2021年气藏气井生产动态分析题改图
第四章气藏动态分析-1详解
CQUST 概述
气井动态分析是气藏动态分析基础,主要内容: 1.收集每一口井的全部地质和技术资料,编制气井井史并绘制采气曲线; 2.已经取得的地震、测井、岩心、试油及物性等资料是气藏动态分析的重要依据, 这些资料需在气井上取得综合认识的基础上完成; 3.分析气井油、气、水产量与地层压力、生产压差之间的关系,找出它们之间的内 在联系和规律,并推断气藏内部的变化; 4.通过气井生产动态状况和试井资料推断井周围储层地质情况,并综合静态资料分 析整个气藏地质情况,判断气藏边界和驱动类型; 5.分析气井产能和生产情况,建立气井生产方程式,评价气井和气藏生产能力;
6.提供气藏动态分析工作所需的各项资料,包括地层压力、地层温度及流体性质变 化等。
二、气藏驱动方式的类型
油、气藏的驱动方式反应了促使油、气由地层流向井底的主要地层能量形式。
CQUST 概述
地层能量主要有:
1)在重力场中液体的势能; 2)液体形变的势能; 3)地层岩石变形的势能; 4)自由气的势能; 5)溶解气的势能。 1.气压驱动 特点:在气藏开发过程中,没有边、底水,或边、底水不运动,或水的运动速度 大大跟不上气体运动速度,此时,驱气的主要动力是气体本身的压能,气藏的储气 孔隙体积保持不变,地层压力系数P/Z与累积采气量Gp呈线性关系。图(6-7) 2.弹性水驱 特点:由于含水层的岩石和流体的弹性能量较大,边水或底水的影响就大,气 藏的储气孔隙体积要缩小,地层压力下降要比气驱缓慢。这种驱动方式称弹性水驱, 供水区面积愈大,压力较高的气藏出现弹性水驱的可能性就愈大。 3.刚性水驱 特点:侵入气藏的边、底水能量完全补偿了从气藏中采出的气产量,此时气藏压 力能保持在原始水平上,这种驱动方式称刚性水驱。
CQUST
采
油气井动态分析及管理
2、既能充分利用地层能量又不破坏油层结构。
3、保证水线均匀推进,获得较长的无水采油期。 4、对于饱和压力较高的油田,应使流饱压差控制合理。 5、获得较好的经济效益。
8
一、自喷井生产分析
(四)自喷井节点系统分析
节点系统分析法:
应用系统工程原理,把整个油井生产系统分成若干子
系统,研究各子系统间的相互关系及其对整个系统工 作的影响,为系统优化运行及参数调控提供依据。 节点系统分析对象:整个油井生产系统 油藏渗流子系统 自喷井生产系统组成: 井筒流动子系统 油嘴(节流器)流动子系统 地面管流子系统
31
(一)气举井生产分析
4、气举启动
(1)启动过程 ①当油井停产时,井筒中的积液将
不断增加,油套管内的液面在同一
位臵,当启动压缩机向油套环形空 间注入高压气体时,环空液面将被 挤压下降。
气举井(无凡尔)的启动过程 a—停产时
32
(一)气举井生产分析
4、气举启动
(1)启动过程 ②如不考虑液体被挤入地层,环空
5
1、自喷井的流动方式
嘴流
—生产流体通
过油嘴(节流器) 的流动 雾流 环流 段塞流 泡流 纯油流
井口到分离器—地面 水平或倾斜管流
井底到井口的流动—井筒多相管流 油层到井底的流动— 地层渗流
6
一、自喷井生产分析
嘴流
—原油经过嘴流时要消
耗一定的能量
2、 自 喷 井 能 量 消 耗
多相水平管流能量消耗—
23
二、气井生产分析
(二)气井生产工作制度分析
影响气井生产工作制度的因素 1.自然因素 1)产层由非胶结的砂子或胶结很差的砂岩构成时 2)在凝析气藏开发中 3)底水锥进 2.工艺因素 影响气井生产工作制度的工艺因素有很多,如: 1)延长无压缩机开采阶段; 2)防止气井过早水淹; 3)减少输气干线前压缩机站和人工制冷装臵的功率;
气藏生产动态分析GPA1.0-GEG2011
规规矩矩做人
认认真真做事
TM
三、软件主要功能
1、气藏类型划分
设定气藏类型的划分标准,根据气藏的具体指标值,系统就会 自动判断气藏的所属类型。
规规矩矩做人
认认真真做事
TM
三、软件主要功能
2、温压梯度分析
地层梯度分析
井筒梯度分析
气藏温压系统分析
确定气井内的温压 梯度 分析井筒的积液及 其变化情况 压力系统分析,判 断井间的连通性
TM
气藏生产动态分析系统
(Gas Production Analysis)
GPA TM V1.0
北京金鹰竣业科技有限公司
规规矩矩做人 认认真真做事
TM
引
言
面对日趋复杂的开发对象,只有充分利用丰富的 气井测试与开发生产动态信息资料,通过系统、准确的 动态描述,才能更准确地深化气藏地质认识,把握气藏 开发规律,进而实现气田生产动态的可靠预测,以及气 田开发技术对策的制定与调整。
规规矩矩做人
认认真真做事
TM
三、软件主要功能
3、产能分析
气井产能分析 气藏产能分析 分类产能方程
根据产能试井数据, 计算气井和区块的产 能,建立相应的产能 方程,绘制IPR曲线 分类汇总、统计分析
规规矩矩做人
认认真真做事
TM
三、软件主要功能
4、物质平衡分析(MBA)
定容气藏
AG、NPI 流动物质平衡分析
Arps分析
自定义模型分析
估算动态储量 泄气面积 储层渗透率 S或Xf 井控程度 动态预测 加密潜力
Fetkovich分析 Blasingame分析 流动物质平衡分析 (FMB)
洞穴-裂缝-孔隙三重介质气藏气井产量变化特征分析
=
储层 , 裂缝是 主要渗 流 通道 , 隙是 主 要储 集 空 间。 孔 细致地 分析 , 酸盐 岩储 层 在微 观上 普 遍具 有 洞穴 碳
一
裂缝 一孔 隙三 重介 质 的特 征 , 部分 气 藏开 发 动态 该 渗流模 型在拉 氏空间 的通 解为 :
第3 3卷
第1 期
V0 . 3 1 3 No 1 .
D ⅡL N & P O U TO E H O OG R lG R D C I NT C N L Y
钻
采
工
艺
・4 ・ 7
洞 穴 一裂 缝 一孔 隙三 重介 质气 藏 气井 产量 变 化特征 分析
朱 斌 一,冯 曦
四川省成都市府青路一段 l号 , 电话 :0 8 80 5 5 E—m i zu bn erciaem.n ( 2 ) 6 150, a :h — i@pt hn.o e l o
‘
钻
・
采
工
艺
4 ・ 8
21 00年 1 月
Jn 00 a .2 1
DRI U I NG & P RODUC ON ECHNOLOGY TI T
气 产 公 :( : 掣 ) 井 量 式 z 一(, ) Q
D
I :J
( 3 )
式 中 : 是与 产层 有 效厚 度 、 透 率 、 O t 渗 气体 黏 度 等参 数相 关 的 量 , 同 一 气 井 而 言 , 似 为 常 数 。而 对 近
裂缝 一孔隙型气藏 生产过程 中气井产 量变化特 征 的
( 1气藏地质及 开发 工程 国家重点 实验 室 ・西南石油 犬学
油气藏动态分析:-气井生产参数
4.1.1气井生产参数
二、气井分析的内容
(1)收集气井的全部地质和生产技术资料,编制气井井史,绘制采气曲线。 (2)分析气井气、油、水产量与地层压力、生产压差之间的关系,寻求它们之间的内在联系 和规律,推断气藏内部的变化。 (3)通过气井生产状况和试井资料,结合静态资料分析气井周围储层及整个气藏的地质情 况,判断气藏边界和驱动类型。 (4)分析气井产能和生产情况,建立气井产能方程,评价气井和气藏的生产潜力。 (5)提供气藏动态分析工作所需的各项资料,包括地层压力、地层温度及流体性质变化等。
2. 目前地层压力(静压)
定义: 气层投入开发以后,在某一时刻关井,待压力恢复平稳后,所获得的 井底压力称为该时期的目前地层压力,又称为井底静压力,简称为静压。
4.1.1气井生产参数
三、基本概念
3. 井底流动压力(流压)
定义:气井在正常生产时测得的井底压力称为井底流动压力,简称为 流压。它是流体从地层流入井底后剩余的能量,同时也是流体从井底流向 井口的动力。
确定方法:实测法、计算法
4.1.1气井生产参数
三、基本概念
4. 井口压力
在气井井口测得的井口压力分为油压和套压。 油压:指井口油管头处测得的油管内的压力。 套压:指井口套管头处测得的套管内的压力。
4.1.1气井生产参数
三、基本概念
不同情况下气井油套压的关系
4.1.1气井生产参数
谢谢欣赏
4.1.1气井生产参数
三、基本概念
1. 原始地层压力
定 义 : 气藏未开发前的气藏压力称为原始地层压力,即当第一口气井完钻后,关 井稳定后测得的井底压力,它表示气藏开采前地层所具有的能量。
储气库井生产动态分析方法及应用
储气库井生产动态分析方法及应用随着天然气的普及和消费量的不断增加,地下储气库的建设越来越紧迫,在数据库设计建设过程当中,存在着很多技术挑战,以保证数据库的安全,注采井的安全是地下储气库安全运行的重要依托,国内外有大量对于储气库安全的研究,而且很多研究着眼于井下的管串安全,储气库注采经验表明出砂对储层的长期有效运行造成威胁。
笔者根据自身的工作经验,分析了储气库井生产动态分析方法和应用。
标签:储气库井;生产动态;分析方法;应用近百年以来,地下储气库经过不断的建设发展,已经成为各国天然气的主要存储方式和重要调峰手段,2000年,我国建立了第一座储气库,保证了京津地区的天然气的稳定供应,随着我国对于天然气需求量的不断增加,储气库建设必须紧随时代发展,满足日益增长的消费量。
我国的储蓄库建设面临着很多的技术挑战,例如,建设管理体系处于起步阶段,缺乏研究和实践经验,在储气库注井井筒温度压力调整的过程当中,周期性变化不均,缺乏完善的管理体系与监督体系。
因此,在储气库的建设和管理过程中,我们需要借鉴其他国家的先进经验,及时发现我国存在的问题,在生产运行过程当中重视技术的创新,来保证储气库的安全和有效运行。
1 储气库井生产动态研究现状我国的储气库建设技术,包括地质方案,施工技术,废弃井封井技术,钻井、固井、完井技术,钻井液技术和储层保护技术,这些技术对于储气库建设的每一个环节都会产生很大的影响。
储气库井注采出砂预测研究:储气库建设的过程中,储层未被打开之前,内部系统处于力平衡状态,储层一旦被打开,周围的应力系统会发生变化,岩石颗粒所承受的应力也会变得不平衡,这时如果应力超过岩石,自身的抗压和抗剪程度变小,延时就会发生变形,在进行油气井生产时,流体流入井底,将地层砂带入井底,导致出砂现象的出现,岩石破坏导致储层出砂的机理包括三种:滑移次生破坏、剪切破坏和拉伸破坏。
油井地层的出砂原因有很多,一是地层中充填砂在流动粘滞力和惯性作用的影响下被动的流入井底,引起油气井出砂现象,二是由于岩石超过其及耐受强度而被破坏,产生的松散砂,被地层流体带入到井底之中,也引发油气井出砂现象,滑移次生破坏是导致充填砂进入井底出沙的重要原因,而剪切和拉伸的影响,则导致延时超过极限强度,出现松散砂流入地层的现象。
气田开发管理及生产动态分析
二、《天然气开发管理纲要》对气田开发管理的要求
第六十三条:油田公司应根据天然气生产和发展的需要,建立相应的 天然气开发队伍,配备必需的试气、试采、计量、增压、井控、抢险以及 安全环保设备。并做好人员培训和设备管理工作。
第六十四条:油田公司应根据股份公司有关档案管理规定,做好天然 气开发各项资料的归档管理工作。天然气开发涉及的国家秘密和股份公司 商业秘密应按有关保密规定,做好保密工作。
开发试验、气田开发效果评价等。
提纲
一、气田开发管理的主要任务 二、《天然气开发管理纲要》对气田开发管理的要求 三、气田开发管理任务分工 四、《气藏工程管理规定》对气井管理及动态分析的要求 五、动态分析的主要任务 六、气井管理及动态分析的基本方法 七、气井、气藏精细管理及动态分析探讨
二、《天然气开发管理纲要》对气田开发管理的要求
二、《天然气开发管理纲要》对气田开发管理的要求
第五十五条:油田公司应按月、季、半年、年度和阶段进行气田动态分 析,并编写分析报告。
动态分析的主要内容包括气井与气藏的动态特征、产量计划完成情况、 各种工艺措施效果、产量变化及原因、地层压力变化趋势、气藏边底水活动 情况及气田生产设施的适应性等。动态分析应指出开发中存在的问题,提出 改进措施。
(2)地面生产系统监测项目包括:天然气集输站场和净化处理厂装置 的操作压力、温度、流量及处理量;加热设备和动力设备的状况;进出 主要装置的气质分析;主要生产设备和管线腐蚀状况在线监测等。应从 井口到首站进行全流程泄漏检测。
(3)生产动态监测应纳入油田公司的生产经营计划,监测费应按气田 操作成本的3%~5%纳入预算。
第六十一条:油田公司应将售作为一个系统进行管理,充分利用伴生气,提高资源利用率。
二、《天然气开发管理纲要》对气田开发管理的要求
油气藏动态分析: 气井产水分析
层水(气层下面水层的水)。 ✓ 地面水:由于井下措施等把地面上的水泵入井筒,部分被渗入气井周围,随着气
井生产被天然气带出地面。
4.2.1气井产水分析
一、气井产水的类别及主要特征
2. 非气层水
气井产水分类及其典型特征
4.2.1气井产水分析
谢谢欣赏
4.2.1 气井产水分析
4.2.1气井产水分析
【学习目标】
1.掌握气井产水的类别及特征; 2.能根据生产数据进行产水分析。
4.2.1气井产水分析
一、气井产水的类别及主要特征
1. 气层水
气
边水
层
水
底水
层间水
4.2.1气井产水分析
一、气井产水的类别及主要特征
2. 非气层水
✓ 凝析水:由于温度降低,天然气中的水汽组分凝析成的液态水。 ✓ 钻井液:钻井过程中钻井液渗入井附近岩石缝隙中,天然气开采时,被带出地面。 ✓ 残酸水:酸化措施后,未喷净的残酸水,滞留在井周围岩石缝隙中,气井生产时,
4.2.1气井产水Hale Waihona Puke 析二、根据生产数据进行产水分析
1. 根据气井生产资料分析是否有边(底)水侵入
(1) 根据钻探资料证实气藏有边(底)水存在,气井 则易有边(底)水侵入。 (2) 井身结构完好,排除有外来水窜入的可能,气 井出水则可判断是边(底)水。 (3) 气井产水的水性与边水一致,如边水舌进。
边水舌进
4.2.1气井产水分析
二、根据生产数据进行产水分析
1. 根据气井生产资料分析是否有边(底)水侵入
(4) 采气压差增加,可能引起底水锥进。水锥 高度升高,气井产水量增加。
气藏生产动态分析系统软件介绍
将系统中的相关数据导出到Excel文件
方便的数据管理 全面的数据分析
模板设计与报告形成
北京金鹰竣业科技有限公司 Golden Eagle Giant Science Technology Limited
GEG
规 规 矩 矩 做 人
认 认 真 真 做 事
北京市朝阳区安立路60号院润枫德尚苑X座703室
方便的数据管理 全面的数据分析
全面的数据分析
气藏类型划分
设定气藏类型的划分标准,根据气藏的具 体指标值,系统就会自动判断气藏的所属 类型。
温压梯度分析
通过不同时期气井内温压梯度的变化,确 定井筒内气液界面的变化情况及判识井筒 积液情况。
Gas Production Analysis
物质平衡分析(MBA) 根据气藏驱动类型,选用定容气藏、异常 高压气藏、水驱气藏和连通气藏(低渗补 给)等模型进行物质平衡分析,可以实现 以下主要功能: ❖ 计算气井或区块的原始地质储量、可采 储量; ❖ 预测不同时期地层压力; ❖ 任意连井剖面的压力变化图,分析气藏 均衡动用情况。
生产动态分析
在气藏生产动态分析中,不仅提供了传统 的Arps递减分析方法,而且还提供了包括 Fetkovich、Blasingame、AG、 NPI、 流动物 质平衡分析 (FMB) 等在内的多种现代分 析方法, 可用于直井、 压裂井和水平井 等。同时,系统还提供了用户自定义模型 进行动态分析的功能。
G E GTM
G P A as roduction nalysis
气藏生产动态分析系统
北京金鹰竣业科技有限公司
Golden Eagle Giant Science Technology Limited
Gas Production Analysis
气藏动态分析
表3-1 气藏动态分析内容、目的和手段(续上表)
编 号
分析 项目
分析 内容
分析 目的
主要 分析 手段
1.工程测井 2.试井分析 3.井口带出 物分析
7
钻井, 完井与 采气工 艺措施 效果分 析
1.钻井井斜、井眼变化, 井底污染状况 2.完井方式、射孔完善程 度 3.产液、带液能力与管柱 摩阻损失 4.井下油套管破裂、井壁 垮塌与产层掩埋情况 5.修井、增压、气举、机 抽、泡排、水力、喷射泵 、气流喷射泵等工艺措施 效果
整及挖潜方案。
一、气藏动态分析的主要内容
气藏动态分析技术是提供气藏开发全过程动态信 息技术,目前国内外主要应用地震、地球物理测井、 地球化学、气水动力学和气藏数值模拟等技术来分 析气藏生产动态,并由点(气井)的监测、分析发 展到整个气田乃至成组气田开发过程实施全面监测 和分析。参照集团公司气藏动态分析工作规范(草 稿),归纳于下表。
1.为修井作 业提供依据 2.为增产、 提高采收率 ,采取适当 的工艺措施 提供依据
二、气藏动态分析的主要技术
1、地震技术
1)三维地震 该技术可有效地确定含气范围、气水边界、岩 性变化、断层位置和裂缝带等。 2)垂直地震剖面 该技术能确定断层、气水边界、裂缝发育方向 和各向异性渗透方向。还能预测未钻开的异常高压 层,为平衡钻井提供依据。
3)利用非烃组分浓度分布规律监测气水界面
含气层中H2S浓度的分布可定量地确定气藏面
积上产能大小及分布范围。H2S浓度越高,单位地
层储气能力越低,反之,孔隙中烃含量越高。CO2
和H2S的浓度分布规律相同。含N2量最高的地区,
含H2S量最低。大部含气层系中H2S含量随深度增
加而增加,气液接触带附近H2S浓度急剧增加。
气井流入动态
dp v v2
dr K
式中 p——压力,Pa;
综上所述:
α反映了气体渗流规 律的综合特征,是 控制无因次IPR曲线 形状的特征参数。 因此,这里首次称α 为IPR特征参数。下 面对α作进一步分析 和描述。
Ψwf /Ψr,(p wf /p r)2
1
0.8
0.6
α=0
0.4
0.25 0.5
0.75
0.2
1
0
0
0.2
0.4
0.6
0.8
1
q/q max
1) rc
p pwfs pwf
式中 ap——射孔层流系数,MPa2/(104m3/d); bp——射孔紊流系数,(MPa/(104m3/d))2; p——射孔段紊流速度系数,m-1;
p 7.64 1010 K p 1.2
rc——孔眼周围压实带半径,取rc=rp+0.0127, m; rp——孔眼半径,m; Lp——孔眼长度,m; Kp——孔眼压实带渗透率,10-3m2; N——射孔密度,SPM(孔/m); pwfs——气层岩面流压,MPa。
——流体粘度,Pa.s;
v——渗流速度,m/s;
——流体密度,kg/m3;
r——径向渗流半径,m; K——渗透率,m2;
——紊流速度系数,m-1。
紊流速度系数与K和孔隙度一样也属岩石的物性,它反映了岩
石孔喉与孔隙体积大小的对比关系,表征孔隙介质结构对流体紊流的影响。 由于岩石结构的复杂性,虽然已发表的多个用于估计的经验公式存在较大差 异,但均具有以下形式
评价气藏原始地质储量和原始可采储量的动态法——为修订的《SYT 6098—2010》标准而作
天然气勘探与开发NATURAL GAS EXPLORATION AND DEVELOPMENT· 1 ·2021年3月 第44卷 第1期作者简介:陈元千,1933年生,教授级高级工程师,1952年考入清华大学石油工程系;长期从事油气藏工程、油气田开发和油气储量评价工作。
地址:(100083)北京市海淀区学院路20号910信箱。
评价气藏原始地质储量和原始可采储量的动态法——为修订的《SY/T 6098—2010》标准而作陈元千中国石油勘探开发研究院摘 要 气藏的原始地质储量(Initial gas in-place )和原始可采储量(Initial recoverable reserves )是对气藏的标量名称。
我国将两者简称为地质储量(Gas in-place )和可采储量(Recoverable reserves )是不准确的。
气藏的原始可采储量等于原始地质储量与采收率的乘积。
由于不同地质与开发条件的影响,气藏的采收率是难以准确确定的,因而,利用动态法评价气藏的原始地质储量和原始可采储量就显得非常重要。
用于评价气藏原始地质储量的动态法有:物质平衡法、压降法和弹性二相法;用于评价气藏原始可采储量的动态法有:产量递减法和预测模型法。
根据气藏类型和拥有的动态数据情况,可以选用合适的方法进行原始地质储量、原始可采储量和剩余可采储量(Remaining recoverable reserves )的评价。
由于剩余可采储量最具有实际意义,因此,国际上统一的年报均为剩余可采储量并简用reserves 一词表示。
剩余可采储量是原始可采储量与累积产量的差值,它与年度产量之比值为储采比(RPR )是重要参数。
为此基于近年新的研究成果,对上述5种动态法进行完善推导,并通过实例加以应用。
关键词 气藏 原始地质储量 原始可采储量 动态法 应用DOI :10.12055/gaskk.issn.1673-3177.2021.01.001Dynamic methods for estimating initial gas in-place andinitial recoverable reserves in gas reservoirs —For the revised 《SY/T 6098—2010》Chen Yuanqian(PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China)Abstract: Both initial gas in-place and initial recoverable reserves are two scalar terms for gas reservoirs. However, that they are abbreviated for "gas in-place" and "recoverable reserves" by some Chinese scholars is inaccurate. For one gas reservoir, the original geological reserves multiplied by the recovery factor equals the original recoverable reserves. Affected by different geological setting and development conditions, it is difficult to accurately determine the recovery factor. Therefore, it is very important to use some dy-namic methods to evaluate the initial gas in-place and initial recoverable reserves. The evaluation methods for the initial gas in-place include material balance method, pressure drop method, and elastic two-phase method. While those for the initial recoverable reserves contain production decline method and prediction model method. According to reservoir type and available dynamic data, certain appropriate methods can be used to evaluate the initial gas in-place, the initial recoverable reserves, and the remaining recoverable reserves. Because the remaining recoverable reserves have the most practical significance, remaining recoverable, as an international and unified term abbreviated as reserves, is used in annual report. The remaining recoverable reserves are the difference between the original recoverable reserves and the cumulative production. The ratio of the remaining recoverable reserves to the annual production is an important parameter of the reserve-production ratio (RPR ). Based on the latest achievement, these mentioned-above five dynamic methods are perfected and derived, and have been applied in practice.Keywords: Gas reservoir; Initial gas in-place; Initial recoverable reserves; Performance method; Application陈元千:评价气藏原始地质储量和原始可采储量的动态法· 2 ·2021年3月第44卷 第1期0 引言天然气是关系到国家发展、社会进步和人民幸福的重要能源之一。
储气库知识培训(气藏和井)
二、储气库气藏
• 1、储气库气藏
• (2)不同类型储气库的特点 • 废弃油气藏:储气库的地质认识程度高,具有天然的密封性,储气量 及调峰量大,可用于季节性调峰和战略储备。 • 水层储气库:地质认识程度低,建设周期长,建设成本和管理费用相 对较高。优点如上。 • 盐矿储气库:密封性好,日提取量大,垫气量少,可用于日、周调峰 。 • 废矿:密封性不可靠,工作压力低,工作气量有限,成本高。优点如 盐矿储气库。
二、储气库气藏
• 1、储气库气藏
• (4)储层条件 • 在地质条件下,天然气储存在岩石的微小孔隙内,对气藏而言 ,岩石的孔隙内除储存有天然气外,还储存有水。 • ——孔隙度:岩石的孔隙体积与岩石体积的百分比,即是岩石的孔 隙度。它反映岩石储集流体的能力。 • ——含(油)气饱和度:岩石孔隙中天然气所占孔隙体积的百分比 ,它代表孔隙内充满油气的程度。 • ——绝对渗透率:绝对渗透率反映的是流体通过岩石多孔介质的能 力,单位压差条件下通过的流体体积越多,渗透率越高,岩石绝对 渗透率的大小是岩石的特性决定的,与流体性质无关。
三、储气库井的管理
• 2、生产管理
(1)井的分析
有关压力概念 原始地层压力:在气藏未开采前,从探井中测得的地层中部压力叫原始地 层压力,单位兆帕。 地层压力:指气井生产层的中部压力。 静压:关井待压力恢复平稳后,测得的井底压力称为静压。 流压:气井在生产时测得的井底压力称为流压。 生产压差:气井目前地层压力减去流动压力。 油压:流动压力把油气从井底经过油管举升到井口后的剩余压力 套压:流动压力把油气从井底,经过油、套管之间的环形空间举升到井口 后的剩余压力叫做套管压力。 静液面:油气井在关井后测得井内的稳定液面称为静液面。 动液面:在生产时测得油管和套管之间环形空间的液面。 含水率:油气井日产水量与日产液量之比,亦叫含水百分数。
气藏气井生产动态分析题改图
气藏气井生产静态分析题之欧侯瑞魂创作一、*井位于构造顶部,该气藏为底水烘托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/2〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m33/d(凝析水)为纯气藏.该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图.1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变动.4月22日9:00~11:00下井下压力计了解井筒压力梯度,变动情况见井下压力计原始记录.请结合该井的采气曲线和压力计原始记录:1、计算该井压力梯度;2、分析判气绝井采气参数变动的原因.**井井下压力计原始测压记录答:该井在生产过程中套压上升,而油压下降,产气量、产水量下降,氯根含量不变(1)4月28日井下压力计测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱.(2)下井下压力计在井深2950m处遇阻标明油管欠亨畅,气井生产参数变动的原因为油管下部节流所致.二、**井位于**气藏顶部,该气藏为砂岩孔隙性纯气藏,该井于1977年4月23日完井,井深1375.7m,油层套管7〞×1/2〞×1298.8米,衬管5〞××104m3×104m33×104m3/d.请依据该井1978~1990年的采气曲线特征划分生产阶段,并描述出该井各生产阶段的生产特征.答;根据该井采气曲线特征年夜致划分为四个生产阶段:(1)上升阶段(产层净化阶段):在此阶段,气井产量、井口压力、无阻流量随着井下渗滤条件的逐渐改善而逐步上升.(2)稳产阶段:产量基本上坚持不变,仅压力下降,在曲线上暗示生产量平稳而压力下降的生产过程.(3)递加阶段:随差开采,当气井能量缺乏以克服地层的流动阻力、井筒的阻力和空中设备的阻力时,产气量明显下降,递加速度快.(4)高压低产相对稳定阶段:产量、压力都很低,递加速度年夜年夜减慢,生产相对稳定,开采时间延续很长.三、×井位于*气藏的北翼2号断层附近,该气藏为碳酸盐岩孔隙———×104m33/d.该井于1975年8月20日投产,定产25×104m3/d,气井井口压力、气量、水量、氯根含量均较稳定,75年12月14日将产气量从23×104m3/d加至28×104m3/d,12月19日,气井生产参数发生突然变动(说见该井采气曲线图).请利用该井采气曲线图结合完井资料,(1)分析气井生产参数变动的原因.(2)划分气井生产阶段,并描述出各阶段的生产特征.答:该井位于构造北翼2号断层附近,钻井过程中放空0.12m,孔隙、裂缝发育,完井测试时,生产压差小,产气量年夜,是一口高渗高产气井.12月14日加气后,气井油压、产气量下降,产水量、氯根含量上升快,套、油管压差年夜,反映气井为断裂性水特征.因此,气井生产参数变动为气井产地层水所致,气井产地层水的原因是加年夜气量分歧理生产.根据该井的采气曲线特征,年夜致将该井划分为两个生产阶段:一是1975年8月20日—12月19日为无水采气阶段,主要特征为:气井生产套压、油压、气量、水量、氯根含量稳定,套、油压差小,产水量、氯根含量低.二是1975年12月19日—1976年1月15日.为带水生产阶段,其生产特征为:油压、气量下降快、稳定快,产水量、氯根含量上升快、稳定快,套油管压差年夜,垂管中流体阻力年夜.四、**井位于**气藏西南翼,该气藏为底水烘托的碳酸盐岩孔隙——裂缝性气藏.该井于1985年3月24日完井,井深2980.5米,油层套管7〞×2850.3米,油管21/2〞×2940.1米,衬管5〞××104m33/d(地层水).×104m33/d,气井井口压力、气量基本稳定.1989年4月17日开始,气井生产参数发生明显变动(采气曲线)4月30日10:00~12:00下井下压力计实测井筒井压力梯度了解井筒压力,变动情况见井下压力计测压原始记录.(1)根据该井井下压力计测压数据计算油管中流体压力梯度;(2)根据该井采气曲线和压力梯度分析气井生产参数变动的原因.**井井下压力计原始测压记录答:该井4月17日以后,生产数据中套压缓慢上升,油压、气量、水量下降,4月30日下井下压力计实测油管中流体压力梯度、井深2400m以下,压力梯度从0.141MPa/100升至0.5 MPa/100以上,反映该井井深2400以下的油管中有积液存在,说明该井在4月17日发生的变动主要原因是井筒(油管)积液所致.五、**井位于**气藏南翼,该气藏为底水烘托的碳酸盐裂缝—×104m33/d(凝析水、纯气井).1985年9月18日8:30开井生产,定产量24×104m33/d,氯根含量、产水产气及井口压力发生缓慢变动,7月中旬气井生产参数基本稳定,具有明显的水锥型出水的基本特征(详见该井采气曲线图).请利用采气曲线将该井3月2日~7月31日,划出三个出水阶段,并描述出各出水阶段的生产特征.答:该井采气曲线反映该井为水锥形出水气井,依据其特征年夜致分为1986年3月2日—4月10日为出水征兆阶段,此阶段特征为:氯根上升,气井产量、产水量、压力稳定.1986年4月10日—5月20日为出水显示阶段,其特征为:氯根含量、产水量均有上升,井口压力、产气量、产水量、氯根含量均有较年夜摆荡.1986年5月20—7月3日为气井出水阶段(或气井出水产能递加阶段),此阶段气井井口压力,产量下降,水量上升,套油压差增年夜,各生产参数于7月20日以后基本趋于稳定.六、**井位于构造长轴北段偏东翼,临近①号断层,产气层位:P132,岩性;石灰岩、钻井中在P132层曾放空0.5m,漏失泥浆70m3,岩芯分析,储层基质孔隙度φ×10-3um2.完井测试6小时,稳定0.5小时,P cf16.0MPa,q g:70×104m3/d,不产地层水.一点法计算绝对无阻流量200×104m3/d,井口最年夜关井压力31.0MPa,原始地层压力:43.0MPa.该井为一单裂缝系统,含气面积及气水关系不清楚.投产后先定产30×104m3/d生产两个月,之后定井口压力生产1个月,然后关井复压3个月,井口最高关井压力23.0MPa,尚未稳定,其生产及关井静态特征如图所示.请根据气井静、静态资料分析判断:(1)气井生产及关井静态特性;(2)储集层类型;(3)单井控制储量年夜小.Pw sLgt**井第一次关井压力恢复曲线答:(1)气井生产特征为初始产量、压力高、生产压差小,但稳定性差,压力、产量递加速度快,压力恢复速度也较慢.定产30×104m3/d生产阶段,井口套压由30 MPa下降到20MPa,下降10MPa,平均降6MPa,压力月递加为16.7%.定井口油压18MPa生产阶段,井口产量由30下降至10×104m3/d,月降20×104m3/d,产量月递加率平均高达66.7%.关井压力恢复速度很慢,关井3个月尚未稳定,最高关井压力为23.0MPa,较投产前井口最年夜关井压力31.0MPa低8.0MPa.(2)储层岩芯分析基质中和K均很低,不具备储渗条件,但该井孔洞,裂缝十分发育,暗示在:气井位于断层附近,钻井中有放空和年夜量井漏现象,测试产量高、无阻流量年夜(一点法)压力恢复曲线初始段平缓,综合分析认为,该井储层属裂缝~洞窟型.(3)气井压力恢复曲线呈凹型,生产中压力、产量递加有规律,不产地层水,储集层为裂缝隙——洞窟型,分析气井压力,产量不稳定,不是地层水推进或泥浆污堵影响,而是该井裂缝系统控制储量较小的反映.七、根据下述资料和图件分析*井压裂酸化工作是否有效果(1)生产参数及试井分析A、B值参数时间套压(MPa)油压(MPa)产气量(104m3/d)产水量(m3/d)试井分析摩擦阻力系数A惯性阻力系数B酸化前26 20酸化后26 25(2)酸化施工综合曲线图(3)压力恢复试井曲线图答:1、酸化施工综合曲线上明显可见,t1时刻泵压开始突降,排量和吸指同时上升,反映地层有压开的显示.到t2时刻后泵压、排量和吸指趋于相对稳定,地层吸收指数较高,反映井底附近梗塞已基本解除,地层渗透性能获得改善.2、酸化后压力恢复曲线直线段斜率明显比酸化前变小且试井分析A、B值都年夜年夜下降,都反映井底附近和稍远地带地层渗透性变好,流动阻力减小.3、生产参数比较,在井口套压相同条件下,酸化后日产气量较酸化前增加8.2万方,增幅2.5倍.综上所述,本次压裂酸化增产效果明显,近井地带产层污堵被解除,地层渗透性能获得较年夜改善.八、*井产层为TC41~TC33岩性为白云岩、灰岩,孔隙——裂缝储层,钻井中曾在产层段漏失泥浆53m3,完井后,中型解堵酸化一次(40m3×104m3/d,稳定1:00.该井投产即进行稳定试井1次,随后定产30~35×104m3/d,生产半年后关井复压稳定后,又进行第二次稳定试井,两次测试产量相同,由小到年夜进行测试,两次测试资料整理作二项式指示曲线(如图所示),请根据上述资料和图件分析该井投产半年后,井下渗透条件有何变动?答:该井完钻试测和第1次稳定试井均暗示出测点稳定水平差的现象,这是钻井和酸化进入产层的泥浆和残酸液末排完,生产中聚集井和进入井筒干扰所致.经过半年的年夜产量(30~35×104m3/d)生产,分析井底附近和井筒中泥浆和残酸已基本排出到空中.第二次稳定试井二项式指示曲线明显落在第一次,且各测点线性关系好,指示线斜率变小,这是产层获得净化渗透条件变好的反映.九、*井为一纯气井,产层C2,岩性白云岩,裂缝——孔隙性储层,该井投产后以10×104m3/d,试生产压力、气量、水量均较稳定,生产三个月后进行了第一次关井复压,并作关井压力恢复试井和试定试井各一次,获取测压功效如下:请根据上述资料分析气井类型(产量和产层渗透性)目前地层压力:P R二项式产气方程:P R2—P Wf22答:该井为裂缝—孔隙性储层,压力恢复速度快,经1小时即基本到达稳定曲线形状为“厂”×104m3/d属高产气井,因此该气井可定为同产高渗型气井.一十、由图回答下列问题1)、该气藏的类型是什么?2)、投产早期哪口井产量低?为什么?3)、哪口井产量下降快?为什么?4)、在气田开采中对这两口井应采用什么办法?答:1)、由图1、图2知该井为边水断层封闭单斜气藏.2)、由图3知投产早期1号井因污染严重,比2号井产量低.3)、由于2号井离气水鸿沟近,投产后是水早产量下降快.4)、由于1号井井下污染严重,所以应进行气层改造,解除井底附近污染,提高气层渗透性.对2号井应控制一定压差生产,防止气井过早见水及水淹.一十一、根据下列曲线说明气井产量下降原因及应采用的办法?气藏的驱动类型?答:1、指示曲线标明,由于截距和斜率都变年夜,说明气井产量下降的原因可能是井底污染严重水平增加及气体在地层中的渗透率下降所致.2、两条流入静态曲线的起点压力值一样,说明地层压力没下降应该是水压驱动.一十二、**集气站管理A、B 、C 、D、E等生产气井,5口气井均在进站保温后二次节流降压,然后分离、计量、集中计量(总计量),化工厂用气,化工厂装置有一台总计量装置,作为对口计量.1991年8月27日12:30当班职工发现气井各井流量计静差压发生突然变动,输气压力从 2.5MPa下降到 2.3MPa,同时通过德律风询问化工厂的用气情况,并将那时收集的资料数据列于下表,请根据表中的数据,分析变动原因,并提出处置意见.答:根据表中的数据反映,说明集气站至化工厂的输气管线破裂漏气.依据是:A 、B 、C 、D 、E 等5口气井的流量计静压下降2格,差压上升5格,供气量有些上升,总计量的气量同样上升,而化工厂的对口计量静、差后格数反而下降,用户接收到的气量减少、静压下降,标明压力下降,说明集气站至化工厂之间的输气管线有破裂漏气.处置:(1)关井或放空;(2)关输气阀截气绝源,停止供气;(3)通知用户,说明停气原因;(4)补焊输气管线.13、*气藏为碳酸盐岩裂缝—孔隙性气藏,产层埋藏深度为4100~4150m,1987年先后钻获A 、B 、C 、D 、E 等5口气井,为摸清该气藏压力系统、井间关系,1988年6月1日00:00,A 、B 、C 井同时开井试生产,进行井间干扰试验,(6月9日24:00关井恢复压力),邻近的D 、E 井作观察井观察压力变动,6月14日00:00试验结束,现将这次试验资料数据列于下表,请根据表中的试验资料数据,分析该气藏有几个压力系统.注表中6月1日0:00关井的压力数据均为原始关井压力.答:该气藏可以划分为4个压力系统:A井、B井与其它气井,投产前的原始关井压力分歧,属于分歧的压力系统,C井、D井、E井投产前的原始关井压力一致,均为26.0MPa在井间干扰试验中,仅D井受C井开、关井干扰影响,属于同一压力系统,E井不受C井的开关井影响,属于自力压力系统,因此该气藏的5口气井中有四个压力系统,即;A井、B井、C井、E井等四个压力系统.一十四、*集气站管理A、B、C、D、E等5口生产气井,5口气井均在进站保温后二次节流降压,然后分离、计量,集中计量后,供一家钢厂用气,钢厂在进厂时装置有一台总计量作为与集气站的对口计量装置,输气管线的工作压力为4.5MPa.1991年1月23日2:30,值班职工发现A、B、C、D、E等各井流量计静、差压突然变动,输气压力从2.5上升到3.0MPa,马上通过德律风在询问钢厂的用气情况,现将那时收集到的资料数据列于下表,请根据表中的数据分析变动原因,并提出处置意见.答:根据表中数据反映;集气站至钢厂的输气管有局部静、差压下降,标明钢厂接收到的气量减少,静压下降,反映压力下降.集气站A、B、C、D、E井的静压上升6格左右,差压下降10格左右,标明各井的产气量有所减少,总计量所记气量同样反映为下降,输气压力反而从2.5MPa上升到8.0MPa,说明集气站至钢厂之间的输气管线有局部梗塞,或钢厂压低用气量.处置:输气管线工作压力为4.5MPa,目前实际压力为3.0MPa,可一方面观察输气压力变动,一方面分析管线堵原因,根据梗塞原因采用解堵办法解堵.与钢厂联系,若为钢厂压低用气量,则集气站相应压低供气量.一十五、**集气站管理A、B、C、D、E等5口生产气井,5口气井均在站外,采纳集气支线输至集气站保温,节流降压、分离、计量,然后通过汇管集中计量后输送至用户.该集气站的所有气井均在进站保温后采纳针型阀进行二次节流降压,所使用的流量计均为双波纹管差压流量计.1991年9月15日13:15,值班工人发现A井流量计差压格子数从72格下降至0格以内,立即检查站内其它气井,同样有所变动,现将该集气站13:15前后资料变动情况列于下表,请你根据此表中数据分析变动原因,并提出处置意见.答:该井集气站的资料变动反映:A井井口至集气站的集支线已断裂脱落.依据是:1、总计量流量计静、差压下降,标明集气站接收到的气量减少,而B、C、D、E等4口井计量静压下降未几,差压上升均在10格以上,标明此4口井的气量均有所增加,说明此4口井集气支线工作正常,A井静、差压均下降,而且差压下降到0格以内,进站压力从4.2下降至0.4MPa,而输气压是2.4MPa严重低于汇管压力,标明是A井从井口至集气站的集气支线已断裂脱落,发生倒输所致.处置:1、关进站针型阀,关井口生产控制阀切气绝源;2、组织补焊输气管线,及时开井生产.一十六、**井位于**气藏北翼某集气站内,1987年4月21日完井后,于4月23日8:30开井试生产,开井前,该井关井套压18.45MPa,油压17.52MPa,试生产情况如下表所示,请根据表中生产数据分析该井生产参数变动的原因.答:该井完井后未进行放喷测试就进行试生产,有年夜量的钻井液集中于井筒内,产层中油压比套压低1.07MPa,在试生产过程中,生产压差较年夜,井内、产层中的钻井液被带出,日产水量逐渐减少,产层随之获得净化,产层阻力损失随之减少,气井的套压、油压、气量逐渐上升,因此该井生产参数变动的原因是产层净化所致.一十七、**气藏为碳酸盐岩孔隙——裂缝性气藏,1987年8月1日0点A、B两口相邻的气井同时开井试生产,8月4日24:00试生产结束,关井恢复压力,请根据此次试生产资料、数据分析A、B两气井产层渗透性好怀,并提出气井增产办法,现将A、B两井试生产资料数据列于下表:井号7月31日24:008月1日24:008月2日24:008月3日24:008月4日24:008月5日24:008月6日24:008月7日24:008月8日24:00A井套压(MPa)油压(MPa)产气(104m3)B井套压(MPa)油压(MPa)产气(104m3)答:两气井投产前关井压力基秘闻似,其中A井试生产时,井口压力低、生产压差年夜、产气量小、井口压力、产气量下降快.关井时压力恢复缓,试井产层渗透性差,产层渗滤阻力损失年夜,属低产气井,该气藏产层岩性为碳酸盐岩,该井与渗透性好的B井相邻,建议采纳盐酸进行压裂酸化,改善产层渗透性.B井在试生产时,井口生产压力高,生产压差小,产气量年夜,开关井压力、产气量稳定快,动把持后24小时压力已稳定,表时该井产层渗透性好,属于高渗高产气井,可以不进行酸化.一十八、**集气站管理A、B、C、D等4口生产气井,4口生产井均在进站处采纳集气支线输至站内保温、节流、降压、分离计量,然后集中计量后输至用户.4口气井未产凝析水,井口压力较高,采纳在进站保温后二次节流降压.1991年1月20日4:00值班职工巡回检查时发现A井流量计差压从72格缓慢下降至10格,其它三口井差压均上升5格左右,总计量差压下降,所有流量计静压均有所下降,然后检查压力资料,现将检查所获资料数据列于下表,请根据下列表中数据分析该站变动的原因,并提出处置办法.答:该井站资料数据反映:A井进站节流阀有堵,依据是:(1)A 井流量计差压从72格下降到10格,气井产量减少85%左右,其余三井差压上升,总计量差压下降,静压均有所下降,标明输气管线工作正常.(2)A井进站压力从6.4MPa上升到8.4MPa,流量计静压略有下降,分离器压力未变,说明计量装置、分离器工作正常,堵点应在进站节流阀处.处置办法:分析梗塞原因,解除梗塞.检查保温设备,加强保温,防止节流阀处形成水合物梗塞.一十九、**井井位于**气藏西南翼低渗带,该气藏为底水烘托的碳酸盐岩孔隙—裂隙性弱弹性水驱气藏.该井于1978年10月25日完井,井深2985.3m,油层套压7〞×2850.4m,衬管5〞×2810.2-2984.8m,油管21/2〞××104×104m33×104m33×104m3/d,产水11m3/d,输压1.8Mpa,8月11日下φ34×1100mm的通井规通井至井深2920m未遇阻.注:该井附近无高压气源,无高压用气单元和增压机组.请回答:1、气井近期生产变动原因? 2、气井出水类型?3、井筒有无积液?4、应采用何种办法?↗6.0Mpa,反映了井筒积液十分严重,急需进行排水采气,考虑到:1、该井附近无高压气源和高压用气单元.2、该井渗透差,产水量小.3、井下套、油压联通情况良好.4、泡沫排水工艺施工方便,则有效等因素,建议该井采纳液体发泡剂进行泡沫排水采气.二十、**井位于**构造北翼,该气藏为碳酸盐岩孔隙-裂缝性含硫气藏,该井于1967年2月4日完井,井深3028.3m,油层套管7〞×2898.4m,水泥返至空中,试压27Mpa 30min27Mpa,井身结构良好,油管21/2〞××104m33/d(纯气井).×104m33/d,气井生产参数十分稳定,4月2日12:00井站职工巡回检查发现,套压从21.3Mpa下降到21.2Mpa,油压从20.2Mpa上升到20.9Mpa,产气量略有上升,但不明显,产水量无明显变动.当班职工立即检查压力表考克,更换压力表,未发现异常情况,尔后该井的套压、油压差基本坚持在0.1Mpa左右生产,根据该井的压力变动,分折该井井口压力变动的原因?答:该井固井质量较好,套管窜气的可能性不年夜,而套压下降,油压上升反映了井内油管中途断落,断口下部套、油环空的静气柱从油管断口窜入油管,流至井口酿成动气柱,使垂直流动阻力减小.该井油管断落之前,套、油压差为1.1Mpa,断落后反为0.1Mpa,标明油管在井口附近断落,加之该气藏为含硫气藏,硫化氢对钢材具有一定的腐蚀性,因此该井口压力变动的原因是井下油管在井口附近处断落所致.二十一、某井产层为TC41~TC33,碳酸盐岩裂缝—孔隙储层,钻井中曾在产层段漏失泥浆53m3.原始地层压力36MPa.气藏探明储量36×108m3.该井2003年6月投产即进行稳定试井1次,随后生产.生产半年后(Gp:1×108m3)关井复压稳定后,又进行第二次稳定试井,两次测试产量相同,由小到年夜进行测试,两次测试资料如下表.(不考虑Z值变动)序号测试产量(104m3)稳定中深压力(2003年6月)(MPa)稳定中深压力(2004年1月)(MPa)1 102 20 333 304 40 22281、作出两次稳定试井的指示曲线(ΔP2/q g-q g)2、分析产层渗透条件有何变动分析答:该井第1次稳定试井均暗示出测点稳定水平差的现象,这是钻井和酸化进入产层的泥浆和残酸液末排完,生产中聚集井和进入井筒干扰所致.经过半年的生产,分析井底附近和井筒中泥浆和残酸已基本排出到空中.第二次稳定试井二项式指示曲线明显落在第一次,且各测点线性关系好,指示线斜率变小,这是产层获得净化渗透条件变好的反映.。
裂缝—孔隙型气藏气井产量变化特征分析
0 引言
四川盆地裂缝一孑 隙型气藏为数众多 , L 其产量 在 四川 盆 地 天 然 气 总 产 量 中 所 占 比例 较 大 。裂
缝一孑 隙型 气藏 具 有不 同于 均质 地 层 的特 殊渗 流 L 机理 , 气藏 中裂缝 系统作为渗 流 的 主要通 道 向井筒
图3 反映了不 同窜流系数 ( )对产量变化特 A
得拉 氏空 间渗流方 程 为 :
I +
1
= 耐
:
l r r ㈤ < 佃 D (
\ c 1n J
供气 , 基质系统作为补给源向裂缝窜流 , 因此其生 产过程中气井产量变化特征具有特殊性。投产早 期气井产能主要受裂缝发育程度影响, 往往产量相 对较高 ; 能否长时间以较高产量稳产 , 取决于基质 孔 隙的储渗性能及 其 与裂 缝 的搭配 关 系 。因此 , 有 必要通过理论分析进一步深人揭示裂缝一孔隙地
的影响。在基 质 系统补 给能力 相同 ( 窜流系数不 变) 的情况下 , 储容比越大 ( 裂缝系统孔隙体积所 占
比例越大) 生产初期 的产能越大 , 但早期产量递减 速度也相对更快 ; 晚期靠基质补给 , 同储容比地层 不 气井稳产水平基本 相 同。储容 比超过一定临界值 后, 将表现出纯裂缝性气藏动态特征。
时 对 的Ⅱ f 的 。 刻 应 值 ,
D J D : 1 r
根据式( ) 当 P 1 , 为标准大气压时 , 计算 出的
等I值以来析井 阻量变特 , 可用分气无流 的化 D :
征。
2 产量随时间变化特征分析
分析计算得到的气井产量变化曲线基本形态如 图1 。可以看出 , 产量变化大致分为 3 个阶段 : 早期 段产量较高但下降迅速 , 此阶段产量主要靠裂缝系
气藏动态分析
开发动态分析的方法
数值模拟方法
利用数值计算软件建立气藏模型,通过模拟气藏开发过程中压力、产量等参数的变化, 预测气藏未来的动态趋势。
统计分析方法
对气藏的实际生产数据进行分析,提取有用的信息,如气井的生产曲线、气藏的压力分 布等,为气藏的开发和管理提供决策依据。
气藏动态分析的重要性
提高气藏开发效果
通过气藏动态分析,可以了解气 藏的动态特征和变化规律,优化 开发方案,提高气藏的开发效果 和采收率。
降低开发风险
气藏动态分析可以预测气藏的未 来变化,及时发现和解决潜在问 题,降低开发风险。
提高经济效益
通过气藏动态分析,可以优化气 藏的开发策略,降低开发成本, 提高经济效益。
目的
气藏动态分析的目的是了解和预测气 藏的动态行为,包括气藏的产量、压 力、温度等参数的变化,以及这些变 化对气藏开发效果和经济效益的影响。
背景
随着全球能源需求的不断增长,天然 气作为一种清洁、高效的能源,其开 发和利用越来越受到重视。气藏动态 分析是实现天然气高效、经济、安全 开发的关键手段之一。
气藏生产动态分析是通过监测气藏生 产过程中的压力、温度、产量等参数, 分析气藏的动态变化规律,为气藏的 优化开发和生产管理提供依据。
气藏生产动态分析的原理基于流体力 学、热力学和传热传质学等基础理论, 通过建立数学模型,对气藏生产数据 进行处理和分析,揭示气藏的动态变 化规律。
生产动态分析的方法
数值模拟
对未来研究的建议
进一步研究气藏动态分析的新理论、新 方法和新技术,提高分析的精度和可靠 性。
油气井生产动态分析_图文
施意见。
第一节 生产动态分析的内容
5、油田生产能力变化分析
分析采油指数、采液指数变化及其变化原因; 分析油井利用率、生产时率变化及其对油田生产能力的影
响; 分析(自然或综合)递减率变化及其对油田生产能力的影
响; 分析油田增产措施效果变化及其对油田生产能力的影响; 分析新投产区块及调整区块效果变化及其对油田生产能力
三、油田产量递减分类
五、递减规律的应用
表2 生产数据和计算数据
等时试井要求每一个气嘴开井生产的时间相等。在开井之前,把压 力计下入井底,首先测量气井的静压数据,一般为原始地层压力( pi=pe)。
等时试井的测试程序为:第一步,让气井以较小的气嘴生产一定时 间(未稳定),然后关井让井底压力恢复到原始状态;第二步,把 气井换成较大的气嘴继续生产,生产时间与第一个气嘴相同,然后 关井让井底压力恢复到原始状态;如此进行3~4步;由于流量是逐步 增大的,因此每个流量的关井恢复时间也是逐步加长的;最后把气 井换成一个适中的气嘴继续生产,直至井底压力稳定为止;最后一 个流量被称做延时流量,延时流量的测试时间最长。
根据测点数据,很容易确定出方程(7)的产能曲线常数c1和产能曲线 指数n。由于前4组测点并没有稳定,因此,方程(7)并不是气井的真 正的产能方程。
然后,把由前4组测点数据得到的产能曲线平移到第5个测点(图4-14 ),将得到气井的稳定产能曲线。由于两直线的斜率不发生变化,只 是截距发生了变化,因此很容易由第5个测点数据确定出产能方程的截 距c。将c和n代回到式(5),即得到气井的指数式产能方程。由产能 方程,可以计算出计算出气井的绝对无阻流量。
然后,把由前4组测点数据得到的产能曲线平移到第5个测点 (图4-17),将得到气井的稳定产能曲线。由于两直线的斜 率不发生变化,只是截距发生了变化,因此很容易由第5个 测点数据确定出产能方程的截距c。将c和n代回到式(5), 即得到气井的指数式产能方程。由产能方程可以计算出计算 出气井的绝对无阻流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气藏气井生产动态分析题欧阳光明(2021.03.07)一、*井位于构造顶部,该气藏为底水衬托的碳酸盐岩裂缝—孔隙性气藏,该井于1984年4月28日完井,井深3058.4米,油层套管7〞×2890.3米,油管21/2〞×3023.3米,井段2880.6~2910.2米为浅灰色白云岩,2910.2~2943.5米为页岩,2943.5~3058.4米为深灰色白云岩,井底距离原始气水界面为107.2米,完井测试时,套压15.31MPa,油压14.98MPa,产气38×104m3/d,产水 2.1m3/d (凝析水)为纯气藏。
该井于1986年2月23日10:30开井投产,定产量25×104m3/d,实际生产情况见采气曲线图。
1986年4月3日开始,气井生产套压缓慢上升,油压、气量、水量下降,氯根含量无明显变化。
4月22日9:00~11:00下井下压力计了解井筒压力梯度,变化情况见井下压力计原始记录。
请结合该井的采气曲线和压力计原始记录:1、计算该井压力梯度;2、分析判断气井采气参数变化的原因。
**井井下压力计原始测压记录答:该井在生产过程中套压上升,而油压下降,产气量、产水量下降,氯根含量不变(1)4月28日井下压力计测井筒压力梯度为0.070Mpa/100m左右,井筒基本为纯气柱。
(2)下井下压力计在井深2950m处遇阻表明油管不通畅,气井生产参数变化的原因为油管下部节流所致。
二、**井位于**气藏顶部,该气藏为砂岩孔隙性纯气藏,该井于1977年4月23日完井,井深1375.7m,油层套管7〞×1203.4米油管21/2〞×1298.8米,衬管5〞×1195.2~1324.9米,完井测试套压9.23MPa,油压8.83MPa,产气量19.4×104m3/d,产水微。
1978年2月3日10:00开井投产,投产初期套压8.82MPa,油压8.54MPa,产气21.2×104m3/d,产水0.4m3/d。
1990年12月,套压3.82MPa,产气4.3×104m3/d。
请依据该井1978~1990年的采气曲线特征划分生产阶段,并描述出该井各生产阶段的生产特征。
答;根据该井采气曲线特征大致划分为四个生产阶段:(1)上升阶段(产层净化阶段):在此阶段,气井产量、井口压力、无阻流量随着井下渗滤条件的逐渐改善而逐步上升。
(2)稳产阶段:产量基本上保持不变,仅压力下降,在曲线上表现出产量平稳而压力下降的生产过程。
(3)递减阶段:随差开采,当气井能量不足以克服地层的流动阻力、井筒的阻力和地面设备的阻力时,产气量明显下降,递减速度快。
(4)低压低产相对稳定阶段:产量、压力都很低,递减速度大大减慢,生产相对稳定,开采时间延续很长。
三、×井位于*气藏的北翼2号断层附近,该气藏为碳酸盐岩孔隙——裂缝性边水气藏。
该井于1974年7月23日完井,钻井过程中,钻井至井深2985.3—2985.42m,放空0.12m,完井测试时,地层压力29.15Mpa,井底流动压力28.13Mpa,套压22.5Mpa,油压21.8Mpa,产气30.5×104m3/d,产水1.8m3/d。
该井于1975年8月20日投产,定产25×104m3/d,气井井口压力、气量、水量、氯根含量均较稳定,75年12月14日将产气量从23×104m3/d加至28×104m3/d,12月19日,气井生产参数发生突然变化(说见该井采气曲线图)。
请利用该井采气曲线图结合完井资料,(1)分析气井生产参数变化的原因。
(2)划分气井生产阶段,并描述出各阶段的生产特征。
答:该井位于构造北翼2号断层附近,钻井过程中放空0.12m,孔隙、裂缝发育,完井测试时,生产压差小,产气量大,是一口高渗高产气井。
12月14日加气后,气井油压、产气量下降,产水量、氯根含量上升快,套、油管压差大,反映气井为断裂性水特征。
因此,气井生产参数变化为气井产地层水所致,气井产地层水的原因是加大气量不合理生产。
根据该井的采气曲线特征,大致将该井划分为两个生产阶段:一是1975年8月20日—12月19日为无水采气阶段,主要特征为:气井生产套压、油压、气量、水量、氯根含量稳定,套、油压差小,产水量、氯根含量低。
二是1975年12月19日—1976年1月15日。
为带水生产阶段,其生产特征为:油压、气量下降快、稳定快,产水量、氯根含量上升快、稳定快,套油管压差大,垂管中流体阻力大。
四、**井位于**气藏西南翼,该气藏为底水衬托的碳酸盐岩孔隙——裂缝性气藏。
该井于1985年3月24日完井,井深2980.5米,油层套管7〞×2850.3米,油管21/2〞×2940.1米,衬管5〞×2830.2~2980.1米,井底距离原始气水界面-6.32m,完井测试套压18.0MPa,油压17.0MPa,产气量6.5×104m3/d,产水量17.0m3/d (地层水)。
该井于1986年3月28日10:00开井投产,投产初期套压18.51MPa,油压17.20MPa,产气量 5.6×104m3/d,产水量16.3m3/d,气井井口压力、气量基本稳定。
1989年4月17日开始,气井生产参数发生明显变化(采气曲线)4月30日10:00~12:00下井下压力计实测井筒井压力梯度了解井筒压力,变化情况见井下压力计测压原始记录。
(1)根据该井井下压力计测压数据计算油管中流体压力梯度;(2)根据该井采气曲线和压力梯度分析气井生产参数变化的原因。
**井井下压力计原始测压记录答:该井4月17日以后,生产数据中套压缓慢上升,油压、气量、水量下降,4月30日下井下压力计实测油管中流体压力梯度、井深2400m以下,压力梯度从0.141MPa/100升至0.5 MPa/100以上,反映该井井深2400以下的油管中有积液存在,说明该井在4月17日发生的变化主要原因是井筒(油管)积液所致。
五、**井位于**气藏南翼,该气藏为底水衬托的碳酸盐裂缝—孔隙气藏。
该井于1983年6月17日完钻,井深2935.6m,井底距原始气水界面为27.6m,井身结构良好未进行酸化增产措施,完井测试套压19.51MPa,油压19.20MPa,产气24.0×104m3/d,产水0.8m3/d(凝析水、纯气井)。
1985年9月18日8:30开井生产,定产量24×104m3/d,产水1.0m3/d,氯根含量、产水产气及井口压力发生缓慢变化,7月中旬气井生产参数基本稳定,具有明显的水锥型出水的基本特征(详见该井采气曲线图)。
请利用采气曲线将该井3月2日~7月31日,划出三个出水阶段,并描述出各出水阶段的生产特征。
答:该井采气曲线反映该井为水锥形出水气井,依据其特征大致分为1986年3月2日—4月10日为出水征兆阶段,此阶段特征为:氯根上升,气井产量、产水量、压力稳定。
1986年4月10日—5月20日为出水显示阶段,其特征为:氯根含量、产水量均有上升,井口压力、产气量、产水量、氯根含量均有较大波动。
1986年5月20—7月3日为气井出水阶段(或气井出水产能递减阶段),此阶段气井井口压力,产量下降,水量上升,套油压差增大,各生产参数于7月20日以后基本趋于稳定。
六、**井位于构造长轴北段偏东翼,临近①号断层,产气层位:P132,岩性;石灰岩、钻井中在P132层曾放空0.5m,漏失泥浆70m3,岩芯分析,储层基质孔隙度φ<2%,渗透率K<0.01×10-3um2。
完井测试6小时,稳定0.5小时,Pcf16.0MPa,qg:70×104m3/d,不产地层水。
一点法计算绝对无阻流量200×104m3/d,井口最大关井压力31.0MPa,原始地层压力:43.0MPa。
该井为一单裂缝系统,含气面积及气水关系不清楚。
投产后先定产30×104m3/d生产两个月,之后定井口压力生产1个月,然后关井复压3个月,井口最高关井压力23.0MPa,尚未稳定,其生产及关井动态特征如图所示。
请根据气井静、动态资料分析判断:(1)气井生产及关井动态特性;(2)储集层类型;(3)单井控制储量大小。
**井第一次关井压力恢复曲线答:(1)气井生产特征为初始产量、压力高、生产压差小,但稳定性差,压力、产量递减速度快,压力恢复速度也较慢。
定产30×104m3/d生产阶段,井口套压由30 MPa下降到20MPa,下降10MPa,平均降6MPa,压力月递减为16.7%。
定井口油压18MPa生产阶段,井口产量由30下降至10×104m3/d,月降20×104m3/d,产量月递减率平均高达66.7%。
关井压力恢复速度很慢,关井3个月尚未稳定,最高关井压力为23.0MPa,较投产前井口最大关井压力31.0MPa低8.0MPa。
(2)储层岩芯分析基质中和K均很低,不具备储渗条件,但该井孔洞,裂缝十分发育,表现在:气井位于断层附近,钻井中有放空和大量井漏现象,测试产量高、无阻流量大(一点法)压力恢复曲线初始段平缓,综合分析认为,该井储层属裂缝~洞穴型。
(3)气井压力恢复曲线呈凹型,生产中压力、产量递减有规律,不产地层水,储集层为裂缝隙——洞穴型,分析气井压力,产量不稳定,不是地层水推进或泥浆污堵影响,而是该井裂缝系统控制储量较小的反映。
七、根据下述资料和图件分析*井压裂酸化工作是否有效果(1)生产参数及试井分析A、B值(2)酸化施工综合曲线图(3)压力恢复试井曲线图答:1、酸化施工综合曲线上明显可见,t1时刻泵压开始突降,排量和吸指同时上升,反映地层有压开的显示。
到t2时刻后泵压、排量和吸指趋于相对稳定,地层吸收指数较高,反映井底附近堵塞已基本解除,地层渗透性能得到改善。
2、酸化后压力恢复曲线直线段斜率明显比酸化前变小且试井分析A、B值都大大下降,都反映井底附近和稍远地带地层渗透性变好,流动阻力减小。
3、生产参数对比,在井口套压相同条件下,酸化后日产气量较酸化前增加8.2万方,增幅2.5倍。
综上所述,本次压裂酸化增产效果明显,近井地带产层污堵被解除,地层渗透性能得到较大改善。
八、*井产层为TC41~TC33岩性为白云岩、灰岩,孔隙——裂缝储层,钻井中曾在产层段漏失泥浆53m3,完井后,中型解堵酸化一次(40m3盐酸)测试井口产量35.0×104m3/d,稳定1:00。
该井投产即进行稳定试井1次,随后定产30~35×104m3/d,生产半年后关井复压稳定后,又进行第二次稳定试井,两次测试产量相同,由小到大进行测试,两次测试资料整理作二项式指示曲线(如图所示),请根据上述资料和图件分析该井投产半年后,井下渗透条件有何变化?答:该井完钻试测和第1次稳定试井均表现出测点稳定程度差的现象,这是钻井和酸化进入产层的泥浆和残酸液末排完,生产中聚集井和进入井筒干扰所致。