核苷酸代谢
生物化学-核苷酸代谢
①二氢叶酸还原酶 ②核苷酸甘氨酰胺 (GAR)转甲酰酶 ③5-甲酰氨基咪唑4-甲酰胺核苷酸 (AICAR0转甲酰 酶
嘌呤核苷酸合成和 嘧啶核苷酸合成
氨蝶呤和甲 氨蝶呤
叶酸
①急性白血病 ②头颈部肿瘤 ③妊娠滋养细 胞瘤 ④成骨肉瘤 ⑤淋巴癌 ⑥肝癌 ⑦乳腺癌 ⑧卵巢癌
嘌呤核苷酸合成
部分核苷酸代谢类似物的临床应用
原 因
调节失常
遗传缺陷
临床特点
嘌呤产生和排谢过多
遗传类型
x-染色体连锁隐性 遗传
1.嘌呤核苷酸代谢障碍
Lesch-Nyhan HGPRT 综合征
嘌呤产生排泄多,脑性瘫痪、 x-染色体连锁隐性 自毁容貌症 遗传
免疫缺陷症, ①腺苷脱氨酶
②嘌呤核苷磷酸化酶 肾结石 黄嘌呤尿 APRT 黄嘌呤氧化酶
遗传缺陷
氮杂丝氨酸 5-氨基咪唑-4甲酰胺核苷酸 腺嘌呤 次黄嘌呤 鸟嘌呤 甲酰甘氨咪 核苷酸
部分核苷酸代谢类似物的临床应用
药物名称 正常代谢物 治疗的疾病 ①白血病 ②自身免疫性病 ③妊娠滋养细胞肿 瘤 主要作用的酶 ①IMP脱氢酶 ②腺苷酸代琥珀 酸合成酶 黄嘌呤氧化酶 作用的代谢途径 嘌呤核苷酸合成 6-巯基嘌呤 嘌呤核苷酸
第二节 核酸的降解与核苷酸代谢
食物核蛋白
一、 核 酸 与 核 苷 酸 降 解
核苷酸代谢
(三)嘌呤核苷酸的合成代谢
从头合成与补救途径合成
1 .从头合成途径:
通过利用一些简单的前体物,如5-磷酸 核糖,氨基酸,一碳单位及CO2等,逐步合成 嘌呤核苷酸的过程称为从头合成途径。这一 途径主要见于肝脏,其次为小肠和胸腺。
在临床上应用较多的嘌呤核苷酸类似物 主要是6-巯基嘌呤(6-MP)。6-MP的化学结 构与次黄嘌呤类似,因而可以抑制 IMP 转变 为AMP或GMP,从而干扰嘌呤核苷酸的合成。
4、嘌呤核苷酸的抗代谢物
(1)嘌呤类似物
6-巯基嘌呤(6-MP) 6-巯基鸟嘌呤 8-氮杂鸟嘌呤 结构类似次黄嘌呤 抑制核苷酸正常合成
嘧啶核苷酸的主要合成步骤为:
(1)尿苷酸(uridine monophosphate)的合成: 在氨基甲酰磷酸合成酶Ⅱ的催化下,以Gln, CO2,ATP为原料合成氨基甲酰磷酸。后者在天冬氨 酸转氨甲酰酶的催化下,转移一分子天冬氨酸,从 而合成氨甲酰天冬氨酸,然后再经脱氢、脱羧、环 化等反应,合成第一个嘧啶核苷酸,即UMP。乳清 酸是关键性的中间产物。(P321) Gln+CO2+2ATP 氨基甲酰磷酸+Asp 氨甲酰天冬氨酸 二氢乳清 酸 乳清酸 UMP
由天冬氨酸提供氨基合成腺苷酸代琥珀酸
(AMP-S),然后裂解产生AMP;
IMP也可在IMP脱氢酶的催化下,以NAD+为
受氢体,脱氢氧化为黄苷酸(XMP),后者再
在鸟苷酸合成酶催化下,由谷氨酰胺提供氨基
合成鸟苷酸(GMP)。
(3)三磷酸嘌呤核苷的合成
P322
2、补救合成途径: 又称再利用合成途径(salvage pathway)。指利用分解代谢产生的自由嘌呤 碱合成嘌呤核苷酸的过程。这一途径可在大 多数组织细胞中进行。其反应为:
核苷酸代谢
核苷酸代谢核苷酸是组成核酸的单位,此外尚具有其他功能 。
与组成蛋白质的氨基酸不同,无论是核糖核苷酸或脱氧核糖核苷酸主要都是在体内利用一些简单原料从头合成的,所以本章的重点是介绍核苷酸的合成代谢。
核苷酸不是营养必需物质。
食物中的核酸多以核蛋白的形式存在,核蛋白经胃酸作用,分解成蛋白质和核酸(RNA和DNA)。
核酸经核酸酶、核苷酸酶及核苷酶的作用,可逐级水解成核苷酸、核苷、戊糖、磷酸和碱基。
这些产物均可被吸收,磷酸和戊糖可再被利用,碱基除小部分可再被利用外,大部分均可被分解而排出体外。
第一节 嘌呤核苷酸的合成代谢体内嘌呤核苷酸的合成有两条途径。
第一,由简单的化合物合成嘌呤环的途径,称从头合成(de novo synthesis)途径。
第二,利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸,称为补救合成(或重新利用)(salvage pathway)途径。
肝细胞及多数细胞以从头合成为主,而脑组织和骨髓则以补救合成为主。
一、嘌呤核苷酸的从头合成(一) 原料核素示踪实验证明嘌呤环是由一些简单化合物合成的,如图10-1所示,甘氨酸提供C-4、C-5及N-7;谷氨酰胺提供N-3、N-9; N10-甲酰四氢叶酸提供C-2, N5,N10-甲炔四氢叶酸提供C-8;CO2提供C-6。
磷酸戊糖则来自糖的磷酸戊糖旁路,当活化为5-磷酸核糖-1-焦磷酸(PRPP)后, 可以接受碱基成为核苷酸。
其活化的反应式如下。
(二) 过程合成的主要特点是在磷酸核糖的基础上把一些简单的原料逐步接上去而成嘌呤环。
而且首先合成的是次黄嘌呤核苷酸(IMP),由后者再转变为腺嘌呤核苷酸(AMP)和鸟嘌呤核苷酸(GMP)。
如图10-2及图10-3所示。
1. IMP的合成嘌呤核苷酸的从头合成的起始或定向步骤是谷氨酰胺提供酰胺基取代5-磷酸核糖-1-焦磷酸(PRPP)C-1的焦磷酸基,从而形成5-磷酸核糖胺(PRA),催化此反应的酶为谷氨酰胺磷酸核糖酰胺转移酶(glutamine phosphoribosyl amidotransferase),此酶是一种别构酶,是调节嘌呤核苷酸合成的重要酶。
生物化学之核苷酸代谢
生尿酸,同时补救途径不通会引起嘌呤核苷
酸从头合成速度增加,更加大量累积尿酸, 从而导致肾结石和痛风
3、脱氧核苷酸的生成
O P -P O N 核糖核苷酸还原酶 OH
硫 化 原 白 氧 还 蛋
CH2
O P -P CH2 O
N
OH NDP
SH
硫 化 原 白 氧 还 蛋
OH S S
H dNDP
SH 硫氧化还原蛋白还原酶 NADP NADP H
次黄嘌呤核苷酸 IMP
ATP和GTP的生成
HOOCCH CHCOOH 2 O C C N O OH OH C N N CH GTP Asp H N P O CH2 HC NH C C N O OH OH OH 腺苷酸代琥珀酸 OH C N N CH 延胡索酸 HC P O CH2 N O C N CH
Glu
P O CH2 OH
OH
OH
XMP
GMP
(Xanthosine monophosphate)
嘌呤核苷酸从头合成的调节
原则之一:满足需求,防止供过于求。
(-) (+) R-5-P
PRPP合 成 酶
(-) (+) PRPP (-) PAR (-) IMP XMP (-) GMP GDP GTP
次黄嘌呤
6-巯 基 嘌 呤 6MP (6-mercaptopurine)
SH
OH H N HC P O CH2 OH C C N O OH C N N CH H N HC P O CH2 OH
C C N O OH C N N CH
次 黄 嘌 呤 核 苷 酸 (IMP)
6-巯 基 嘌 呤 核 苷 酸
嘌呤核苷酸的抗代谢物-2
生物化学核苷酸代谢
生物化学核苷酸代谢核苷酸代谢是生物体内重要的生化过程,涉及到核酸合成、降解、修复、信号传递等多个方面。
核苷酸由碱基、糖和磷酸组成,其代谢在细胞中是高度调控和平衡的。
核苷酸合成主要通过转氨基树酸循环和核苷酸分子的合成反应进行。
在转氨基树酸循环中,核苷酸前体物质首先被转化为碱基,然后与多磷酸核糖(PRPP)反应生成核苷酸。
在核苷酸分子的合成过程中,磷酸化反应是关键步骤。
首先,核苷酸前体物质通过化学反应与其他辅助分子发生磷酸化,生成亲核试剂;然后亲核试剂与其他原子或分子发生进一步反应,最终形成核苷酸分子。
核苷酸降解是核酸的代谢终点。
核苷酸降解主要通过核苷酸酶和核酸酶的作用进行。
核苷酸首先被分解为核苷和糖酸,然后再被分解为碱基、磷酸和其他代谢产物。
核苷酸的降解产物在细胞中可以被重新利用,参与核酸合成或其他代谢途径。
核苷酸修复是为了纠正核苷酸中的损伤或错误。
核酸在细胞中会受到化学、物理和生物性的损伤。
这些损伤可能导致突变和疾病的发生。
核苷酸修复过程中的多个酶参与到检测和修复核酸中的损伤。
例如,碱基切割酶可以识别含有损伤碱基的DNA链,然后切割并去除这些损伤碱基。
然后,DNA聚合酶、连接酶和重排序酶等修复酶可以填补被切割的DNA链,并确保修复后的DNA链的完整性。
核苷酸在细胞中还扮演着重要的信号传递和调控作用。
一些核苷酸可以作为二级信使,传递细胞内外的信号,调控细胞的生理和代谢过程。
例如,环磷酸腺苷(cAMP)和磷腺苷酸(cGMP)是细胞内常见的二级信使,它们通过激活蛋白激酶A、蛋白激酶G等酶的信号通路,参与细胞的增殖、分化、凋亡等生理过程。
总结起来,核苷酸代谢是生物体内重要的生化过程,它涉及核酸的合成、降解、修复以及信号传递等多个方面。
核苷酸代谢的平衡和调控对细胞活动的正常进行至关重要,异常的核苷酸代谢可能导致疾病的发生。
因此,对核苷酸代谢的深入研究,有助于揭示生命活动的机制和疾病发生的原因,也为药物研发和治疗提供了理论基础。
核苷酸代谢生物化学
核苷一磷酸的分解
核苷一磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成 相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
核苷二磷酸的分解
核苷二磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
04
核苷酸代谢的调控
酶的调节
01
酶的激活与抑制
酶的活性可以通过共价修饰(如磷酸化、去磷酸化)、变构效应、与配
体的结合等方式进行激活或抑制,从而调节核苷酸代谢的速度和方向。
Hale Waihona Puke 02酶的浓度调节酶的合成和降解可以调节其在细胞内的浓度,进而影响核苷酸代谢的速
率。
核苷酸的分解代谢
嘌呤核苷酸的分解
嘌呤核苷酸首先在核苷酸酶的作用下 ,将其中的特殊化学键转移给特殊化 学物质,生成相应的嘌呤衍生物和磷 酸核糖。
嘌呤衍生物进一步分解为尿酸,而磷 酸核糖则进一步发生代谢。
嘧啶核苷酸的分解
嘧啶核苷酸在核苷酸酶的作用下,将 其中的特殊化学键转移给特殊化学物 质,生成相应的嘧啶衍生物和磷酸核 糖。
合成过程包括脱氧、磷酸化等步骤,最终 形成脱氧核苷酸。
脱氧核苷酸是DNA的重要组成部分,对 维持生物体的遗传信息具有重要意义。
核苷三磷酸的合成
核苷三磷酸是由核苷二磷酸在激酶催化下 合成的。
合成过程需要消耗能量,如ATP等。
核苷三磷酸是RNA的重要组成部分,对 维持生物体的正常代谢具有重要意义。
03
细胞信号转导的调节
信号转导蛋白
细胞内的信号转导蛋白可以感知 核苷酸代谢产物的浓度,进而调 节核苷酸代谢酶的活性。
11章核苷酸代谢
二、嘧啶核苷酸的生物合成
嘧啶环原子的来源
4 3 2
NH3 CO2
C
N C
1
5
C
天冬氨酸
6
C
N
嘧啶环原子来源:NH3、CO2、Asp 特点: 先利用小分子化合物形成嘧啶环,再与核糖 磷酸(PRPP提供)结合成乳清酸,(与嘌呤核苷 合成的区别)然后生成UMP。其他嘧啶核苷酸由 尿苷酸转变而成。
此过程主要在肝细胞的胞液中进行。除了二氢乳清酸脱 氢酶位于线粒体内膜上外,其余均位于胞液中。
嘌呤的各个原子是在PRPP的C1上逐渐加上 去的(由Asp、Gln、 Gly、甲酸、CO2 提供N和 C)。
PP-1-R-5-P
5’-磷酸核糖-1’-焦磷酸
AMP ATP PRPP合成酶
(5-磷酸核糖)
R-5-P
PRPP
酰胺转移酶
谷氨酰胺
谷氨酸 在谷氨酰胺、甘氨酸、一 碳单位、二氧化碳及天冬 氨酸的逐步参与下
二、嘌呤核苷酸的从头合成 嘌呤环上原子的来源
甘氨酸
天冬氨 酸
甲 酸 或甲酰基
甲 酸 谷 酰 氨 胺
嘌呤环原子来源:Asp、Gln、 Gly、甲酸、CO2 合成部位:胞液 特点: 嘌呤最初不是以游离碱基的形式合成,而 是从5-磷酸核糖-1-焦磷酸(PRPP) 开始,经一系 列酶促反应,先生成次黄嘌呤核苷酸(肌苷酸, IMP),然后再转变为AMP和GMP。
甲酰甘氨脒核苷酸FGAM
-5′-P
磷酸核糖甲酰 甘氨脒合成酶
-5′-P
⑤甲酰甘氨脒核苷酸FGAM
5-氨基咪唑核苷酸(AIR)
-5′-P
氨基咪唑核 苷酸合成酶
-5′-P
⑥ ⑦ 5-氨基咪唑-4-羧酸核苷酸的生成:
核苷酸代谢
核苷酸代谢
核苷酸代谢是生物体内一系列生化反应的过程,用于合成和分解核苷酸分子,包括腺嘌呤核苷酸和胞嘌呤核苷酸。
这些核苷酸是DNA 和RNA 的构建单元,同时还在细胞内参与能量转化和信号传递等生物过程。
核苷酸代谢在维持细胞生存和功能中起着重要作用。
核苷酸代谢包括以下主要过程:
1.核苷酸合成:细胞需要合成新的核苷酸来满足DNA 和RNA
的合成需求。
这包括腺嘌呤核苷酸和胞嘌呤核苷酸的合成。
合成的过程需要多个中间产物,如核糖核苷酸、二磷酸核糖核苷酸等。
2.核苷酸降解:细胞需要分解核苷酸来回收核苷酸单体或能量。
核苷酸降解包括核苷酸的酶解和分解成较小的分子,如核苷、碱基、糖和磷酸。
3.核苷酸储存:一些细胞会储存核苷酸以供以后使用,以应对细
胞周期或环境变化。
4.调控:核苷酸代谢受到多种调控机制的调节,包括反馈抑制、
激活、废物排除和信号传递。
这有助于维持核苷酸浓度在细胞内的平衡。
核苷酸代谢与细胞的生长、分裂、DNA 修复、RNA 合成以及能量代谢等过程密切相关。
失调的核苷酸代谢可能会导致遗传疾病,如类风湿性关节炎、DNA损伤修复缺陷疾病、免疫系统疾病等。
因此,核苷酸代谢的研究对于理解生物体内的基本生物学过程和开发相关药
物非常重要。
核苷酸代谢
第十章核苷酸代谢1. 核苷酸的分解代谢1)核酸的降解:核酸+H2O+核酸酶→单核苷酸+核苷酸酶→核苷+PPi+核苷酶→戊糖+碱基(嘌呤/嘧啶) +核苷酸酸化酶→戊糖-1-磷酸+碱基※核苷水解酶不对脱氧核糖核苷生效。
2)限制性内切酶:3)嘌呤核苷酸的降解:代谢中间产物——黄嘌呤,终产物尿酸(彻底分解为CO2和NH3)。
嘌呤核苷酸→嘌呤核苷→①腺嘌呤(脱氨→次黄嘌呤+黄嘌呤氧化酶→黄嘌呤)②鸟嘌呤(脱氨→黄嘌呤)黄嘌呤+黄嘌呤氧化酶→尿酸肌肉中的嘌呤核苷酸循环生成氨;AMP+AMP脱氨酶→IMP,肌肉中的IMP→AMP,这一过程为嘌呤核苷酸循环。
4)嘧啶核苷酸的降解:分解成磷酸、核糖和嘧啶碱。
①胞嘧啶+胞嘧啶脱氢酶→尿嘧啶+二氢尿嘧啶脱氢酶(开环)→β-脲基丙酸→β-丙氨酸(脱氨参与有机代谢)+NH3+CO2+H2O②胸腺嘧啶+二氢尿嘧啶脱氢酶→二氢胸腺嘧啶+二氢嘧啶酶→β-脲基异丁酸→β-氨基异丁酸(监测放化疗程度)+NH3+CO2+H2O5)尿酸过高与痛风:尿酸在体内过量积累会导致痛风症,别嘌呤醇可治疗痛风,因与次黄嘌呤相似,可抑制黄嘌呤氧化酶从而抑制尿酸生成。
尿酸中体内彻底分解形成CO2和氨。
2. 核苷酸的合成代谢:分布广、功能强;从头合成:利用核糖磷酸、氨基酸CO2和NH3等简单的前提分子,经过酶促反应合成核苷酸。
补救合成:简单、省能,无需从头合成碱基;利用体内现有的核苷和碱基再循环。
嘌呤核苷酸合成前体:次黄嘌呤核苷酸(IMP/肌苷酸)+5-磷酸核糖(起始物)↓活化形式1)嘌呤核糖核苷酸的从头合成途径:主要调节方式——反馈调节;ATP+5-磷酸核糖+5-磷酸核糖焦磷酸合成酶(PRPP合成酶)→5-磷酸核糖焦磷酸(PRPP)腺嘌呤核苷酸AMP鸟嘌呤核苷酸GMPIMP+Asp+腺苷酸琥珀酸合成酶→腺苷酸琥珀酸+腺苷酸琥珀酸裂合酶→延胡索酸+AMPIMP+IMP脱氢酶→黄嘌呤核苷酸+鸟嘌呤核苷酸合成酶→GMP补救合成途径:脑、骨髓组织缺乏从头合成所需要的酶,依靠嘌呤碱或嘌呤核苷合成嘌呤核苷酸。
核苷酸代谢专业知识
嘧啶 + PRPP 嘧啶磷酸核糖转移酶 磷酸嘧啶核苷 + PPi
尿嘧啶核苷 + ATP 尿苷激酶 UMP +ADP
胸腺嘧啶核苷 +核苷酸代谢专业知识
第40页
二、嘧啶核苷酸分解代谢
核苷酸酶
嘧啶核苷酸
核苷
PPi
1-磷酸核糖
核苷磷酸化酶
嘧啶碱
核苷酸代谢专业知识
第41页
NH2 H2O
激酶
AMP
ADP
ATP ADP
ATP ADP
鸟苷激酶
激酶
GMP
GDP
ATP ADP
ATP ADP
ATP GTP
核苷酸代谢专业知识
第16页
• 5. 嘌呤核苷酸从头合成特点
• 嘌呤核苷酸是在磷酸核糖分子上逐步合成。 • IMP合成需5个ATP,6个高能磷酸键。
AMP或GMP合成又需1个ATP。
核苷酸代谢专业知识
HN
C
CH2
O OP
O
氨甲酰磷酸 HO C
CH2
C CH
O N COOH
Pi
H
氨甲酰天冬氨酸
H2O
C CH O N COOH
H
二氢乳清酸
CH H2N COOH
Asp
二氢乳清酸 脱氢酶
NAD + NADH+H +
O HN
脱羧酶
O HN
O
磷酸核糖转移酶 HN
ON
CO2
R-5'-P
UMP
O N COOH
NH3
IMP
核苷酸代谢专业知识
GMP XMP
第22页
(四) 脱氧核糖核苷酸生成
第八章 核苷酸代谢解析
• 少数生物在三磷酸核苷酸的水平上还原为脱氧核 苷酸。
在核苷二磷酸水平上进行
脱氧核糖核苷酸的合成
NDP 二磷酸核糖核苷 还原型硫氧化 还原蛋白-(SH)2 NADP+ 核糖核苷酸还原酶,Mg2+ dNDP 二磷酸脱氧核苷
氧化型硫氧 化还原蛋白
S S
硫氧化还原蛋白还原酶 (FAD)
NADPH + H+
能进行补救合成。
(三)嘌呤核苷酸的相互转变
AMP
NH3
GMP
腺苷酸代 琥珀酸
IMP
XMP
黄苷酸
(四)脱氧核糖核苷酸的合成
• 以核糖核苷酸为原料,通过核糖核苷酸还原酶(Ntreductase)将核糖分子还原为脱氧核糖。 • 多数生物中核糖核苷酸必须先行转化为二磷酸核 苷酸(NDP)水平,再还原为脱氧核苷二磷酸水平。
两栖动物等
无脊椎动物
痛风(Gout)
嘌呤碱分解代谢产生过多的尿酸,由于其溶解性很差, 易形成尿酸钠结晶,沉积于关节部位,引起疼痛或灼痛—痛风。 如果发生HGPRT的缺陷,不能以补救途径合成嘌呤核苷酸, 吸收或合成的嘌呤碱不完全降解,导致大量尿酸积累,也引 起肾结石和痛风。 HGPRT:次黄嘌呤鸟嘌呤转磷酸核糖酶
腺嘌呤 糖构型转为β-型
Adenosine + ATP ———— AMP + ADP
腺苷
核苷激酶
Acid
Base
Base
Acid
Base
Sugar
Sugar
Sugar
嘌呤核苷酸的补救合成
补救合成的生理意义
补救合成节省从头合成时的能量和一
些氨基酸的消耗。 体内某些组织器官,如脑、骨髓等只
第八章核苷酸代谢
HGPRT 鸟嘌呤 + PRPP
GMP + PPi
2、利用现成嘌呤核苷合成嘌呤核苷酸:
腺苷激酶 腺嘌呤核苷
ATP ADP
AMP
生理意义:
1 . 嘌呤核苷酸的补救合成途径比从头合成简单, 消耗ATP少,节省一些氨基酸的消耗;
2. 体内某些组织器官(如脑、骨髓、红细胞 等),由于缺乏从头合成酶系,只能靠补救合 成方式合成核苷酸,以供合成核酸等的需要。
AR
H 2O Pi H 2O
脱氨酶
IR
NH
核苷酸酶
核苷酶
鸟嘌呤酶
GMP
GR
G
X
H 2O Pi
Pi R -1-P H 2O
Pi
黄嘌呤氧化酶 尿酸
思考:人体内嘌呤核苷酸分解代谢的主要终产物是
A.尿素
B.尿酸
C.肌酐
D.尿苷酸
E.肌酸
人和猿类等缺乏分解尿酸的能力,因此尿酸是人、 猿、鸟类及爬虫类体内嘌呤碱分解的最终产物。 但在鸟类,尿酸则可继续分解产生尿囊素。
从头合成的调节
PRPP合成酶、PRPP酰胺转移酶可被IMP、 AMP、GMP抑制;
R-5-P增加PRPP合成酶活性,PRPP增加酰胺 转移酶活性。
AMP抑制AMP生成,GTP促进AMP生成; GMP抑制GMP抑制,ATP促进GMP生成。
(二)补救合成途径:
又称再利用合成途径(salvage pathway)。 指利用分解代谢产生的自由嘌呤碱或嘌呤核苷, 经过简单的反应过程,合成嘌呤核苷酸的过程。 这一途径可在大多数组织细胞中进行。
A.合成错误的DNA,抑制癌细胞生长 B.抑制尿嘧啶的合成,从而减少RNA的生物合成 C.抑制胞嘧啶的合成,从而抑制DNA的生物合成 D.抑制胸腺嘧啶核苷酸合成酶的活性,从而抑制DNA的生物合成 E.抑制二氢叶酸还原酶的活性,从而抑制了TMP合成
生物化学_核苷酸代谢
生物化学_核苷酸代谢核苷酸是生物体内重要的代谢产物和信号分子,参与了细胞的许多生理活动。
核苷酸代谢是指从核苷酸的合成到降解的过程。
核苷酸合成主要发生在细胞的核糖体内,而降解则发生在细胞质中。
核苷酸代谢是一个复杂的过程,涉及许多酶的参与和调节。
核苷酸的合成一般分为两个部分:碱基合成和糖磷酸合成。
碱基合成是指通过一系列酶催化反应将无机盐和二氧化碳转化为核苷酸中的碱基。
碱基合成的过程中需要ATP提供能量,并且还需要其他物质作为辅助因子。
例如,嘌呤核苷酸的合成需要甲硫氨酸、腺苷酸、尿苷酸和腺苷酸等物质参与。
嘌呤核苷酸的合成主要发生在细胞核中,具体包括腺苷酸合成、纯化核苷酸合成和底物识别。
嘌呤核苷酸的合成是一个反应级联,涉及多个酶的参与和调控。
嘌呤核苷酸的合成过程是一个调控复杂的过程,它受到多种酶的调控以及许多物质的调节。
糖磷酸合成是指通过一系列酶催化反应将碱基与糖磷酸结合形成核苷酸。
例如,嘧啶核苷酸的合成主要发生在细胞质中,主要包括嘧啶核苷酸合成和底物识别。
嘧啶核苷酸合成是一个反应级联,也涉及多个酶的参与和调控。
嘧啶核苷酸的合成过程也受到多种酶的调控以及许多物质的调节。
核苷酸的降解主要发生在细胞质中。
核苷酸的降解是一个逆反应,通过一系列酶催化反应将核苷酸转化为底物,最终分解为无机盐和二氧化碳。
例如,嘌呤核苷酸的降解主要发生在肝脏和肾脏中,主要包括核苷酸降解和底物识别。
嘌呤核苷酸的降解是一个反应级联,涉及多个酶的参与和调控。
嘌呤核苷酸的降解过程也受到多种酶的调控以及许多物质的调节。
核苷酸代谢是一个复杂的过程,涉及多个酶的参与和调控。
核苷酸的合成和降解过程需要消耗能量,并且还需要其他物质作为辅助因子。
核苷酸代谢酶的异常表达或活性异常都可能导致核苷酸代谢紊乱,进而影响细胞的生理活动。
核苷酸代谢异常与许多疾病有关,如肿瘤、免疫系统疾病和遗传代谢病等。
因此,研究核苷酸代谢的调控机制和相关疾病的发生机制对于疾病的预防和治疗具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●五、脱氧核苷酸的合成
二磷酸核苷脱氧还原,生成二磷酸脱氧核苷
NDP + NADPH + H+ → dNDP + NADP+ + H2O 二磷酸脱氧核苷发生磷酸化生成三磷酸脱氧核苷 dNDP + ATP → dNTP + ADP 生成的各种三磷酸脱氧核苷是DNA合成的原料。
第二节 核苷酸的分解代谢
核 苷 酸 代 谢
【学习要求】 ★掌握核苷酸从头合成代谢途径的成环 原料、基本阶段及特点,嘌呤核苷酸 与嘧啶核苷酸分解代谢的异同,嘌呤 核苷酸分解代谢产物的临床意义。 ▲熟悉核苷酸抗代谢物的作用机理。 ●了解核苷酸的合成代谢和分解代谢过 程,核酸的消化与吸收。
●核酸消化、吸收基本过程
蛋白质 食物核蛋白 胃酸 核酸 单核苷酸 碱基 核苷 磷酸 戊糖
★一、嘌呤核苷酸的从头合成
㈠合成原料 合成嘌呤环原料:谷氨酰胺、天冬氨酸、甘氨酸、 一碳单位和CO2。 合成嘌呤核苷酸:在上述原料基础上,还需5-磷酸 核糖。 ㈡合成过程(两阶段)
5-磷酸核糖 ① IMP ② XMP GMP AMP
★二、嘧啶核苷酸的从头合成
㈠合成原料 合成嘧啶环原料:谷氨酰胺、天冬氨酸和CO2。 合成嘌呤核苷酸:在上述原料基础上,还需5-磷酸 核糖。 ㈡合成过程(两阶段)
㈡6-巯基嘌呤拮抗机理
6-巯基嘌呤在临床上应用较多: ①6-巯基嘌呤的结构与次黄嘌呤相似,其分 子中由巯基取代了次黄嘌呤的羟基; ②6-巯基嘌呤在体内转化成6-巯基嘌呤核苷 酸,通过抑制IMP转变为AMP及GMP,使 AMP及GMP的生成受阻; ③6-巯基嘌呤还能阻止嘌呤核苷酸的补救合 成途径。
▲二、嘧啶核苷酸的抗代谢物
★一、嘌呤核苷酸的分解代谢 ㈠人体内嘌呤碱分解的终产物
AMP/GMP
I/X
尿酸
随尿排出
黄嘌呤氧化酶 (-) 别嘌呤醇
㈡嘌呤核苷酸分解代谢产物的临床意义 嘌呤碱在人体内最终分解生成尿酸随尿 排出体外。黄嘌呤氧化酶参与催化分 解反应。当核酸大量摄入和大量分解, 或排泄障碍时,血中尿酸含量过高, 尿酸盐晶体即可沉积于关节、软骨组 织而导致痛风症。如沉积于肾脏则可 导致肾结石。临床上常用与次黄嘌呤 结构相似的别嘌呤醇竞争性抑制黄嘌 呤氧化酶,从而使尿酸合成减少。
复习题: 1.何谓抗代谢物?它在医学上有何意义? 2.5-FU、6-MP药物作用的生化机理是什么? 3.核苷酸最主要的生理功能是什么?
放飞心情
医生给一位患者做肠切除手术,因肠 接头缝合不好,出现粪漏,又做了第 二次开腹手术,患者痛苦地说:“大 夫,这回不必缝了,就给肚皮安上个 拉锁吧。”
㈠主要种类 ①嘧啶类似物(如5-氟尿嘧啶); ②叶酸类似物(如氨基喋呤、氨甲喋呤); ③核苷类似物(如阿糖胞苷)。
㈡5-氟尿嘧啶拮抗机理
①5-氟尿嘧啶是嘧啶类似物,本身并无活性; ②在体内可转变成FdUMP及FUTP,阻断 dTMP的合成,从而影响DNA的生物合成; ③也可以假底物形式参入RNA分子中影响 RNA的功能。
二、嘧啶核苷酸的分解代谢 ★嘧啶碱分解的终产物 嘧啶核苷酸→嘧啶碱→ NH3 + CO2 + β-氨基酸
第三节 核苷酸的抗代谢物 ★概念 抗代谢物是指化学结构上与正 常代谢物类似,具有竞争性拮 抗正常代谢作用的物质。
▲一、嘌呤核苷酸的抗代谢物
㈠主要种类 ①嘌呤类似物(如6-巯基嘌呤); ②氨基酸类似物(如氮杂丝氨酸); ③叶酸类似物(如氨基喋呤、氨甲喋呤)。
谷氨酰胺 CO2 天冬氨酸 ① 5-磷酸核糖 UMP UDP ② dUDP dUMP dTMP UTP CTP
三、核苷酸的补救合成
脑、骨髓等组织由于缺乏从头合成酶系, 只能进行补救合成。 ●反应过程
碱基 + 5-磷酸核糖焦磷酸 → 核苷酸 + 焦磷酸
●四、三磷酸核Leabharlann 的合成三磷酸核苷是RNA的合成原料。一磷酸 核苷在激酶的作用下,从ATP获得高 能磷酸基团,转变成相应的二磷酸核 苷、三磷酸核苷。 ATP可以通过氧化磷酸化或底物水平磷 酸化方式,由ADP接受磷酸生成。
从单核苷酸以后的各种消化产物,均可被机体细 胞吸收利用。
第一节 核苷酸的合成代谢
★机体内有两条核苷酸合成途径 一条是利用磷酸核糖、氨基酸、一碳单位与 CO2等各种原料,经过连续的酶促反应合 成核苷酸,称此为从头合成途径。该途径 在肝、小肠和胸腺组织内进行,以肝脏为 主。 另一条是利用现成的碱基,与磷酸核糖直接 反应生成核苷酸,称此为补救合成途径。 主要在脑和骨髓等组织进行。
【难点提示】
⒈比较核苷酸从头合成和补救合成 从头合成 补救合成 合成特点 利用各种小分子原料经过复杂 利用现成的碱基直接合
成,(PRPP提供R-5-P) 的化学反应从头合成核苷酸 (PRPP提供R-5-P)
主要合成组织
肝、小肠、胸腺
脑、骨髓
⒉比较嘌呤核苷酸和嘧啶核苷酸代谢 嘌呤核苷酸 嘧啶核苷酸 合成原料 Asp、“C”、Gln、 Gln、CO2、 Gly、CO2、R-5-P Asp、R-5-P 合成主要 ①合成IMP 阶段 ②合成AMP、GMP ①合成UMP ②合成CTP、 dTMP 分解终产物 嘌呤碱尿酸(人体内)嘧啶碱NH3 + CO2 + β-氨基 酸