是( )A .B .C .D .未命名未命名三、解答题38.(2021·全国高考真题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.39.(2021·全国高考真题(文))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.40.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.41.(2021·全国高考真题(文))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.42.(2021·全国高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 43.(2021·全国高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.44.(2020·海南高考真题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB PB 与平面QCD 所成角的正弦值.45.(2020·天津高考真题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.46.(2020·北京高考真题)如图,在正方体1111ABCD A BC D -中, E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.47.(2020·浙江高考真题)如图,三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.48.(2020·海南高考真题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.49.(2020·江苏高考真题)在三棱锥A—BCD中,已知CB=CD BD=2,O为BD 的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.50.(2020·江苏高考真题)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F 分别是AC,B1C的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.51.(2020·全国高考真题(理))如图,在长方体1111ABCD A BC D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A--的正弦值. 52.(2020·全国高考真题(文))如图,在长方体1111ABCD A BC D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.53.(2020·全国高考真题(文))如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC 是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO,求三棱锥P−ABC的体积. 54.(2020·全国高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为=.ABC是底面的内接正三角形,P为DO上一点,PO=.底面直径,AE AD(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E55.(2020·全国高考真题(文))如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.56.(2020·全国高考真题(理))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.57.(2019·江苏高考真题)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC 的中点,AB=BC.求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .58.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 59.(2019·全国高考真题(理))图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B−CG−A 的大小.60.(2019·全国高考真题(文))如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.61.(2019·全国高考真题(理))如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.62.(2019·上海高考真题)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ======(1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角;(2)求P ABC -的体积.63.(2018·上海高考真题)已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.64.(2018·江苏高考真题)在平行六面体1111ABCD A BC D -中,1AA AB =,111AB B C ⊥. 求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.65.(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.66.(2018·全国高考真题(文))如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.67.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.68.(2018·北京高考真题(文))如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .69.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.70.(2018·全国高考真题(理))如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.71.(2018·浙江高考真题)如图,已知多面体ABC-A 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.72.(2018·全国高考真题(文))如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.73.(2018·全国高考真题(文))如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.74.(2017·山东高考真题(文))由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.四、填空题75.(2021·全国高考真题(理))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).76.(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为30 则该圆锥的侧面积为________.77.(2020·海南高考真题)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________78.(2020·海南高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D BCC1B1的交线长为________.179.(2020·江苏高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.80.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.81.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝82.(2019·江苏高考真题)如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.83.(2019·北京高考真题(理))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.84.(2019·北京高考真题(理))已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.85.(2019·全国高考真题(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB=BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .86.(2019·天津高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.87.(2019·全国高考真题(文))已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________. 88.(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.89.(2018·全国高考真题(文))已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30,若SAB 的面积为8,则该圆锥的体积为__________.90.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB 的面积为面积为__________.91.(2018·天津高考真题(理))已知正方体1111ABCD A BC D -的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH 的体积为__________.五、双空题92.(2019·全国高考真题(文))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.近五年(2017-2021)高考数学真题分类汇编十一、立体几何(答案解析)1.BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫ ⎪⎝⎭,则11A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【小结】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.2.A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A BC D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A BC D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【小结】关键点小结:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 3.A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A BC D -,其高为1,底面为等腰梯形ABCD ,1=,故111113122ABCD A B C D V -=⨯=, 故选:A.4.A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=则ABC ,又球的半径为1, 设O 到平面ABC 的距离为d ,则2d ==所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=. 故选:A.【小结】关键小结:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.D【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【解析】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D6.D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D7.B【分析】 设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =故选:B.8.C【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【小结】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.9.D【分析】首先确定几何体的结构特征,然后求解其表面积即可.【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【小结】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10.A【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为: 11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【小结】本小题主要考查根据三视图计算几何体的体积,属于基础题.11.B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【小结】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.12.C【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【小结】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.13.A【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【小结】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 14.C【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.。

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题理

全国通用2020_2022三年高考数学真题分项汇编专题06立体几何解答题理

06 立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√5.5【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=1,2,BD=√DE2+BE2=√3,故DE=√32所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃗⃗⃗⃗⃗ =(−1,0,√3),BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),DP ⃗⃗⃗⃗⃗ =(0,0,√3), 设平面PAB 的法向量n⃗ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃗ =(√3,1,1), 则cos〈n ⃗ ,DP⃗⃗⃗⃗⃗ 〉=n⃗ ⋅DP ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值. 【答案】(1)证明过程见解析 (2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE . 以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃗⃗⃗⃗⃗ =(−1,0,1),AB ⃗⃗⃗⃗⃗ =(−1,√3,0), 设平面ABD 的一个法向量为n⃗ =(x,y,z ), 则{n ⃗ ⋅AD ⃗⃗⃗⃗⃗ =−x +z =0n ⃗ ⋅AB⃗⃗⃗⃗⃗ =−x +√3y =0 ,取y =√3,则n ⃗ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃗⃗⃗⃗⃗ =(1,√34,34),所以cos⟨n ⃗ ,CF ⃗⃗⃗⃗⃗ ⟩=n ⃗ ⋅CF⃗⃗⃗⃗⃗ |n ⃗ ||CF⃗⃗⃗⃗⃗ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃗ ,CF⃗⃗⃗⃗⃗ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.3.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃗⃗⃗⃗⃗⃗ =(1,1,1),BA ⃗⃗⃗⃗⃗ =(0,2,0),BC ⃗⃗⃗⃗⃗ =(2,0,0), 设平面ABD 的一个法向量m ⃗⃗ =(x,y,z),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =x +y +z =0m ⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =2y =0,可取m⃗⃗ =(1,0,−1), 设平面BDC 的一个法向量n ⃗ =(a,b,c),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =a +b +c =0m ⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2a =0, 可取n⃗ =(0,1,−1), 则cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ |=√2×√2=12,所以二面角A −BD −C 的正弦值为√1−(12)2=√32.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE//PD ,即可得证; (2)过点A 作Az//OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE//PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE//平面PAC(2)解:过点A 作Az//OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃗⃗⃗⃗⃗ =(3√3,1,32),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AC ⃗⃗⃗⃗⃗ =(0,12,0), 设平面AEB 的法向量为n ⃗ =(x,y,z ),则{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3x +y +32z =0n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃗ =(0,−3,2);设平面AEC 的法向量为m⃗⃗ =(a,b,c ),则{m ⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3a +b +32c =0m ⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃗⃗ =(√3,0,−6); 所以cos ⟨n ⃗ ,m ⃗⃗ ⟩=n⃗ ⋅m ⃗⃗⃗ |n ⃗ ||m ⃗⃗⃗ |=√13×√39=−4√313设二面角C −AE −B 为θ,由图可知二面角C −AE −B 为钝二面角, 所以cosθ=−4√313,所以sinθ=√1−cos 2θ=1113故二面角C −AE −B 的正弦值为1113;5.【2021年甲卷理科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点, 易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-=,所以BF ED ⊥.(2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅==当12a =时,2224a a -+取最小值为272, 此时cos θ=所以()minsin θ=112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-. 又1111BD B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即11B H =1B H =所以DH === 则11sin B D DHB DH∠===所以,当12t =时,()1min sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F中,DF =在Rt ECF中,EF D作1B N 的平行线交MN 于点Q .在Rt DEQ △中,DE =在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅sin DFE ∠=1sin 2DFESDF EF DFE =⋅∠13,2B NFS = 1cos B NF DFES Sθ==,sin θ=当12t =,即112B D =,面11BBC C 与面DFE 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维. 第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.6.【2021年乙卷理科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1(2【解析】【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长; (2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得a =2BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,DB AM由1122=⋅=⋅DABSDA AB DB AN ,得=t ,解得212t =,所以2==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-, 由111120220m AMy m AP z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =()2,1,2m =,设平面PBM 的法向量为()222,,n x yz =,BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,7m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得=HG在Rt AHG 中,==AH HG =AG所以,sin AH AGH AG ∠==A PMB -- 【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.7.【2021年新高考1卷】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m=,所以cos ,2n OA ==,解得1m =.又点C 到平面ABD112132A BCD C ABD V V--==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角 如图所示,作EGBD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO SOA A -==⨯⨯=⨯⨯⨯⨯⨯=[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.② 将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.8.【2021年新高考2卷】在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-. 设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;(2)方法一:过O 作ON ∥BC 交AB 于点N ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的一个法向量n ,平面PCE 的一个法向量为m ,利用公式cos ,||||n mm n n m ⋅<>=计算即可得到答案. 【详解】(1)[方法一]:勾股运算法证明由题设,知DAE △为等边三角形,设1AE =, 则DO =,1122CO BO AE===,所以PO ==PC PB PA ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA = 22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法 不妨设AB =4sin 60==︒=ABAE AD ,由圆锥性质知DO ⊥平面ABC ,所以==DO ==PO O 是ABC 的外心,因此AE BC ⊥.在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点,OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP =,(=--BP ,(3,=-CP . 故0220⋅=-+=AP BP ,0220⋅=-+=AP CP . 所以AP BP ⊥,AP CP ⊥.又BP CP P =,故AP ⊥平面PBC .[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥. 因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥. 又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =,所以BC ⊥平面PAE .又因为PA ⊂平面PAE ,所以PA BC ⊥.设AE BC F =,则F 为BC 的中点,连结PF .设DO a =,且PO ,则AF =,PA =,12PF a =. 因此222+=PA PF AF ,从而PA PF ⊥. 又因为PFBC F =,所以PA ⊥平面PBC .[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO . 以,,OA OB OD 为基底,OD ⊥平面ABC ,则66=+=-+AP AO OP OA OD , 66=+=-+BP BO OP OB OD ,且212OA OB R ⋅=-,0OA OD OB OD ⋅=⋅=所以6666⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OD OB OD26610666⋅-⋅-⋅+=OA OB OA OD OB OD OD . 故0AP BP ⋅=.所以AP BP ⊥,即AP BP ⊥. 同理AP CP ⊥.又BP CP P =,所以AP ⊥平面PBC . (2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E PB C ---,1(,44PC =--,1()44PB =-,1(,0,24PE =--,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x 111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得22z y ==所以3(1,3m =故2cos ,||||3n mmn n m ⋅<>===⋅⨯设二面角B PC E --的大小为θ,由图可知二面角为锐二面角,所以cos θ=[方法二]【最优解】:几何法 设=BCAE F ,易知F 是BC 的中点,过F 作∥FG AP 交PE 于G ,取PC 的中点H ,联结GH ,则∥HF PB .由PA ⊥平面PBC ,得FG ⊥平面PBC . 由(1)可得,222BC PB PC =+,得PB PC ⊥. 所以FH PC ⊥,根据三垂线定理,得GH PC ⊥. 所以GHF ∠是二面角B PC E --的平面角. 设圆O 的半径为r ,则3sin602︒==AF AB r ,2AE r =,12=EF r ,13EF AF =,所以14=FG PA ,1122==FH PB PA ,12=FG FH . 在Rt GFH 中,1tan 2∠==FG GHF FH ,cos ∠=GHF . 所以二面角B PC E --.[方法三]:射影面积法如图所示,在PE 上取点H ,使14HE PE =,设BC AE N =,连结NH .由(1)知14NE AE =,所以∥NH PA .故NH ⊥平面PBC . 所以,点H 在面PBC 上的射影为N .故由射影面积法可知二面角B PC E --的余弦值为cos PCN PCHS θS=.在PCE中,令==PC PE 1CE =,易知=PCES .所以335416PCH PCES S ==.又1328PCNPBCSS ==,故3cos PCN PCHS θS ===所以二面角BPC E --.【整体点评】本题以圆锥为载体,隐含条件是圆锥的轴垂直于底面,(1)方法一:利用勾股数进行运算证明,是在给出数据去证明垂直时的常用方法;方法二:选择建系利用空间向量法,给空间立体感较弱的学生提供了可行的途径;方法三:利用线面垂直,结合勾股定理可证出;方法四:利用空间基底解决问题,此解法在解答题中用的比较少;(2)方法一:建系利用空间向量法求解二面角,属于解答题中求角的常规方法;方法二:利用几何法,通过三垂线法作出二面角,求解三角形进行求解二面角,适合立体感强的学生;方法三:利用射影面积法求解二面角,提高解题速度.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP =,由(1)BC ⊥平面1A AMN ,可得QPN ∠为1B E 与平面1A AMN 所成角,即可求得答案. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB , 1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥, 又侧面11BB C C 为矩形, 1BC BB ∴⊥, 1//MN BB ,MN BC ⊥,由MN AM M ⋂=,,MN AM ⊂平面1A AMN , ∴BC ⊥平面1A AMN ,又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴ ,//EF BC ∴,又BC ⊥平面1A AMN , ∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F , ∴平面11EB C F ⊥平面1A AMN .(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B AC 于点11,E F ,联结11,,,AE AO AF NP , 由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11=AOE F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F .又因平面11AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11∥EB AE .因为111B C A N ⊥,11B C MN ⊥,1A N MN N =,所以11B C ⊥面1AA NM .又因1111∥E F B C ,所以11⊥E F 面1AA NM , 所以1AE 与平面1AA NM 所成的角为1∠E AO .令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB . 在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1==AE所以111sin ∠==E O E AO AE 由于11∥EB AE ,直线1B E 与平面1A AMN[方法二]【最优解】:几何法 因为//AO 平面11EFC B ,平面11EFC B 平面1=AMNA NP ,所以∥AO NP .因为//ON AP ,所以四边形OAPN 为平行四边形.由(Ⅰ)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线. 所以1B E 在平面1AMNA 的射影为NP . 从而1B E 与NP 所成角的正弦值即为所求.在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG . 在直角三角形1B EG中,1sin ∠==B EG [方法三]:向量法由(Ⅰ)知,11B C ⊥平面1A AMN ,则11B C 为平面1A AMN 的法向量.因为∥AO 平面11EB C F ,AO ⊆平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =, 所以//AO PN .由(Ⅰ)知11,=∥AA MN AA MN ,即四边形APNO 为平行四边形,则==AO NP AB . 因为O 为正111A B C △的中心,故13==AP ON AM . 由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++=PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C . 设直线1B E 与平面1A AMN 所成角为θ,AB a ,则21111111sin θ⋅===aEB B C EB B C a 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AA O 中,1AA =以向量1,,AA AB AC 为基底, 从而1,2π=AA AB ,1,2π=AA AC ,,3π=AB AC .1111123=++=+EB EA AA A B AB AA ,BC AC AB =-, 则12103=EB ,||2BC =. 所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=-AB AC AB .由(Ⅰ)知BC ⊥平面1A AMN ,所以向量BC 为平面1A AMN 的法向量. 设直线1B E 与平面1A AMN 所成角θ,则11110sin cos ,10||θ⋅===EB BC EB BC EB BC 故直线1B E 与平面1A AMN 所成角的正弦值为sin θ= 【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法; 方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.11.【2020年新课标3卷理科】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)方法一:连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)方法一:以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,如图1所示.在长方体1111ABCD A B C D -中,//,BF CG BF CG =,所以四边形BCGF 为平行四边形,则//,BC FG BC FG =,而,//BC AD BC AD =,所以//,AD FG AD FG =,所以四边形DAFG 为平行四边形,即有//AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴,1//C E AF ∴,因此点1C 在平面AEF 内.[方法二]:空间向量共线定理以11111,,C D C B C C 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示. 设11111,,3C D a C B b C C c ===,则1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c .所以1(,0,2),(,0,2)C E a c FA a c ==.故1C E FA =.所以1AF C E ∥,点1C 在平面AEF 内. [方法三]:平面向量基本定理同方法二建系,并得1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c , 所以111(,0,2),(0,,),(,,3)C E a c C F b c C A a b c ===.故111C A C E C F =+.所以点1C 在平面AEF 内. [方法四]:根据题意,如图3,设11111,2,3A D a A B b A A c ===.在平面11A B BA 内,因为12BF FB =,所以1111133B F B B A A ==.延长AF 交11A B 于G ,AF ⊂平面AEF ,11A B ⊂平面1111D C B A .11,G AF G A B ∈∈,所以G ∈平面,AEF G ∈平面1111D C B A ①.延长AE 交11A D 于H ,同理H ∈平面,AEF H ∈平面1111D C B A ②. 由①②得,平面AEF平面1111A B C D GH =.连接11,,GH GC HC ,根据相似三角形知识可得11,2GB b D H a ==.在11Rt C B G 中,1C G =同理,在11Rt C D H 中,1C H =如图4,在1Rt A GH 中,GH = 所以11GH C G C H =+,即G ,1C ,H 三点共线. 因为GH ⊂平面AEF ,所以1C ⊂平面AEF ,得证. [方法五]:如图5,连接11,,DF EB DB ,则四边形1DEB F 为平行四边形,设1DB 与EF 相交于点O ,则O 为1,EF DB 的中点.联结1AC ,由长方体知识知,体对角线交于一点,且为它们的中点,即11AC B D O =,则1AC 经过点O ,故点1C 在平面AEF 内.(2)[方法一]【最优解】:坐标法以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,如图2.则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的一个法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎨⋅=⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的一个法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅ 设二面角1A EF A--的平面角为θ,则cos θ=sin7θ∴=. 因此,二面角1A EF A--. [方法二]:定义法在AEF 中,AE AF EF ====即222AE EF AF +=,所以AE EF ⊥.在1A EF 中,11A E A F =6,设,EF AF 的中点分别为M ,N ,连接11,,A M MN A N ,则1,A M EF MN EF ⊥⊥,所以1AMN ∠为二面角1A EFA --的平面角.在1AMN 中,1122MN A M A N ====所以1175cos A MN+-∠==1sin A MN∠==[方法三]:向量法由题意得11AE AF AF AE EF==,由于222AE EF AF+=,所以AE EF⊥.如图7,在平面1A EF内作1A G EF⊥,垂足为G,则EA与1GA的夹角即为二面角1A EF A--的大小.由11AA AE EG GA=++,得22221111222AA AE EG GA AE EG EG GA AE GA=++++⋅⋅+⋅.其中,1EG AG==11AE GA⋅=,1cos,AE GA〉〈=所以二面角1A EF A--.[方法四]:三面角公式由题易得,11EA FA FE EA FA===所以2221111cos2EA EA AAAEAEA EA+-∠===⋅.222cos0,sin12EA EF AFAEF AEFEA EF+-∠===∠=⋅.22211111cos2EA EF A FA EF A EFEA EF+-∠===∠=⋅设θ为二面角1A EF A--的平面角,由二面角的三个面角公式,得111cos cos cos cos sin sin AEA AEF A EF AEF A EF θ∠-∠⋅∠==∠⋅∠sin θ=【整体点评】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出. (2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出. 12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =,所以l ⊥平面PDC .(2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>====当且仅当1m =时取等号,所以直线PB 与平面QCD [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .。

专题16立体几何解答题-2020届全国卷高考数学真题分类汇编含答案

专题16立体几何解答题-2020届全国卷高考数学真题分类汇编含答案

专题16立体几何解答题研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。

立体几何解答题,每年1题,第一问多为证明线线,线面,面面的平行、垂直问题,第二问(理)多为求二面角的平面角问题或直线与平面所成的角问题,第二问(文)多为求体积问题或距离问题。

1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理18))如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.所成角的正弦值.【答案】见解析。

【答案】见解析。

【考点】L Y :平面与平面垂直;MI :直线与平面所成的角.:直线与平面所成的角.【专题】11:计算题;31:数形结合;35:转化思想;49:综合法;5F :空间位置关系与距离;5G :空间角.角.【分析】(1)利用正方形的性质可得BF 垂直于面PEF ,然后利用平面与平面垂直的判断定理证明即可.,然后利用平面与平面垂直的判断定理证明即可. (2)利用等体积法可求出点P 到面ABCD 的距离,进而求出线面角.的距离,进而求出线面角.【解答】(1)证明:由题意,点E 、F 分别是AD 、BC 的中点,的中点,则,,由于四边形ABCD 为正方形,所以EF ⊥BC .由于PF ⊥BF ,EF ∩PF=F ,则BF ⊥平面PEF .又因为BF ⊂平面ABFD ,所以:平面PEF ⊥平面ABFD .(2)在平面DEF中,过P作PH⊥EF于点H,连接DH, 由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE=,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE=,又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.【点评】本题主要考查点、直线、平面的位置关系.直线与平面所成角的求法.几何法的应用,考查转化思想以及计算能力.思想以及计算能力.2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理18))如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(1)证明:平面P AB ⊥平面P AD ;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A ﹣PB ﹣C 的余弦值.的余弦值.【答案】见解析。

2020高考数学立体几何专题

2020高考数学立体几何专题

2020高考数学立体几何专题一、单选题1.如图为正方体1111ABCD A B C D -,动点M 从1B 点出发,在正方体表面沿逆时针方向运动一周后,再回到1B 的运动过程中,点M 与平面11A DC 的距离保持不变,运动的路程x 与11 l MA MC MD =++之间满足函数关系() l f x =,则此函数图象大致是( )A .B .C .D .2.已知异面直线a 、b 成60°角,其公垂线段为EF ,||2EF =,长为4的线段AB 的两端点分别在直线a 、b 上运动,则AB 中点的轨迹为( )A .椭圆B .双曲线C .圆D .以上都不是3.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2a C D 4.已知直线a 平行于平面α,且它们的距离为2d ,我们把到直线a 与到平面α的距离都相等的点构成的集合定义为集合A ,那么集合A 中同属于某个平面的点构成的图形不可能是( )A .椭圆B .两条平行直线C .一条直线D .抛物线5.在正方体1111ABCD A B C D -的侧面11ABB A 内有一动点P 到直线11A B 与直线BC 的距离相等,则动点P 所在的曲线的形状为( )A .B .C .D .6.给定正三棱锥P ABC -,点M 为底面正ABC ∆内(含边界)一点,且M 到三个侧面PAB ,,PBC PCA 的距离依次成等差数列,则点M 的轨迹为( )A .椭圆的一部分B .一条线段C .双曲线的一部分D .抛物线的一部分7.设点M 是长方体1111ABCD A B C D -的棱AD 的中点,14AA AD ==,5AB =,点P 在面11BCC B 上,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则P 点的轨迹为( )A .椭圆的一部分B .抛物线的一部分C .一条线段D .一段圆弧8.如图为正方体ABCD-A 1B 1C 1D 1,动点M 从B 1点出发,在正方体表面沿逆时针方向运动一周后,再回到B 1的运动过程中,点M 与平面A 1DC 1的距离保持不变,运动的路程x 与l=MA 1+MC 1+MD 之间满足函数关系l=f (x ),则此函数图象大致是( )A .B .C .D .9.如图,在正方体1111ABCD A B C D -中,点P 在侧面11ADD A 及边界上运动,并且保持1BP AC ⊥,则动点P 的轨迹是( )A .线段1A DB .线段1ADC .AD 的中点与11A D 的中点连成的线段 D .1AA 的中点与1DD 的中点连成的线段10.美学四大构件是:史诗、音乐、造型、建筑等,绘画和数学素描是学习绘画的必要一步,它包括了明暗素描和结构素描而学习几何体结构素描是学习素描最重要的一步,某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面所在平面与底面成60°角,则该椭圆的离心率为()A .12B .2CD .1311.已知正方体1111ABCD A B C D -的棱长为2,P 是底面ABCD 上的动点,1PA PC ≥,则满足条件的点P 构成的图形的面积等于( )A .12B .4πC .44π- D .7212.长方体ABCD −A 1B 1C 1D 1中,P 是对角线AC 1上一点,Q 是底面ABCD 上一点,若AB =√2,BC =AA 1=1,则PB +1PQ 的最小值为( )A .32B .√3+12C .√3D .213.已知正方体1111ABCD A B C D -的棱长为1,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且//EF 平面11A BC ,则动点F 的轨迹所形成的区域面积是( )A .98 B C D14.已知正方体1111ABCD A B C D -的棱长为a ,定点M 在棱AB 上(不在端点,A B 上),点P 是平面ABCD 内的动点,且点P 到直线11A D 的距离与点P 到点M 的距离的平方差为2a ,则点P 的轨迹所在的曲线为A .圆B .椭圆C .双曲线D .抛物线15.给定正三棱锥P ﹣ABC ,M 点为底面正三角形ABC 内(含边界)一点,且M 到三个侧面PAB 、PBC 、PAC 的距离依次成等差数列,则点M 的轨迹为( )A .双曲线的一部分B .圆的一部分C .一条线段D .抛物线的一部分16.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则( )A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线17.如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A .圆的一部分B .椭圆的一部分C .一条直线D .两条直线18.已知点P 是单位正方体1111ABCD A B C D -的对角面11BB D D 上的一动点,过点P 作垂直于平面11BB D D 的直线,与正方体的侧面相交于M 、N 两点,则BMN ∆的面积的最大值为( )A B .12 C D19.历史上,许多人研究过圆锥的截口曲线.如图,在圆锥中,母线与旋转轴夹角为30o ,现有一截面与圆锥的一条母线垂直,与旋转轴的交点O 到圆锥顶点M 的距离为1,对于所得截口曲线给出如下命题:①曲线形状为椭圆;②点O 为该曲线上任意两点最长距离的三等分点;③该曲线上任意两点间的最长距离为32( )A .①②④B .①②③④C .①②③D .①④20.如图,矩形ABCD 中,E 为边AB 的中点,将ADE V 沿直线DE 翻转为1A DE V .若M 为线段1A C 的中点,则在ADE V 翻转过程中,有下列命题:①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④若1A ∉平面BEDC ,则MB P 平面1A DE .其中正确的个数为( )A .1B .2C .3D .421.已知正方体1111ABCD -A B C D ,空间一动点P 满足11A P AB ⊥,且11APB ADB ∠=∠,则点P 的轨迹为A .直线B .圆C .椭圆D .抛物线22.正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1AM 3=,点P 在平面ABCD 上,且动点P 到直线11A D 的距离的平方与点P 到点M 的距离的平方的差为1,在以AB 、AD 为坐标轴的平面直角坐标系中,动点P 的轨迹是( )A .圆B .抛物线C .双曲线D .直线23.已知正方体1111ABCD A B C D -中,2AB =,E 为AD 的中点,P 为正方形1111D C B A内的一个动点(含边界),且PE ≤111PA PB PC ++u u u r u u u r u u u u r 的最小值为( )A 1B 3CD 124.在长方体1111ABCD A B C D -中,11AD DD ==,AB =,,E F G 分别是棱1,,AB BC CC 的中点,P 是底面ABCD 内一动点,若直线1D P 与平面EFG 没有公共点,则三角形1PBB 面积的最小值为( )A B .1 C D .12二、填空题25.已知正方体1111ABCD A B C D -的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且//EF 平面11A BC ,则动点F 的轨迹所形成的区域面积是______.26.如图,在圆柱的轴截面ABCD 中,4AB =,2BC =,1O ,2O 分别为圆柱上下底面的中心,M 为12O O 的中点,动点P 在圆柱下底面内(包括圆周).若AM MP ⊥,则点P 形成的轨迹的长度为______.27.点M 为棱长是1111ABCD A B C D -的内切球O 的球面上的动点,点N 为11B C 的中点,若满足DM BN ⊥,则动点M 的轨迹的长度为________28.在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,1AD =,1AA =Q 为正方形ABCD 所在平面内的一个动点,且满足QC =,则线段BQ 的长度的最大值为 _______.29.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________.30.如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.31.如图,在边长为2正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在正方体表面上移动,且满足11B P D E ⊥,则点1B 和满足条件的所有点P 构成的图形的面积是_______.32.在长方体1111ABCD A B C D -中,已知底面ABCD 为正方形,P 为11A D 的中点,1AD =,1AA ,点Q 为正方形ABCD 所在平面内的一个动点,且满足QC =,则线段BQ 的长度的最大值是________.33.已知正方体1111ABCD A B C D -的棱长为1,动点P 在正方体1111ABCD A B C D -的表面上运动, 且(0PA r r =<<,记点P 的轨迹的长度为()f r ,则12f ⎛⎫= ⎪⎝⎭______. 34.已知正方体ABCD −A 1B 1C 1D 1棱长为2,点P 是上底面A 1B 1C 1D 1内一动点,若三棱锥P −ABC 的外接球表面积恰为41π4,则此时点P 构成的图形面积为________.35.在棱长为1的透明密闭的正方形容器1111ABCD A B C D -中,装有容器总体积一半的水(不计容器壁的厚度),将该正方体容器绕1BD 旋转,并始终保持1BD 所在直线与水平平面平行,则在旋转过程中容器中水的水面面积的最大值为__________.36.在正方体1111ABCD A B C D -中边长AB 为2,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,Q 为正方形ABCD 内一点,M ,N 分别为AB ,BC 上靠近A和C的三等分点,若线段D Q与OP相交且互相平分,则点Q的轨迹与线段MN形成的封1闭图形的面积为____.37.已知正方体ABCD-A1B1C1D1的棱长为4,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM∥平面A1DE,则动点M的轨迹长度为______.38.正四棱锥(底面是正方形,顶点在底面上的射影是底面中心)S-ABCD的底面边长为4,高为4,点E、F、G分别为SD,CD,BC的中点,动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为______.参考答案1.C 【解析】 【分析】先由题意,得到点M 在1B AC ∆的边上沿逆时针方向运动,设正方体1111ABCD A B C D -的棱长为1,取线段1B A 的中点为N ,根据题意确定当动点M 运动到点N 时,111 =++<==N A B C l NA NC ND l l l ,同理得到动点M 运动到线段AC 或1CB 的中点时,也符合上式,根据变化情况,结合选项,即可得出结果. 【详解】由题意可知:点M 在1B AC ∆的边上沿逆时针方向运动,设正方体1111ABCD A B C D -的棱长为1,取线段1B A 的中点为N , 则当动点M 运动到点N 时,111 22=++=<+===N A B C l NA NC ND l l l , 同理,当动点M 运动到线段AC 或1CB 的中点时,计算得111 22=++=<===A B C l MA MC MD l l l . 符合C 选项的图像特征. 故选:C【点睛】本题主要考查空间几何体中的轨迹问题,熟记空间几何体的结构特征即可,属于常考题型. 2.A【解析】【分析】AB EF的中点,O P所在的平面,建立合适坐标系,先根据条件画出合适的示意图,确定,根据余弦定理求出,OM ON之间的关系,然后利用P的坐标形式表示出,OM ON之间的关系,由此得到对应的轨迹形状.【详解】如图所示:设EF的中点为O,过O作EF的垂面α,则AB的中点P必在平面α内,设,A B在平面内的射影点为,M N,因为2AP BP ==,1AM BN ==,所以MN =以MON ∠的角平分线为x 轴,O 为坐标原点建立平面直角坐标系如图所示:设OM m =,ON n =,由余弦定理可知:2220122cos60MN m n mn ==+-,所以2212m n mn +-=,又因为30MOx NOx ∠=∠=︒,设(),P x y,所以)()2122x m n y m n ⎧=+⎪⎪⎨⎪=-⎪⎩,所以22m x y n x y ⎧=+⎪⎪⎨⎪=-⎪⎩, 将上述结果代入等式2212m n mn +-=中化简可得:2219x y +=,故轨迹是椭圆.故选:A. 【点睛】本题考查立体几何中的轨迹问题,难度较难.处理立体几何中的轨迹问题的方法:首先根据空间中的点线面位置关系确定出线段的长度,然后将问题统一到一个平面中并在该平面中建立合适的平面直角坐标系,借用坐标表示线段间的长度关系,进而化简可得轨迹方程即可判断轨迹形状. 3.D【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,112HI CD ∴==,即F 在侧面11CDD C 上的轨迹的长度是2. 故选:D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题. 4.A【分析】把问题放在正方体ABCD -EFGH 中去,建立空间直角坐标系,找出关于,,x y z 的方程,通过方程判断可能的图形. 【详解】如图在棱长为2d 正方体ABCD -EFGH 中,将面ABCD 当作平面α,将直线EH 当作直线a ,其距离为正方体的棱长2d ,如图,建立空间直角坐标系,设点M (,,)x y z ,则点M 到平面α的距离为z ,(2,0,2),(0,0,2E d d H d ),(2,0,0),(,,2HE d HM x y z d ∴==-u u u r u u u u r),|cos ,|HE HMHE HM HE HM ⋅∴<>==u u u r u u u u ru u u r u u u u r u u u r u u u u r则sin ,HE HM <>==u u u r u u u u r点M到直线a的距离为:sin,MH HE HM⋅<>==u u u u r u u u r u u u u rz∴=,整理得:22440y d dz+-=当z d=时,20y=,即0y=,一条直线,C有可能;当z d>时,24()y d z d=-,即y=B有可能;当z不取常数,为一个变量时,22440y d dz+-=是一个抛物线的方程,D有可能;方程22440y d dz+-=任何时候都不可能是椭圆的方程,故A不可能.故选:A.【点睛】本题考查利用空间直角坐标解决空间图形的轨迹问题,是一道难题.5.B【解析】【分析】由BC⊥平面11ABB A可知P到直线BC的距离即为P到点B的距离,从而可得其轨迹为抛物线的一部分且过点A,依次判断各个选项即可.【详解】BC⊥Q平面11ABB A,PB⊂平面11ABB A PB BC∴⊥P ∴到直线BC 的距离为PB ,即P 点到点B 的距离P ∴点轨迹是以B 为焦点,11A B 所在直线为准线的抛物线的一部分又P 在平面11ABB A 上,1AB AA = P ∴点轨迹过点A,A C 中轨迹不是抛物线,则,A C 错误;D 中轨迹不过A ,则D 错误.故选:B 【点睛】本题考查立体几何中点的轨迹的求解,关键是能够通过线面垂直关系确定动点轨迹为抛物线的一部分. 6.B 【解析】 【分析】根据M 到三个侧面PAB ,,PBC PCA 的距离依次成等差数列可设距离分别为,,d a d d a -+,根据等体积法可求得d 为常数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学试题分类汇编之立体几何
一、选择题
1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。

(A )1 (B )2 (C )3 (D )4
2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
(A )1 (B )2 (C )3 (D )4
3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是
A .2
B .4
C .6
D .8
4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A .122π
B .12π
C .82π
D .10π
5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为
A .217
B .25
C .3
D .2
6.(全国卷一文)(10)在长方体1111ABCD A B C D -中,
2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为
A .8
B .62
C .82
D .83
7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为
A .172
B .52
C .3
D .2
8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方
体所得截面面积的最大值为
A .
33 B .23 C .324
D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中,
E 为棱1CC 的中点,则异面直线AE 与CD 所成角
的正切值为
A B C D
10.(全国卷二理)(9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所
成角的余弦值为
A .15
B
C
D 11.(全国卷三文)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
12.(全国卷三文)(12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角
形且其面积为,则三棱锥D ABC -体积的最大值为
A .
B .
C .
D .13.(全国卷三理)(3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
14.(全国卷三理)(10)设A B C D ,,
,是同一个半径为4的球的球面上四点,ABC △为等边三角形且
其面积为D ABC -体积的最大值为
A .
B .
C .
D .
二、填空题
1.(江苏)(10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 2.(天津文)(11)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.
3.(天津理)(11) 已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分
别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .
4.(全国卷二文)(16)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB
△的面积为8,则该圆锥的体积为__________.
5.(全国卷二理)(16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为
78
,SA 与圆锥底面所成角
为45°,若SAB △的面积为,则该圆锥的侧面积为__________. 三、解答题
1.(北京文)(18)(本小题14分)
如图,在四棱锥P-ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.
(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面P AB ⊥平面PCD ;(Ⅲ)求证:EF ∥平面PCD .
2.(北京理)(16)(本小题14分)
如图,在三棱柱ABC -111A B C 中,
1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC 5,AC =1AA =2.
(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B-CD -C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.
3.(江苏)(15)(本小题满分14分)
在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.
求证:(1)11AB A B C 平面∥;(2)111ABB A A BC ⊥平面平面.
4.(浙江)(19)
(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,
C 1C =1,AB =BC =B 1B =2.
(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;
(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.
5.(天津文)(17)(本小题满分13分)
如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =3BAD =90°.
(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值;
(Ⅲ)求直线CD 与平面ABD 所成角的正弦值.
6.(天津理)(17)(本小题满分13分)
如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.
(I )若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面;
(II )求二面角E BC F --的正弦值;
(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.
7.(全国卷一文)(18)(12分)
如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.
(1)证明:平面ACD ⊥平面ABC ;
(2)Q 为线段AD 上一点,P 在线段BC 上,且23BP DQ DA ==,求三棱锥Q ABP -的体积.
8.(全国卷一理)(18)(12分)
如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.
(1)证明:平面PEF ⊥平面ABFD ;
(2)求DP 与平面ABFD 所成角的正弦值.
9.(全国卷二文)(19)(12分)
如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.
(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离. 10.(全国卷二理)(20)(12分)
如图,在三棱锥
P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;
(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.
11.(全国卷三文)(19)(12分)
如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.
(1)证明:平面AMD ⊥平面BMC ;
(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.
12.(全国卷三理)(19)(12分)
如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.
(1)证明:平面AMD ⊥平面BMC ;
(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.。

相关文档
最新文档