(完整版)北师大七年级下册数学第四章全等三角形判定二(提高)

合集下载

七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

七年级数学下册 第4章 三角形 4.3 探索三角形全等的条件课件 (新版)北师大版

例2 (2017四川宜宾中考)如图4-3-2,已知点B、E、C、F在同一条直线 上,AB=DE,∠A=∠D,AC∥DF.试说明:BE=CF.
图4-3-2 分析 由AC∥DF可得∠ACB=∠F,又∠A=∠D,AB=DE,可以利用AAS 得到△ABC≌△DEF,根据全等三角形的对应边相等可得BC=EF,都减 去EC即可得BE=CF.
AD BC,
因为DAB CBA,所以△ABD≌△BAC(SAS).
AB AB,
知识点一 判定三角形全等的条件——边边边 1.如图4-3-1,在△ABC和△FED中,AC=FD,BC=ED,要利用“SSS”来判 定△ABC和△FED全等,下面的4个条件中:①AE=FB;②AB=FE;③AE= BE;④BF=BE,可利用的是 ( )
AB=DE,BC=EF (2)已知两角
思路一(找第三边)
思路二(找角)
首先找出AC=DF,然后应用“SSS”判定全等
①找夹角:首先找出∠B=∠E,然后应用 “SAS”判定全等;②找直角用“HL”判定 全等(后面会学到)
思路一(找夹边)
思路二(找角的对边)
首先找出AB=DE,然后应用“ASA”判定全 等
A.①或②
B.②或③
图4-3-1 C.①或③ D.①或④
答案 A 由题意可得,要用“SSS”进行△ABC和△FED全等的判定, 只需AB=FE,若添加①AE=FB,则可得AE+BE=FB+BE,即AB=FE,故①可 以;显然②可以;若添加③AE=BE或④BF=BE,均不能得出AB=FE,故③④ 不可以,故选A.
架不变形,他至少要再钉上
根木条.
()
图4-3-5
A.0 解析 答案
B.1 C.2 D.3 连接AC或BD,构成三角形,三角形具有稳定性. B

北师大版七年级数学下册第四章 三角形2 图形的全等

北师大版七年级数学下册第四章  三角形2 图形的全等

对应角:∠A 与∠D ; ∠B 与∠E ;∠C 与∠F .
全等三角形的对应边相等,对应角相等.
全等的表示方法
A
F
B
C
D
E
“全等”用符号“≌”表示,读作“全等于”.
△ABC 与 △DEF 全等,记作 △ABC≌△FDE
注意:记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
全等三角形的性质的几何语言
2 全等三角形的定义
A
D
B
CE
F
能够完全重合的两个三角形叫做全等三角形. 例如,在图中,△ABC 与 △DEF 能够完全重合, 它们是全等三角形.
A
D
B
C
E
F
你能找出其他的对应顶点、对应边和对应角吗?
对应点:点 A,点 D; 点 B,点 E;点 C,点 F;
对应边:AB 与 DE; AC 与 DF;BC 与 EF;
探究新知
1 全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形称为全等图形.
议一议
(1) 你能说出生活中全等图形的例子吗?
(2) 观察下面三组图形,它们是不是全等图形? 为什么?与同伴进行交流.
大小不同
形状不同

(3) 如果两个图形全等,它们的形状和大小一定都相同 吗?
全等图形的性质:全等图形的形状和大小都相同.
A
F
B
C
D
E
因为△ABC≌△FDE,
所以 AB = FD,AC = FE,BC = DE (全等三角形的对应边 相等),
∠A =∠F,∠B =∠D,∠C =∠E (全等三角形对应角相等)
典例精析 例1 如图,若△BOD≌△COE,指出这两个全等三角形 的对应边;若△ADO≌△AEO,指出这两个三角形的对 应角. 解:△BOD 与△COE 的对应边为: BO 与 CO,OD 与 OE,BD 与 CE; △ADO 与△AEO 的对应角为: ∠DAO 与∠EAO,∠ADO 与∠AEO, ∠AOD 与∠AOE.

北师大版七年级下册第四章全等三角形复习课优秀教学案例

北师大版七年级下册第四章全等三角形复习课优秀教学案例
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同解决问题。
2.教师设计一些需要团队合作完成的任务,培养学生的团队合作意识和沟通能力。
3.教师引导学生分享自己的学习心得和解决问题的方法,促进学生之间的相互学习和共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结学习方法和经验,提高自我认知和评价能力。
在全等三角形的复习中,教师以生活中的实际问题为背景,创设情境,激发学生的学习兴趣。通过设计一系列具有层次性的问题,引导学生逐步深入探讨全等三角形的性质和判定方法。在解决问题的过程中,教师引导学生运用转化思想,将复杂问题转化为简单问题,从而提高学生的思维品质和解决问题的能力。
此外,教师还注重发挥学生的主体作用,鼓励学生主动参与课堂讨论,分享自己的学习心得。在课堂上,教师与学生互动频繁,及时给予学生反馈,使学生在轻松愉快的氛围中掌握全等三角形的知识。
3.教学方法灵活多样:教师在教学过程中运用了观察、操作、思考、交流等多种教学方法,使学生在轻松愉快的氛围中掌握全等三角形的知识。同时,教师还注重培养学生的空间思维能力和解决问题的能力,提高学生的数学素养。
4.注重学生个体差异:教师关注学生的个体差异,充分调动学生的积极性和主动性。通过设置具有挑战性和开放性的问题,激发学生的创新意识和解决问题的能力,使学生在课堂上得到充分的发展。
本节课的设计紧密结合学生的生活实际,遵循学生的认知规律,注重培养学生的问题解决能力和空间思维能力。通过本节课的学习,学生对全等三角形的知识有了更深入的理解,能够运用所学知识解决实际问题,提高了学生的数学素养。
二、教学目标
(一)知识与技能
1.理解全等三角形的定义及其性质,能够熟练运用全等三角形的性质解决实际问题。

北师大新版七年级下册《第4章 三角形》2含解析版答案

北师大新版七年级下册《第4章 三角形》2含解析版答案

北师大新版七年级下册《第4章三角形》一、选择题(共11小题)1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°2.如图,点C在AB的延长线上,∠A=35°,∠DBC=110°,则∠D的度数是()A.65°B.70°C.75°D.95°3.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠24.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC10.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°11.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F二、填空题(共12小题)12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.13.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.14.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)15.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是.16.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)17.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD ≌△CDB.(只需写一个)18.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件,使△ABC≌△DEF.19.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB =AC.∠E=30°,∠BCE=40°,则∠CDF=.20.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)21.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).22.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).23.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO≌△CDO.三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD ≌△AEC.30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.北师大新版七年级下册《第4章三角形》参考答案与试题解析一、选择题(共11小题)1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选:A.2.如图,点C在AB的延长线上,∠A=35°,∠DBC=110°,则∠D的度数是()A.65°B.70°C.75°D.95°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得,∠D=∠DBC﹣∠A=110°﹣35=75°.故选:C.3.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.4.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.6.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等()A.∠A=∠DFE B.BF=CF C.DF∥AC D.∠C=∠EDF 【分析】根据三角形中位线的性质,可得∠CEF=∠DFE,∠CFE=∠DEF,根据SAS,可判断B、C;根据三角形中位线的性质,可得∠CFE=∠DEF,根据AAS,可判断D.【解答】解:A、∠A与∠DEF没关系,故A错误;B、BF=CF,F是BC中点,点D、E分别是边AB、AC的中点,∴DF∥AC,DE∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故B正确;C、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,∵DF∥AC,∴∠CEF=∠DFE在△CEF和△DFE中,∴△CEF≌△DFE(ASA),故C正确;D、点D、E分别是边AB、AC的中点,∴DE∥BC,∴∠CFE=∠DEF,,∴△CEF≌△DFE(AAS),故D正确;故选:A.7.如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.8.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.9.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.【解答】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:A.10.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC ≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.11.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.二、填空题(共12小题)12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP ≌R t△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.13.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:△ADF≌△CBE.【分析】由平行四边形的性质,可得到等边或等角,从而判定全等的三角形.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA,∴∠AFD=∠BEC,在△ADF与CBE中,,∴△ADF≌△CBE(AAS),故答案为:△ADF≌△CBE.14.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF.(只填一个即可)【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF15.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC ≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS 即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC16.如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD =∠CBD或AD=CD..(只需写一个,不添加辅助线)【分析】由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S 了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD或AD=CD.【解答】解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.17.如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件AB=CD,使△ABD≌△CDB.(只需写一个)【分析】先根据平行线的性质得∠ABD=∠CDB,加上公共边BD,所以根据“SAS”判断△ABD≌△CDB时,可添加AB=CD.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当添加AB=CD时,可根据“SAS”判断△ABD≌△CDB.故答案为AB=CD.18.如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.【分析】可选择利用SSS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.【解答】解:①添加AC=DF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).②添加∠B=∠DEF.∵BE=CF,∴BC=EF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).③添加AB∥DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF(或∠B=∠DEF或AB∥DE).19.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB =AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.20.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.21.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是AB=CD(答案不唯一)(填出一个即可).【分析】添加条件是AB=CD,根据AAS推出两三角形全等即可.【解答】解:AB=CD,理由是:∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),故答案为:AB=CD(答案不唯一).22.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=DE(只需写一个,不添加辅助线).【分析】求出BC=EF,∠ABC=∠DEF,根据SAS推出两三角形全等即可.【解答】解:AB=DE,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AB∥DE,∴∠ABC=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=DE.23.如图,AC与BD相交于点O,且AB=CD,请添加一个条件∠A=∠C,使得△ABO≌△CDO.【分析】首先根据对顶角相等,可得∠AOB=∠COD;然后根据两角及其中一个角的对边对应相等的两个三角形全等,要使得△ABO≌△CDO,则只需∠A=∠C即可.【解答】解:∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.(答案不唯一)故答案为:∠A=∠C.(答案不唯一)三、解答题(共7小题)24.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.【分析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).25.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.【分析】已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.【解答】解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).26.已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.【分析】根据中点定义求出AC=CB,根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.【解答】证明:∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行,同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).27.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)【分析】先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.【解答】AC=DF.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS).28.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.【分析】首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后再利用AAS定理可判定△BED≌△CFD.【解答】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,在△BED和△CFD中,,∴△BED≌△CFD(AAS).29.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD ≌△AEC.【分析】根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.【解答】证明:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS).30.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.请完整说明为何△ABC与△DEC全等的理由.【分析】根据∠BCE=∠ACD=90°,可得∠3=∠5,又根据∠BAE=∠1+∠2=90°,∠2+∠D=90°,可得∠1=∠D,继而根据AAS可判定△ABC≌△DEC.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).。

北师大版数学七年级下册4 第2课时 利用“角边角”“角角边”判定三角形全等

北师大版数学七年级下册4 第2课时 利用“角边角”“角角边”判定三角形全等

►If I had not been born Napoleon, I would have liked to have been born Alexander. 如果今天我不是拿破仑的话,我想成为亚历山大。
►Never underestimate your power to change yourself! 永远不要低估你改变自我的能力!
因为AB⊥AC,
∠ADB=∠CEA=90°,
所以∠BAD+∠CAE=90°,∠ABD=∠CAE,
∠ABD=∠CAE.
AB=AC,
在△BDA和△AEC中,
所以△BDA≌△AEC(AAS).
(2)DE=BD+CE.
解:因为△BDA≌△AEC,
所以BD=AE,AD=CE, 所以DE=DA+AE=BD+CE.
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
A
不全等,因为BC虽然是
公共边,但不是对应边.
C
B
D
随堂即练
4.如图∠ACB=∠DFE,BC=EF,那么应补充一
个条件
,才能使△ABC≌△DEF
(写出一个即可). AB=DE可以吗?×
B
A AB∥DE

(北师大版)七年级数学下册:第四章三角形4.3第2课时利用“角边角”“角角边”判定三角形全等授课典案

(北师大版)七年级数学下册:第四章三角形4.3第2课时利用“角边角”“角角边”判定三角形全等授课典案

图4-1-29处理方式:可让学生快乐地回答.【师】同学们都非常喜欢读书,那你们家里一定有漂亮的典案二导学设计4.3探索三角形全等的条件(2)一、学习目标1、探索出三角形全等的条件“ASA ”和“AAS ”并能应用它们来判定两个三角形 是否全等。

2、体会利用转化的数学思想和方法解决问题的过程。

3、能够有条理的思考和理解简单的推理过程,并运用数学语言说明问题。

4、敢于面对数学活动中的困难,并能通过合作交流解决遇到的问题。

二、学习重点掌握三角形全等条件“ASA ”和“AAS ”,并能应用它们来判定两个三 角形是否全等。

三、学习难点 探索 “AAS ”的条件 四、学习设计: 1.温故而知新如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,△ABD 和△ACD 全等吗? 你能说明理由吗? 2、创设情景,引入新课提问:一张三角形的纸片,被斯成三部分,究竟用那部分可 画出原图一样的三角形? 探究练习1. 两角和它们的夹边将学生分组小组分工合作完成下列问题: 画一个△ABC 使它满足以下条件: 第一组:∠A=90°, ∠B=30°,AB=10cm 第二组: ∠A=60°, ∠B=45°,AB=9cm学生动手操作,完成问题后,小组交流比较,看看能得到什么结论?学生表述,老师板书: ________________________对应相等的两个三角形全等;(简写为_____________或者 ______________) 探究练习2.如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60° 和45°,一条边长为10cm ,情况会怎样呢?ABCD(1) 如果角60°所对的边为10cm ,你能画出这个三角形吗?(2) 如果角45°所对的边为10cm ,那么按这个条件画出的三角形都全等吗?结论___________________________对应相等的两个三角形全等简写为________________________________思考:若两个三角形具备两角和其中一个角的对边分别相等,哪么这两个三角形全等,你认为对吗?能举例说明吗?3.举例应用:例1.如图,已知AO=DO ,∠AOB 与∠DOC 是对顶角,还需补充条件______________=_______________,就可根据“ASA ”说明△AOB ≌△DOC ;或者补充条件_______________=_______________,就可根据“AAS ”,说明△AOB ≌△DOC 。

2023年北师大版七年级下册数学第四章三角形第7课时探索三角形全等的条件(2)

2023年北师大版七年级下册数学第四章三角形第7课时探索三角形全等的条件(2)

相等
·数学 的两个三角
∠A=∠A′, ቐ∠B=∠B′,
BC=B′C′,
所以△ABC≌ △A'B'C' ( AAS ).
·数学
3.如图,已知AC=EC,∠ACB=∠ECD,要利用“AAS”判 定△ABC≌△EDC,应添加的条件是 ∠B=∠D .
知识点四:AAS的应用 例:如图,已知∠B=∠DEF,AB=DE,要说明 △ABC≌△DEF.
BC=EF 所以△ABC≌△DEF(AAS).所以AC=DF.
·数学
8.【例4】如图,在△ABC中,高AD与BE相交于点H,且AD= BD,问△BHD≌△ACD吗?为什么? 解:△BHD≌△ACD. 理由如下:因为AD⊥BC,BE⊥AC, 所以∠ADC=∠BEC=90°. 所以∠DAC=∠EBC,即∠DAC=∠DBH.
几何直观 推理能力 角形全等的条件(ASA) 两角及其 夹边 分别相等的两个三角形全等(简写成“角边 角”或“ASA”). 几何语言:在△ABC与△A'B'C'中,
∠A=∠A′, ቐ AB=A′B′, 所以△ABC≌ △A'B'C' ( ASA ).
∠B=∠B′,
AD=AB 所以△ADE≌△ABC(AAS).
·数学 7.【例3】(北师7下P111、人教8上P44)如图,点B,F,C, E在一条直线上,BF=CE,AB∥DE,∠ACB=∠DFE.试 说明:AC=DF.
解:因为BF=CE,所以BC=EF. 又因为AB∥DE,所以∠B=∠E.
∠B=∠E 在△ABC和△DEF中,ቐ BC=EF ,
·数学
2.如图,点E在AB上,点C在AD上,AB=AD,∠B=∠D. 试说明:△ABC≌△ADE.

完整word版,北师大版七年级数学下册 第四章知识点汇总(全)

完整word版,北师大版七年级数学下册     第四章知识点汇总(全)

第四章 三角形三角形三边关系三角形 三角形内角和定理角平分线三条重要线段 中线高线全等图形的概念全等三角形的性质SSS三角形 SAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。

2、顶点是A 、B 、C 的三角形,记作“ΔABC ”,读作“三角形ABC ”。

3、组成三角形的三条线段叫做三角形的边,即边AB 、BC 、AC ,有时也用a ,b ,c 来表示,顶点A 所对的边BC 用a 表示,边AC 、AB 分别用b ,c 来表示;4、∠A 、∠B 、∠C 为ΔABC 的三个内角。

二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

用字母可表示为a+b>c,a+c>b,b+c>a ;a-b<c,a-c<b,b-c<a 。

2、判断三条线段a,b,c 能否组成三角形:当两条较短线段之和大于最长线段时,则可以组成三角形。

3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。

2、三角形按内角的大小可分为三类:(1)锐角三角形:即三角形的三个内角都是锐角的三角形;(2)直角三角形:即有一个内角是直角的三角形,我们通常用“Rt Δ”表示“直角三角形”,其中直角∠C 所对的边AB 称为直角三角表的斜边,其余两边称为直角三角形的直角边。

直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形:即有一个内角是钝角的三角形。

a b c a b -<<+3、判定一个三角形的形状主要看三角形中最大角的度数。

4、直角三角形的面积等于两直角边乘积的一半。

四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线。

北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案

北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
2.教学难点
-难点一:理解并区分ASA和AAS判定条件。学生可能会混淆两种判定方法中角的对应关系和边的对应关系。
-举例:学生需要明确ASA中的边是夹在两组相等角之间的边,而AAS中的边不是夹在两组相等角之间的边。
-难点二:在实际问题中灵活应用判定方法。学生在面对具体的几何图形时,可能难以确定使用哪种判定方法。
2.利用“角角边”(AAS)判定三角形全等:学生通过实例分析,掌握当两个三角形中,有两组角和非夹边相等时,这两个三角形全等。
本节课将结合教材内容,通过实际例题和练习,使学生熟练运用“角边角”和“角角边”判定方法,证明三角形全等。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过引导学生运用“角边角”和“角角边”判定方法证明三角形全等,使其掌握几何图形的基本证明方法,提高逻辑推理能力。
北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
一、教学内容
本节课选自北师大版七年级下册(新)第四章《几何图形的尺规作图与证明》中的4.3.2节,主要内容包括以下两点:
1.利用“角边角”(ASA)判定三角形全等:学生通过观察和实际操作,理解当两个三角形中,有两组角和它们之间的夹边相等时,这两个三角形全等。
2.培养学生的空间观念:通过观察、分析、操作几何图形,使学生形成对三角形全等的空间观念,提高对几何图形的理解和认识。
3.培养学生的数学应用意识:将三角形全等的判定方法应用于解决实际问题,使学生体会数学与现实生活的联系,提高数学应用意识。
三、教学难点与重点
1.教学重点
- “角边角”(ASA)判定方法的掌握:学生需要理解并熟练运用ASA判定方法,通过两组角和它们之间的夹边相等来证明两个三角形全等。

七年级数学下册第四章三角形4用尺规作三角形直角三角形全等的判定、尺规作图、测距离试题北师大版

七年级数学下册第四章三角形4用尺规作三角形直角三角形全等的判定、尺规作图、测距离试题北师大版

直角三角形全等的判定、尺规作图、测距离知识点一:直角三角形的判定1.直角三角形全等的判定条件——HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.2.直角三角形全等的判定方法的综合运用.判定两个直角三角形全等的方法有五种,即SSS、SAS,ASA.AAS,HL.3.判定条件的选择技巧(1)上述五种方法是判定两直角三角形全等的方法,但有些方法不可能运用.如SSS,因为有两边对应相等就能够判定两个直角三角形全等.(2)判定两个直角三角形全等,必须有一组对应边相等.(3)证明两个直角三角形全等,可以从两个方面思考:①是有两边相等的,可以先考虑用HL,再考虑用SAS;②是有一锐角和一边的,可考虑用ASA或AAS.例1.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,则∠ABC+∠DFE=________.分析:本题解决问题的关键是证明Rt△ABC≌Rt△DEF,由此,我们也知道三角形全等是解决问题的有力工具.解:由现实意义及图形提示可知CA⊥BF,ED⊥BF,即∠BAC=∠EDF=90°.又因为BC=EF,AC=DF,可知Rt△ABC≌Rt△DEF.得∠DFE=∠ACB.因为∠ACB+∠ABC=90°,故∠ABC+∠DFE=90°.例2.如图所示,△ABC中,AD是它的角平分线,BD=CD,DE.DF分别垂直于AB.AC,垂足为E.F.求证BE=CF.解:在△AED和△AFD中,∠ ∠ (垂直的定义)∠ ∠ (角平分线的定义)(公共边)所以△AED≌△AFD(AAS).所以DE=DF(全等三角形的对应边相等).在Rt△BDE和Rt△CDF中, (已知) (已证)所以Rt△BDE≌△Rt△CDF(HL).所以BE= CF(全等三角形的对应边相等).例3.如图所示,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.分析:要证CF=DF,可连接AC.AD后,证△ACF≌△ADF即可.证明:连结AC.AD.在△ABC和△AED中,所以AC=AD(全等三角形的对应边相等).因为AF⊥CD(已知),所以∠AFC=∠AFD=90°(垂直定义).在Rt△ACF和Rt△ADF中,(已证) (公共边)所以Rt△ACF≌Rt△ADF(HL).所以CF=DF(全等三角形的对应边相等).例4.已知在△ABC与△A′B′C′中,CD.C′D′分别是高,且AC=A′C′,AB=A′B′,CD=C′D′,试判断△ABC 与△A′B′C′是否全等,说说你的理由.分析:分析已知条件,涉及到三角形的高线,而三角形的高线有在三角形内、外或形上三种情形,故需分类讨论. 解:情形一,如果△ABC与△A′B′C′都为锐角三角形,如图所示.因为CD.C′D′分别是△ABC.△A′B′C′的高.所以∠ADC=∠A′D′C′=90°.在△ADC和△A′D′C′中∴Rt△ADC≌Rt△A′D′C′,则∠A=∠A′.在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SAS).情形二,当△ABC为锐角三角形,△A′B′C′为钝角三角形,如图.显然△ABC与△A′B′C′不全等.情形三,当△ABC与△A′B′C′都为钝角三角形时,如图.由CD.C′D′分别为△ABC和△A′B′C′的高,所以∠ADC=∠A′D′C′=90°,在Rt△ADC和Rt△A′D′C′中,CD=C′D′,AC=A′C′∴Rt△ACD≌Rt△A′C′D′,∴∠CAD=∠C′A′D′.∴∠CAB=∠C′A′B′,在△ABC与△A′B′C′中∴△ABC≌△A′B′C′.例5.阅读下题及证明过程:如图,已知D是△ABC中BC边上的一点,E是AD上一点,EB=EC,∠BAE=∠CAE,求证:∠ABE=∠ACE.证明:在△ABE和△ACE中∴△ABE≌△ACE 第一步∴∠ABE=∠ACE 第二步上面的证明过程是否正确?若正确,请写出每一步推理的根据,若不正确,请指出错在哪一步,并写出你认为正确的证明过程.分析:用三角形全等的判定条件去判断,易发现错在第一步,它不符合全等三角形的条件,因此需另辟途径.由题设知,当结论成立时,必有△ABE≌△ACE,而由已知条件不能求证这两个三角形全等,故需将这两个三角形中重新构造出全等三角形.解:上面的证明过程不正确,错在第一步,正确的证明过程如下:过E作EG⊥AB于G,EH⊥AC于H.如图所示则∠BGE=∠CHE=90°在△AGE与△AHE中∴△AGE≌△AHE∴EG=EH在Rt△BGE与Rt△CHE中,EG=EH,BE=CE.∴Rt△BGE≌Rt△CHE,∴∠ABE=∠ACE.例6.已知:如图所示,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.(1)求证:BE⊥AC;(2)若把条件BF=AC和结论BE⊥AC互换,那么这个命题成立吗?(1)证明:因为AD⊥BC(已知),所以∠BDA=∠ADC=90°(垂直定义),∠1+∠2=90°(直角三角形两锐角互余).在Rt△BDF和Rt△ADC中, (已知) (已知)所以Rt△BDF≌Rt△ADC(HL).所以∠2=∠C(全等三角形的对应角相等).因为∠1+∠2=90°(已证),所以∠1+∠C=90°.因为∠1+∠C+∠BEC=180°(三角形内角和等于180°),所以∠BEC=90°.所以BE⊥AC(垂直定义);(2)证明:命题成立,因为BE⊥AC,AD⊥BC,所以∠BDF=∠ADC=90°(垂直定义).所以∠1+∠C=90°,∠DAC+∠C=90°.所以∠1=∠DAC(同角的余角相等).在△BFD与△ACD中,∠ ∠ (已证)∠ ∠ °(已证)(已知)所以△BFD≌△ACD(AAS).所以BF=AC(全等三角形的对应边相等).知识二:利用三角形全等测距离通过探索三角形全等,得到了“边边边”,“边角边”,“角边角”,“角角边”定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,就具备了“利用三角形全等测距离”的理论基础.体会数学与生活的密切联系,能够利用三角形全等解决生活中的实际问题.在解决实际问题时确定方案使不能直接测量的物体间的距离转化为可以测量的距离(即把距离的测量转化为三角形全等的问题).例1.如图,有一湖的湖岸在A.B之间呈一段圆弧状,A.B间的距离不能直接测得.•你能用已学过的知识或方法设计测量方案,求出A.B间的距离吗?答案:要测量A.B间的距离,可用如下方法:(1)过点B作AB的垂线BF,在BF上取两点C.D,使CD=BC,再定出BF的垂线DE,使A.C.E在一条直线上,根据“角边角公理”可知△EDC≌△ABC.因此:DE=BA.•即测出DE的长就是A.B之间的距离.(如图甲)(2)从点B出发沿湖岸画一条射线BF,在BF上截取BC=CD,过点D作DE∥AB,使A.•C.E在同一直线上,这时△EDC≌△ABC,则DE=BA.即DE的长就是A.B间的距离.(•如图乙)例2.如图、小红和小亮两家分别位于A.B两处隔河相望,要测得两家之间的距离,请你设计出测量方案.分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离.方案:如图,在点B所在的河岸上取点C,连接BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A.C.E三点在同一直线上.测量出DE的长,就是AB的长.因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD,所以AB=DE.知识点三:尺规作图1.用尺规作三角形的根据是三角形全等的条件.2.尺规作图的几何语言①过点×、点×作直线××;或作直线××;或作射线××;②连接两点××;或连接××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;④在××上截取××=××;⑤以点×为圆心,××的长为半径作圆(或弧);⑥以点×为圆心,××的长为半径作弧,交××于点×;⑦分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.3.用尺规作图具有以下三个步骤①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹. 对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1.已知三角形的两角及其夹边,求作这个三角形.已知:∠α,∠β,线段c(如图).求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.请按照给出的作法作出相应的图形.例2.如图,已知线段a,b,c,满足a+b>c,用尺规作图法作△ABC,使BC=a,AC=b,AB=c.错误作法:(1)作线段AB=c;(2)作线段BC=a;(3)连接AC,则△ABC就是所求作的三角形(如图).分析:本题第2步作线段BC=a,在哪个方向作,∠CBA的度数是多少是不确定,所以这步的作法不正确,不能保证AC的长一定等于b.错误的原因在于没有真正理解用尺规作三角形的方法.正确作法:(1)作射线CE;(2)在射线CE上截取CB=a;(3)分别以C,B为圆心,b,c长为半径画弧,两弧交于点A.连接AC.AB,则△ABC为所求作的三角形(如图).例3.已知两边和其中一边上的中线,求作三角形.已知线段A.b 和 m.求作△ABC,使BC=a,AC=b,BC边上的中线等于m.分析:如果BC已作出,则只要确定顶点A.由于AD是中线,则D为BC的中点,A在以D为圆心,m为半径的圆上,又AC=b,点A也在以C为圆心b为半径的圆上,因此点A是这两个轨迹的交点.作法:1.作线段BC=a.2.分别以B.C为圆心,大于 长为半径画弧,在BC两侧各交于一点M、N,连接M、N交BC于点D.3.分别以D为圆心,m长为半径作弧,以C为圆心,b长为半径作弧,两弧交于点A.4.分别连接AB.AC.则△ABC就是所求作的三角形.思考:假定△ABC已经作出,其中 BC=a,AC=b,中线 AD=m.显然,在△ADC中,AD=m,DC= ,AC=b,所以△ADC若先作出.然后由BD= 的关系,可求得顶点B的位置,同样可以作出△ABC.作法请同学们自己写出.1.如图,DB⊥AB,DC⊥AC,垂足分别为B.C,且BD=CD,求证:AD平分∠BAC.证明:∵DB⊥AB,DC⊥AC∴∠B=∠C=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD(HL)∴∠1=∠2∴AD平分∠BAC.2.如图,已知AB=AC,AB⊥BD,AC⊥CD,AD和BC相交于点E,求证:(1)CE=BE;(2)CB⊥AD.证明:(1)∵AB⊥BD,AC⊥CD∴∠ABD=∠ACD=90°在Rt△ABD和Rt△ACD中∴Rt△ABD≌Rt△ACD (HL)∴∠1=∠2在△ABE和△ACE中∴△ABE≌△ACE(SAS)∴BE=CE(2)∵△ABE≌△ACE∴∠3=∠4又∵∠3+∠4=180°∴∠3=90°∴CB⊥AD3.如图,已知一个角∠AOB,你能否只用一块三角板作出它的平分线吗?说明方法与理由.解:能.作法:(1)在OA,OB上分别截取OM=ON(2)过M作MC⊥OA,过N作ND⊥OB,MC交ND于P(3)作射线OP则OP为∠AOB的平分线证明:∵MC⊥OA.ND⊥OB∴∠1=∠2=90°在Rt△OMP和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴∠3=∠4∴OP平分∠AOB.4.如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?解:能.理由如下:∵BA⊥AC,DA⊥AE,∴∠BAC=∠DAE=90° 在 Rt△ABC 和 Rt△ADE 中∴Rt△ABC≌Rt△ADE(HL) ∴∠C=∠E,AC=AE 在△AMC 和△ANE 中∴△AMC≌△ANE(ASA),∴AM=AN. 5.如图,CE⊥AB,DF⊥AB,垂足分别为 E.F,且 AE=BF,AD=BC,则(1)△ADF 和△BEC 全等吗?为什么? (2)CM 与 DN 相等吗?为什么?解: (1)△ADF≌△BCE,理由如下:∵CE⊥AB,DF⊥AB ∴∠1=∠2=∠3=∠4=90° 又∵AE=BF,∴AF=BE 在 Rt△ADF 和 Rt△BCE 中∴Rt△ADF≌Rt△BCE(HL) (2)CM=DN,理由如下: ∵△ADF≌△BCE ∴DF=CE,∠A=∠B 在△AME 和△BNF 中∴△AME≌△BNF(ASA) ∴ME=NF,又∵CE=DF ∴MC=ND. 6.如图所示,已知线段 a,b,∠α ,求作△ABC,使 BC=a,AC=b,∠ACB=∠α ,•根据作图在下面空格中填上适 当的文字或字母. (1)如图甲所示,作∠MCN=________; (2)如图乙所示,在射线 CM 上截取 BC=________,在射线 CN 上截取 AC=________. (3)如图丙所示,连接 AB,△ABC 就是_________.答案:∠α ,a,b,所求作的三角形. 7.已知线段 a 及锐角α ,求作:三角形 ABC,使∠C=90°,∠B=∠α ,BC=A.作法:(1)作∠MCN=90°; (2)以 C 为圆心,a 为半径,在 CM 上截取 CB=a; (3)以 B 为顶点,BC 为一边作∠ABC=∠α ,交 CN 于点 A.连接 AB,则△ABC 即为所求作的三角形. 8.你一定玩过跷跷板吧!如图是贝贝和晶晶玩跷跷板的示意图,支柱 OC 与地面垂直,点 O 是横板 AB 的中点,AB 可以绕着点 O 上下转动,当 A 端落地时,∠OAC=20°.(1)横板上下可转动的最大角度(即∠A′OA)是多少? (2)在上下转动横板的过程中,两人上升的最大高度 AA′,BB′有何数量关系?为什么?解:(1)∵OC⊥AB′,∠OAC=20°, ∴∠AOC=90°-20°=70°, 同理可求∠B′OC=70°, ∴∠AOA′=180°-2×70°=40°;(2)AA′=BB′, 如图所示,连接 AA′、BB′, ∵AB=A′B′,∠BAB′=∠A′B′A,AB′=B′A, ∴△A′AB′≌△BB′A,∴AA′=BB′. 9.有一池塘,要测池塘两端 A.B 间的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC 并延长到 D, 使 CD=CA,连接 BC 并延长到 E,使 CE=CB,连接 DE,量出 DE 的长,这个长就是 A.B 之间的距离。

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含有答案)

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含有答案)

三角形全等的断定〔1〕__________________________________________________________________________________ __________________________________________________________________________________1、理解全等三角形的断定方法SSS 、SAS 、ASA 、AAS ;2、能运用断定方法断定两个三角形全等;3、经理探究断定方法断定两个三角形全等的过程,体会数学知识来源生活,又应用于生活.1.SSS____________的两个三角形全等〔简称SSS 〕.这个定理说明,只要三角形的三边长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具有__________的原理.判断两个三角形全等的推理过程,叫做证明三角形全等.如以下图,:△ABC 与△DEF 的三条边对应相等,求证:△ABC ≌△DEF .证明:在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔SSS 〕.角用直尺和圆规作一个角等于角的示意图如下图,说明'''A O B =AOB ∠∠的根据是_________.4.边角边定理三角形全等断定方法2:______和它们的______分别相等的两个三角形全等.〔简称SAS 〕 符号语言:在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔SAS 〕.图示:5.探究边边角两边及其一边所对的角分别相等,两个三角形________等.6.ASA_______________分别相等的两个三角形全等,简称角边角或ASA .▲如以下图,∠D=∠E ,AD =AE ,∠1=∠2.求证:△ABD ≌△ACE .证明:∵∠1=∠2〔〕∴∠1+∠CAD =∠2+∠CAD 〔相等的角加同一个角仍相等〕即∠BAD =∠CAE在△ABD 和△ACE 中, ∠D=∠E 〔〕AD=AE 〔〕∠BAD =∠CAE 〔等量相加〕∴△ABD≌△ACE〔ASA〕.7.AAS______________________分别相等的两个三角形全等,简称角角边或AAS.▲如图:D在AB上,E在AC上,DC=EB,∠C=∠B.求证:△ACD≌△ABE.证明:在△ACD和△ABE中.∠C=∠B〔〕∠A=∠A〔公共角〕DC=EB〔〕∴△ACD≌△ABE〔AAS〕.参考答案:1.三边分别相等稳定性3.全等三角形的对应角相等4.两边夹角5.不一定全6.两角和它们的夹边7.两个角和其中一个角的对边1.先证明对应边相等,再证全等〔利用中点、等量相加等〕【例1】如下图,在△ABC和△FED中,AD=FC,AB=FE,BC=ED,求证:△ABC≌△FED.【解析】∵AD=FC,∴AD+DC=FC+DC,即AC=FD.在△ABC和△FED中,∴△ABC≌△FED〔SSS〕.总结:利用“SSS〞证明两个三角形全等,有如下几种常见类型:〔1〕有公共边的两个三角形.〔2〕有公共线段的两个三角形,我们可以用等量相加或相减,推出两边相等.〔3〕含有中点的两个三角形,如图:AB=AC,D是BC的中点,由中点的定义可得:BD=CD.继而可证△ABD≌△ACD.练1.如图,AC=BD,0是AB、CD的中点,求证△AOC≌△BOD.【解析】要证△AOC≌△BOD,只需看这两个三角形的三条边是否分别相等.证明:∵O是是AB、CD的中点,∴AO=BO,CO=DO.在△AOC和△BOD中,∴△AOC≌△BOD.2.先利用SSS证明三角形全等,继而证明边〔角〕相等,或求边〔角〕【例2】如下图,AB=DC,AC=DB,求证:∠1=∠2.【解析】在△ABC与△DCB中,∴△ABC≌△DCB〔SSS〕.∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABC-∠DBC=∠DCB-∠ACB.即∠1=∠2.总结:1.要求证在两个不同三角形内的角相等,往往利用全等三角形的性质.2.当两个角所在的三角形不易证全等时,可以利用等量的和〔差〕相等,将问题转化.3.求证不在同一个三角形内的两边相等,同样可以利用全等三角形的性质.练2.如图是“人〞字形屋梁,AB=AC.如今要在程度横梁BC上立一根垂直的支柱支撑屋梁,工人师傅取BC的中点D,然后在A,D之间竖支柱AD.那么这根AD符合“垂直〞的要求吗?为什么?【解析】AD⊥BC符合要求,理由如下:∵点D是BC的中点,∴BD=CD.在△ABD和△ACD中,∴△ABD≌△ACD〔SSS〕.∴∠ADB=∠ADC.又∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°.∴AD⊥BC.练3.如下图,:A,C,F,D四点在同一直线上,AB=DE,BC=EF,AF=DC,求证:AB∥DE.【解析】先根据SSS证明两三角形全等,由三角形全等的性质得出:∠A=∠D,即可证明AB ∥DE.证明:∵AF=DC,∴AF-CF=DC-CF.∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF〔SSS〕.∴∠A=∠D.∴AB∥DE.练4.:如下图,在四边形ABCD中,AB=CB,AD=CD,求证:∠C=∠A.【解析】连接BD,在△ABD和△CBD中,∴△ABD≌△CBD〔SSS〕.∴∠C=∠A.练5.如图,在四边形ABCD中,AB=CD,AD=CB,求证:∠A+∠D=180°.【解析】证明:连接AC,在△ADC与△CBA中,∴△ADC≌△CBA〔SSS〕,∴∠ACD=∠CAB,∴AB∥CD,∴∠A+∠D=180°.3.利用SAS直接证明三角形全等【例3】如下图,△ABC,△DEF均为锐角三角形,AB=DE,AC=DF,∠A=∠D.求证:△ABC ≌△DEF.【解析】直接根据SAS可证明△ABC≌△DEF.证明:在△ABC和△DEF中,∴△ABC≌△DEF〔SAS〕.总结:运用“边角边〞断定两个三角形全等时,〔1〕同一三角形的边、角要放在等号的同一边,按照“边角边〞的顺序书写;〔2〕注意条件里的三个元素必须齐全,且对应相等;〔3〕条件里的三个元素必须对应,一个三角形中的元素依次是“边—角—边〞,另一个三角形的元素也必须依次是“边—角—边〞,假如是其他“边—边—角〞或“角—边—边〞,那么两个三角形不一定全等;〔4〕在条件中,相等的角必须是所给两边的夹角,假如把夹角改为其中一条边的对角,那么不一定全等.练6.〔2021秋•天元区期末〕如图,在△ABC和△DEF中,AB=DE,BC=EF,根据〔SAS〕断定△ABC ≌△DEF,还需的条件是〔〕A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以【解析】根据三角形全等的断定中的SAS,即两边夹角.做题时根据条件,结合全等的断定方法逐一验证,要由位置选择方法.解:要使两三角形全等,且SASAB=DE,BC=EF,还差夹角,即∠B=∠E;A、C都不满足要求,D也就不能选取.应选B.练7.如以下图所示,∠1=∠2,AO=BO,求证:△AOC≌△BOC.【解析】两个三角形包含一个公共边,结合条件,根据SAS可证明△AOC≌△BOC.证明:在△AOC和△BOC中,∴△AOC≌△BOC〔SAS〕.4.先证明对应边或对应角相等,再证明三角形全等【例4】〔2021春•启东市校级月考〕如图,AE=CF,AD∥BC,AD=CB.求证:△ADF≌△CBE.【解析】根据平行线的性质及全等三角形的断定定理“SAS〞证得结论.证明:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE.又∵AD∥BC,∴∠A=∠C.∵在△ADF与△CBE中,∴△ADF≌△CBE〔SAS〕.总结:没有直接给出能证明三角形全等的条件时,〔1〕先根据条件或求证的结论确定三角形,然后再根据三角形全等的断定方法,看缺什么条件,再去证什么条件;假如两边,那么要找第三边或夹角;假如一角和该角的一边,那么需要找夹角的另一条边;〔2〕在证明三角形全等时,有些题目的条件含而不露,通常要挖掘出隐含条件,比方公共边、对顶角等,从而为解题所用;〔3〕有些条件需要用到线段与角的和差关系才能得到.练8.〔2021•房山区二模〕如图,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.【解析】∠1=∠2,∠BAE是公共角,从而可推出∠DAE=∠BAC,AB=AD,AC=AE,从而可以利用SAS来断定△ABC≌△ADE.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC.在△ABC和△ADE中,∴△ABC≌△ADE〔SAS〕.练9.〔2021•永春县质检〕:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE.求证:△AEC≌△BDC.【解析】根据∠ACD=∠BCE,可得出∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD.根据边角边公理可得出△AEC≌△BDC.证明:在△AEC和△BDC中,∵点C是线段AB的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,在△AEC和△BDC中,∴△AEC≌△BDC〔SAS〕.点评:此题考察了全等三角形的断定SAS.5.先用SAS证明三角形全等,再证对应边、对应角相等【例5】〔1〕〔2021•十堰〕如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.【解析】首先根据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用“SAS〞定理证明△ABE≌△ACD,进而得到∠B=∠C.证明:在△ABE和△ACD中,∴△ABE≌△ACD〔SAS〕.∴∠B=∠C.〔2〕〔2021春•鼓楼区校级月考〕如图,点E,F在AC上,AB∥CD,AB=CD,AE=CF.求证:BF=DE.【解析】先由平行线的性质得出内错角相等,再证出AF=CE,根据SAS证明△ABF≌△CDE,由全等三角形的对应边相等即可得出结论.证明:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,∴△ABF≌△CDE〔SAS〕,∴BF=DE.总结:综合利用三角形全等的断定与性质解题步骤如下:〔1〕由问题中的条件,根据三角形全等的断定方法证明两个三角形全等;〔2〕由三角形全等的性质证得对应角相等、对应边相等.练10.〔2021秋•涞水县期末〕如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,那么∠D的度数为〔〕A.50° B.30°C.80°D.100°【解析】利用SAS可证明△AOD≌△COB,那么∠D=∠B=30°.解:∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB〔SAS〕,∴∠D=∠B=30°.应选B.练11.〔2021春•锦州校级期中〕如图,点B,E,C,F在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,假设∠_____=∠______,那么△ABC≌△DEF,所以BC=_____,因此BE=________.【解析】根据三角形全等的断定方法SAS,假设∠A=∠D时,两个三角形全等,得出对应边相等,得出结果.解:假设∠A=∠D时,△ABC≌△DEF;∵在△ABC和△DEF中,∴△ABC≌△DEF〔SAS〕,∴BC=EF,∴BE=CF;故答案为:∠A=∠D,EF,CF.6.先用ASA证全等,再证边角相等【例6】如下图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:BO=DO.【解析】先用“ASA 〞证明△ABC ≌△ADC ,得出AB=AD ,再用“SAS 〞证明△ABO ≌△ADO ,可得出结论.证明:在△ABC 和△ADC 中,∴△ABC ≌△ADC 〔ASA 〕.∴AB =AD.在△ABO 与△ADO 中,△ACO ≌△ADO 〔SAS 〕.∴BO =DO .总结:全等三角形的对应边相等,对应角相等,所以证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.练12.如下图,在△ABC 中,点O 为AB 的中点,AD ∥BC ,过点O 的直线分别交AD ,BC 于点D ,E ,求证:OD =OE.【解析】∵点O 为AB 的中点,∴AO =BO .∵AD ∥BC ,∴∠ADO =∠BEO ,∠DAO =∠EBO.在△AOD 与△BOE 中,∴△AOD ≌△BOE 〔AAS 〕.∴OD =OE .7.先用AAS 证全等,再证边角相等【例7】如下图,∠1=∠2,∠C =∠D ,求证:AC =AD .D C BA O12 3 4【解析】先利用AAS 证明两三角形全等,再根据全等三角形的性质得出AC =AD .证明:在△ACB 与△ADB 中,∴△ACB ≌△ADB 〔AAS 〕.∴AC =AD .总结:1. 由“ASA 〞与“AAS 〞可知,两个三角形假如有两个角及任意一边对应相等,那么这两个三角形相等.2. 注意不用混淆“ASA 〞和“AAS 〞,“ASA 〞是两角及夹边对应相等,“AAS 〞是两角及一对边对应相等.练13.如下图,C ,F 在BE 上,∠A =∠D ,AC ∥DF ,BF =EC .求证:AB =DE .【解析】先利用平行证明角相等,再用等量相减的思想证明BC =EF ,应用AAS 可得△ABC ≌△DEF ,进而得出结论.证明:∵AC ∥DF ,∴∠ACE =∠DFB.又∵∠ACE +∠ACB =180°,∠DFB +∠DFE =180°,∴∠ACB =∠DFE.又BF =EC ,∴BF -CF =EC -CF ,即BC =EF.在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔AAS 〕.∴AB =DE .8.灵敏选用证明方法证〔判断〕全等AB C FED【例8】如下图,∠B=∠DEF,BC=EF,要证△ABC≌△DEF,假设要以“ASA〞为根据,还缺条件_________;以“SAS〞为根据,还缺条件_________;以“AAS〞为根据,还缺条件_________.【解析】一组角和一组边相等,要根据“ASA〞证全等就要求夹边的另一组角相等,故填∠ACB=∠DFE;要根据“SAS〞证全等就要求夹角的另一组边相等,故填AB=DE;要根据“AAS〞证全等就要求另一组角相等,故填∠A=∠D.答案:∠ACB=∠DFE;AB=DE;∠A=∠D.总结:1.到目前为止,我们学习了4种证明三角形全等的方法,分别是“边边边〞“边角边〞“角边角〞“角角边〞.注意:三角形全等的断定方法中不存在“角边边〞“角角角〞.2.“边边边〞“角边角〞“角角边〞“边角边〞这四种判断方法中,都要求有一组边对应相等.3.在寻求全等条件时,要注意结合图形挖掘图中隐含的公共边、公共角、对顶角、中点、角平分线.4.以及平行线中包含的角的关系,垂直中包含的角的关系,以便顺利求解.练14.如下图,点D在AB上,点E在AC上,且∠B=∠C,那么补充以下一个条件后,仍无法断定△ABE≌△ACD的是〔〕.=AE B.∠AEB=∠ADC==AC【解析】选择A中的AD=AE,加上条件,可根据AAS证明△ABE≌△ACD;选项B中给出∠AEB=∠ADC,加上条件,可得三对角相等,但三对角相等的三角形不一定全等;选项C中的BE=CD,加上条件,可根据AAS证明△ABE≌△ACD;选项D中的AB=AC,加上条件,可根据ASA证明△ABE≌△ACD;应选:B.练15.如下图,BF ⊥AC ,DE ⊥AC ,垂足分别为点F ,E ,BF =DE ,∠B =∠D ,求证:AE =CF.【解析】∵BF ⊥AC ,DE ⊥AC ,∴∠DEC =∠BFA =90°.在△BFA 与△DEC 中,∴△BFA ≌△DEC 〔ASA 〕.∴AF =CE.∴AF +EF =CE +EF.∴AE =CF.练16.如图,将△BOD 绕点O 旋转180°后得到△AOC ,再过点O 任意画一条与AC ,BD 都相交的直线MN ,交点分别为M 和N .试问:线段OM =ON 成立吗?假设成立,请进展证明;假设不成立,请说明理由.【解析】OM =ON 成立.理由是:∵△BOD 绕点O 旋转180°后得到△AOC ,∴△BOD ≌△AOC .∴∠A =∠B ,AO =BO .又∵∠AOM =∠BON ,∴△AOM ≌△BON (ASA).∴OM =ON .练17.如下图,直角三角形ABC 的直角顶点C 置于直线l 上,AC =BC ,现过A ,B 两点分别作直线l 的垂线,垂足分别为点D ,E.DC E FA B BA C DE【解析】〔1〕△ACD ≌△CBE ,证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°.又∵AD ⊥l ,∴∠CAD +∠ACD =90°.∴∠BCE =∠CAD.∵BE ⊥l ,∴∠ADC =∠CEB =90°.在△ACD 与△CBE 中,∠CAD =∠BCE ,∠ADC =∠CEB ,AC =CB ,∴△ACD ≌△CBE 〔AAS 〕.〔2〕由〔1〕可知△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∴AD =CE =CD +DE =BE +DE =3+5=8.1.如下图,AB ∥CD ,OB =OD ,那么由“ASA 〞可以直接断定△______≌△___________.2.如下图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D ,E ,AD ,CE 交于点H ,EH =EB =3,AE =4,那么CH 的长是___________.3.如下图,点E ,C 在线段BF 上,BE =CF ,AB ∥DE ,∠ACB =∠F .求证:△ABC ≌△DEF .AC D F EB l4.如下图,∠B =∠E ,∠BAD =∠EAC ,AC =AD ,求证:AB =AE.5.〔2021•厦门校级一模〕如图,A 、B 、C 、D 四点在同一条直线上,AB=CD ,EC=DF ,EC ∥DF .求证:△ACE ≌BDF ._________________________________________________________________________________ _________________________________________________________________________________1.:如图,AB=CD ,BE=DF ,AF=EC 。

北师大版 七年级数学下册 第四章 全等三角形的性质和判定的归纳总结 (无答案)

北师大版 七年级数学下册  第四章  全等三角形的性质和判定的归纳总结 (无答案)

全等三角形的性质及判定运用知识清单全等三角形的认识与性质 全等图形:能够完全重合的两个图形就是全等图形. 全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.考点扫描板块一 全等三角形的认识【例1】 (四川遂宁)已知ABC ∆中,AB BC AC =≠,作与ABC ∆只有一条公共边,且与ABC ∆全等的三角形,这样的三角形一共能作出 个.【例2】 如图所示,ABD CDB ∆∆≌,下面四个结论中,不正确的是( )A.ABD ∆和CDB ∆的面积相等B.ABD ∆和CDB ∆的周长相等C.A ABD C CBD ∠+∠=∠+∠D.AD BC ∥,且AD BC =【拓展延伸1】已知ABC DEF ≌△△,DEF △的周长为32cm ,912DE cm EF cm ==,,则AB = ,BC = ,AC = .板块二、三角形全等的判定与应用DCBA全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等.⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边). ⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.平移全等模型【例3】 已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.【例4】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【拓展延伸1】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.对称全等模型【例5】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.【拓展延伸1】已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【拓展延伸2】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.【例6】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.【拓展延伸1】在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.基本旋转全等模型【例7】 (成都市高中阶段教育学校统一招生考试)如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.【例8】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥.【例9】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.F DC BAM EDC BAK 字型模型【例10】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.【拓展延伸】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.课后作业1、判定两个三角形全等的方法是:⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 .2、不能确定两个三角形全等的条件是( )A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .三个角对应相等3、如图,ABC △中,90C AC BC AD ∠=︒=,,平分CAB ∠交BC 于D ,DE AB ⊥于E 且6AB cm =,则DEB △的周长为( )A .40 cmB .6 cmC .8cmD .10cmPDQCBEAEDCBA4、如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为 ( ) A .40°B .35°C .30°D .25°5、已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.6、如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.7、如图所示,C 是AB 的中点,CD CE =,DCA ECB ∠=∠,求证DAE EBD ∠=∠.8、如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N .求证:AM AN =.全等三角形与旋转问题知识清单把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.考点扫描“拉手”模型【例1】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.【例2】 如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC于M ,N 点.求证:CM CN =.【拓展延伸1】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:CF 平分AFB ∠.【拓展延伸2】如图,点为线段上一点,、是等边三角形,是中点,是中点,求证:是等边三角形.C AB ACM ∆CBN ∆D ANE BM CDE ∆等边三角形共顶点模型【例3】 如图,等边三角形与等边共顶点于点.求证:.等腰直角三角形共顶点问题【例4】 如图,等腰直角三角形中,,,为中点,.求证:为定值.【拓展延伸1】如图,正方形绕正方形中点旋转,其交点为、,求证:.正方形旋转模型【例5】 、分别是正方形的边、上的点,且,,为垂足,求证:.ABC ∆DEC ∆C AE BD=ABC 90B =︒∠AB a =O AC EO OF ⊥BE BF+OGHK ABCD O E F AE CF AB +=E F ABCD BC CD 45EAF =︒∠AH EF ⊥H AH AB =【拓展延伸1】如图,正方形的边长为,点在线段上运动,平分交边于点.求证:.【例6】 以△ ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE=BG ,且CE ⊥BG .对角和180°模型【例7】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120o 的等腰三角形,以D 为顶点作一个60o 的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.ABCD 1F CD AE BAF ∠BC E AF DF BE =+OGFEDCA【例8】 (1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =,E 、F 分别是边BC 、CD 上的点,且∠EAF=∠BAD .求证:EF =BE FD;(2) 如图,在四边形ABCD 中,AB =AD ,∠ B+∠ D =,E 、F 分别是边BC 、CD 上的点,且∠ EAF=∠ BAD , (1)中的结论是否仍然成立?不用证明.90︒12+FED CBA180︒12FEDB A课后作业1、如图,已知和都是等边三角形,、、在一条直线上,试说明与相等的理由.2、(湖北省黄冈市初中毕业生升学考试)已知:如图,点是正方形的边上任意一点,过点作交的延长线于点.求证:.3、已知:如图,点为线段上一点,、是等边三角形.、分别是、 的高.求证:.4、在等腰直角中,,,是的中点,点从出发向运动,交于点,试说明的形状和面积将如何变化.5、如图,正方形中,.求证:.ABC ∆ADE ∆B C D CE AC CD+E ABCD AB D DF DE ⊥BC F DE DF=C AB ACM ∆CBN ∆CG CH ACN ∆MCB ∆CG CH=ABC ∆90ACB ∠=o AC BC =M AB P B C MQ MP ⊥AC Q MPQ∆ABCD FAD FAE ∠=∠BE DF AE +=6、等边和等边的边长均为1,是上异于的任意一点,是上一点,满足,当移动时,试判断的形状.全等三角形与中点问题知识清单三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.考点扫描倍长中线模型【例1】 在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么?【拓展延伸1】已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.ABD ∆CBD ∆E BE AD ⊥A D 、F CD 1AE CF +=E F 、BEF∆【例2】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【拓展延伸1】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【例3】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥AB类倍长中线模型【例4】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【拓展延伸1】在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?中位线的运用【例5】 已知,如图四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC的延长线分别交于M 、N 两点. 求证:AME BNE ∠=∠.【例6】 在四边形ABCD 中,设M ,N 分别为CD ,AB 的中点,求证()12MN AD BC +≤,当且仅当AD BC ∥时等号成立.【例7】 如图,在五边形ABCDE 中,,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.课后作业1、如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.2、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?3、如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.全等三角形与角平分线问题知识清单与角平分线相关全等问题 角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上.它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,考点扫描角平分线基本性质与全等的关系【例1】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.【例2】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.【拓展延伸1】如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.【拓展延伸2】如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.两边作垂线问题【例3】 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?【拓展延伸1】ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC⊥于G .求证:BF CG =.作角平分线的垂线问题【例4】 如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD 的延长线于F ,求证()12MF AC AB =-.【例5】 如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.取线段长度相等【例6】 如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.【例7】 如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.课后作业1、在ABC ∆中,AD 平分BAC ∠,AB BD AC +=.求:B C ∠∠的值.2、如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.3、如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.4、如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.全等三角形截长补短及方法总结知识清单常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中点或中线,倍长中线或倍长类中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.考点扫描截长模型【例1】 已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.“补短”模型【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .补形法【例5】 如图,在四边形ABCD 中,90A C ︒∠=∠=,AB AD =,若这个四边形的面积为16,则BC CD+=___________.对称法【例6】 如图,ABC △中,由点A 作BC 边上的高线,垂足为D . 如果2C B ∠=∠,求证:AC CD BD +=.旋转法【例7】 正方形ABCD 中,E 为上的一点,F 为CD 上的一点,BE DF EF +=,求EAF ∠的度数.【拓展延伸1】如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP AQ ⊥,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP OQ ,.求证:OP OQ ⊥.割补面积法【例8】 如图P 为等腰三角形ABC 的底边AB 上的中点,PE AC ⊥于点E ,PF BC ⊥于点F ,AD BC⊥于点D ,,求证:PE PF AD +=.【拓展延伸1】如图,点P 为等腰三角形ABC 的底边BA 的延长线上的一点,PE CA ⊥的延长线于点E ,PF BC ⊥于点F ,AD BC ⊥于点D .PE 、PF 、AD 之间存在着怎样的数量关系?【例9】 如图,点P 为正三角形ABC 内任意一点,PE AC ⊥于点E ,PF BC ⊥于点F ,PG AB ⊥于点G ,AD ⊥BC 于点D .PE 、PF 、PG 、AD 之间存在怎样的数量关系?。

北师大版七年级数学下册探索三角形全等的条件

北师大版七年级数学下册探索三角形全等的条件
∴AB-AD=AC-AE(等式的性质)
BD=CE
10
练一练
如图,AB∥CD,AD∥BC,那么
AB=CD吗?为什么?
AD与BC呢?
D
Cபைடு நூலகம்
A
B
重要思路:两直线平行,可以找到等角.
11
练一练
如图,D在AB上,DF交AC于点E,DE=FE, FC∥AB,若AB=4,CF=3, 则BD的长是( ) A.0.5 B.1 C.1.5 D.2
D
9
练一练 如图,AD=AE,∠B=∠C,
请证明:BD=CE.
D B
A 证明:∵在△ABE和△ACD中,
∠B=∠C (已知)
E
∠A=∠A (公共角)
AE=AD (已知)
C ∴ △ABE≌△ACD(AAS)
∴ BD=CE (全等三角形对应边相等)
不是三角 形的边 ∴ AD=AE(全等三角形对应边相等)
北师大版七年级下册
第四章 三角形
1
复习
两个三角形全等的判定方法1:
三边对应相等的两个三角形全等.简写为“边边边”或“SSS”.
用符号表达:
指明范围
A
在△ABC和△A′B′C′中,
三个条件
AB=A′B′, AC=A′C′,BC=B′C′
B
∴△ABC≌△A′B′C′ (SSS)
写出结论
C A'
B'
C'
∴ △AOC≌△BOD ( ASA )
8
练一练 图中的两个三角形全等吗?
请说明理由.
A
在△ABC和△DBC中,
110
_∠__A_B__C_=_∠__DBC(已知)B ∠__A__=_∠__D__(__已知)

北师大版数学七年级下册4.用“边边边”判定三角形全等课件

北师大版数学七年级下册4.用“边边边”判定三角形全等课件

E
解:在△ABF和△ECD中, 解: ∵BD=CF,∴BD+DF=CF+DF.
AB=CE, AF=ED,
在△ABF和△ECD中,
AB=CE,
BDF C
BF=CD,
AF=ED,
∴△ABF≌△ECD(SSS).
BF=CD,
∴△ABF≌△ECD(SSS).
课堂小结
三 角 形 全 等 的 判 定
分类探讨 SSS
当堂小练
如图,△ABC中,AB = AC,EB = EC,则由SSS可以判定( B ) A.△ABD≌△ACD B.△ABE≌△ACE C.△BDE≌△CDE D.以上答案都不对
拓展与延伸
已知∠AOB,点C是OB边上的一点,用尺规作图,画出经过点C与
OA平行的直线.
D
解:作图如图所示:
作法:(1)以点 O 为圆心,任意长为半径画弧,
通过画图,你能得出什么样的结论?
新课讲授
知识点1 全等形的判定1
判定1:三边分别相等的两个三角形全等(可以简写成“边 边边”或者“SSS”). 符号语言表示:在△ABC和△A'B'C'中,
AB=A'B', AC=A'C', BC=B'C', ∴△ABC≌△A'B'C'.(SSS)
新课讲授
典例分析
分别交OA,OB于点 D,E;
(2)以点 C 为圆心,OD 长为半径画弧,交OB 于点 F;
(3)以点 F 为圆心,DE 长为半径画弧,
与第2步中所画的弧相交于点 P ;
(4)过C,P 两点作直线,直线 CP 即为要求作的直线.
布置作业

北师大版七年级数学下册 第四章 证明(构造)全等三角形常用方法与技巧(含答案)

北师大版七年级数学下册 第四章  证明(构造)全等三角形常用方法与技巧(含答案)

第四章证明(构造)全等三角形常用方法与技巧一、截长补短法1.如图,在正方形ABCD中,E是AB上一点,点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?解:成立.理由如下:如图,延长AD至F,使DF=BE,连接CF.在正方形ABCD中,BC=DC,∠B=∠CDA=90°,所以∠CDF=∠B=90°.又因为BE=DF,所以△CBE≌△CDF(SAS).所以CE=CF,∠BCE=∠DCF.所以∠BCE+∠ECD=∠DCF+∠ECD.所以∠ECF=∠BCD=90°.因为∠GCE=45°,所以∠GCF=∠GCE=45°.又因为CE=CF,GC=GC,所以△ECG≌△FCG(SAS).所以GE=GF.所以GE=DF+GD=BE+GD.2.如图,在△ABC 中,BE 是∠ABC 的平分线,AD ⊥BE ,垂足为D.试说明:∠2=∠1+∠C.解:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.因为∠ACB =90°,所以∠2+∠ACF =90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.在△ABD 和△F BD 中,⎩⎪⎨⎪⎧∠ABD =∠FBD ,BD =BD ,∠ADB =∠FDB =90°,所以△ABD ≌△FBD (ASA).所以∠2=∠DFB .又因为∠DFB =180°-∠AFC ,∠1+∠C =180°-∠AFC ,所以∠DFB =∠1+∠C .所以∠2=∠1+∠C .3.如图,在直角三角形ABC 中,∠ACB =90°,AC =BC ,∠ABC =45°,点D 为BC 的中点,CE ⊥AD 于点E ,其延长线交AB 于点F ,连接DF.试说明:∠ADC =∠BDF.解:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.因为∠ACB =90°,所以∠2+∠ACF =90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.因为CE ⊥AD ,所以∠AEC =90°.所以∠1+∠ACF =180°-∠AEC =180°-90°=90°.所以∠1=∠2.在△ACD 和△CBG 中,⎩⎪⎨⎪⎧∠1=∠2,AC =CB ,∠ACD =∠CBG =90°,所以△ACD ≌△CBG (ASA).所以∠ADC =∠G ,CD =BG .因为点D 为BC 的中点,所以CD =BD .所以BD =BG .所以∠GBF =∠DBG -∠DBF =90°-45°=45°.所以∠DBF =∠GBF .在△BDF 和△BGF 中,⎩⎪⎨⎪⎧BD =BG ,∠DBF =∠GBF ,BF =BF ,所以△BDF ≌△BGF (SAS).所以∠BDF =∠G .所以∠ADC =∠BDF .四、旋转法4. 如图,在正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE +DF =EF ,求∠EAF 的度数.解:如图,延长CB 到点H ,使得BH =DF ,连接AH.所以∠D =∠ABH =90°.在△ABH 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABH =∠D =90°,BH =DF ,所以△ABH ≌△ADF (SAS).所以AH =AF ,∠BAH =∠DAF .所以∠BAH +∠BAF =∠DAF +∠BAF .所以∠HAF =∠BAD =90°.因为BE +DF =EF ,所以BE +BH =EF ,即EH =EF .在△AEH 和△AEF 中,⎩⎪⎨⎪⎧AH =AF ,AE =AE ,EH =EF ,所以△AEH ≌△AEF (SSS).所以∠EAH =∠EAF .所以∠EAF=12∠HAF =45°.五、倍长中线法5. 如图,在△ABC 中,D 为BC 的中点.若AB =5,AC =3,求AD 长度的取值范围.解:如图,延长AD 至点E ,使DE =AD ,连接BE.因为D 为BC 的中点,所以CD =BD.又因为AD =ED ,∠ADC =∠EDB ,所以△ADC ≌△EDB(SAS).所以AC =EB.因为AB -EB<AE<AB +EB ,又因为AB =5,AC =3,所以2<2AD<8. 所以1<AD<4.综合练习1.如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,AE =EC ,DE =EF ,则下列结论中:①∠ADE =∠EFC ;②∠ADE +∠ECF +∠FEC =180°;③∠B +∠BCF =180°;④S △ABC =S 四边形DBCF ,正确的结论有( )A .4个B .3个C .2个D .1个2.如图,D ,E ,F 分别为AB ,AC ,BC 上的点,且DE ∥BC ,△ABC 沿线段DE 折叠,使点A 落在点F 处.若∠B=50°,则∠BDF =________.3.如图,已知边长为1的正方形ABCD ,AC ,BD 交于点O ,过点O 任作一条直线分别交AD ,BC 于点E ,F ,则阴影部分的面积是________.4.如图,AD ,AE 分别是△ABC 的角平分线、高线,且∠B =50°,∠C =70°,则∠EAD =________.5.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =1(AB +AD ),若∠D =115°,则∠B =________.6.如图①,在Rt△ABC中,AB=AC,∠BAC=90°,过点A的直线l绕点A旋转,BD⊥l于D,CE⊥l于E.(1)试说明:DE=BD+CE.(2)当直线l绕点A旋转到如图②所示的位置时,(1)中结论是否成立?若成立,请说明;若不成立,请探究DE,BD,CE又有怎样的数量关系,并写出探究过程.7.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图①,点D在线段BC上移动时,角α与β之间的数量关系是____________,请说明理由;(2)如图②,点D在线段BC的延长线上移动时,角α与β之间的数量关系是____________,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图③中画出完整图形并猜想角α与β之间的数量关系是________________.参考答案1.A2.80° 3.144.10° 点拨:由AD 平分∠BAC ,可得∠DAC =12∠BAC =12×(180°-50°-70°)=30°.由AE ⊥BC ,可得∠EAC =90°-∠C =20°,所以∠EAD =30°-20°=10°.5.65° 点拨:过C 作CF ⊥AD ,交AD 的延长线于F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS ).所以FC =EC ,AF =AE .因为AE =12(AB +AD ), 所以AF =12(AE +EB +AD ), 即AF =BE +AD .所以DF =BE .在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS ).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.6.解:(1)因为BD ⊥l ,CE ⊥l ,所以∠ADB =∠AEC =90°.又因为∠BAC=90°,所以∠BAD+∠CAE=90°.所以∠DBA=∠CAE.因为AB=AC,∠ADB=∠CEA=90°,所以△ABD≌△CAE(AAS).所以AD=CE,BD=AE.则AD+AE=BD+CE,即DE=BD+CE.(2)(1)中结论不成立.DE=BD-CE.同(1)说明△ABD≌△CAE,所以BD=AE,AD=CE.又因为AE-AD=DE,所以DE=BD-CE.7.解:(1)α+β=180°理由:因为∠DAE=∠BAC,所以∠DAE-∠CAD=∠BAC-∠CAD,即∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.在△ABC中,∠BAC+∠ABC+∠ACB=180°,∠ABC=∠ACE,所以∠BAC+∠ACB+∠ACE=180°.因为∠ACB+∠ACE=∠DCE=β,所以α+β=180°.(2)α=β理由:因为∠DAE=∠BAC,所以∠BAD=∠CAE.又因为AB=AC,AD=AE,所以△ABD≌△ACE(SAS).所以∠ABC=∠ACE.因为∠ABC+∠BAC+∠ACB=180°,∠ACB+∠ACD=180°,所以α=β.(3)α=β.画图略.。

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含答案)

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含答案)

三角形全等的判定1、掌握直角三角形全等的判定方法:“斜边、直角边”;2、判断能证明三角形全等的条件;3、判断三角形全等能推出的结论;4、探索全等三角形判定的综合问题.1.斜边、直角边定理(HL )文字描述:_______和一条______分别相等的两个直角三角形全等. 符号语言:在Rt △ABC 与Rt △DEF 中, ∠ABC=∠DEF=90°,AB DE BC EFAC DF==⎧⎨=⎩或 ∴Rt △ABC ≌Rt △DEF (HL ). 图示:2.探究三角形全等的思路 (1)已知两边→⎧⎪→⎨⎪→⎩找夹角找直角找另一边(2)已知一边一角→→⎧⎪→⎧⎪⎨⎪→→⎨⎪⎪⎪→⎩⎩一边为角的对边找另一角找夹角的另一边一边为角的一边找夹角的另一角找边的对角(3)已知两角→⎧⎨→⎩找夹边找其中一边的对边3.什么是开放题所谓开放题,即为答案不唯一的问题,其主要特征是答案的多样性和多层次性.由于这类题综合性强、解题方法灵活多变,结果往往具有开放性,因而需观察、实验、猜测、分析和推理,同时运用树形结合、分类讨论等数学思想. 4. 开放题问题类型及解题策略 (1)条件开放与探索型问题.从结论出发,执果索因,逆向推理,逐步探求结论成立的条件或把可能产生结论的条件一一列出,逐个分析.(2)结论开放与探索型问题.从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想类比、猜测等,从而获得所求的结论.(3)条件、结论开放与探索型问题.此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性. 参考答案:1、斜边 直角边 2、(1)SAS HL SSS (2)AAS SAS ASA AAS (3)ASA AAS1.利用HL 证全等【例1】如图,已知∠A=∠D=90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB=CD ,BE=CF .求证:Rt △ABF ≌Rt △DCE .【解析】由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明.证明:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE. ∵∠A=∠D=90°,∴△ABF 与△DCE 都为直角三角形, 在Rt △ABF 和Rt △DCE 中,BF CE AB CD ⎧⎨⎩==, ∴Rt △ABF ≌Rt △DCE (HL ).点评:此题考查了直角三角形全等的判定,解题关键是由BE=CF 通过等量代换得到BF=CE . 总结:1.判定直角三角形全等共有五种方法:“SSS ”“ASA ”“AAS ”和“HL ”;一般先考虑利用“HL ”定理,再考虑利用一般三角形全等的判定方法;2.“HL ”定理是直角三角形所特有的判定方法,对于一般的三角形不成立;3.判定两个直角三角形全等时,这两个直角三角形已有“两个直角相等”的条件,只需再找两个条件,但所找条件中必须有一组边对应相等.练1.如图,要用“HL”判定Rt △ABC 和Rt △A′B′C′全等的条件是( )A .AC=A′C′,BC=B′C′B .∠A=∠A′,AB=A′B′C .AC=A′C′,AB=A′B′D .∠B=∠B′,BC=B′C′ 【解析】根据直角三角形全等的判定方法(HL )即可直接得出答案.∵在Rt △ABC 和Rt △A′B′C′中,如果AC=A′C′,AB=A′B′,那么BC 一定等于B′C′, Rt △ABC 和Rt △A′B′C′一定全等, 故选C .点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基础题. 练2.如图,已知AB ⊥CD ,垂足为B ,BC=BE ,若直接应用“HL”判定△ABC ≌△DBE ,则需要添加的一个条件是_______________.【解析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.AC=DE ,理由是:∵AB ⊥DC , ∴∠ABC=∠DBE=90°, 在Rt △ABC 和Rt △DBE 中,AC DEBE BC=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DBE (HL ). 故答案为:AC=DE .点评:本题考查了全等三角形的判定定理,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS ,ASA ,AAS ,SSS ,HL . 2.利用HL 证全等,再证边角相等【例2】如图,AB ⊥BC ,AD ⊥DC ,AB=AD .求证:CB=CD .【解析】根据已知条件,利用“HL ”判定Rt △ABC ≌Rt △ADC ,根据全等三角形的对应边相等即可得到CB=CD .证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B=∠D=90°.在Rt △ABC 和Rt △ADC 中,AB ADAC AC=⎧⎨=⎩ ∴Rt △ABC ≌Rt △ADC . ∴CB=CD .点评:此题主要考查学生对全等三角形的判定方法“HL ”的理解及运用,常用的判定方法有“SAS ”“ASA ”“AAS ”“SSS ”.总结:证明角或线段相等可以从证明角或线段所在的三角形全等入手. 在寻求全等条件时,要注意结合图形,挖掘图中存在的对顶角、公共角、公共边、平行线的同位角、内错角等相等关系. 练3.如图,MN ∥PQ ,AB ⊥PQ ,点A 、D 、B 、C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7,AD=EB ,DE=EC ,则AB=_____________.【解析】可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AD+BC .∵MN ∥PQ ,AB ⊥PQ , ∴AB ⊥MN ,∴∠DAE=∠EBC=90°, 在Rt △ADE 和Rt △BCE 中,DE ECAD BE=⎧⎨=⎩, ∴△ADE ≌△BEC (HL ), ∴AE=BC , ∵AD+BC=7,∴AB=AE+BE=AD+BC=7. 故答案为7.点评:本题考查了直角三角形全等的判定和性质以及平行线的性质是基础知识比较简单. 练4.已知如图,∠A=90°,∠D=90°,且AE=DE ,求证:∠ACB=∠DBC .【解析】由图片和已知,可得△ABE ≌△DCE ,则BE=CE ,然后再证明Rt △ABE ≌Rt △DCE ,即可得证.证明:∵∠A=∠D=90°,AE=DE (已知),∠AEB=∠DEC (对顶角相等), ∴△ABE ≌△DCE (ASA ), ∴AB=DC ,在Rt △ABE 和Rt △DCE 中,AB DCBC CB=⎧⎨=⎩, ∴Rt △ABE ≌Rt △DCE , ∴∠ACB=∠DBC .点评:本题主要考查全等三角形全等的判定,注意需证明两次全等. 3.利用HL 解决实际问题【例3】如图,A 、B 、C 、D 是四个村庄,B 、D 、C 三村在一条东西走向公路的沿线上,且D 村到B 村、C 村的距离相等;村庄A 与C ,A 与D 间也有公路相连,且公路 AD 是南北走向;只有村庄A 、B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AC=3千米,AE=1.2千米,BF=0.7千米.试求建造的斜拉桥至少有多少千米.【解析】根据BD=CD ,∠BDA=∠CDA=90°,AD=AD ,得出Rt △ADB ≌Rt △ADC ,进而得出AB=AC=3,即可得出斜拉桥长度.由题意,知BD=CD ,∠BDA=∠CDA=90°,AD=AD , 则Rt △ADB ≌Rt △ADC (SAS ), 所以AB=AC=3千米,故斜拉桥至少有3-1.2-0.7=1.1(千米).点评:此题主要考查了直角三角形全等的判定以及性质,根据已知得出Rt △ADB ≌Rt △ADC 是解决问题的关键.总结:对于实际问题,要善于转化为数学问题,充分运用题目条件、图形条件,寻找三角形全等的条件,从而证明三角形全等,然后利用全等三角形的性质求对应边长或对应角的大小.练5.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD 与CD 的距离间的关系是( )A .BD >CDB .BD <CDC .BD=CD D .不能确定【解析】根据“两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上”可以判断AB=AC ,又AD=AD ,AD ⊥BC ,所以Rt △ABD ≌Rt △ACD ,所以BD=CD .∵AD ⊥BC ,∴∠ADB=∠ADC=90°, 由AB=AC ,AD=AD , ∴Rt △ABD ≌Rt △ACD (HL ), ∴BD=CD . 故选C .点评:本题考查了全等三角形的判定及性质的应用;充分运用题目条件,图形条件,寻找三角形全等的条件.本题关键是证明Rt △ABD ≌Rt △ACD . 4.全等三角形——补充条件型问题【例1】如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使△ABC ≌△DEF ,并加以证明.(不再添加辅助线和字母)【解析】由已知先推出BC=EF ,添加条件AC=DF ,根据“SAS”可推出两三角形全等.解:AC=DF . 证明:∵BF=EC ,∴BF ﹣CF=EC ﹣CF , 即BC=EF.在△ABC 和△DEF 中12AC DFBC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).总结:因为全等三角形的判定定理有“SAS”“ASA”“AAS”“SSS”,所以此类问题答案是不唯一的. 对于条件添加型的题目,要根据已知条件并结合图形及判定方法来添加一个条件.练6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【解析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.练7.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件,使△ADB≌△CEB.【解析】要使△ADB≌△CEB,已知∠B为公共角,∠BEC=∠BDA,具备了两组角对应相等,故添加AB=BC或BE=BD或EC=AD后可分别根据AAS、ASA、AAS能判定△ADB≌△CEB.解:AB=BC,AD⊥BC,CE⊥AB,B=∠B∴△ADB≌△CEB(AAS).答案:AB=BC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.点评:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.添加条件时,要首选明显的、简单的,由易到难.5.全等三角形——结论探索型问题【例5】如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【解析】(1)根据题目所给条件可分析出△ABE ≌△CDF ,△AFD ≌△CEB ;(2)根据AB ∥CD 可得∠1=∠2,根据AF=CE 可得AE=FC ,然后再证明△ABE ≌△CDF即可.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB ; (2)∵AB ∥CD ,∴∠1=∠2, ∵AF=CE , ∴AF+EF=CE+EF , 即AE=FC.在△ABE 和△CDF 中,12AEB CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (AAS ).总结:判定两个三角形全等的一般方法有:“SSS”“SAS”“ASA”“AAS”和“HL”.注意:“AAA”“SSA”不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.练8.如图,△ABC 中,AD ⊥BC ,AB=AC ,AE=AF ,则图中全等三角形的对数有( )A .5对B .6对C .7对D .8对【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要从已知条件开始,结合判定方法对选项逐一验证.解:∵△ABC 中,AD ⊥BC ,AB=AC ,∴BD=CD , ∴△ABD ≌△ACD , ∴∠BAD=∠CAD , 又AE=AF ,AO=AO ,∴△AOE ≌△AOF , EO=FO ,进一步证明可得△BOD ≌△COD ,△BOE ≌△COF ,△AOB ≌△AOC ,△ABF ≌△ACE ,△BCE ≌△CBF ,共7对.故选:C .点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理. 6.全等三角形——条件和结论全开放型问题【例6】有下列四个判断:①AD=BF ;②AE=BC ;③∠EFA=∠CDB ;④AE ∥BC .请你以其中三个作为题设,余下一个作为结论,写出一个真命题并加以证明.已知: 求证: 证明:【解析】由已知AD=BF ,证出AF=BD ,再由平行线AE ∥BC 得出∠A=∠B ,证明△AEF ≌△BCD ,即可得出∠EFA=∠CDB .解:已知:AD=BF ,AE=BC ,AE ∥BC ; 求证:∠EFA=∠CDB ; 证明:∵AD=BF ,∴AD+DF=BF+DF , 即AF=BD. ∵AE ∥BC , ∴∠A=∠B , 在△AEF 和△BCD 中,AE BC A B AF BD =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BCD (SAS ), ∴∠EFA=∠CDB .点评:本题考查了全等三角形的判定与性质以及命题与定理;熟练掌握全等三角形的判定方法是解题的关键.总结:条件和结论全开放的三角形全等问题,进一步加强了对SSS 、SAS 、ASA 、AAS 、HL 的考查.要熟练掌握全等三角形的证明思路:练9.如图,AC 交BD 于点O ,有如下三个关系式:①OA=OC ,②OB=OD ,③AB ∥DC .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果⊗、⊗,那么⊗)(2)选择(1)中你写出的—个命题,说明它正确的理由.【解析】(1)如果①、②,那么③,或如果①、③,那么②,如果②、③,那么①;(2)下面选择“如果①、②,那么③”加以证明. 证明:在△AOB 和△COD 中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD , ∴∠A=∠C , ∴AB ∥DC .练10.在△ABC 和△DEF 中,AB=DE ,∠A=∠D ,若证△ABC ≌△DEF ,还需补充一个条件,错误的补充方法是( )A .∠B=∠EB .∠C=∠FC .BC=EFD .AC=DF【解析】根据已知及全等三角形的判定方法对各个选项进行分析,从而得到答案.解:A 、正确,符合判定ASA ;B 、正确,符合判定AAS ;C 、不正确,满足SSA 没有与之对应的判定方法,不能判定全等;D 、正确,符合判定SAS . 故选:C .点评:此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有AAS ,SAS ,SSS ,HL 等.练11.如图,已知等边△ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;②△EDP ≌△GFP ;③∠EDP=60°;④EP=1中,一定正确的是( )A .①③B .②④C .①②③D .①②④【解析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE=CG ,DE=FG ,就可以得出△DEP ≌△FGP ,得出∠EDP=∠GFP ,EP=PG ,得出PC+BE=PE ,就可以得出PE=1,从而得出结论.解:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠B=∠ACB=60°.∵∠ACB=∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB=∠FGC=∠DEP=90°.在△DEB 和△FGC 中,DEB FGC GCF A BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△FGC (AAS ),∴BE=CG ,DE=FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEP ≌△FGP (AAS ),故②正确;∴PE=PG ∠EDP=∠GFP≠60°,故③错误;∵PG=PC+CG ,∴PE=PC+BE .∵PE+PC+BE=2,∴PE=1.故④正确.正确的有①②④,故选:D .点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.练12.如图,EA⊥AB,BC⊥AB EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC(2)DE⊥AC(3)∠CAB=30°(4)∠EAF=∠ADE,其中结论正确的是()A.(1),(3)B.(2),(3)C.(3),(4)D.(1),(2),(4)【解析】本题条件较为充分,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°﹣90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE故选:D.点评:本题考查了全等三角形的判定与性质;全等三角形问题要认真观察已知与图形,仔细寻找全等条件证出全等,再利用全等的性质解决问题.1.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等2.如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AAS C.SSS D.ASA3.已知:如图所示,△ABC与△ABD中,∠C=∠D=90°,要使△ABC≌△ABD(HL)成立,还需要加的条件是()A.∠BAC=∠BAD B.BC=BD或AC=ADC.∠ABC=∠ABD D.AB为公共边4.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°5.如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙6.如图,在△ABC中,AB=AC,AE=AF,AD⊥BC于点D,且点E、F在BC上,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对7.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①__________;②__________;(2)当∠B=60°时,还可以得出哪些正确结论?(只需写出一个)(3)请在图中过点D作于DM⊥AB于M,DN⊥AC于N.求证:△DBM≌△DCN.1.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件_____________.2.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=_____________度.3.如图所示,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,滑梯BC与地面夹角∠ABC=35°,则滑梯EF与地面夹角∠DFE的度数是_______________.4.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.5.如图,这是建筑物上的人字架,已知:AB=AC,AD⊥BC,则BD与CD相等吗?为什么?6.请从以下三个等式中,选出一个等式天在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,_______求证:△ABE≌△CDF.证明:参考答案:当堂检测1.【解析】A 、两条直角边对应相等,可利用全等三角形的判定定理SAS 来判定两直角三角形全等,故本选项正确;B 、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA 没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;C 、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA 来判定两个直角三角形全等;故本选项正确;D 、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA 或AAS 来判定两个直角三角形全等;故本选项正确;故选B .2.【解析】∵OE ⊥AB ,OF ⊥AC ,∴∠AEO=∠AFO=90°,又∵OE=OF ,AO 为公共边,∴△AEO ≌△AFO .故选A .3.【解析】需要添加的条件为BC=BD 或AC=AD ,理由为:若添加的条件为BC=BD ,在Rt △ABC 与Rt △ABD 中,∵BC BD AB AB =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ABD (HL );若添加的条件为AC=AD ,在Rt △ABC 与Rt △ABD 中,∵AC AD AB AB =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ABD (HL ).故选B .4.【解析】∵∠B=∠D=90°,在Rt △ABC 和Rt △ADC 中,BC CD AC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ),∴∠2=∠ACB=90°﹣∠1=50°.故选B .5.【解析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )逐个判断即可.解:已知图1的△ABC 中,∠B=50°,BC=a ,AB=c ,AC=b ,∠C=58°,∠A=72°,图2中,甲:只有一个角和∠B 相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC 不全等;乙:符合SAS 定理,能推出两三角形全等;丙:符合AAS 定理,能推出两三角形全等;故选:C .点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.【解析】如图,运用等腰三角形的性质证明BD=CD ,DE=DF ;证明△ABD ≌△ACD ,△AED ≌△AFD ,即可解决问题.解:如图,∵AB=AC ,AE=AF ,AD ⊥BC ,∴BD=CD ,DE=DF ;在△ABD 与△ACD 中,AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),同理可证△AED ≌△AFD ;故选:B .点评:该题主要考查了全等三角形的判定问题、等腰三角形的性质及其应用问题;灵活运用全等三角形的判定问题、等腰三角形的性质是解题的关键.7.【解析】(1)根据中点的性质及全等三角形的判定,写出两个结论即可;(2)根据等边三角形的判定定理可得△ABC 是等边三角形;(3)先证明△ABD ≌△ACD ,再证明△DBM ≌△DCN .解:(1)①BD=CD ;②△ABD ≌△ACD ;(2)∵AB=AC ,∠B=60°,∴△ABC 是等边三角形.(3)在Rt △ABD 和Rt △ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD ,∴∠ABD=∠ACD ,在Rt △DBM 和Rt △DCN 中,MBD NCD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DBM ≌△DCN .点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .家庭作业1.【解析】还需添加条件AB=AC ,∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°,在Rt △ABD 和Rt △ACD 中,AD AD AB AC=⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),故答案为:AB=AC .2.【解析】在直角△ABC 与直角△ADC 中,BC=DC ,AC=AC ,∴△ABC ≌△ADC ,∴∠2=∠ACB ,在△ABC 中,∠ACB=180°﹣∠B ﹣∠1=50°,∴∠2=50°.故填50°3.【解析】在Rt △ABC 和Rt △DEF 中,BC EF AC DF=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DEF (HL ),∴∠DEF=∠ABC=35°,∴∠DFE=90°﹣35°=55°.故答案为:55°.4.【解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC .又∵∠DBC=∠ECA=90°,且BC=CA ,在△DBC 和△ECA 中,∵90D AEC DBC ECA BC AC ∠=∠⎧⎪∠==⎨⎪=⎩,∴△DBC ≌△ECA (AAS ).∴AE=CD .(2)解:由(1)得AE=CD ,AC=BC ,在Rt △CDB 和Rt △AEC 中,AE CD AC BC =⎧⎨=⎩, ∴Rt △CDB ≌Rt △AEC (HL ),∴BD=CE ,∵AE 是BC 边上的中线,∴BD=EC= BC= AC ,且AC=12cm .∴BD=6cm .5.【解析】BD=CD ,理由:∵AD ⊥BC ,∴∠ADB=∠ADC=90°(垂直定义),在Rt △ABD 与Rt △ACD 中, AB AC AD AD =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),∴BD=CD (全等三角形的对应边相等).6.【解析】先加上条件,再证明,根据所加的条件,利用证明:∵AB ∥CD ,∴∠B=∠D ,在△ABE 和△CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF .点评:本题是一道开放性的题目,考查了全等三角形的判定,是基础知识比较简单.。

4.2 全等三角形-北师大版七年级数学下册同步提升训练(含解析)

4.2 全等三角形-北师大版七年级数学下册同步提升训练(含解析)

4.2全等三角形同步提升训练1.如图为正方形网格,则∠1+∠2+∠3=( )A.105°B.120°C.115°D.135°2.下列说法中正确的是( )A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形3.下列各组中的两个图形属于全等图形的是( )A.B.C.D.4.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是( )A.1B.2C.3D.4 5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( )A.45°B.60°C.90°D.100°6.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是( )A.6cm B.5cm C.7cm D.无法确定7.已知△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,有下列4个结论:①BC =C′B′;②AC=A′B′;③AB=A′B′;④∠ACB=∠A′B′C′,其中正确的结论有( )A.1个B.2个C.3个D.4个8.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是( )A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 9.下列选项中表示两个全等的图形的是( )A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形10.如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是( )A.CD B.CA C.DA D.AB11.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为 .12.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3= .13.连接正方形网格中的格点,得到如图所示的图形,则∠1+∠2+∠3+∠4= °.14.从同一张底片上冲出来的两张五寸照片 全等图形,从同一张底片上冲出来的一张一寸照片和一张两寸照片 全等图形(填“是”或“不是”).15.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′= °,∠A= °,B′C′= ,AD= .16.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是 .17.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.18.图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.19.你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?20.把下列各图分成若干个全等图形,请在原图上用虚线标出来.21.找出七巧板中(如图)全等的图形.22.如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.参考答案1.解:∵在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠1+∠3=90°,∵AD=MD,∠ADM=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故选:D.2.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.3.解:A、两个图形不属于全等图形,故此选项不合题意;B、两个图形不属于全等图形,故此选项不合题意;C、两个图形不属于全等图形,故此选项不合题意;D、两个图形属于全等图形,故此选项符合题意;故选:D.4.解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.5.解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.6.解:∵△ABC≌△ADE,∴DE=BC,∵BC=7cm,∴DE=7cm.故选:C.7.解:如图,∵△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,∴BC=C′B′,AC=A′B′,∠ACB=∠A′B′C′,∴①②④共3个正确的结论.AB与A′B′不是对应边,不正确.故选:C.8.解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选:A.9.解:A、形状相同的两个图形大小不一定相等,所以,不是全等图形,故本选项错误;B、周长相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项错误;C、面积相等的两个图形形状、大小都不一定相同,所以,不是全等图形,故本选项错误;D、能够完全重合的两个图形是全等图形,故本选项正确.故选:D.10.解:∵△ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).故选:C.11.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.12.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.13.解:由网格可得:△AFE≌△BDA,则∠1=∠5,∵AC=BC=,AB=,∴△ACB是直角三角形,故∠CAB=∠CBA=45°,∴∠4+∠5=∠4+∠1=180°﹣45°=135°,∠2+∠3=90°﹣45°=45°,∴∠1+∠2+∠3+∠4=135°+45°=180°.故答案为:180.14.解:由全等形的概念可知:从同一张底片上冲出来的两张五寸照片是全等图形,由同一张底片冲洗出来的一寸照片和二寸照片,大小不一样,所以不是全等图形.故答案为:是,不是.15.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.16.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.17.解:设计方案如下:18.解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.19.解:如图所示.20.解:如图所示:21.解:由图知:△ADE与△DEC,△EHK与△CJF,△ADC与△ABC,四边形AGKE与四边形CFKE,四边形AGKD与四边形CFKD是重合的,即是全等的图形.22.解:如图所示:.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【学习目标】全等三角形判定二(SAS )(提高)1. 理解和掌握全等三角形判定方法 4——“边角边”;2. 能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.3. 探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;【要点梳理】要点一、全等三角形判定 4——“边角边”1. 全等三角形判定 4——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果 AB = A ' B ' ,∠A=∠A ' ,AC = A 'C ' ,则△ABC≌△A 'B 'C ' . 注意:这里的角,指的是两组对应边的夹角. 2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B=∠B,但△ABC 与△ABD 不完全重合, 故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:要点三、如何选择三角形证全等 1. 可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2. 可以从已知出发,看已知条件确定证哪两个三角形全等;3. 由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等; 已知条件 可选择的判定方法一边一角对应相等 SAS AAS ASA 两角对应相等 ASAAAS两边对应相等 SAS SSS4.如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的判定 4——“边角边”1、如图,AD 是△ABC的中线,求证:AB+AC>2AD.【思路点拨】延长 AD 到点E,使AD=DE,连接 CE.通过证全等将 AB 转化到△CEA中,同时也构造出了 2AD.利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长 AD 到点 E,使 AD=DE,连接 CE.在△ABD 和△ECD 中,AD=DE,∠ADB=∠EDC,BD=CD.∴△ABD≌△ECD(SAS ).∴AB=CE .∵AC+CE >AE ,∴AC+AB >AE =2AD .即 AC +AB >2AD .【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形 的两边之和大于第三边.要证明 AB +AC >2AD ,如果归到一个三角形中,边的大小关系就 是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换, 把△ABD 绕点 D 逆时针旋转 180°得到△CED,也就把 AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.2、已知,如图:在△ABC 中,∠B=2∠C,AD⊥BC,求证:AB =CD -BD .【思路点拨】在 DC 上取一点 E ,使 BD =DE ,则△ABD≌△AED,所以 AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在 DC 上取一点 E ,使 BD =DE ∵ AD⊥BC,∴∠ADB=∠ADE 在△ABD 和△AED 中, BD =DE ,AD =AD . ∴△ABD≌△AED(SAS ).∴AB=AE ,∠B=∠AED. 又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC .∴AB=AE =EC =CD —DE =CD —BD .AB D EC 【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明 AB =CD -BD , 把 CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿 AD 翻折,使线段 BD 运动到 DC 上,从而构造出 CD -BD ,并且也把∠B 转化为∠AEB,从而拉近了与∠C 的关系.举一反三:【变式】(2014 秋•利通区校级期末)如图,AC 和 BD 相交于 O 点,若 OA=OD ,用“SAS”证明△AOB≌△DOC 还需( )⎨ ⎩A .AB=DCB . OB=OC C . ∠C=∠D D . ∠AOB=∠DOC【答案】B . 解:A 、AB=DC ,不能根据 SAS 证两三角形全等,故本选项错误;B 、∵在△AOB 和△DOC 中,∴△AOB≌△DOC(SAS ),故本选项正确;C 、两三角形相等的条件只有 OA=OD 和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D 、根据∠AOB=∠DOC 和 OA=OD ,不能证两三角形全等,故本选项错误.类型二、全等三角形动态型问题3、(2015•武汉模拟)在△ABC 中,∠ACB=90°,AC =BC ,直线l 经过顶点 C ,过A ,B 两点分别作l 的垂线 AE ,BF ,垂足分别为 E ,F.(1) 如图 1 当直线l 不与底边 AB 相交时,求证:EF =AE +BF.(2) 将直线l 绕点 C 顺时针旋转,使l 与底边 AB 相交于点 D ,请你探究直线l 在如下位置时,EF 、AE 、BF 之间的关系,①AD>BD ;②AD=BD ;③AD<BD.【答案与解析】证明:(1)∵AE⊥ l ,BF⊥ l ,∴∠AEC=∠CFB=90°,∠1+∠2=90°∵∠ACB=90°,∴∠2+∠3=90°∴∠1=∠3。

∵在△ACE 和△CBF 中,⎧∠AEC = ∠CFB ⎪∠1 = ∠3⎪ AC = BC ∴△ACE≌△CBF(AAS )∴AE=CF ,CE =BF∵EF=CE +CF ,∴EF=AE +BF 。

(2)①EF=AE -BF ,理由如下:⎨ ⎩∵AE⊥ l ,BF⊥ l ,∴∠AEC=∠CFB=90°,∠1+∠2=90°∵∠ACB=90°,∴∠2+∠3=90°,∴∠1=∠3。

∵在△ACE 和△CBF 中⎧∠AEC = ∠CFB ⎪∠1 = ∠3⎪ AC = BC ∴△ACE≌△CBF(AAS )∴AE=CF ,CE =BF∵EF=CF -CE ,∴EF=AE―BF。

②EF=AE―BF③EF=BF―AE证明同①.【总结升华】解决动态几何问题时要善于抓住以下几点:(1) 变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2) 图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3) 几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化.举一反三:【变式】已知:在△ABC 中,∠BAC=90°,AB =AC ,点 D 为射线 BC 上一动点,连结 AD ,以 AD 为一边且在 AD 的右侧作正方形 ADEF .(1) 当点 D 在线段 BC 上时(与点 B 不重合),如图 1,求证:CF =BD(2) 当点 D 运动到线段 BC 的延长线上时,如图 2,第(1)问中的结论是否仍然成立,并说明理由.【答案】证明:(1)∵正方形 ADEF∴AD=AF ,∠DAF=90°∴∠DAF-∠DAC=∠BAC-∠DAC,即∠BAD=∠CAF在△ABD 和△ACF 中,⎨ ⎩⎨ ⎩⎧ AB = AC ⎪∠BAD = ∠CAF⎪ AD = AF ∴△ABD≌△ACF(SAS )∴BD=CF(2)当点 D 运动到线段 BC 的延长线上时,仍有 BD =CF此时∠DAF+∠DAC=∠BAC+∠DAC,即∠BAD=∠CAF在△ABD 和△ACF 中,⎧ AB = AC ⎪∠BAD = ∠CAF⎪ AD = AF ∴△ABD≌△ACF(SAS )∴BD=CF类型三、全等三角形判定的实际应用4、(2016 春•深圳校级期中)要测量河岸相对两点 A 、B 的距离,已知 AB 垂直于河岸BF ,先在 BF 上取两点 C 、D ,使 CD=CB ,再过点 D 作 BF 的垂线段 DE ,使点 A 、C 、E 在一条直线上,如图,测出 BD=10,ED=5,则 AB 的长是( )A.2.5 B .10 C .5 D .以上都不对【思路点拨】由 AB 、ED 均垂直于 BD ,即可得出∠ABC=∠EDC=90°,结合CD=CB 、∠ACB=∠ECD 即可证出△ABC≌△EDC(ASA ),由此即可得出 AB=ED=5,此题得解.【答案】C .【解析】解:∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90°,在△ABC 和△EDC 中,,∴△ABC≌△EDC(ASA ),∴AB=ED=5.故选 C .【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定定理 (ASA ).解决该题型题目时,熟练掌握全等三角形的判定定理是关键.【巩固练习】一、选择题1.(2014 秋•上海期末)已知:如图,△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°,那么△ADC≌△AEB的根据是()A.边边边B.边角边C.角边角D.角角边2.(2016 春•深圳校级期中)如图,AD 是△ABC的中线,E,F 分别是AD 和AD 延长线上的点,且DE=DF,连接BF、CE,且∠FBD=35°,∠BDF=75°,下列说法:①△ BDF≌CDE;②ABD和△ACD面积相等;③BF∥CE;④∠DEC=70°,其中正确的有()A.1 个B.2 个C.3 个D.4 个3.AD 为△ABC中BC 边上的中线, 若AB=2, AC=4, 则AD 的范围是( )A .AD<6 B. AD>2 C. 2<AD<6 D. 1<AD<34.如图,AB=DC,AD=BC,E、F 是DB 上两点,且 BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=().A.150°B.40°C.80°D.90°5.根据下列条件能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D. ∠A=30°,∠B=60°,∠C=90° 6.如图,在△ABC中,∠A=50°,∠B=∠C,点D,E,F 分别在 AB,BC,AC 上,并且BD=CE,BE=CF,则∠DEF等于()A.50°B.60°C. 65°D. 70°二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=.8.如图,△ABC中,H 是高AD、BE 的交点,且BH=AC,则∠ABC=.9.(2014 秋•启东市校级期中)如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,若以“SAS”为依据,补充的条件是.10.如图,在四边形ABCD 中,对角线AC、BD 互相平分,则图中全等三角形共有对.11.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.12.(2015 秋•平谷区期末)阅读下面材料:在数学课上,老师提出如下问题:小米的作法如下:请回答:小米的作图依据是.三、解答题13.(2016 春•长清区期末)以点 A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1 所示放置,使得一直角边重合,连接 BD,CE.(1)说明 BD=CE;(2)延长 BD,交CE 于点F,求∠BFC的度数;(3)若如图 2 放置,上面的结论还成立吗?请简单说明理由.14.(2014 秋•公安县期中)已知△ABC 中,AB=8,AC=6,AD 是中线,求 AD 的取值范围.15.已知:如图,BE、CF 是△ABC的高,且 BP=AC,CQ=AB,求证:AP⊥AQ.【答案与解析】一.选择题1.【答案】B.【解析】∵△ABD 和△ACE 均为等边三角形,∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC.∴△ADC≌△AEB.(SAS)2.【答案】D;【解析】解:∵AD 是△ABC 的中线,∴BD=CD,∴△ABD的面积=△ACD的面积,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故①②正确∴∠F=∠CED,∠DEC=∠F,∴BF∥CE,故③正确,∵∠FBD=35°,∠BDF=75°,∴∠F=180°﹣35°﹣75°=70°,∴∠DEC=70°,故④正确;综上所述,正确的是①②③④.故答案为:D.3.【答案】D;【解析】用倍长中线法;4.【答案】D;【解析】证△ABE≌△CDF,△ADE≌△BCF;5.【答案】C;【解析】A 不能构成三角形,B 没有 SSA 定理,D 没有 AAA 定理.6.【答案】C;【解析】证△DBE≌△ECF,∠DEF=180°-∠DEB-∠FEC=180°-∠DEB-∠BDE=180︒- 50︒∠B =2=65°.二.填空题7.【答案】66°;【解析】可由 SSS 证明△ABC≌△DCB,∠OBC=∠OCB=∠ABC=25°+41°=66°8.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.9.【答案】AC=AE.【解析】补充的条件是:AC=AE.理由如下:∵∠BAE=∠DAC,82︒2= 41︒,所以∠DCB=∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE.∵在△ABC与△ADE中,,∴△ABC≌△ADE(SAS). 10.【答案】4;【解析】△AOD≌△COB,△AOB≌△COD,△ABD≌△CDB,△ABC≌△CDA.11.【答案】27;【解析】可证△ADB≌△CDB≌△CDE.12.【答案】有三边对应相等的两个三角形全等;全等三角形的对应角相等;【解析】解:由作图过程可得CO=C′O′,DO=D′O′,CD=C′D′,在△DOC 和△D′O′C′中,,三.解答题∴△ODC≌△O′D′C′(SSS),∴∠O=∠O′.故答案为:有三边对应相等的两个三角形全等;全等三角形的对应角相等.13.【解析】解:(1)∵△ABC、△ADE 是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB 和△AEC 中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE 成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE 是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.14.【解析】解:延长 AD 至点 E,使 DE=AD,连接 EC,∵BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD,∴CE=AB,∵AB=8,AC=6,CE=8,设 AD=x,则 AE=2x,∴2<2x<14,∴1<x<7,∴1<AD<7.15.【解析】证明:∵BE⊥AC,CF⊥AB(已知)∴∠ACF+∠BAC=90°,∠ABE+∠BAC=90°,(三角形内角和定理)∠ACF=∠ABE(等式性质)在△ACQ 和△PBA 中⎩⎧ CQ = AB ⎪ ∵ ⎨∠ACF = ∠ABP ⎪ AC = BP ∴△ACQ≌△PBA(SAS )∴∠Q=∠BAP(全等三角形对应角相等) ∵CF⊥AB(已知)∴∠Q+∠QAF=90°,(垂直定义) ∴∠BAP+∠QAF=90°,(等量代换) ∴AP⊥AQ.(垂直定义)。

相关文档
最新文档