最新因式分解经典题目

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲:因式分解一提公因式法

【知识要点】

1、分解因式的概念

把一个多项式公成几个整式的积的形式,这种变形叫做把这个多项式。

2、分解因式与整式乘法的关系

分解因式与整式乘法是的恒等变形。

3.分解因式的一些注意点

(1)结果应该是的形式;(2)必须分解到每个因式都不能为止;

(3)如果结果有相同的因式,必须写成的形式。

4.公因式

多项式中各项都含有的公共的因式,我们把这个因式叫做这个多项式的.

5.提公因式法

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方示叫做提公因式法.

6.确定公因式的方法

(1)系数公因式:应取多项式中各项系数为;

(2)字母公因式:应取多项式中各项字母为.

《重点辨析》

提取公因式时的注意点

【学堂练习】

1.下列各式从左边到右边的变形,哪些是分解因式,哪些不是?

(1))1

1(22x x x x +=+; (2)1)5)(5(22--+=-a a b a

(3)22))((n m n m n m -=-+ (4)22)2(44+=++x x x (5))23(232y x x x xy x -=+- (6)32)1)(3(2--=+-x x x x 2.把下列各式分解因式 (1)a ab a 3692+- (2)4324264xy y x y x +--

【经典例题】

例1、把下列各式分解因式 (1))2(3)2(2y x b y x a --- (2))2(4)2(3)2(2y x c x y b y x a -----

(3)32)2()2(2x y b y x a -+- (4)32)3(25)3(15a b b a b -+-

(5)432)(2)(3)(x y x y y x -+--- (6)n m n m x b x a x b x a )()()()(11++-++-+

例2.利用分解因式计算

(1)5.12346.45.12347.115.12349.2⨯-⨯+⨯ (2)99

10098

992222--

例3.已知2,3

2

==+ab b a ,求代数式22222ab b a b a ++的值。

例4、利用因式分解说明:127636-能被140整除。

【随堂练习】

1.下列各式从左到右的变形中是因式分解的是( ) A 、2))(1(2-+=+-a a b a a B 、)1)(1(2

2y x y x y

x -+=1-

C 、))((y x y x y x -+=-

D 、2)2(4)4(+=++m m m

2.已知二次三项式c bx x ++22分解因式)1)(3(2+-x x ,则c b ,的值为( ) A 、1,3-==c b

B 、2,6=-=c b

C 、4,6-=-=c b

D 、6,4-=-=c b

3.下列各式的公因式是a 的是( ) A 、5++ay ax

B 、264ma ma +

C 、ab a 1052+

D 、ma a a +-42

4.将)()(3y x b y x a ---用提公因式法分解因式,应提出的公因式是( ) A 、b a -3

B 、)(3y x -

C 、y x -

D 、b a +3

5.把多项式)2()2(2a m a m -+-分解因式的结果为( ) A 、))(2(2m m a +- B 、))(2(2m m a -- C 、)1)(2(--m a m

D 、)1)(2(+-m a m

6.多项式xy y x -22的公因式是 ;多项式是323296c ab b a -的公因式是 。 7.分解因式:2xy xy -= 。 333)()()(n m m n b n m a -=---( )。 8.已知:1000,133==+ab b a 。22ab b a +的值为 。 9.把下列各式分解因式 (1)2222262ab b a b a +- (2)32223229123bc a c b a bc a ++-

(3))()(y x b y x a --- (4))()(22y x x x y ---

【课后强化】

1.432-+mx x 分解因式为)1)(43(-+x x ,则m 的值为 。

2.xy nxy mxy xy 3963-=+--( ) =---+-)()()(a x c x a b a x a 。 3.把下列各式分解因式 (1)xyz xy y x 126322+- (2))(6)(32x y x y x x -+-

(3)23)(4)(2x y y x -+- (4)2)())((b a a b a b a a +--+

第四讲:因式分解—公式法、分组分解法

【知识要点】

1.乘法公式逆变形

(1)平方差公式:))((2

2b a b a b a -+=-

(2)完全平方公式:2

22222)(2,)(2b a b ab a b a b ab a -=+-+=++ 2.常见的两个二项式幂的变号规律:

①22()

()n

n a b b a -=-; ②2121()()n n a b b a ---=--.(n 为正整数)

3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式; (2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用分组分解方法。

【学堂练习】

1、如果2592

++kx x 是一个完全平方式,那么k 的值是( ) A 15 B 15± C 30 D 30±

2、下列多项式,不能运用平方差公式分解的是( )

A 、42

+-m B 、22y x -- C 、122-y x D 、()()2

2

a m a m +--

3、把下列各式分解因式: (1)2

24b a - (2)2

916a - (3) 1162

2-y x

(4)36122+-m m (5)2

2

4

1y xy x +- (6)222y xy x -+-

(7)2

2

x y ax ay -++ (8)42

469x a a ---

相关文档
最新文档