小波变换课件h5 双正交小波

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波变换课件第4章小波变换的实现技术

小波变换课件第4章小波变换的实现技术

第4章 小波变换的实现技术4.1 Mallat 算法双正交小波变换的Mallat 算法:设{}n h h =、{}n g g =、{}n h h =、{}n g g =为实系数双正交小波滤波器。

h ,g 是小波分析滤波器,h ,g 是小波综合滤波器。

h 表示h 的逆序,即n n h h -=。

若输入信号为n a ,它的低频部分和高频部分以此为1n a -和1n d -,小波分解与重构的卷积算法:11()()n n n na D a h d D a g --⎧⎪=*⎨=*⎪⎩ n11()()n n a Uah Ud g --=*+*先进行输入信号和分析滤波器的巻积,再隔点采样,以形成低频和高频信号。

对于有限的数据量,经过多次小波变化后数据量大减,因此需对输入数据进行处理。

4.1.1 边界延拓方法下面给出几种经验方法。

1. 补零延拓是假定边界以外的信号全部为零,这种延拓方式的缺点是,如果输入信号在边界点的值与零相差很大,则零延拓意味着在边界处加入了高频成分,造成很大误差。

实际应用中很少采用。

0121,0,,,,...,,0,0,......n s s s s -2.简单周期延拓将信号看作一个周期信号,即k n k s s +=。

简单周期延拓后的信号变为这种延拓方式的不足之处在于,当信号两端边界值相差很大时,延拓后的信号将存在周期性的突变,也就是说简单周期延拓可在边界引入大量高频成分,从而产生较大误差。

3. 周期对称延拓这种方法是将原信号在边界上作对称折叠,一般分二1)当与之做卷积的滤波器为奇数时,周期延拓信号为2)当与之做卷积的滤波器为偶数时,周期延拓信号为4. 光滑常数延拓在原信号两端添加与端点数据相同的常数。

0121,,,...,,n s s s s -0121,,,...,,n s s s s -0121,,,...,,n s s s s -0,...s 1,...,n s -01221,,,...,,,n n s s s s s --0121,,,...,,n s s s s -21012,...,,,,,...n s s s s s -321212,,,...,,,,...n n n s s s s s s ---10012,,...,,,,...n n s s s s s --10112,,,...,,,n n n s s s s s ---5. 平滑延拓在原信号两端用线性外插法补充采样值,即沿着信号两端包络线的一阶导数方向增加采样值。

小波分析课件第四章多分辨分析和正交小波变换

小波分析课件第四章多分辨分析和正交小波变换

其他领域
正交小波变换还广泛应用于金 融、医学、地球物理等领域的 数据分析和处理。
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都是小波分析中的重要概念,共同构成了小波 分析的基础。
多分辨分析为正交小波变换提供了理论框架,正交 小波变换是多分辨分析的具体实现。
正交小波变换可以看作是多分辨分析的一种特例, 其中尺度函数和小波函数都是正交的。
正交小波变换的应用场景
ቤተ መጻሕፍቲ ባይዱ01
02
03
04
信号处理
正交小波变换在信号处理中主 要用于信号去噪、压缩和特征 提取等。
图像处理
正交小波变换在图像处理中主 要用于图像压缩、去噪、增强 和特征提取等。
数据压缩
正交小波变换可用于数据压缩 领域,特别是对于非平稳信号 和图像数据的压缩,具有较好 的压缩效果和重建精度。
多分辨分析与正交小波变换的区别
02
01
03
多分辨分析主要关注的是函数在不同尺度上的表示, 而正交小波变换更注重在不同尺度上的细节信息。
正交小波变换具有更好的灵活性和适应性,可以针对 特定问题设计特定的小波函数和尺度函数。
正交小波变换在信号处理、图像处理等领域的应用更 为广泛,而多分辨分析更多用于理论分析。
正交小波变换的算法与实现
算法
正交小波变换的算法主要包括一维离散正交小波变换和二维离散正交小波变换。一维离散正交小波变换的算法包 括Mallat算法和CWT算法等,而二维离散正交小波变换的算法主要基于图像分块处理。
实现
正交小波变换的实现通常需要使用数字信号处理库或图像处理库,如Python的PyWavelets库或OpenCV库等。

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波变换简介PPT课件

小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.

小波变换课件小波变换的实现技术

小波变换课件小波变换的实现技术

第4章 小波变换的实现技术4.1 Mallat 算法双正交小波变换的Mallat 算法:设{}n h h =、{}n g g =、{}n h h =、{}n g g =为实系数双正交小波滤波器。

h ,g 是小波分析滤波器,h ,g 是小波综合滤波器。

h 表示h 的逆序,即n n h h -=。

若输入信号为n a ,它的低频部分和高频部分以此为1n a -和1n d -,小波分解与重构的卷积算法:11()()n n n na D a h d D a g --⎧⎪=*⎨=*⎪⎩ n11()()n n a Uah Ud g --=*+*先进行输入信号和分析滤波器的巻积,再隔点采样,以形成低频和高频信号。

对于有限的数据量,经过多次小波变化后数据量大减,因此需对输入数据进行处理。

4.1.1 边界延拓方法下面给出几种经验方法。

1. 补零延拓是假定边界以外的信号全部为零,这种延拓方式的缺点是,如果输入信号在边界点的值与零相差很大,则零延拓意味着在边界处加入了高频成分,造成很大误差。

实际应用中很少采用。

0121,0,,,,...,,0,0,......n s s s s -2.简单周期延拓将信号看作一个周期信号,即k n k s s +=。

简单周期延拓后的信号变为这种延拓方式的不足之处在于,当信号两端边界值相差很大时,延拓后的信号将存在周期性的突变,也就是说简单周期延拓可在边界引入大量高频成分,从而产生较大误差。

3. 周期对称延拓这种方法是将原信号在边界上作对称折叠,一般分二1)当与之做卷积的滤波器为奇数时,周期延拓信号为2)当与之做卷积的滤波器为偶数时,周期延拓信号为4. 光滑常数延拓在原信号两端添加与端点数据相同的常数。

0121,,,...,,n s s s s -0121,,,...,,n s s s s -0121,,,...,,n s s s s -0,...s 1,...,n s -01221,,,...,,,n n s s s s s --0121,,,...,,n s s s s -21012,...,,,,,...n s s s s s -321212,,,...,,,,...n n n s s s s s s ---10012,,...,,,,...n n s s s s s --10112,,,...,,,n n n s s s s s ---5. 平滑延拓在原信号两端用线性外插法补充采样值,即沿着信号两端包络线的一阶导数方向增加采样值。

《小波分析介绍》PPT课件

《小波分析介绍》PPT课件
二、小波变换
定义 设f (t), (t)为平方可积函数,且 (t)为允许小波,则称
Wf (a,b) :
1 a
f (t) (t b)dt,
R
a
a0Leabharlann 是f (t)的连续小波变换 .
2021/8/31
第二章
2
2
定理 设 (t)为允许小波,对 f , g L2 (R), 有
[W f
(a,
b)Wg
第二章 小波变换
§1 小波和小波变换 一、小波 小波首先应用于地球物理学中,用来分析地震勘探的数据。
定义 设函数 L2(R) L1(R),并且ˆ (0) 0,
称函数族
a,b (x)
a
1/ 2
x
b a
a,b R, a 0
为分析小波或连续小波, 称为基本小波或母小波。
注:ˆ (0) 0 R (x)dx 0 a,b (x) 2 R a,b (x) 2 dx (x) 2
性质2(平移性) W f (tt0 ) (a, b) W f (t) (a, b t0 )
性质3(尺度法则)
W f (t) (a, b)
1
W
f
(t
)
(a,
b)
0
性质4(乘法定理)
1
0
a 2 W f (a,b)Wg (a,b)dbda C
f (t)g(t)dt
R
自证
其中 C
称f (t) C j,k j,k (t)中的展开系数Cj,k为小波系数,
j ,kZ
其中,C j,k R f (t) j,k (t)dt.
迷人的风采
1,t [0,0.5)
例:Harr基本小波
h

小波变换课件第4章小波变换的实现技术

小波变换课件第4章小波变换的实现技术

第4章 小波变换的实现技术Mallat 算法双正交小波变换的Mallat 算法:设{}n h h =、{}n g g =、{}n h h =、{}n g g =为实系数双正交小波滤波器。

h ,g 是小波分析滤波器,h ,g 是小波综合滤波器。

h 表示h 的逆序,即n n h h -=。

若输入信号为n a ,它的低频部份和高频部份以此为1n a -和1n d -,小波分解与重构的卷积算法:11()()n n n na D a h d D a g --⎧⎪=*⎨=*⎪⎩ n11()()n n a Uah Ud g --=*+*先进行输入信号和分析滤波器的巻积,再隔点采样,以形成低频和高频信号。

对于有限的数据量,通过量次小波转变后数据量大减,因此需对输入数据进行处置。

4.1.1 边界延拓方式 下面给出几种经验方式。

1. 补零延拓是假定边界之外的信号全数为零,这种延拓方式的缺点是,若是输入信号在边界点的值与零相差专门大,则零延拓意味着在边界处加入了高频成份,造成专门大误差。

实际应用中很少采用。

0121,0,,,,...,,0,0,......n s s s s -2.简单周期延拓将信号看做一个周期信号,即k n k s s +=。

简单周期延拓后的信号变成这种延拓方式的不足的地方在于,当信号两头边界值相差专门大时,延拓后的信号将存在周期性的突变,也就是说简单周期延拓可在边界引入大量高频成份,从而产生较大误差。

3. 周期对称延拓0121,,,...,,n s s s s -0121,,,...,,n s s s s -0121,,,...,,n s s s s -0,...s 1,...,n s -这种方式是将原信号在边界上作对称折叠,一般分二1)当与之做卷积的滤波器为奇数时,周期延拓信号为2)当与之做卷积的滤波器为偶数时,周期延拓信号为4. 滑腻常数延拓在原信号两头添加与端点数据相同的常数。

5. 光滑延拓在原信号两头用线性外插法补充采样值,即沿着信号两头包络线的一阶导数方向增加采样值。

专题讲座——小波变换PPT课件

专题讲座——小波变换PPT课件

第10页/共79页
部分小波波形
第11页/共79页
小波基函数
将小波母函数(t)进行伸缩和平移,
令伸缩因子(称尺度因子)为a,平移因子为,则:
a( , t)
a12(t
),a0,R
a
则称a( , t)是依赖参数a,的小波基函数。
将信号在这个函数系上分解,就得到连续小波变换
第12页/共79页
小波分析
• 小波变换通过平移母小波(mother wavelet) 可获得信号的时间信息,而通过缩放小波的 宽度(或者叫做尺度)可获得信号的频率特性。 对母小波的缩放和平移操作是为了计算小波 的系数,这些系数代表小波和局部信号之间 的相互关系。
第15页/共79页
CWT的变换过程图示
第16页/共79页
CWT小结
• 小波的缩放因子与信号频率之间的关系可以 这样来理解。缩放因子小,表示小波比较窄,
度量的是信号细节,表示频率w 比较高;相
反,缩放因子大,表示小波比较宽,度量的
是信号的粗糙程度,表示频率w 比较低。
第17页/共79页
离散小波变换
第18页/共79页
离散小波变换定义
任意L2(R)空间中的x(t)的DWT为:
__________
Wx ( j, k) R x(t) j,k (t) dt其中Biblioteka j( ,k t) 1 2j
(
t 2
j
k)
需要强调指出的是,这一离散化都是针对连续 的尺度参数和连续平移参数的,而不是针对时 间变量t的。
第4页/共79页
短时傅里叶变换STFT
确定信号局部频率特性的比较简单的方法是 在时刻ґ附近对信号加窗,然后计算傅里叶变 换。

第七章 小波变换和多分辨率处理PPT课件

第七章 小波变换和多分辨率处理PPT课件

小波变换是20世纪最辉煌科学成就之一。在信号处理、图
像处理、模式识别、语音识别、量子物理、地震勘探、流体
力学、电磁场、CT成象、机器视觉、故障诊断、分形、数值
计算等已有重大突破。
2020/2/13
5
小波分析发展简史
时间 1822
1910 1946
1984 1985 1986
1987
1988
标志性事件
第七章 小波变换和多分辨率处理
张萍 电子科技大学 光电信息学院 E-mail: pingzh@
1
参考资料
教材:
Rafael C. Gonzalez, etc,Digital Image Processing (Third Edition),电子工业出版社,
2010
参考书籍:
2020/2/13
满足该条件的滤波器 组称为具有双正交性
25
(2) 子带编码
分析滤波器和综合滤波器满足上述条件,所 以具有双正交性
(正交镜像滤波器)
(共轭正交滤波器)
完美重建滤波器族
2020/2/13
26
(2) 子带编码
一维滤波器用于图像处理的二维可分离滤波器
可分离滤波器首先应用于某一维(如水平方向),在应 用于另一维(如垂直方向)
整理
k

(z)

1 2
[H0 (z)G0 (z)

H1 ( z )G1 ( z )]X
(z)

1 2
[H
0
( z )G0
(
z)

H1(
z )G1 ( z )]X
(z)
2第020/二2/13项含有-z,代表了抽样-内插过程带来的混叠
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~ ~ (3)L为奇数, L 为偶数或为L偶数, L 为 奇数 序列 { p n }的终点下标和起点下标关于奇 偶性出现矛盾,故此种情况不存在
5.3 构造双正交小波的CDF方法
Step1 给定2M,根据下式计算
M m 1 m x Q( x) m m 0
M 1
Q (sin
2

2
)
Step2 2 ~ ~ 2 Step3 当 L 和 L 均为偶数,M (2N 1) (2N 1) ① ~ ~ 当 L 和 L 均为奇数,2M 2 N 2 N ② H ( ) e cos P(cos ) Step4 H () cos P(cos ) 2
并且它们之间还满足如下正交关系:
( x ), ( x m) m ( x m) m ( x ),
( x ), ( x m) 0 ( x m) 0 ( x ),
• • • • •
• • • • • • •
>> biofilter2(2,4) ans = 1/4/z+1/2+1/4*z ans = 3/128*z^4-3/64*z^31/8*z^2+19/64*z+45/64+19/64/z-1/8/z^23/64/z^3+3/128/z^4
>> biofilter2(4,2) ans = 1/16/z^2+1/4/z+3/8+1/4*z+1/16*z^2 ans = 3/32*z^3-3/8*z^2+5/32*z+5/4+5/32/z3/8/z^2+3/32/z^3
( )
式中α和β为常数,那么称为 性
( ) 具有线性相位特
ˆ ˆ g ( ) H ( ) f ( ) ˆ H ( ) e j e j f ( ) ˆ H ( ) e j ( f ( x ))
f(x) h
g(x)
• 输出信号的相位特性,除了常数β外,与 f ( x 的相位特性 ) 延时为α的输入信号 完全一致
5.5.2 小波函数的光滑性与消失矩的关系 • 数学上用函数 f ( x) 的频谱 足够 大时的衰减快慢来刻画 f ( x) 的光滑程度 • 定义5.2 如果存在尽可能大的正常数 , 使 fˆ ( )(1 ) d 成立,则称 f ( x) 具 有光滑指数 ,并记为 f ( x) C 越大,则表明 fˆ ( )衰减愈快,因而 的 f ( x)频域定域性愈好
• • • • • • • • • • • • • • • • • • • • •
function y= biofilter2(n,m) k=(n+m)/2; t(1) = sym(1) ; for p= 2:k t(p) = sym(1) ; for j= 1:p-1 t(p) = t(p) * (k-1+p-1+1-j)/j; end end m0=sym( 0) ; syms z; for j= 1: k m0= m0+ t( j) * ( ( z^( - 1/ 2) - z^( 1/ 2) ) / ( 2* i) ) ^( 2* ( j- 1) ) ; end if n/ 2== fix ( n/ 2)%fix(n)的意义是取小于n的整数(是向零点舍入) m0= m0* ( ( z^( 1/ 2) + z^( - 1/ 2) ) / 2) ^m; else m0= m0* z^( 1/ 2) * ( ( z^( 1/ 2) + z^( - 1/ 2) ) / 2) ^m; end y= collect( m0) ;%返回系数整理后的多项式
则 H ( ) H ( ) 1
2
gk (1)1k h1k
正交基本条件
5.2.3紧支撑线性相位双正交小波的 ~ {hk } {hk } 和 之间的长度关系
定理5.3 序列{ p n },除 p 0 1之外,所有 下标为偶数的元素取值为0。 p : h h
n

k
k k n
证明:利用双正交基本条件
~ {hk } 和{hk }的长度 L 和 L
~ ~ (1)L 2K 1; L 2K 1
之间的关系
• 两者长度均为奇数,并且长度相差2的 奇数倍,因而两者不可能等长。
hk hk ~ ~ ; hk hk
gk g2 k
gk g2 k
H(
) 2 2 ˆ ˆ ( ) G ( ) ( ) 2 2 ~ ~ ~ ˆ ˆ ( ) H ( ) ( ) 2 2 ~ ~ ( ) G ( ) ( ) ~ ˆ ˆ 2 2 ˆ ) (


~ ~ H ( ) H ( ) H ( ) H ( ) 1 ~ ~ G ( )G ( ) G ( )G ( ) 1 ~ ~ H ( )G ( ) H ( )G ( ) 0 ~ ~ H ( )G ( ) H ( )G ( ) 0
分解基
在双正交小波情况下,信号的分解与重构采用不同的基
(a) 分解
(b) 重构
ቤተ መጻሕፍቲ ባይዱ
5.5 小波函数的消失矩性质
• 定义5.1 当小波函数 ( x) 满足如下条件时 p x ( x)dx 0 p 0,...N 1 称 ( x) 具有N阶消失矩 ˆ • 定理 5.4 ( x) 具有N阶消失矩,则 ( ) 以 0 为其N重零点。 • 推论5.2 ( x)具有N阶消失矩,则 H () 以 为其N重零点。

~ G( ) e j H ( ) ~ j G( ) e H ( )
2
双正交基本条件
~ ~ 则 H ( ) H ( ) H ( ) H ( ) 1
若令 H () H ()
gk (1)1k h1k ;
• • • • •
>> biofilter2(3,3) ans = 1/8/z+3/8+3/8*z+1/8*z^2 ans = 3/64*z^4-9/64*z^37/64*z^2+45/64*z+45/64-7/64/z9/64/z^2+3/64/z^3

• • • •
>> biofilter2(1,5) ans = 1/2+1/2*z ans = 3/256*z^5-3/256*z^411/128*z^3+11/128*z^2+1/2*z+1/2+11/128/z-11/128/z^23/256/z^3+3/256/z^4 >> biofilter2(5,1) ans = 1/32/z^2+5/32/z+5/16+5/16*z+5/32*z^2+1/32*z^3 ans = 3/16*z^3-15/16*z^2+5/4*z+5/4-15/16/z+3/16/z^2
e
j
h( x) e h ( x)
j
j
证明:必要性:
e
j
h( x) ?
……
e h ( x) ?
充分性:
e H ()e
j
j
e H ()e
j ( )
j
j
H ( ) H ( ) e
推论5.1 如果限定脉冲响应 h(x) 为实 函数,那么由式 (5.1.3) 可知,这时 e 2 j 必为实数, 即 2 j e 1 所以实脉冲响函数具有线性相位的必要 与充分条件是 h( x) h( x) 任何实值脉冲响应的数字滤波器具有线 性相位的必充条件是
那么这两对函数称为互为对偶的双正交小波。
Vj Vj ; Wj Wj
Vj Wj ; Vj Wj
5.2.2 双正交小波的二尺度关系
• 二尺度关系
( x) ( x)
~ ( x) ~ ( x)
ˆ ( )
2 hk ( 2 x k ) 2 g k (2 x k ) ~ ~ 2 hk ( 2 x k ) ~ (2 x k ) 2 gk ~
第五章 双正交小波
正交小波的性质
• 对称性(√),紧支撑(×) • 对称性 (×),紧支撑(√) • 对称性 (√),紧支撑(√) 光滑性(×)→Harr小波
紧支撑且线性相位(对称性)? 双正交小波!
5.1滤波器的相位特性
• 在线性系统理论中, 滤波器的传递函数可表达为 H ( ) H ( ) e j ( ) H () 为幅频特性, ( ) 为相频特性。 • 如果 ( ) 可以表示为
线性相位, 振幅畸变
非线性相位, 振幅无畸变
当滤波器具有线性相位特性时, 输出信号将不产 生相位畸变。这一点对图像信号十分重要,因 为视觉对于相位畸变非常敏感 滤波器如何具有线性相位特性?
定理5.1 滤波器 H ( ) 具有线性相位的必 要与充分条件是它的脉冲响应函数具有如 下关于 的共轭对称性:
Q (sin 2
j

) P (cos ) P(cos )
2
2 N 1
2N

~ ② j ~ 2 N 1 ~ 2 cos H ( ) e ( ) P (cos ) H ( ) cos 2 N P(cos ) 2 2
• function [y,t] = biofilter1(n) • t(1) = sym(1) ;%syms是定义符号变量 ;sym则是将字 符或者数字转换为字符。 • for i= 1:n • t(i+1) = t(i) *(n+1-i) /i; • end • for i=1:n • t=t/2; • end • y= sym(0) ; • syms z; • n2= floor(n/2) ;%朝负无穷方式舍入 • for i= -n2:n-n2 • y= y+t(n2+i+1)*z^i; • end
相关文档
最新文档