北师大版七年级数学上册期末模拟卷及答案(优质)
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-12.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个3.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1114.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .45.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20136.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3617.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形8.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .9.计算22221111 (11223320152015)++++++++的结果为( ) A .1 B .20142015C .20152016D .2016201510.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3211.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab < 12.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -13.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损14.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .415.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .816.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2217.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9418.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49 B .40C .16D .919.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+20.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( )A .52019-1 B .52020-1C .2020514-D .2019514-21.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2-B .8±或2±C .8- 或2D .8或222.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米23.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+24.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1525.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .626.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=27.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①②B .②③C .①④D .③④28.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >0【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=- 故选D . 【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.2.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.3.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数. 【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.4.C解析:C【解析】 【分析】根据题意,由n =x +y +xy ,可得n +1=x +y +xy +1,所以n +1=(x +1)(y +1),因此如果n +1是合数,则n 是“好数”,据此判断即可. 【详解】 根据分析, ∵8=2+2+2×2, ∴8是好数; ∵9=1+4+1×4, ∴9是好数;∵10+1=11,11是一个质数, ∴10不是好数; ∵11=2+3+2×3, ∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11. 故选C . 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.5.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.7.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.8.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.9.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=1111111 12233420152016 -+-+-++-=1 12016 -=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.10.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.11.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.12.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.13.C解析:C【解析】试题分析:设第一件衣服的进价为x元,依题意得:x(1+25%)=90,解得:x=72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y元,依题意得:y(1﹣25%)=90,解得:y=120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C.点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.14.B解析:B【解析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.15.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.D解析:D【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx 2-2x+8-(3x 2-nx )的值与x 无关,∴2m-3=0,-2+n=0,解得:m=32,n=2, 故m n =(32)2= 94. 故选D .【点睛】此题主要考查了合并同类项,去括号,正确得出m ,n 的值是解题关键. 18.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m 2﹣mn-mn+ n 2=28-12,即 m 2﹣2mn+n 2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..19.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.20.C解析:C【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.21.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.22.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A 、B 两地的距离=2×18=36(km ),故选:D .【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.23.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.24.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n =1,n =2和n =3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n =1时,游戏结束需要移动的最少次数为1;当盘子数量n =2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n =3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n =2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n =2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11, 故选B .【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.25.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48, 即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B .考点:频数(率)分布直方图.26.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.27.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.28.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条.故选:A.【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.。
(完整版)北师大版七年级数学上册期末模拟试卷及答案
(完整版)北师大版七年级数学上册期末模拟试卷及答案一、选择题1.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .2402.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >03.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米C .32千米D .36千米4.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数5.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-6.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >07.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >08.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损9.下列方程为一元一次方程的是( )A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 10. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm11.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .201312.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+1二、填空题13.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.14.a 、b 、c 、d 为互不相等的有理数,且2c =,1a c b c d b -=-=-=,则2a d -=__________.15.若关于x 的方程()||1 13n n x -+=是一元一次方程,则n 的值是_________.16.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.17.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n 个正方形(实线)四条边上的整点个数共有_________个.18.观察表一寻找规律,表二、表三分别是从表一中截取的一部分,则a =_____,b =____.19.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________20.如图所示,甲、乙两人沿着边长为10m 的正方形,按A→B→C→D→A…的方向行走,甲从A 点以5m/分钟的速度,乙从B 点以8m/分钟的速度行走,两人同时出发,当甲、乙第20次相遇时,它们在_______边上。
北师大版七年级上册数学期末模拟试卷(含答案)
北师大版七年级上册数学期末模拟试卷(含答案)一、选择题1.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数2.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个4.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10095.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20136.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3617.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式8.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形9. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm10.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3211.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <12.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><13.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .814.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+16.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个 17.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°18.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .25319.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+20.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >021.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .424.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7025.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快26.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a27.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量28.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-29.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .13C .25cmD .30cm30.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .94【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案. 【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数; 故选:D . 【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2,5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.4.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.5.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.7.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A)0是单项式,故A错误;(B)πx3的系数为,故B错误;(D)3x+6y-5是多项式,故D错误;故选C.【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.8.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.9.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.10.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.11.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.12.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.13.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.16.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.18.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b )21的展开式中第三项的系数.【详解】解:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b )21第三项系数为1+2+3+…+19+20=210;故选:B .【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.19.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.20.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.本题考查了等式的性质,熟记等式的性质是解题的关键.23.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x =1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y =4,故选D .【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.24.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.25.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项.解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 26.A解析:A【解析】【分析】根据周长的计算公式,列式子计算解答.【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-,∵ 四边形ABCD 是长方形,∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-,同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -,∴C 1 -C 2=0.故选A .【点睛】本题考查周长的计算,“数形结合”是关键.27.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .28.D解析:D【解析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】 解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.29.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm ,底面直径等于30πcm , ∴底面周长=3030ππ⋅=cm ,∴BC =20cm ,AC =12×30=15(cm ), ∴AB 2222201525AC BC +=+=(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.30.D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.。
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有()A.3 B.4 C.5 D.62.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是()A.①②B.②③C.①④D.③④3.方程114xx--=-去分母正确的是().A.x-1-x=-1 B.4x-1-x=-4 C.4x-1+x=-4 D.4x-1+x=-1 4.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a﹣b>0 B.a+b>0 C.ba>0 D.ab>05.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.66.在数轴上,a,b所表示的数如图所示,下列结论正确的是()A.a+b>0 B.|b|<|a| C.a﹣b>0 D.a•b>07.a是不为1的有理数,我们把11a-称为a的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a=,2a是1a的差倒数,3a是2a的差倒数,4a是3a的差倒数,以此类推,则2019(a=)A.3 B.23C.12-D.无法确定8.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .49.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn10.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <11.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .1009二、填空题13.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.14.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.15.在班级联欢会上,数学老师和同学们做了一个游戏.她在A B C ,,三个盘子里分别放了一些小球,小球数依次为000,,a b c ,记为()0000,,G a b c =,游戏规则如下:三个盘子中的小球数000a b c ≠≠,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n 次操作后的小球数记为(),,n n n n G a b c =.若0(3,5,19)G =,则3G =________,2000G =________.16.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.17.观察下列等式:①9011⨯+=;②91211⨯+=;③92321⨯+=;④93431⨯+=;⑤94541⨯+=;……作出猜想,它的第n 个等式可表示为__________(n 为正整数).18.关于x 的方程()212a x x -=-的解为__________.19.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________20.大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m 分解后,其中有一个奇数为1799,则m 的值为____________.21.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B 生产线建成投产.同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A 生产线暂停生产,升级后,产能提高20%.下图反映了每条..A ,B 生产线的口罩总产量y (万个)与时间x (天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条..A 生产线每天生产口罩_______万个;(2)每条..B 生产线每天生产口罩A 万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A 生产线,则B 生产线有________条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m 小时(m 为正整数),同时新增k 条B 生产线,此时公司口罩日总产量达到260万个,求正整数k 的值.24.如图,AB CD ⊥,垂足为O ,EF 经过点O ,130∠=︒.求2∠、3∠的度数.25.有A 、B 两家复印社,A 4纸复印计费方式如表:A 4纸复印计费方式 A 复印社复印页数不超过20页时,每页0.12元;复印页数超过20 页时,超过部分每页收费0.09元. B 复印社 不论复印多少页,每页收费0.1元.(1)若要用A 4纸复印30页,选哪家复印社划算?能便宜多少钱?(2)用A 4纸复印多少页时,两家复印社收费相同?26.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?27.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5 t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)28.如图,直线l 有上三点M ,O ,N ,MO =3,ON =1;点P 为直线l 上任意一点,如图画数轴.(1)当以点O 为数轴的原点时,点P 表示的数为x ,且点P 到点M 、点N 的距离相等,那么x 的值是________;(2)当以点M 为数轴的原点时,点P 表示的数为y ,当y = 时,使点P 到点M 、点N 的距离之和是5;(3)若以点O 为数轴的原点,点P 以每秒2个单位长度的速度从点O 向左运动时,点E 从点M 以每秒1个单位长度速度向左运动,点F 从点N 每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P 、点E 、点F 表示的数之和为-20.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 2.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.3.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C4.A解析:A【解析】【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D、ab<0,故本选项不合题意.故选:A.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.5.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.6.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.7.B解析:B【解析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.8.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.9.B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.10.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a 、b 的正负,然后再比较出a 、b 的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a <0,b <0,|a|>|b|,A 、∵a <0,b <0,∴a+b <0,故A 错误;B 、∵a <b ,∴a-b <0,故B 正确;C 、|a|>|b|,故C 错误;D 、ab >0,故D 错误.故选:B .【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.解析:D【解析】【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案.【详解】从数轴上可以看出b <0<a ,|b|>|a |,∴-a <0,-a >b ,-b >0,-b >a ,即b <-a <a <-b ,故选D .【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.12.B解析:B【解析】【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S 1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.二、填空题13.-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C 表示的数为x ,根据等量关系列方程解答即可.【详解】设点C 表示的数为x ,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A ´B+BC ,设点C 表示的数为x ,根据等量关系列方程解答即可.【详解】设点C 表示的数为x ,根据题意可得,(16)39x x --=+-,解得x=-2.【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A ´B+BC.14.【解析】【分析】根据数列得出第n 个数为,据此可得前2019个数的和为,再用裂项求和计算可得.【详解】解:由数列知第n 个数为,则前2019个数的和为:====故答案为:.【点 解析:20192020【解析】【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得. 【详解】解:由数列知第n 个数为()11n n +, 则前2019个数的和为: 11111 (26122020192020)+++++⨯ =111 (122320192020)+++⨯⨯⨯ =11111111 (2233420192020)-+-+-++- =112020- =20192020故答案为:20192020. 【点睛】 本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法.15.(6,8,13), (8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19)解析:(6,8,13), (8,10,9),【解析】【分析】根据题意先列出前10个数列,得出从G 5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G 0=(3,5,19),∴G 1=(4,6,17),G 2=(5,7,15),G 3=(6,8,13),G 4=(7,9,11), G 5=(8,10,9),G 6=(9,8,10),G 7=(10,9,8),G 8=(8,10,9),G 9=(9,8,10),G 10=(10,9,8),……∴从G 5开始每3次为一个周期循环,∵(2000-4)÷3=665…1,∴G 2000=G 5=(8,10,9),故答案为:(6,8,13),(8,10,9),.【点睛】本题考查了列代数式,数字的规律,解题的关键是弄清题意得出从G 5开始每3次为一个周期循环的规律.16.-25.【解析】【分析】由x =1时,代数式ax+b+1的值是﹣3,求出a+b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x =1时,代数式ax +b +1的值是﹣3,求出a +b 的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x =1时,ax +b +1的值为﹣3,∴a +b +1=﹣3,∴a +b =﹣4,∴(a +b ﹣1)(1﹣a ﹣b )=(a +b ﹣1)[1﹣(a +b )]=(﹣4﹣1)×(1+4)=﹣25. 故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.17.【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1解析:()()911011n n n -+=-+【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n个式子是9(n-1)+n=10(n-1)+1=10n-9,即9(n-1)+n=10n-9.故答案为:9(n-1)+n=10n-9.【点睛】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系.18.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.19.-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.20.42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解析:42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(2)(1)2m m+-,∵1799=899×2+1,∴奇数1799是从3开始的第899个奇数,∵(412)(411)=8602+-,(422)(421)9022+-=, ∴第899个奇数是底数为42的数的立方分裂的奇数的其中一个,即m=42,故答案为:42.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.21.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2, 解析:23 【解析】 【分析】 连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.(1)4.8;(2)8;(3)8;(4)9【解析】【分析】(1)根据图象,先求得升级前A 生产线的日产量,结合升级后,日产能提高了20%,即可求得升级后的A 生产线的日产能;(2)根据(1)结论,结合图像,可知A 生产线升级后,生产了5天,B 生产线从第8天开始生产到第15天的产能为56万个,从而求得B 生产线的日产能;(3)设B 生产线有x 条,依据题意列一元一次方程即可求解;(4)先求出A ,B 生产线的每小时产能,根据“两生产线在原每日工作时长8小时的基础上,增加m 小时(m 为正整数),同时新增k 条B 生产线,此时公司口罩日总产量达到260万个,”列出关于m,k的二元不定方程,根据m,k为正整数,8+m为大于8的正整数,17+k为大于17的正整数,将260分解为10×26,即可求解;【详解】解:(1)由图可知,A生产线技术升级前的日生产口罩量为32÷8=4(万个),依题意,升级后,产能提高20%,故升级后的日生产口罩量为4×(1+20%)=4.8(万个);故答案为:4.8(2)A生产线升级后,A的产量由32万到56万,所用的时间为(56-32)÷4.8=5(天),故B生产线从第8天到第15天的产量为56,其每天生产的口罩量为56÷(15-8)=8(万个);故答案为:8(3)设公司有B生产线x条,依题意有:15×4.8+8x=136解得:x=8,故答案为:8(4)A生产线升级后每小时的产量为4.8÷8=0.6万个/小时,B生产线每小时的产量为8÷8=1万个/小时,依题意:0.6×(8+m)×15+(8+m)(8+k)=260整理得:(8+m)(17+k)=260∵m,k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26,∴8+m=10,17+k=26,∴m=2,k=9,故每日工作时长增加2小时,B生产线增加9条即可使公司口罩日总产量达到260万个,故正整数k的值为9.【点睛】本题主要考查了一元一次方程,二元不定方程的实际应用,解答本题的关键是理解题意,数形结合,从图像中提取关键信息.24.60°,30°【解析】【分析】根据对顶角相等可得∠3=∠1=30°,根据邻补角互补可得∠EOB=150°,再由垂直可得∠BOD=90°,根据∠2=90°-∠1即可算出度数.【详解】解:由题意可知,AB与EF相交于点O,∴∠=∠=︒3130⊥AB CD∴∠︒BOD=90∠+∠=︒即2390260∴∠=︒;【点睛】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.25.(1)选B复印社划算,能便宜0.3元;(2)复印42页时两家复印社收费相同.【解析】【分析】(1)根据题意得出两种复印社的代数式解答即可;(2)复印x页时两家复印社收费相同.根据题意列出方程解答即可.【详解】解:(1)A复印社:20×0.12+0.09×(30﹣20)=3.3(元),B复印社:30×0.1=3(元),3<3.3,3.3﹣3=0.3(元),答:选B复印社划算,能便宜0.3元.(2)设:复印x页时两家复印社收费相同.可得:20×0.12+0.09×(x﹣20)=0.1x,解得:x=42,答:复印42页时两家复印社收费相同.【点睛】本题考查一元一次方程的应用,解题的关键是找到题目中的等量关系,设未知数列方程求解.26.(1)2;(2)1cm;(3)910秒或116秒【解析】【分析】(1)将x=﹣3代入原方程即可求解;(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关系即可求解;(3)求出D和B表示的数,然后设经过x秒后有PD=2QD,用x表示P和Q表示的数,然后分两种情况①当点D在PQ之间时,②当点Q在PD之间时讨论即可求解.【详解】(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;故k=2;(2)当C在线段AB上时,如图,当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,∵D为AC的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.27.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可;(3)PA 的距离为由A 去B ,B 返回A 两种情况求值.【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km = 425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中:在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中:在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时), 故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5,当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t.【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.28.(1)-1;(2)-0.5或4.5;(3)t =3【解析】【分析】(1)根据已知条件先确定点M 表示的数为3-,点N 代表的数为1,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离相等列出关于x 的方程,解含绝对值的方程即可得解.(2)根据已知条件先确定点N 表示的数为3-,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离之和等于5列出关于y 的方程,解含绝对值的方程即可得解.(3)设运动时间为t 秒,根据已知条件找到等量关系式,列出含t 方程即可求解.【详解】(1)∵点O 为数轴的原点,3OM =,1ON =∴ 点M 表示的数为3-,点N 代表的数为1∵点P 表示的数为x ,且点P 到点M 、点N 的距离相等∴()31x x --=-∴1x =-故答案是:1-(2)∵点M 为数轴的原点,3OM =,1ON =∴ 点N 代表的数为4∵点P 表示的数为y ∴PM y =,4PN y =-∵点P 到点M 、点N 的距离之和是5 ∴45y y +-=∴0.5y =-或 4.5y =故答案是:0.5-或4.5(3)设运动时间为t 秒P 点表示的数为2t -,E 点表示的数为3t --,F 点表示的数为13t -()()231320t t t -+--+-=-618t -=-3t =答:求运动3秒时点P 、点E 、点F 表示的数之和为20-.【点睛】本题考查了数轴上的两点之间的距离、绝对值方程以及动点问题,难度稍大,需认真审题、准确计算方可正确求解.。
北师大版七年级上册数学期末模拟试卷(含答案)
北师大版七年级上册数学期末模拟试卷(含答案)一、选择题1.求1+2+22+23+...+22019的值,可令S=1+2+22+23+...+22019,则2S=2+22+23+...+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+ (52019)值为()A.52019-1 B.52020-1 C.2020514-D.2019514-2.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1第2行 -2,3第3行 -4,5,-6第4行 7,-8,9,-10第5行 11,-12,13,-14,15……按照上述规律排列下去,那么第10行从左边数第5个数是()A.-50 B.50 C.-55 D.553.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n个图中黑色正方形纸片的张数为()….A.4n+1 B.3n+1 C.3n D.2n+14.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的面积是()A.504 B.10092C.10112D.10095.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++,则称n为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有()个A.1 B.2 C.3 D.46.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()A.这栋居民楼共有居民125人B.每周使用手机支付次数为28~35次的人数最多C.有25人每周使用手机支付的次数在35~42次D.每周使用手机支付不超过21次的有15人7.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是()A.美B.丽C.琼D.海8.若3x-2y-7=0,则 4y-6x+12的值为()A.12 B.19 C.-2 D.无法确定9.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为()A.4B.5C.6D.7∠=∠的图形的个数是10.如图,一副三角尺按不同的位置摆放,摆放位置中αβ()A.1B.2C.3D.411.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t可以取()个不同的值.A .2B .3C .4D .512.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm13.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .14.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-202015.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+16.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22 17.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣818.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b | 19.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ).A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD20.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定21.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=- D .()130%90%85x x +⋅=+22.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强23.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .624.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块25.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5 B .2,3,4,5,6C .2,3,4D .4,5,626.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .427.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7028.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2729.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条30.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( )A .49B .40C .16D .9【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514-故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.2.A解析:A【解析】【分析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.3.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片, 第3个图中有7张黑色正方形纸片, …,依次类推,第n 个图中黑色正方形纸片的张数为2n+1, 故选:D . 【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.5.C解析:C 【解析】 【分析】根据题意,由n =x +y +xy ,可得n +1=x +y +xy +1,所以n +1=(x +1)(y +1),因此如果n +1是合数,则n 是“好数”,据此判断即可. 【详解】 根据分析, ∵8=2+2+2×2, ∴8是好数; ∵9=1+4+1×4, ∴9是好数;∵10+1=11,11是一个质数, ∴10不是好数; ∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.6.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.7.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.8.C解析:C【分析】把(3x-2y )看作一个整体并求出其值,再代入所求代数式进行计算即可得解. 【详解】 解:∵3x-2y-7=0, ∴3x-2y=7,∴4y-6x+12=-2(3x-2y )+12=-2×7+12=-14+12=-2. 故选:C . 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.9.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.10.C解析:C 【解析】 【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补. 【详解】根据角的和差关系可得第一个图形∠α=∠β=45°, 根据等角的补角相等可得第二个图形∠α=∠β, 第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β, 因此∠α=∠β的图形个数共有3个, 故选:C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.12.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.13.C解析:C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A 、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B 、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C 、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D 、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值.【详解】11a =-,212a a =-+=-1,323a a =-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.15.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.16.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5,解得:m =﹣2,故选:B .本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.18.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.19.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.20.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a =,211132a ==--, 312131()2a ==--, 413213a ==-,⋯,由上可得,每三个数一个循环,2019÷3=673,201923a ∴=, 故选:B .【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.21.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.22.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.23.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.24.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.25.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,255,305,依此即可求解. 【详解】∵m 在[5,15]内,n 在[20,30]内,∴5≤m ≤15,20≤n ≤30, ∴n m 的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=, 综上,那么n m 的一切值中属于整数的有2,3,4,5,6. 故选:B .【点睛】本题考查了有理数、整数,关键是得到5≤m ≤15,20≤n ≤30.26.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x =1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y =4,故选D .【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.27.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.28.C解析:C【解析】【分析】将x=-m代入方程,解出m的值即可.【详解】将x=-m代入方程可得:-4m-3m=2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.29.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条.故选:A.【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.30.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..。
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=2.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( )A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,63.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( )A .2种B .3种C .4种D .5种4.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .45.下列解方程的步骤正确的是( )A .由2x +4=3x +1,得2x +3x =1+4B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 6.下列计算正确的是( ) A .b ﹣3b =﹣2 B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b7.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( )A .30B .35︒C .40D .45 8.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .32 9.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定 10.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54° C .64° D .72° 11.计算22221111 (11223320152015)++++++++的结果为( ) A .1 B .20142015C .20152016D .20162015 12.下列说法中正确的是( )A .0不是单项式B .316X π的系数为16C .27ah 的次数为2 D .365x y +-不是多项式 二、填空题13.若()221x y -++=0,则x+y=_____.14.已知方程2x ﹣a =8的解是x =2,则a =_____.15.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.16.关于x 的方程2x+m=1﹣x 的解是x=﹣2,则m 的值为__.17.计算:[(5)11](3)-+÷-=________.18.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n 个正方形(实线)四条边上的整点个数共有_________个.19.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.20.关于x 的方程()212a x x -=-的解为__________.21.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.22.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.三、解答题23.我们知道x 的几何意义是表示在数轴上数x 对应的点与原点的距离;即0x x =-, 这个结论可以推广为: 12x x -表示在数轴上数1x 、2x 对应点之间的距离.如图,数轴上数a 对应的点为点A ,数b 对应的点为点B ,则A ,B 两点之间的距离AB =a b -=-a b . (1)1x +可以表示数 对应的点和数 对应的点之间的距离;(2)请根据上述材料内容解方程11x +=;(3)式子11x x ++-的最小值为 ;(4)式子12x x +--的最大值为 .24.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生;()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人. 25.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数;(2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.26.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.27.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是 ;(2)当x= 时,点P 到点M 、点N 的距离之和是6;(3)如果点P 以每秒钟1个单位长度的速度从点O 向右运动时,点M 和点N 分别以每秒钟4个单位长度和每秒钟2个单位长度的速度也向右运动,且三点同时出发,那么几秒钟时点P 到点M ,点N 的距离相等?28.如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】根据m 在[5,15]内,n 在[20,30]内,可得n m 的一切值中属于整数的有2010,248,205,255,305,依此即可求解. 【详解】∵m 在[5,15]内,n 在[20,30]内,∴5≤m ≤15,20≤n ≤30, ∴n m 的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=, 综上,那么n m 的一切值中属于整数的有2,3,4,5,6. 故选:B .【点睛】本题考查了有理数、整数,关键是得到5≤m ≤15,20≤n ≤30.3.D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.4.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.5.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.6.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.7.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本8.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.9.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.10.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .11.C解析:C【解析】【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解.【详解】 解:22221111 (11223320152015)++++++++ =21111261220152015+++++ =111111112233420152016-+-+-++- = 112016- =20152016故选:C .【点睛】 本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.12.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A )0是单项式,故A 错误;(B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误;故选C .【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.二、填空题13.1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为解析:-4【解析】【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=∠AOB =35°时,解析:3或4或6【解析】【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.16.7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.解析:7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.17.-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.解析:-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.18.4n.【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n个正方形四条边上的整点个数.【详解】第1个正方形的整点个数为4=,第2个正方形的整点个数为8=解析:4n.【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n个正方形四条边上的整点个数.【详解】⨯,第1个正方形的整点个数为4=41第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n个正方形的整点个数为4n,故答案为:4n.【点睛】此题考查图形类规律的探究,根据图形求出前几个正方形四条边上整点的个数得到个数的变化规律是解题的关键.19.11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:放入一个小球水面上升:,量筒与原水面高度差:,解析:11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:-÷=,放入一个小球水面上升:(18.514)3 1.5cm-=,量筒与原水面高度差:301416cm÷≈,∵16 1.510.7∴量筒中至少放入11个球,水会溢出.故填:11.【点睛】本题考查有理数的运算,难点在于从图中获取有效信息点,并理清题目中蕴含的数学关系,其次注意计算仔细即可.20.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n﹣1)+(2n﹣1)=n2+n﹣1.当n=20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.22.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2, 解析:23 【解析】 【分析】 连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.三、解答题23.(1)x ,1-;(2)2-或0;(3)2;(4)3【解析】【分析】(1)把|x+1|变形为|x-(-1)|可以得到解答.(2)画出到-1对应的点距离为1的点,再找出其所对应的数即可;(3)根据|x+1|+|x−1| 表示x 到-1对应的点和1对应的点的距离和进行求解;(4)|x+1|−|x−2| 表示x 到-1对应的点和2对应的点的距离差求解 .【详解】解:(1)∵|x+1| =|x-(-1)|,∴|x+1| 可以表示数 x 对应的点和数-1对应的点之间的距离;故答案为x ,-1;(2)由(1)知,|x+1| 表示数 x 对应的点和数-1对应的点之间的距离,∴|x+1|=1 的解即为到-1对应的点距离为1的点所表示的数,所以由下图可得x=-2或x=0;(3)∵|x+1|+|x−1| 表示x 到-1对应的点和1对应的点的距离和,又当x 表示的点在-1和1表示的点之间(包括-1和1)时,|x+1|+|x−1|取得最小值,最小值即为-1和1表示的点之间的距离,为2;(4)∵|x+1|−|x−2| 表示x 到-1对应的点和2对应的点的距离差,∴当x ≤-1时,|x+1|−|x−2|= -3,当x ≥2时,|x+1|−|x−2|=3,当12x -<<时,-3<|x+1|−|x−2|<3,∴式子 |x+1|−|x−2| 的最大值为3.【点睛】本题考查绝对值算式的几何意义,利用绝对值算式的几何意义把绝对值算式的计算转化为数轴上两点距离的求法是解题关键.24.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A 类人数及其所占百分比可得调查的总人数;(2)由C 类人数所占百分比乘(1)求得的总人数可得n 的值,再用调查的总人数减去A 、C 、D 类人数可以得到B 类总人数;(3)算出B 类人数所占百分比,再乘以360度可以得到答案;(4)用“A :非常喜欢”和“B :喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】解:()13645%80÷=,∴本次调查中,一共调查了80名学生;()()28030%24803624416n m =⨯==-++=;()3解:163607280⨯︒=︒ 答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.25.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】【分析】当OQ ,OP 第一次相遇时,t =15;当OQ 刚到达OA 时,t =20;当OQ ,OP 第二次相遇时,t =30;(1)当t =2时,得到∠AOP =2t =4°,∠BOQ =6t =12°,利用∠POQ =∠AOB -∠AOP-∠BOQ 求出结果即可;(2)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可.【详解】解:当OQ ,OP 第一次相遇时,2t +6t =120,t =15;当OQ 刚到达OA 时,6t =120,t =20;当OQ ,OP 第二次相遇时,2t 6t =120+2t ,t =30;(1)当t =2时,∠AOP =2t =4°,∠BOQ =6t =12°,∴∠POQ =∠AOB -∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t ≤15时,2t +40+6t=120, t =10;当15<t ≤20时,2t +6t=120+40, t =20;当20<t ≤30时,2t =6t -120+40, t =20(舍去);答:当∠POQ =40°时,t 的值为10或20.(3)当0≤t ≤15时,120-8t=12(120-6t ),120-8t=60-3t ,t =12; 当15<t ≤20时,2t –(120-6t )=12(120 -6t ),t=18011. 当20<t ≤30时,2t –(6t -120)=12(6t -120),t=1807. 答:存在t =12或18011或1807,使得∠POQ =12∠AOQ . 【分析】 本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间26.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a<3及a>3两种情况找出MP、NP的长度(用含字母a的代数式表示).27.(1)-1;(2)-4或2;(3)2或1 2【解析】【分析】(1)根据题意列出关于x的方程x-(-3)=1-x,,求出方程的解即可得到x的值;(2)根据题意列出关于x的方程|x-(-3)|+|x-1|=6,,求出方程的解即可得到结果;(3)设t秒时P到M,到N得距离相等,由题意列出方程,求出方程的解即可得到t的值.【详解】解:(1)根据题意得:x-(-3)=1-x,解得:x=-1,故答案为:-1;(2)根据题意得:|x-(-3)|+|x-1|=6,即|x+3|+|x-1|=6,当x<-3时,-x-3-x+1=6,解得:x=-4,当-3≤x≤1时,-x-3+x-1=6,无解;当x>1时,x+3+x-1=6,解得:x=2,综上:x=-4或2;(3)设t秒时点P到点M,点N的距离相等,根据题意得:|-3+4t-t|=|1+2t-t|,即|3t-3|=|t+1|,∵t≥0,当t<-1时,不存在此种情况;当-1≤x≤1时,3t-3=-t-1,解得:t=12;当t>1时,3t-3=t+1,解得:t=2;综上:t=2或12.【点睛】此题考查了一元一次方程的应用,以及数轴上两点之间的距离计算方法,行程问题中的基本数量关系是解题关键.28.(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠1=12∠AOC ,∠2=12∠BOC , ∴∠EOF =∠1+∠2=12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12∠AOB . ∵∠AOB =160°,∴∠EOF =80°.(2)分四种情况讨论:①当OM 在∠AOC 内部时,如图1.∵∠AOC =100°,∠AOB =160°,∴∠MOB =∠AOB -∠AOM =160°-20t .∵∠AOM +∠MOC +∠MOB =∠AOC +∠MOB =200°,∴100°+160°-20t =200°,∴t =3.②当OM 在∠BOC 内部时,如图2.∵∠AOC =100°,∠AOB =160°,∴∠BOC =∠AOB -∠AOC =160°-100°=60°.∵∠AOM +∠MOC +∠MOB =∠AOM +∠COB =200°,∴2060200t +=,∴t =7.③当OM 在∠AOB 外部,靠近射线OB 时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8.∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去. 综上所述:t =3s 或t =7s .【点睛】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.。
2024-2025学年新北师大版(2024年新教材)七年级上册数学期末达标测试卷含解析
北师大版(2024年新教材)七年级上册数学期末达标测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×10103.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣96.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=07.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.17.(6分)先化简,再求值:,其中.18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣的绝对值是()A.B.C.﹣D.﹣【答案】A2.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×1010【答案】B3.(3分)下列水平放置的几何体中,主视图是圆形的是()A.B.C.D.【答案】C4.(3分)下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种面包的合格率D.调查某校足球队员的身高【答案】C5.(3分)若单项式﹣3x2y的系数是m,次数是n,则mn的值为()A.9B.3C.﹣3D.﹣9【答案】D6.(3分)下列不属于一元一次方程的是()A.2x+3=1B.2x+3x=5C.+6=0D.=0【答案】C7.(3分)一个正方体的平面展开图如图所示,则原正方体中与“洗”字所在面相对的面上的汉字是()A.手B.戴C.口D.罩【答案】D8.(3分)已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上【答案】B9.(3分)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,《孙子算经》中有这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何.这道题的意思是:今有若干人乘车,每三人共乘一辆车,则剩余两辆车是空的;每两人共乘一辆车,则剩余九个人无车可乘,问车和人各多少.若我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A10.(3分)幻方的历史悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.三阶幻方的每行、每列、每条对角线上的三个数之和相等,如图是另一个三阶幻方,则a﹣b的值为()A.3B.4C.5D.7【答案】D二.填空题(共5小题,满分15分,每小题3分)11.(3分)我国“奋斗者”号载人潜水器在马里亚纳海沟成功下潜,最大下潜深度为10909米.高于马里亚纳海沟所在海域的海平面100米的某地高度记为+100米,那么最大下潜深度10909米可记为米.【答案】见试题解答内容12.(3分)定义一种新运算:a*b=a2﹣b+ab.例如:(﹣1)*3=(﹣1)2﹣3+(﹣1)×3=﹣5,则4*[2*(﹣3)]=.【答案】19.13.(3分)已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.【答案】7.14.(3分)如图,点A在点O的北偏西80°方向上,点B在点O的南偏东20°的方向上,则∠AOB =°.【答案】120°.15.(3分)我们知道分数写为小数即0.,反之,无限循环小数0.写成分数即,一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0.=x,由0.=0.4444…,得:x=0.4444…,10x=4.444…,于是10x﹣x=(4.44…)﹣(0.444…)=4,即:10x﹣x=4,解方程得:,于是得0.=,则无限循环小数0.化成分数为.【答案】.三.解答题(共7小题,满分55分)16.(8分)计算(1)()×(﹣36);(2)﹣14﹣(1﹣0.5)×|1﹣(﹣5)2|.【答案】(1)25;(2)﹣5.17.(6分)先化简,再求值:,其中.【答案】见试题解答内容18.(8分)解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【答案】见试题解答内容19.(7分)为了解本市的空气质量情况,小王从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图.请你根据以上信息解答下列问题:(1)本次调查活动采取了调查方式,样本容量是;(2)补全图1的条形统计图,并求出扇形统计图中表示“轻度污染”的扇形的圆心角度数;(3)请估计2024年(366天)本币空气质量达到“优”和“良”的总天数.【答案】(1)抽样调查,60;(2)18°;(3)305.20.(8分)已知点O为直线AB上一点,将直角三角板MON如图所示放置,且直角顶点在O处,在∠MON 内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.【答案】(1)40°;(2)45°.21.(8分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(2)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【答案】(1)买卡合算,小张能节省400元;(2)这台冰箱的进价是2480元.22.(10分)将两个直角三角形如图1摆放,已知∠CDE=∠ACB=90°,∠E=45°,∠B=30°,射线CM平分∠BCE.(1)如图1,当D、A、C三点共线时,∠ACM的度数为°.(2)如图2,将△DCE绕点C从图1的位置开始顺时针旋转,旋转速度为每秒6°,设时间为t s,作射线CN平分∠ACD.①若0<t<,∠MCN的度数是否改变?若改变,请用含t的代数式表示;若不变,请说明理由并求出值.②若<t<30,当t为何值时,∠BCN=2∠DCM?请直接写出t的值.【答案】(1)67.5°;(2)①∠MCN的度数不改变,∠MCN的度数为67.5°.理由见解析;②t=15或25.。
2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)全
2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.下列说法错误的是()A.25mn-的系数是25-,次数是2B.数字0是单项式C.14ab是二次单项式D.23xyπ的系数是13,次数是42.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为().A.36块B.41块C.46块D.51块3.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .4.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +205.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .2536.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米 B .30千米C .32千米D .36千米7.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .88.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( )A .1019x y -B .1019x y +C .1021x y -D .1017x y -9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3210.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人11.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式: 第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .5512.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个33⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的33⨯幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A.1 B.2 C.3 D.4二、填空题13.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.14.某商场2019年1~4月份的投资总额一共是2005万元,商场2019年第一季度每月利润统计图和2019年1~4月份利润率统计图如下(利润率=利润÷投资金额).则商场2019年4月份利润是______万元.15.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a,b的代数式表示) .16.作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,再对图(2)的每个边做相同的变化,得到图形如图(3),如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n个图形时,图形的面积_____(填写“会”或者“不会”)变化,图形的周长为________.17.下列图案是我国古代窗格的一部分,其中“O ”代表窗纸上所贴的剪纸,则第51个图中所贴剪纸“O ”的个数为__________.18.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.19.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.20.如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连按A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;按此规律继续下去,可得到△A 2019B 2019C 2019,则其面积S 2019=_____.21.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O 上的点4A 处.……按此规律运动到点2020A 处,则点2020A 与点0A 间的距离是___________.22.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 24.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生; ()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人.25.点O 是线段AB 的中点,OB =14cm ,点P 将线段AB 分为两部分,AP :PB =5:2. ①求线段OP 的长.②点M 在线段AB 上,若点M 距离点P 的长度为4cm ,求线段AM 的长.26.如图:在数轴上A 点表示数,a B 点示数,b C 点表示数,c b 是最大的负整数,A 在B 左边两个单位长度处,C 在B 右边5个单位处()1a = ;b = _;c = _;()2若将数轴折叠,使得A 点与C 点重合,则点B 与数_ __表示的点重合; ()3点、、A B C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为,AB 点A 与点C 之间的距离表示为,AC 点B 与点C 之间的距离表示为BC ,则AB =_ _,AC =_ _,BC =__ _;(用含t 的代数式表示)()4请问:52BC AB -的值是否随着时间t 的变化而改变﹖若变化,请说明理由;若不变,请求其值.27.如图,数轴上点A 表示的数为-2,点B 表示的数为8.点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(0t >).(1)填空:①A 、B 两点间的距离AB =________,线段AB 的中点表示的数为________;②用含t 的代数式表示:t 秒后,点P 表示的数为________;点Q 表示的数为________; (2)求当t 为何值时,1||||2PQ AB =; (3)当点P 运动到点B 的右侧时,线段PA 的中点为M ,N 为线段PB 的三等分点且靠近于P 点,求3||||4PM BN -的值. 28.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据单项式系数、次数的定义逐一判断即可得答案. 【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意,C.14ab是二次单项式,正确,故该选项不符合题意,D.23xyπ的系数是3π,次数是3,故该选项说法错误,符合题意,故选:D.【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.2.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.3.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.4.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.5.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.6.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.7.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.8.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.9.C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.A解析:A【解析】分析可得,第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数.【详解】解:第n行有n个数,此行第一个数的绝对值为(1)12n n-+,且式子的奇偶,决定它的正负,奇数为正,偶数为负.所以第10行第5个数的绝对值为:109550 2⨯+=,50为偶数,故这个数为:-50.故选:A.【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.12.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.二、填空题13.8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是解析:8【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是2,4,8,6四个一循环,所以2015÷4=503…3,则22015的末位数字是8.故答案为8.【点睛】题考查学生分析数据,总结、归纳数据规律的能力,要求学生有一定的解题技巧.解题关键是知道个位数字为2,4,8,6顺次循环.14.120【解析】【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成解析:120【解析】【分析】根据条形统计图可以得出一、二、三月份的利润,再根据折线统计图中各月份的利润率,可以求出前三个月的成本,进而求出四月份的成本,再求出四月份的利润.【详解】解:一月份的成本:125÷20.0%=625万元,二月份的成本:120÷30.0%=400万元,三月份的成本:130÷26.0%=500万元,四月份的成本:2005−625−400−500=480万元,四月份的利润为:480×25.0%=120万元,故答案为:120.【点睛】考查条形统计图、折线统计图的意义和制作方法,从统计图中获取数据和数据之间的关系式正确解答的关键.15.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b , ∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b )= a+98b . 故答案为:a+98b .【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.16.不会【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,6解析:不会 32n a +【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,64a ,128a ,…,32n a +,即无限增加,所以不断发展下去到第n 次变化时,图形的周长为32n a +;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a 2.故答案为:不会、32n a +.【点睛】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键.17.155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n个图形的剪纸“○”的表达式,再把n=51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸解析:155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n个图形的剪纸“○”的表达式,再把n=51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸“○”,第2个图形有8个剪纸“○”,第3个图形有11个剪纸“○”,……,依此类推,第n个图形有(3n+2)个剪纸“○”,当n=51时,3×51+2=155.故答案为:155.【点睛】本题是对图形变化规律的考查,属于常考题型,观察出后一个图形比前一个图形多3个剪纸“○”是解题的关键.18.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.19.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n﹣1)+(2n﹣1)=n2+n﹣1.当n=20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.20.192019【解析】【分析】首先根据题意,求得=2,同理求得=19,则可求得面积S1的值;根据题意发现规律:Sn=19nS△ABC即可求得答案.【详解】解:连接BC1,∵C1A=2CA,解析:192019【解析】【分析】首先根据题意,求得1ABC S △=2ABC S,同理求得111A B C △S =19ABC S ,则可求得面积S 1的值;根据题意发现规律:S n =19n S △ABC 即可求得答案.【详解】解:连接BC 1,∵C 1A =2CA ,∴1ABC S △=2S △ABC ,同理:111A B C △S =21ABC S △=4S △ABC ,∴11A AC S △=6S △ABC ,同理:11A BB S △=11CB C S △=6S △ABC ,∴111A B C △S =19S △ABC ,即S 1=19S △ABC ,∵S △ABC =1,∴S 1=19;同理:S 2=19S 1=192S △ABC ,S 3=193S △ABC ,∴S 2019=192019S △ABC =192019.故答案是:192019.【点睛】此题考查了三角形面积之间的关系.注意找到规律:S n =19n S △ABC 是解此题的关键.21.【解析】【分析】连接A4A5、A0A5,,,分别求出,,,,,,,根据图形的运动得到按此规律6次一循环,即可求出点与点间的距离.【详解】如图,连接A4A5、A0A5,,,∵的半径为2, 解析:3【解析】【分析】连接A 4A 5、A 0A 5,04A A ,02A A ,分别求出014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,,根据图形的运动得到按此规律6次一循环,即可求出点2020A 与点0A 间的距离.【详解】如图,连接A 4A 5、A 0A 5,04A A ,02A A ,∵O 的半径为2,∴014A A =,0223A A =,032A A =,0423A A =,052A A =,060A A =,按此规律6次一循环,∵202063364÷=,∴0202023A A =.故答案为:23.【点睛】此题考查图形类规律的探究,根据图形的变化得到运动的规律是解题的关键.22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC 与△A1BB1底相等(AB =A1B ),高为1:2(BB1=2B 解析:【解析】【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证S △A 2B 2C 2=7S △A 1B 1C 1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.-x 2y ;3.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=﹣2x 2y ﹣(2xy -2xy ﹣x 2y )= ﹣2x 2y ﹣2xy +2xy +x 2y =﹣x 2y .当x =3,y 13=-时,原式=2133⎛⎫-⨯- ⎪⎝⎭=3. 【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.24.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A 类人数及其所占百分比可得调查的总人数;(2)由C 类人数所占百分比乘(1)求得的总人数可得n 的值,再用调查的总人数减去A 、C 、D 类人数可以得到B 类总人数;(3)算出B 类人数所占百分比,再乘以360度可以得到答案;(4)用“A :非常喜欢”和“B :喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】解:()13645%80÷=,∴本次调查中,一共调查了80名学生;()()28030%24803624416n m =⨯==-++=;()3解:163607280⨯︒=︒ 答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.25.①OP =6cm ;②AM =16cm 或24cm .【解析】【分析】①根据线段中点的性质,可得AB 的长,根据比例分配,可得BP 的长,根据线段的和差,可得答案;②分两种情况:M 有P 点左边和右边,分别根据线段和差进行计算便可.【详解】解:①∵点O 是线段AB 的中点,OB =14cm ,∴AB =2OB =28cm ,∵AP :PB =5:2.∴BP =287AB =cm , ∴OP =OB ﹣BP =14﹣8=6(cm );②如图1,当M 点在P 点的左边时,AM =AB ﹣(PM +BP )=28﹣(4+8)=16(cm ),如图2,当M 点在P 点的右边时,AM =AB ﹣BM =AB ﹣(BP ﹣PM )=28﹣(8﹣4)=24(cm ).综上,AM =16cm 或24cm .【点睛】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.26.(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【解析】【分析】(1)根据b 为最大的负整数可得出b 的值,再根据A 在B 左边两个单位长度处,C 在B 右边5个单位处即可得出a 、c 的值;(2)根据折叠的性质结合a 、b 、c 的值,即可找出与点B 重合的数;(3)根据运动的方向和速度结合a 、b 、c 的值,即可找出t 秒后点A 、B 、C 分别表示的数,利用数轴上两点间的距离即可求出AB 、AC 、BC 的值;(4))将(3)的结论代入52BC AB -中,可得出52BC AB -的值不会随着时间的变化而变化,即为定值,此题得解.【详解】(1)b 是最大的负整数,∴1b =-A 在B 左边两个单位长度处,C 在B 右边5个单位处∴3a =-,c 4=(2)将数轴折叠,使得A 点与C 点重合∴()3412a c b +-=-+--=(3)点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动∴t 秒钟过后,根据s vt =得:s 2A t =,s 3B t =,s 5C t = 又3a =-,1b =-,c 4=∴点A 表示的数为23t --,点B 表示的数为31t -,点C 表示的数为54t +, ∴25AB t =+,77AC t =+,2+5BC t =;(4)由(3)可知:25AB t =+,2+5BC t =∴()()52=525225102541021BC AB t t t t -⨯+-+=+--=∴52BC AB -的值为定值21.故答案为:(1)﹣3,﹣1,4;(2)2;(3)2+5t ,7+7t ,2t+5;(4)5BC ﹣2AB 的值不会随着时间t 的变化而改变,该值是21.【点睛】本题考查了数轴及两点间的距离,根据点运动的方向和速度找出点A 、B 、C 运动后代表的数是解题的关键.27.(1)①10;3;②点P 表示的数为-2+3t ,点Q 表示的数为8-2t ;(2)1或3;(3)5【解析】【分析】(1)①根据点A 表示的数为-2,点B 表示的数为8,即可得到A 、B 两点间的距离以及线段AB 的中点表示的数;②依据点P ,Q 的运动速度以及方向,即可得到结论;(2)由t 秒后,点P 表示的数-2+3t ,点Q 表示的数为8-2t ,于是得到|PQ|=|(-2+3t )-(8-2t )|=|5t-10|,列方程即可得到结论;(3)依据PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,运用线段的和差关系进行计算,即可得到3||||4PM BN -的值. 【详解】解:(1)①AB =8-(-2)=10,-2+12×10=3, 故答案为:10,3;②由题可得,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ;故答案为:-2+3t ,8-2t ;(2)∵t 秒后,点P 表示的数-2+3t ,点Q 表示的数为8-2t ,。
北师大版七年级上册数学期末模拟试卷(含答案)
北师大版七年级上册数学期末模拟试卷(含答案)一、选择题1.下列各组数中,数值相等的是( )A .﹣22和(﹣2)2B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22 2.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<< 3.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量 4.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .4 5.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣8 6.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 7.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( )A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm8.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .59.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( )A .亏损8元B .赚了12元C .亏损了12元D .不亏不损 10.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定 11.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .412.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.计算(0.04)2018×[(﹣5)]2018的结果是_____.14.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .15.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为___________.16.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.17.已知236(3)0x y -++=,则23y x -的值是_________.18.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积和的14,频数分布直方图中有150个数据,则中间一组的频数为______. 19.已知 10a =,211a a =-+,322a a =-+,…,依此类推,则 2019a =_______. 20.已知关于x 的一元一次方程520202020x x m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020y y m --=--的解为________. 21.一列数按某规律排列如下:11,12,21,13,22,31,14,23,32,41,⋯,若第n 个数为56,则n =_______. 22.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.三、解答题23.计算:(1)(12)(7)(5)(30)+--+--+(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 24.阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,…为等比数列,其中11a =,公比为3q =.则:(1)等比数列2,4,8,…的公比q 为________,第4项是________.(2)如果一个数列1a ,2a ,3a ,4a …是等比数列,且公比为q ,那么根据定义可得到:3241231n n a a a a q a a a a -=====. 所以:21a a q =,2321a a q a q ==,3431a a q a q ==,…由此可得:n a =________(用1a 和q 的代数式表示).(3)若一等比数列的公比5q =,第2项是10,请求它的第1项与第5项.25.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面,如果我们要同时用两种不同的正多边形镶嵌平面.可能设计出几种不同的组合方案?猜想1:是否可以同时用正方形.正八边形两种正多边形组合进行平面镶嵌?验证l:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+=,整理得: 238,x y += 我们可以找到方程的正整数解为12x y =⎧⎨=⎩结论1:镶嵌平面时.在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.26.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.27.如图,两条直线AB 、CD 相交于点O ,且∠AOC=∠AOD ,射线OM (与射线OB 重合)绕O 点逆时针方向旋转,速度为15°/s ,射线ON (与射线OD 重合)绕O 点顺时值方向旋转,速度为12°/s ,两射线,同时运动,运动时间为t 秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON 的度数为_____,∠BON 的度数为_____,∠MOC 的度数为_____;(2)当0<t <12时,若∠AOM=3∠AON -60°,试求出t 的值.(3)当0<t <6时,探究72COM BON MON∠+∠∠的值,在t 满足怎样的条件是定值,在t 满足怎样的条件不是定值.28.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”) (2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.2.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.3.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .4.D解析:D【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x =1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y =4,故选D .【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.5.B解析:B【解析】【分析】把x =1代入方程3x ﹣m =5得出3﹣m =5,求出方程的解即可.【详解】把x =1代入方程3x ﹣m =5得:3﹣m =5,解得:m =﹣2,故选:B .【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键.6.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.7.C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.8.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.9.C解析:C【解析】试题分析:设第一件衣服的进价为x元,依题意得:x(1+25%)=90,解得:x=72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y元,依题意得:y(1﹣25%)=90,解得:y=120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C.点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.10.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.11.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.12.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815.【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.14.【解析】【分析】先根据点C 是线段AB 的中点,AB =8cm 求出BC 的长,再根据CD =BC ﹣BD 即可得出结论.【详解】解:∵点C 是线段AB 的中点,AB =8cm ,∴BC =AB =×8=4cm ,解析:【解析】【分析】先根据点C 是线段AB 的中点,AB =8cm 求出BC 的长,再根据CD =BC ﹣BD 即可得出结论.【详解】解:∵点C 是线段AB 的中点,AB =8cm ,∴BC =12AB =12×8=4cm , ∵BD =2cm ,∴CD =BC ﹣BD =4﹣2=2cm .故答案为2.【点睛】 本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.15.6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.解:由题意可得,第1次输出的结果为24,第2次输出的结果为1解析:6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为12,第3次输出的结果为6,第4次输出的结果为3,第5次输出的结果为6,第6次输出的结果为3,∵(2019-2)÷2=1008…1,∴第2019次输出的结果为6,故答案为:6.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.16.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(1)20192【解析】【分析】根据题意和图形,可以写出前几次操作后h对应的值,从而可以发现变化特点,从而可以写出h2020的值.解:由题意可知,h1=2﹣1=1,h2=2﹣12=32,h3=2﹣(12)2,…,则h2020=2﹣(12)2019,故答案为:2﹣(12)2019.【点睛】此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.17.-12【解析】【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2解析:-12【解析】【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2y-3x=-6-6=-12.故答案为:-12.【点睛】此题考查了代数式求值以及非负数的性质,根据“几个非负数的和为0时,每个非负数都为0”进行求解是解本题的关键.18.30【分析】设中间一个小长方形的面积为x ,则其他10个小长方形的面积的和为4x ,中间有一组数据的频数是:×150.【详解】解:∵在频数分布直方图中,有11个小长方形,若中间一个小长解析:30【解析】【分析】设中间一个小长方形的面积为x ,则其他10个小长方形的面积的和为4x ,中间有一组数据的频数是:4x x x +×150. 【详解】解:∵在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积和的14, ∴设中间一个小长方形的面积为x ,则其它10个小长方形的面积的和为4x , ∵共有150个数据, ∴中间有一组数据的频数是:4x x x+×150=30. 故答案为:30.【点睛】本题考查了对频率、频数灵活运用,各小组频数之和等于数据总和,各小组频率之和等于1.理解直方图的定义是解题的关键. 19.【解析】【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为,所以==-1,==-1,==-2,,所以n 为奇数时,,n 为偶数时,,所以-=解析:1009-【分析】根据题意,可以得出这一组数的规律,分为n 为奇数和偶数二种情况讨论即可.【详解】因为10a =, 所以211a a =-+=01-+=-1,322a a =-+=-12-+=-1,433a a =-+=-13-+=-2,544=--2+4=-2a a =-+,所以n 为奇数时,1-2n n a -=,n 为偶数时,-2n n a =, 所以2019a =-2019-12=-1009, 故答案为:-1009.【点睛】本题考查了有理数运算的规律,含有绝对值的计算,掌握有理数运算的规律是解题的关键.20.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-,∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.21.50【解析】【分析】根据题目中的数据对数据进行改写,进而观察规律得出第个数为时的值.【详解】解:∵,,,,,,,,,,,可以写为:,(,),(,,),(,,,),,∴根据规律可知所在的括解析:50【解析】【分析】根据题目中的数据对数据进行改写,进而观察规律得出第n 个数为56时n 的值. 【详解】解:∵11,12,21,13,22,31,14,23,32,41,⋯,可以写为:11,(12,21),(13,22,31),(14,23,32,41),⋯,∴根据规律可知56所在的括号内应为(1234567891,,,,,,,,,109876543210),共计10个,56在括号内从左向右第5位,∴第n个数为56,则n=1+2+3+4+5+6+7+8+9+5=50.故答案为:50.【点睛】本题考查数字的变化规律,解答本题的关键是明确题意,发现题目中数字的变化规律.22.4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解解析:4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解:若OC在∠AOB内部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴2x+3x=40°,得x=8°,∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,∵OD平分∠AOB,∴∠AOD =20°,∴∠COD =∠AOD ﹣∠AOC =20°﹣16°=4°.若OC 在∠AOB 外部,∵∠AOC :∠COB =2:3,∴设∠AOC =2x ,∠COB =3x ,∵∠AOB =40°,∴3x ﹣2x =40°,得x =40°,∴∠AOC =2x =2×40°=80°,∠COB =3x =3×40°=120°,∵OD 平分∠AOB ,∴∠AOD =20°,∴∠COD =∠AOC+∠AOD =80°+20°=100°.∴OC 与∠AOB 的平分线所成的角的度数为4°或100°.【点睛】本题考查角的计算,结合角平分线的性质分析,当涉及到角的倍分关系时,一般通过设未知数,建立方程进行解决.三、解答题23.(1)16-;(2)14-【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)()()()()127530+--+--+()()127530=++-+- 1935=-16=-;(2)32201913(2)(2)2(1)184-⨯-÷--⨯-⨯+ 13(8)421184=-⨯-÷-⨯-⨯+13(8)42184=-⨯-÷-⨯-+ 14142=-⨯ 14=-. 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.24.(1)2,16;(2)11n a q -;(3)2,1250.【解析】【分析】(1)由第二项除以第一项求出公比q 的值,确定出第4项即可;(2)根据题中的定义归纳总结得到通项公式即可;(3)由公比q 与第二项的值求出第一项的值,进而确定出第5项的值.【详解】解:(1)422q ==,第4项是16, 故答案为:2,16; (2)归纳总结得:11n n a a q -=,故答案为:11n a q -;(3)等比数列的公比5q =,第二项为10,212a a q∴==,4451251250a a q ==⨯=. 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.25.可以,验证与方案见解析.【解析】【分析】在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,根据平面镶嵌的体积可得方程:60x+120y=360.整理得:x+2y=6,求出正整数解即可.【详解】解:可以;验证:在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,正三角形的每个内角的度数为60︒,正六边形的每个内角的度数为()621801206︒︒-•=根据题意,可得方程:60120360x y +=整理得26x y +=方程的正整数解为22xy=⎧⎨=⎩或41xy=⎧⎨=⎩所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.【点睛】本题考查了平面镶嵌,正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.也考查了二元一次方程的应用.26.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a ), ∴MN=MP+NP=6;当a >3时(如图2),AP=a+6,BP=a-3. ∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).27.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°, ∴72COM BON MON ∠+∠∠=()()7901529012159012t t t t ︒︒︒︒︒︒︒-++++ =810812790t t ︒︒︒-+(不是定值), ②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.28.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=; ③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图此时180BOQ BOP ︒∠+∠=,即1060(36020)180t t ︒︒︒︒︒⎡⎤+--=⎣⎦,解得16t =, 综合上述,4t =或10t =或16t =;(4)由题意运动停止时3602018t ︒︒=÷=,所以018t <≤,①当04t <<时,如图,此时OA 为POQ ∠的“二倍角线”,2AOQ POA ∠=∠,即6010220t t ︒︒︒+=⨯,解得2t =;②当410t ≤<时,如图,此时,180,180AOQ AOP ︒︒∠>∠>,所以不存在;③当1012t <≤时,如图此时OP 为AOQ ∠的“二倍角线”,2AOP POQ ∠=∠,即360202(201060360)t t t ︒︒︒︒︒︒-=⨯++-解得 12t =;④当1218t <≤时,如图,此时180,180AOQ AOP ︒︒∠>∠>,所以不存在;综上所述,当2t =或12t =时,OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.【点睛】本题考查了一元一次方程的应用,正确理解“二倍角线”的定义,找准题中角之间等量关系是解题的关键.。
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .82.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个3.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1114.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-5.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20136.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形 7.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定8.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .329.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <10.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >> B .0,0a b <>C .0,0a b <<D .0,0a b ><11.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b 12.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .7 13.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn14.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-202015.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >016.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .617.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .318.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+19.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1B .52020-1C .2020514-D .2019514-20.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米21.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.9122.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n ( )A.9 B.11 C.13 D.1523.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .24.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24025.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块 26.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -= 27.“比a 的3倍大5的数”用代数式表示为( )A .35a +B .3(5)a +C .35a -D .3(5)a -28.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a 29.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2730.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.2.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.3.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数. 【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.4.D解析:D 【解析】 【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.5.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6.C解析:C 【解析】 【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题. 【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.7.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.8.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.9.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m +n 不能计算,故原选项错误;C. 2a 4+4a 2不能计算,故原选项错误;D.﹣2a 2b +5a 2b =3a 2b 计算正确.故选D .【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.12.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ∵29623 4.655-==, ∴分成的组数是5组.故答案选B .【点睛】 本题主要考查了频数分布直方图,准确计算是解题的关键.13.B解析:B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.14.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值.【详解】11a =-,212a a =-+=-1,323a a =-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.15.B解析:B【解析】【分析】先确定出a 、b 、c 的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a <﹣1,0<b <1,1<c <2,∴c >b >a ,1b >1c,|a |>|b |,abc <0.故选:B .【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.16.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 17.D解析:D【解析】【分析】直接利用已知代入得出b 的值,进而求出输入﹣3时,得出y 的值.【详解】∵当输入x 的值是﹣3,输出y 的值是﹣1,∴﹣1=32b -+, 解得:b =1, 故输入x 的值是3时,y =2331⨯-=3. 故选:D .【点睛】本题主要考查了代数式求值,正确得出b 的值是解题关键.18.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.19.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可.【详解】根据题意,设S=1+5+52+53+ (5)2019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1, 所以,1+5+52+53+…+52019 =2020514- 故选C .【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.20.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h ,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h ,5小时36分钟=535(小时) 由题意可得:2×2x=(535-2)(x+2), 解得:x=18,∴A 、B 两地的距离=2×18=36(km ),故选:D .【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.21.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.22.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.23.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.24.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.25.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.26.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.27.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.28.A解析:A【解析】【分析】根据周长的计算公式,列式子计算解答.【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-,∵ 四边形ABCD 是长方形,∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-,同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -,∴C 1 -C 2=0.故选A .【点睛】本题考查周长的计算,“数形结合”是关键.29.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27. 故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.30.C解析:C【解析】【分析】分别判断各选项是否正确.【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.。
(完整版)北师大版七年级数学上册期末模拟试卷及答案
(完整版)北师大版七年级数学上册期末模拟试卷及答案一、选择题1.方程114x x --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-1 2.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .43.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( )A .2种B .3种C .4种D .5种4.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块5.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .240 6.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A .8-或2-B .8±或2±C .8- 或2D .8或27.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( )A .52019-1B .52020-1C .2020514-D .2019514- 8.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cm B .4cm C .2cm 或6cm D .4cm 或6cm9.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <10.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .11.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形12.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个 B .2个C .3个D .4个 二、填空题 13.若()221x y -++=0,则x+y=_____.14.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.15.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.16.如果单项式1b xy +-与23a x y -是同类项,那么()2019a b -=______.17.若25m n a b 与569a b -是同类项,则m n +的值是____.18.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积和的14,频数分布直方图中有150个数据,则中间一组的频数为______. 19.将图中的三角形纸片沿AB 折叠所得的AB 右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.20.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____.21.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m n a a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.22.如图,对面积为1的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连按A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;按此规律继续下去,可得到△A 2019B 2019C 2019,则其面积S 2019=_____.三、解答题23.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.24.阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,…为等比数列,其中11a =,公比为3q =.则:(1)等比数列2,4,8,…的公比q 为________,第4项是________.(2)如果一个数列1a ,2a ,3a ,4a …是等比数列,且公比为q ,那么根据定义可得到:3241231n n a a a a q a a aa -=====. 所以:21a a q =,2321a a q a q ==,3431a a q a q ==,…由此可得:n a =________(用1a 和q 的代数式表示).(3)若一等比数列的公比5q =,第2项是10,请求它的第1项与第5项.25.先化简,再求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22203a b ⎛⎫-++= ⎪⎝⎭. 26.计算、化简求值(1)(16+12﹣112)×(﹣12)(运用运算律) (2)(1+12)×(﹣23)2÷13+(﹣1)3 (3)求2x ﹣[2(x+4)﹣3(x+2y)]﹣2y 的值,其中x =13,y =12. 27.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a-b|=15.(1)若b =-6,则a 的值为 ;(2)若OA =2OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,OB =3BC ,请画出图形并求出满足条件的c 的值.28.如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.(1)请写出与A 、B 两点距离相等的点M 所对应的数;(2)若当电子蚂蚁P 从B 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D 点对应的数是多少吗?(3)现有一只电子蚂蚁P 从B 点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上相距10单位时电子蚂蚁Q 刚好在C 点,你知道C 点对应的数是多少吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C2.D解析:D【解析】【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y .【详解】解:由已知计算程序可得到代数式:2x2﹣4,当x =1时,2x2﹣4=2×12﹣4=﹣2<0,所以继续输入,即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0,即y=4,故选D.【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.3.D解析:D【解析】【分析】根据题意可以用列举法把符合要求的方案写出来,从而得到问题的答案.【详解】解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→-1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3;共计5种.故选:D.【点睛】本题考查数轴,解题的关键是可以根据题目中的信息,把符合要求的方案列举出来.4.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.5.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.6.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.7.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.8.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.9.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.12.B解析:B【解析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.二、填空题13.1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答解析:5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.15.【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=9解析:【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=12∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=90°,∴∠DON=∠CON=90°,∴∠DOM=∠DON﹣∠NOM=90°﹣68°=22°,∵∠BOM:∠DOM=1:2,∴∠BOM=12∠DOM=11°,∴∠BOD=3∠BOM=33°.故答案为:33.【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.16.1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a、b,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,解析:1【解析】【分析】所含字母相同,并且相同字母的指数也分别相同的项是同类项,根据同类项的定义列式计算得到a 、b ,再代入计算即可.【详解】由题意得:a-2=1,b+1=3,∴a=3,b=2,∴()2019a b -=1, 故答案为:1.【点睛】此题考查同类项的定义,正确理解同类项的定义并熟练解题是关键. 17.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m =5,2n =6,∴m =5,n =3,∴m +n =8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m =5,2n =6,∴m =5,n =3,∴m +n =8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型. 18.30【解析】【分析】设中间一个小长方形的面积为x ,则其他10个小长方形的面积的和为4x ,中间有一组数据的频数是:×150.【详解】解:∵在频数分布直方图中,有11个小长方形,若中间一个小长解析:30【解析】【分析】设中间一个小长方形的面积为x ,则其他10个小长方形的面积的和为4x ,中间有一组数据的频数是:4x x x +×150. 【详解】解:∵在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积和的14, ∴设中间一个小长方形的面积为x ,则其它10个小长方形的面积的和为4x , ∵共有150个数据, ∴中间有一组数据的频数是:4x x x+×150=30. 故答案为:30.【点睛】本题考查了对频率、频数灵活运用,各小组频数之和等于数据总和,各小组频率之和等于1.理解直方图的定义是解题的关键. 19.5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y ,可得AB 右边的图形的面积=5+y ,原三角形面积=2×5+y=10+y ,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的解析:5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y ,可得AB 右边的图形的面积=5+y ,原三角形面积=2×5+y =10+y ,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的面积之和为y ,则AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意可得:(5+y):(10+y)=2:3,∴y=5,故答案为:5.20.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.21.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅=则23499100a a a a a a ⋅⋅⋅⋅⋅⋅ 10029939849749525051()()()()()()a a a a a a a a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101101101101101101a a a a a a =⋅⋅⋅⋅⋅⋅ 101101101101a ++++=10150a ⨯=5050a =故答案为:5050a .【点睛】本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.22.192019【解析】首先根据题意,求得=2,同理求得=19,则可求得面积S1的值;根据题意发现规律:Sn=19nS△ABC 即可求得答案.【详解】解:连接BC1,∵C1A=2CA ,解析:192019【解析】【分析】首先根据题意,求得1ABC S △=2ABC S,同理求得111A B C △S =19ABC S ,则可求得面积S 1的值;根据题意发现规律:S n =19n S △ABC 即可求得答案.【详解】解:连接BC 1,∵C 1A =2CA ,∴1ABC S △=2S △ABC ,同理:111A B C △S =21ABC S △=4S △ABC ,∴11A AC S △=6S △ABC ,同理:11A BB S △=11CB C S △=6S △ABC ,∴111A B C △S =19S △ABC ,即S 1=19S △ABC ,∵S △ABC =1,∴S 1=19;同理:S 2=19S 1=192S △ABC ,S 3=193S △ABC ,∴S 2019=192019S △ABC =192019.故答案是:192019.【点睛】此题考查了三角形面积之间的关系.注意找到规律:S n =19n S △ABC 是解此题的关键.三、解答题23.(1)20;(2)33.【解析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.24.(1)2,16;(2)11n a q -;(3)2,1250.【解析】【分析】(1)由第二项除以第一项求出公比q 的值,确定出第4项即可;(2)根据题中的定义归纳总结得到通项公式即可;(3)由公比q 与第二项的值求出第一项的值,进而确定出第5项的值.【详解】解:(1)422q ==,第4项是16, 故答案为:2,16; (2)归纳总结得:11n n a a q -=,故答案为:11n a q -;(3)等比数列的公比5q =,第二项为10,212a a q∴==,4451251250a a q ==⨯=. 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.25.-3a+b 2,559-【解析】【分析】先对整式进行化简,然后代值求解即可.【详解】解:原式=2221231232323a ab a b a b -+-+=-+, 又22203a b ⎛⎫-++= ⎪⎝⎭,∴22,3a b ==-,把22,3a b ==-代入求解得:原式=22453265399⎛⎫-⨯+-=-+=- ⎪⎝⎭. 【点睛】本题主要考查整式的化简求值及非负性,熟练掌握整式的运算及绝对值和偶次幂的非负性是解题的关键.26.(1)-7;(2)1;(3)-5.【解析】【分析】(1)利用乘法分配律计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得;(3)先去括号再合并同类项,对原代数式进行化简,然后把x 、y 的值代入计算即可.【详解】 (1)(1116212+-)×(﹣12) =()()()1111212126212⨯-+⨯--⨯- =(﹣2)+(﹣6)+1=﹣7; (2)(112+)×(﹣23)213÷+(﹣1)3 =()343129⨯⨯+- =2+(﹣1)=1;(3)原式=2x ﹣2x ﹣8+3x+6y ﹣2y =3x+4y ﹣8,当x =13,y =12时,原式=1+2﹣8=﹣5. 【点睛】 本题主要考查整式的加减﹣化简求值,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则与有理数的混合运算顺序和运算法则,这是各地中考的常考点.27.(1)9;(2)a 的值为10或-10;(3)见解析,c 的值为6或607【解析】【分析】(1)依据|a-b|=15,a ,b 异号,即可得到a 的值;(2)分点A 在原点左、右两侧两种情况讨论,依据OA=2OB ,即可得到a 的值;(3)分点C 在点B 左、右两侧两种情况进行讨论,依据O 为AC 的中点,OB=3BC ,设未知数列方程即可得到所有满足条件的c 的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15,∴a+6=15或-15,∴a=9或-21,∵点A和点B分别位于原点O两侧,b=-6,∴a>0,∴a=9,故答案为:9;(2)当A在原点左侧时,点A表示的数为a,又|a-b|=15,即A,B两点间的距离为15,则可知B点对应的数为a+15,如图,由OA=2OB得,2(a+15-0)=0-a,解得a=-10;当A在原点右侧时,可知B点对应的数为a-15,如图,由OA=2OB得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C有两种情况:①当点C在点B左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C在点B右侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OB=3x,OA=OC=4x,∴AB=3x+4x=15,解得x=157,∴OC=4x=607,则c=60 7,综上所述,c的值为6或607.【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.28.(1)40;(2)-260;(3)24或32.【解析】【分析】(1)与A、B两点距离相等的点是它们的中点,即(-20+100)÷2结果是M;(2)此题是追及问题,可先求出P追上Q所需的时间,然后可求出Q所走的路程,根据左减右加的原则,可求出点D所对应的数;(3)此题是相遇问题,先求出相距10单位时所需的时间,相距10单位,分相遇前和相遇后计算,再求出点Q走的路程,根据左减右加的原则,可求出-20向右运动到C地点所对应的数.【详解】(1)根据题意可知,点M为A、B的中点,∴(-20+100)÷2=40,答:点M对应的数为40,故答案为:40;(2)点P追到Q点的时间为120÷(6-4)=60,即此时Q点经过的路程为4×60=240,即-20-240=-260,答:点D对应的数是-260,故答案为:-260;(3)分相遇前和相遇后两种情况讨论:他们相遇前相距10单位时,(120-10)÷(6+4)=11,及相同时间Q点运动路程为:11×4=44,即-20+44=24;他们相遇后相距10单位时,(120+10)÷(6+4)=13,及相同时间Q点运动路程为:13×4=52,即-20+52=32,答:点C对应的数是24或32,故答案为:24或32.【点睛】本题考查了数轴上的动点问题,相遇和追及问题,有理数的运算,掌握数轴上的动点问题是解题的关键.。
北师大版七年级(上)期末数学模拟试卷(含答案)
北师大版七年级(上)期末数学模拟试卷一、选择题(本大题共10小题,共30分)1.下列说法正确的是()A. 非负数包括零和整数B. 正整数包括自然数和零C. 零是最小的整数D. 整数和分数统称为有理数2.绝对值大于1而小于3的整数是()A. ±1B. ±2C. ±3D. ±43.如果|x−2|=2−x,那么x的取值范围是()A. x<2B. x>2C. x≤2D. x≥24.|−12|的值是()A. −12B. 12C. −2D. 25.下列是具有相反意义的量的是()A. 向东走5米和向北走5米B. 身高增加2厘米和体重减少2千克C. 胜1局和亏本70元D. 收入50元和支出40元6.下列调查最适合用全面调查的是()A. 调查某批汽车的抗撞击能力B. 鞋厂检测生产的鞋底能承受的弯折次数C. 了解全班学生的视力情况D. 检测吉林市某天的空气质量7.若|2a|=−2a,则a一定是()A. 正数B. 负数C. 非负数D. 负数或零8.一家三人(父亲、母亲、孩子)准备参加旅行团外出旅游,甲旅行社的优惠方案是:父母买全票,孩子按半价优惠;乙旅行社的优惠方案是:家庭旅游可按团体票计价,即每人均按全价的45收费.若这两家旅行社每人的原票价相同,则这两家旅行社的优惠条件().A. 甲更优惠B. 乙更优惠C. 相同D. 与原票价有关9.变量x,y有如下关系:①x+y=10;②y=−5x;③y=|x−3|;④y2=8x.其中y是x的函数的是()A. ①②③④B. ①②③C. ①②D. ①10.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A. 不赔不赚B. 赚了10元C. 赔了10元D. 赚了50元二、填空题(本大题共6小题,共18分)11.若关于x的方程3x−12=x+a3−1与方程2x+5=3(x+2)的解相同,则a的值为_______.12.若−2a x−3b3与5ab2y−1是同类项,则x+y=________13.已知摄氏温度C与华氏温度F之间的对应关系为C=59(F−32),则其中的变量是__________,常量是__________.14.某音像社对外出租的光盘的收费方法是:每张光盘出租后的头两天,每天收0.8元,以后每天收0.5元,那么一张光盘出租n天(n≥2)应收租金________元.15.“x平方的3倍与−5的差”用代数式表示为:______ .16.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为______ 厘米.三、计算题(本大题共4小题,共26分)17.计算:(1)(−4)×3+(−18)÷(−2)(2)−22+(23−34)×12(3)先化简,再求值:x2−(5x2−4y)+3(x2−y),其中x=−1,y=2.18.解方程:1+x−12=x+26.19.有这样一道题计算13x2−(3x2+3xy−35y2)+83x2+3xy+25y2的值,其中x=−12,y=2,小红同学把x=−12计算错抄成了x=12,但他的计算结果也是正确的,请你解释这是为什么?20.先化简,再求值:x−3(x−13y2)+6(−x+13y2),其中x=−112,y=−2.四、解答题(本大题共6小题,共46分)21.北京航天研究院所属工厂制造“神舟”十号火箭上的一种螺母,要求螺母内径可以有±0.02mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,不足规定内径的毫米数记作负数,检查结果如下:+0.01,−0.018,+0.026,−0.025,+0.015.(1)指出哪个螺母是合格的?(即在误差范围内的)(2)指出合格的螺母中哪个质量最好?(即最接近规定内径)22.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2−(a+b+cd)x+(a+b)2019+(−cd)2020的值.23.为进一步了解A,B,C,D四名老师在学生中受欢迎的程度,学校随机抽取了m个学生进行调查(被调查的学生必须选且只能选其中的一名老师),并将调查结果绘制成了如下两幅不完整的统计图(1)求m和n的值.(2)扇形统计图中,D对应的圆心角的度数是多少?(3)求出C的人数,并补全条形统计图.24.已知:如图,线段AD=10cm,AC=BD=7cm,E,F分别是AB,CD的中点,求EF的长.25.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装的成本价是多少元?26.某地电话拨号上网有两种收费方式,用户可以任选其一:计时制,每分钟0.05元;包月制,每月50元(只限一部宅电上网).此外,每种上网方式都要加收通信费每分钟0.02元.(1)某用户某月上网的时间为a小时,请你写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为选择哪种上网方式较合算?答案和解析1.【答案】D【解析】【分析】本题有理数的概念及分类,易错点为:自然数中包括0,0既不是正数也不是负数,正整数指大于0的整数.根据有理数的概念及分类求解.【解答】解:A.非负数包括零和正数,A错误;B.正整数指大于0的整数,B错误;C.没有最小的整数,C错误;D.整数和分数统称为有理数,这是概念,D正确.故选D.2.【答案】B【解析】【分析】本题主要考查了绝对值的性质,注意不要漏掉−2.绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.求绝对值大于1且小于3的整数,即求绝对值等于2的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,故选B.3.【答案】C【解析】【分析】本题考查了绝对值,解决本题的关键是熟记负数的绝对值为它的相反数,0的绝对值为0.根据负数的绝对值为它的相反数,0的绝对值为0,即可解答.【解答】解:∵|x−2|=2−x,∴x−2≤0,∴x≤2,故选C.4.【答案】B【解析】【分析】本题考查了绝对值的性质.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|−12|=12.故选:B.5.【答案】D【解析】【分析】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.根据相反意义的量的定义对各选项分析判断利用排除法求解.【解答】解:A.向东走5米和向北走5米,不是具有相反意义的量,故本选项错误;B.身高增加2厘米和体重减少2千克,不是具有相反意义的量,故本选项错误;C.胜1局和亏本70元、不是具有相反意义的量,故本选项错误;D.收入50元和支出40元,是具有相反意义的量,故本选项正确.故选D.6.【答案】C【解析】解:A、调查具有破坏性,适合抽样调查,故A错误;B、调查具有破坏性,适合抽样调查,故B错误;C、了解全班学生的视力情况,故C正确;D、无法全面调查,故D错误;故选:C.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【答案】D【解析】【分析】本题主要考查了绝对值的化简.化简|a|主要看a的取值范围,当a≥0时,|a|=a,当a≤0时,|a|=−a,解答此题根据绝对值的化简法则解答即可.【解答】解:∵|2a|=−2a,∴a≤0,故a为负数或0.故选D.8.【答案】B【解析】【分析】本题考查列代数式,关键是分别求出甲、乙旅行社收费费用,相互比较即可得出结果.【解答】解:设每人的全票价为x元(x>0),则甲旅行社收费为:2x+0.5x=2.5x元,乙旅行社收费为:3x×45=2.4x元,∵2.5x>2.4x.∴乙比甲更优惠.故选B.9.【答案】B【解析】【分析】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:根据函数的定义得:y是x函数的是①x+y=10;②y=−5x;③y=|x−3|.当x=1时,在y2=8x中有2个y值与它对应,则y不是x函数.故选B.10.【答案】B【解析】【分析】本题考查了一元一次方程的应用;设盈利的进价是x元,亏本的是y元,根据某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,可列方程求解.【解答】解:设盈利的进价是x元,80−x=60%xx=50设亏本的进价是y元y−80=20%yy=10080+80−100−50=10元.故赚了10元.故选B.11.【答案】−2【解析】【分析】本题考查了同解方程的知识,解答本题的关键是能够求解关于x的方程,要正确理解方程解的含义.先解方程2x+5=3(x+2),然后把x的值代入方程3x−12=x+a3−1,求出a的值.【解答】解:解方程2x+5=3(x+2),解得:x=−1,将x=−1代入方程3x−12=x+a3−1得:a−13−1=−2解得:a=−2.故答案为−2.12.【答案】6【解析】解:∵−2a x−3b3与5ab2y−1是同类项,∴x−3=1,2y−1=3,解得:x=4,y=2,则x+y=4+2=6,故答案为:6利用同类项的定义求出x与y的值,代入原式计算即可得到结果.此题考查了同类项,熟练掌握同类项的定义是解本题的关键.13.【答案】C,F;59,−32【解析】【分析】本题考查了常量与变量的知识,属于基础题,变量是指在一个变化的过程中随时可以发生变化的量.根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【解答】解:C=59(F−32),则其中的变量是C,F,常量是59,−32,故答案为:C,F;59,−32.14.【答案】(0.5n+0.6)【解析】【分析】本题考查了列代数式,根据题意找到合适的等量关系是解题的关键.先求出出租后的头两天的租金,然后用“n−2”求出超出两天的天数,进而求出超出两天后的租金,然后用“头两天的租金+超出两天后的租金”解答即可.【解答】解:当租了n天(n≥2),则应收钱数:0.8×2+(n−2)×0.5,=1.6+0.5n−1,=0.5n+0.6答:共收租金(0.5n+0.6)元.故答案为(0.5n+0.6).15.【答案】3x2+5【解析】解:x平方的3倍与−5的差”用代数式表示为:3x2−(−5)=3x2+5.故答案是:3x2+5.x平方的3倍与−5的差,表示x平方的3倍即3x2与(−5)的差,据此即可列出代数式.本题考查了列代数式,正确理解题意是关键.16.【答案】(50n+10)【解析】解:∵石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,∴每个石棉瓦可用宽度为50cm,∴n(n为正整数)块石棉瓦覆盖的宽度为:(50n+10)cm.故答案为:(50n+10).根据石棉瓦用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,得出每个石棉瓦可用宽度为50cm,即可得出答案.此题主要考查了列代数式,解决问题的关键是读懂题意,得出每个石棉瓦可用宽度.17.【答案】解:(1)(−4)×3+(−18)÷(−2)=−12+9=−3;(2)原式=−4+23×12−34×12=−4+8−9=−5;(3)原式=x2−5x2+4y+3x2−3y=x 2−5x 2+3x 2+4y −3y=−x 2+y ,当x =−1,y =2时,原式=−(−1)2+2=−1+2=1.【解析】(1)先计算乘除法,再计算加减即可得;(2)先计算乘方、利用乘法分配律去掉括号,再计算乘法,最后计算加减可得;(3)先根据整式的混合运算顺序和运算法则化简原式,再将x 、y 的值代入计算可得.本题主要考查有理数的混合运算和整式的化简求值,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.18.【答案】解:去分母得:6+3(x −1)=x +2,去括号得:6+3x −3=x +2,移项合并得:2x =−1,解得:x =−12.【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【答案】解:原式=13x 2−3x 2−3xy +35y 2+83x 2+3xy +25y 2=y 2, 结果与x 的取值无关,故红同学把x =−12计算错抄成了x =12,但他的计算结果也是正确的.【解析】原式去括号合并得到最简结果,即可作出判断.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.【答案】解:原式=x −3x +y 2−6x +2y 2=−8x +3y 2,当x =−112,y =−2时,原式=12+12=24.【解析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)+0.026>0.02,−0.025<−0.02不在要求范围内故不合乎要求,其他均合乎要求,故内径为+0.01,−0.018、+0.015这几个螺母是合格的;(2)越接近0质量越好,+0.01到0的距离小于−0.018和+0.015到0的距离,最接近0所以质量更好,故内径为+0.01这个螺母中质量最好.【解析】本题考查了用正数和负数表示实际物理量时具有相反的意义,而相反的意义的量包含两个因素:一是意义相反例如向东向西,收入支出;二是他们都是量,并且是同类的量.此题属于第二种,以后做题中要加以区分,由题意可以得出只要检查结果在−0.02到+0.02范围内的产品即为合乎要求的,而且结果越接近0质量越好.(1)根据检查结果在−0.02到+0.02范围内的产品即为合乎要求的,进行判断即可;(2)根据结果越接近0质量越好的标准进行判断即可.22.【答案】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵x的绝对值是2,∴x=±2.当x=2时,原式=22−(0+1)×2+02011+(−1)2012=4−2+0+1=3;当x=−2时,原式=(−2)2−(0+1)×(−2)+02011+(−1)2012=4+2+0+1=7.【解析】本题考查了代数式求值,主要利用了相反数的定义,倒数的定义和绝对值的性质,是基础题,熟记概念是解题的关键.根据互为相反数的两个数的和等于0可得a+b=0,乘积是1的两个数叫做互为倒数可得cd=1,绝对值的性质可得x=±2,然后代入代数式进行计算即可得解.23.【答案】解:(1)m=56÷35%=160,×100%=15%,n%=24160即m的值是160,n的值是15;=108°,(2)360°×48160即D对应的圆心角度数是108°;(3)C的人数:160−24−56−48=32,补全的条形统计图如右图所示.【解析】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据B的人数和所占的百分比可以求得m的值,进而求得n的值;(2)根据统计图中的数据可以计算出D对应的圆心角的度数;(3)根据(1)中m的值可以求得喜欢C的人数,并补全条形统计图.24.【答案】解:由线段的和差,得AB=AD−BD=10−7=3cm,CD=AD−AC=10−7=3cm.由E,F分别是AB,CD的中点,得AE=12AB=32cm,DF=12CD=32cm.由线段的和差,得EF=AD−AE−DF=10−32−32=7cm,所以EF的长为7cm.【解析】【试题解析】本题考查了两点间的距离,线段的中点,利用线段的和差是解题关键.根据线段的和差,可得AB、CD的长,根据线段中点的性质,可得AE、DF的长,根据线段的和差,可得答案.25.【答案】解:设这种服装每件的成本为x元,根据题意得:80%(1+40%)·x−x=15,解得x=125.答:这种服装每件的成本为125元.【解析】本题考查的知识点是一元一次方程的应用.解题关键是熟练掌握列方程解应用题的一般步骤.先设这种服装每件的成本为x元,再根据“成本价×(1+40%)×0.8−成本价=利润”列出方程,然后解方程求出x即可得出成本价.26.【答案】解:(1)a小时=60a分钟,计时制:(0.05+0.02)⋅60a=0.07⋅60a=4.2a,包月制:50+0.02⋅60a=50+1.2a;(2)计时制:4.2a=4.2×20=84(元),包月制:50+1.2a=50+1.2×20=74(元),∵74<84,∴用包月制方式较为合算.【解析】此题主要考查了列代数式,并比较哪种花费便宜的问题,关键是弄清题意列出式子.(1)首先统一时间单位,计时制:每分钟(0.05+0.02)元×时间=花费;包月制:50元+每分钟0.02元×时间=花费;(2)把x=20代入(1)中的代数式计算出花费,进行比较即可.。
北师大版七年级上册数学期末模拟试卷及答案
北师大版七年级上册数学期末模拟试卷及答案一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<<2.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( )A .16070x x -=B .106070x x +-=C .70x =60x+60D .60x =70x-703.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985 B .-1985 C .2019 D .-20194.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >05.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .156.a 是不为1的有理数,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A .3B .23C .12-D .无法确定7.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣8 8.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-19.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn10.下列方程为一元一次方程的是( )A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y +y =0 11.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.一个角的余角是这个角的补角的三分之一,则这个角的度数是_____________ .14.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.15.若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____.16.计算:[(5)11](3)-+÷-=________.17.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.18.一个角的余角为50°,则这个角的补角等于_____.19.若25m n a b 与569a b -是同类项,则m n +的值是____.20.关于x 的方程()212a x x -=-的解为__________.21.将图中的三角形纸片沿AB 折叠所得的AB 右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.22.一幅三角尺按如图方式摆放,且1∠的度数比2∠的度数大50,则2∠的大小为__________度.三、解答题23.将一三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由;(4)三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD <90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.24.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了200元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出100元之后,超出部分按原价9折优惠.设某位顾客在元旦这天预计累计购物x 元(其中200x >).(1)当350x =时,顾客到哪家超市购物优惠;(2)当x 为何值时,顾客到这两家超市购物实际支付的钱数相同.25.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面,如果我们要同时用两种不同的正多边形镶嵌平面.可能设计出几种不同的组合方案?猜想1:是否可以同时用正方形.正八边形两种正多边形组合进行平面镶嵌?验证l:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程: ()82180903608x y -⨯+=,整理得: 238,x y += 我们可以找到方程的正整数解为12x y =⎧⎨=⎩结论1:镶嵌平面时.在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.26.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.27.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是 ;(2)当x= 时,点P 到点M 、点N 的距离之和是6;(3)如果点P 以每秒钟1个单位长度的速度从点O 向右运动时,点M 和点N 分别以每秒钟4个单位长度和每秒钟2个单位长度的速度也向右运动,且三点同时出发,那么几秒钟时点P 到点M ,点N 的距离相等?28.(阅读材料)数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示.这样能够运用数形结合的方法解决一些问题,例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|31|2-=;在数轴上,有理数5与2-对应的两点之间的距离为|5(2)|7--=;在数轴上,有理数2-与3对应的两点之间的距离为|23|5--=;在数轴上,有理数8-与5-对应的两点之间的距离为|8(5)|3---=;……如图1,在数轴上有理数a 对应的点为点A ,有理数b 对应的点为点,,B A B 两点之间的距离表为||-a b 或||b a -,记为||||||AB a b b a =-=-.(解决问题)(1)数轴上有理数10-与5-对应的两点之间的距离等于______,数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为______,若数轴上有理数x 与5-对应的两点,A B 之间的距离||2AB =,则x 等于_______.(拓展探究)(2)如图2,点,,M N P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x .①若点P 在点,M N 两点之间,则||||PM PN +=______;②若||2||PM PN =,即点P 到点M 的距离等于点P 到点N 的距离的2倍,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.3.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.4.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.5.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.6.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.7.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.8.D解析:D【解析】【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案.【详解】∵232-m a b 和45n a b 是同类项∴2m=4,n=3∴m=2,n=3∴=231m n --=-故选D .【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.9.B解析:B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.10.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.11.D解析:D【解析】【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a、b的值得出结论-a<0,-a>b,-b >0,-b>a,题目比较好,是一道比较容易出错的题目.12.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13.45°【解析】【分析】设这个角的度数为x°,分别表示出这个角的余角和补角,根据题意列出方程,即可求解.【详解】解:设这个角的度数为x°,则这个角的余角为(90-x)°、补角为(180-x)解析:45°【解析】【分析】设这个角的度数为x°,分别表示出这个角的余角和补角,根据题意列出方程,即可求解.【详解】解:设这个角的度数为x°,则这个角的余角为(90-x)°、补角为(180-x)°,根据题意可得:90-x=13(180-x)解得:x=45故答案为:45°【点睛】本题考查余角和补角,属于基础题,解题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.14.【解析】【分析】根据数列得出第n个数为,据此可得前2019个数的和为,再用裂项求和计算可得.【详解】解:由数列知第n 个数为,则前2019个数的和为:====故答案为:.【点 解析:20192020【解析】【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得. 【详解】解:由数列知第n 个数为()11n n +, 则前2019个数的和为:11111 (26122020192020)+++++⨯ =111 (122320192020)+++⨯⨯⨯ =11111111 (2233420192020)-+-+-++- =112020- =20192020故答案为:20192020. 【点睛】 本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法.15.38º【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.解析:38º【解析】【分析】先设这个角为x,然后根据补角的定义和已知的等量关系列出方程解答即可.【详解】解:设这个角为x,由题意得:180°-x+10°=4x,解得x=38°故答案为38°.【点睛】本题考查了补角的定义和一元一次方程,根据题意列出一元一次方程是解答本题的关键.16.-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.解析:-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.17.11【解析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:放入一个小球水面上升:,量筒与原水面高度差:,解析:11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:-÷=,放入一个小球水面上升:(18.514)3 1.5cm-=,量筒与原水面高度差:301416cm÷≈,∵16 1.510.7∴量筒中至少放入11个球,水会溢出.故填:11.【点睛】本题考查有理数的运算,难点在于从图中获取有效信息点,并理清题目中蕴含的数学关系,其次注意计算仔细即可.18.140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.考核知识点:余角和补角.理解定义是关键.19.8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类解析:8【解析】【分析】根据同类项的定义即可求出答案.【详解】由题意可知:m=5,2n=6,∴m=5,n=3,∴m+n=8,故答案为:8【点睛】本题考查同类项,解题的关键是正确理解同类项的定义,本题属于基础题型.20.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的解析:5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的面积之和为y,则AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意可得:(5+y):(10+y)=2:3,∴y=5,故答案为:5.22.20【解析】【分析】根据余角、补角的定义计算.【详解】解:根据题意可知,∠1+∠2=90°,∠1-∠2=50°,所以∠1=70°,∠2=20°.故答案是:20.【点睛】主要考查了余解析:20【解析】【分析】根据余角、补角的定义计算.【详解】解:根据题意可知,∠1+∠2=90°,∠1-∠2=50°,所以∠1=70°,∠2=20°.故答案是:20.【点睛】主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确地从图中找出角之间的数量关系,从而计算出结果.要掌握一副三角板上的特殊角之间的关系.三、解答题23.(1)145°,45°;(2)40°;(3)∠AOC 与∠BOD 互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补.(4)OD⊥AB 时,∠AOD=30°,CD ⊥OB 时,∠AOD=45°,CD ⊥AB 时,∠AOD=75°,OC ⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.24.(1)甲超市;(2)300【解析】【分析】(1)根据超市的销售方式先用x 式表示在甲超市购物所付的费用和在乙超市购物所付的费用,然后将x=350代入确定到哪家超市购物优惠;(2)由(1)得到的购物所付的费用使其相等,求出x ,使两家超市购物所花实际钱数相同.【详解】解:(1)在甲超市购物所付的费用是:200+0.8(x-200)=(0.8x+40)元,在乙超市购物所付的费用是:100+0.9(x-100)=(0.9x+10)元;当x=350时,在甲超市购物所付的费用是:0.8×350+40=320元,在乙超市购物所付的费用是:0.9×350+10=325,所以到甲超市购物优惠;(2)根据题意由(1)得:0.8x+40=0.9x+10,解得:x=300,答:当x=300时,两家超市所花实际钱数相同.【点睛】此题考查的是一元一次方程的应用,关键是用代数式列出在甲、乙两超市购物所需的费用.25.可以,验证与方案见解析.【解析】【分析】在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,根据平面镶嵌的体积可得方程:60x+120y=360.整理得:x+2y=6,求出正整数解即可.【详解】解:可以;验证:在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,正三角形的每个内角的度数为60︒,正六边形的每个内角的度数为()621801206︒︒-•=根据题意,可得方程:60120360x y +=整理得26x y +=方程的正整数解为22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ 所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.【点睛】本题考查了平面镶嵌,正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.也考查了二元一次方程的应用.26.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP (或MN=MP-NP ),即可求出MN 的长度;(2)分-6<a <3及a >3两种情况考虑,由点P 表示的有理数可得出AP 、BP 的长度(用含字母a 的代数式表示),根据三等分点的定义可得出MP 、NP 的长度(用含字母a 的代数式表示),再由MN=MP+NP (或MN=MP-NP ),即可求出MN=6为固定值.【详解】解:(1)若点P 表示的有理数是0(如图1),则AP=6,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=4,NP=23BP=2, ∴MN=MP+NP=6; 若点P 表示的有理数是6(如图2),则AP=12,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=8,NP=23BP=2, ∴MN=MP-NP=6.故答案为:6;6.(2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是a (a >-6且a≠3).当-6<a <3时(如图1),AP=a+6,BP=3-a .∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a<3及a>3两种情况找出MP、NP的长度(用含字母a的代数式表示).27.(1)-1;(2)-4或2;(3)2或1 2【解析】【分析】(1)根据题意列出关于x的方程x-(-3)=1-x,,求出方程的解即可得到x的值;(2)根据题意列出关于x的方程|x-(-3)|+|x-1|=6,,求出方程的解即可得到结果;(3)设t秒时P到M,到N得距离相等,由题意列出方程,求出方程的解即可得到t的值.【详解】解:(1)根据题意得:x-(-3)=1-x,解得:x=-1,故答案为:-1;(2)根据题意得:|x-(-3)|+|x-1|=6,即|x+3|+|x-1|=6,当x<-3时,-x-3-x+1=6,解得:x=-4,当-3≤x≤1时,-x-3+x-1=6,无解;当x>1时,x+3+x-1=6,解得:x=2,综上:x=-4或2;(3)设t秒时点P到点M,点N的距离相等,根据题意得:|-3+4t-t|=|1+2t-t|,即|3t-3|=|t+1|,∵t≥0,当t<-1时,不存在此种情况;当-1≤x ≤1时,3t-3=-t-1,解得:t=12; 当t >1时, 3t-3=t+1,解得:t=2; 综上:t=2或12. 【点睛】此题考查了一元一次方程的应用,以及数轴上两点之间的距离计算方法,行程问题中的基本数量关系是解题关键.28.(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【解析】【分析】(1)根据数轴上A 、B 两点之间的距离||||||AB a b b a =-=-,代入数值运用绝对值可求数轴上任意两点间的距离;由||2AB =可列出关于x 的方程,解方程即可得解; (2)点P 在点M 、N 两点之间时,||||PM PN +即为M 、N 两点之间的距离;由动点P 的位置不同分情况进行讨论求解.【详解】解:(1)由阅读材料可知:①数轴上有理数10-与5-对应的两点之间的距离为()1055---=②数轴上有理数x 与5-对应的两点之间的距离用含x 的式子表示为()55x x --=+ ③∵||2AB =∴52x +=∴52x +=,52x +=-∴3x =-或7x =-;(2)①∵点M 、N 、P 是数轴上的三点,点M 表示的数为4,点N 表示的数为点2-,动点P 表示的数为x ,点P 在点M 、N 两点之间∴()||||426PM PN MN +==--=;②∵||2||PM PN =∴422x x -=+I .当点P 在点N 左侧时,如图:∴()422x x -=--∴8x =-II .当点P 在点M 、N 之间时,如图:∴()422x x -=+∴0x =III .当点P 在点M 右侧时∴()422x x -=+∴8x =-(不合题意舍去)∴综上所述,8x =-或0x =.故答案是:(1)5,5x +,3x =-或7x =-(2)①6②8x =-或0x =【点睛】本题考查了数轴与绝对值的概念的应用,读懂题目信息,理解绝对值的几何意义是解题的关键.。
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数2.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个4.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或35.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1116.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10097.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20138.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人9.计算22221111 (11223320152015)++++++++的结果为( ) A .1 B .20142015C .20152016D .2016201510.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <11.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b >< 12.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( )A .30B .35︒C .40D .4513.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .814.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm16.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条17.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |18.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米19.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定20.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+21.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1522.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >023.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强24.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24025.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=26.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( )A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,627.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快28.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2729.下列各式中运算正确的是( ) A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=30.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .5【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案. 【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数; 故选:D . 【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈. ∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.4.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c > ∴a a =-,b b =,c c =∴a b c a b c ++1111=-++= 故选:A . 【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.5.D解析:D 【解析】 【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数. 【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个, 第②个图案中“●”有:1+4×(1+2)=13个, 第③个图案中“●”有:1+5×(2+2)=21个, 第④个图案中“●”有:1+6×(3+2)=31个, …∴第9个图案中“●”有:1+11×(8+2)=111个, 故选:D . 【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.6.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.7.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=.当32019x=时,解得:673x=,∵673=84×8+1,∴2019不合题意,故A不合题意;当32018x=时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.8.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.9.C解析:C【解析】【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++ =111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.10.B解析:B 【解析】 【分析】先根据点在数轴上的位置,判断出a 、b 的正负,然后再比较出a 、b 的大小,最后结合选项进行判断即可. 【详解】解:由点在数轴上的位置可知:a <0,b <0,|a|>|b|, A 、∵a <0,b <0,∴a+b <0,故A 错误; B 、∵a <b ,∴a-b <0,故B 正确; C 、|a|>|b|,故C 错误; D 、ab >0,故D 错误. 故选:B . 【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.11.C解析:C 【解析】 【分析】此题首先利用同号两数相乘得正判定a ,b 同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a ,b 的符号. 【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.12.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()39018020x x---=解得35x=故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.13.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.C解析:C【解析】【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-4=4(cm),由线段中点的定义,得AM=12AC=12×4=2(cm);②点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的定义,得AM=12AC=12×12=6(cm);故选C.【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.16.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条.故选:A.【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.17.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.18.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.19.B解析:B【解析】【分析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a =,211132a ==--, 312131()2a ==--, 413213a ==-,⋯,由上可得,每三个数一个循环,2019÷3=673,201923a ∴=, 故选:B .【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.20.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.21.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.22.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.23.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.25.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.26.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.27.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.28.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27.故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键. 29.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.30.C解析:C【解析】【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a 个,摆出的六边形有b 个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.。
(完整版)北师大版七年级数学上册期末模拟试卷及答案
(完整版)北师大版七年级数学上册期末模拟试卷及答案一、选择题1.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×222.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个3.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-4.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强5.现有一列数a 1,a 2,a 3,…,a 98,a 99,a 100,其中a 3=2020,a 7=-2018,a 98=-1,且满足任意相邻三个数的和为常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .1985B .-1985C .2019D .-20196.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >07.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =8.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .89.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn10.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =011.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.观察算式:1325+=;23211+=;33229+=;43283+=;532245+=;632731+=;…….则201932019+的个位数字是_____.14.关于x 的方程23x kx -=的解是整数,则整数k 可以取的值是_____________. 15.若350x y -++=,则x -y=_____.16.已知一个角的补角是它余角的10倍,则这个角的度数是_______________ 17.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ......那么第n (n 为正整数)个等式为___________18.作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,再对图(2)的每个边做相同的变化,得到图形如图(3),如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 个图形时,图形的面积_____(填写“会”或者“不会”)变化,图形的周长为________.19.下列图案是我国古代窗格的一部分,其中“O ”代表窗纸上所贴的剪纸,则第51个图中所贴剪纸“O ”的个数为__________.20.关于x 的方程()212ax x -=-的解为__________.21.如图,一个正五边形的五个顶点依次编号为1,2,3,4,5,从某个顶点开始,若顶点编号是奇数,则一次逆时针走2个边长;若顶点编号是偶数,则一次顺时针走1个边长.若从编号2开始走,则第2020次后,所处顶点编号是_____________.22.整个埃及数学最特异之处,是一切分数都化为单位分数之和,即分子为1的分数.在一部记录古埃及数学的《赖因德纸草书》中,有相当的篇幅写出了“2n”型分数分解成单位分数的结果,如:2115315=+;2117428=+;2119545=+,则221n =-________. 三、解答题23.我们知道x 的几何意义是表示在数轴上数x 对应的点与原点的距离;即0x x =-, 这个结论可以推广为: 12x x -表示在数轴上数1x 、2x 对应点之间的距离.如图,数轴上数a 对应的点为点A ,数b 对应的点为点B ,则A ,B 两点之间的距离AB =a b -=-a b . (1)1x +可以表示数 对应的点和数 对应的点之间的距离; (2)请根据上述材料内容解方程11x +=; (3)式子11x x ++-的最小值为 ; (4)式子12x x +--的最大值为 .24.计算及解方程(1)8+(–10)+(–2)–(–5); (2)()100215434-⨯--⨯--.(3)6363(5)x x -+=--; (4)2123148y y ---=. 25.我们通常象这样来比较两个数或两个代数式值的大小:若a-b=0,则a=b ;若a-b <0,则a <b ;若a-b >0,则a >b ,我们把这种方法叫“作差法”. 已知A=5m 3+3m 2-2(52m-12),B=5m 3+5(m 2-m )+5,试比较代数式A 与B 的大小. 26.如图,已知点A 在数轴上对应的数为a ,点B 对应的数为b ,且a ,b 满足()220400a b ++-=.(1)求点A 与点B 在数轴上对应的数a 和b ;(2)现动点P 从点A 出发,沿数轴向右以每秒4个单位长度的速度运动;同时,动点Q 从点B 出发,沿数轴向左以每秒2个单位长度的速度运动,设点P 的运动时间为t 秒. ① 若点P 和点Q 相遇于点C , 求点C 在数轴上表示的数; ② 当点P 和点Q 相距15个单位长度时,直接写出t 的值.27.如图,两条直线AB 、CD 相交于点O ,且∠AOC=∠AOD ,射线OM (与射线OB 重合)绕O 点逆时针方向旋转,速度为15°/s ,射线ON (与射线OD 重合)绕O 点顺时值方向旋转,速度为12°/s ,两射线,同时运动,运动时间为t 秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON 的度数为_____,∠BON 的度数为_____,∠MOC 的度数为_____;(2)当0<t <12时,若∠AOM=3∠AON -60°,试求出t 的值.(3)当0<t <6时,探究72COM BONMON∠+∠∠的值,在t 满足怎样的条件是定值,在t满足怎样的条件不是定值.28.如图,将连续的奇数1,3,5,7,…按图 中的方式排成一个数表,用一个十字框框住5个数,这样框出的意5个数(如图2)分别用,,,,a b c d x 表示. (1)若17x =,则a b c d +++=______.(2)用含x的式子分别表示数a、b、c、d.a b c d x这5个数之间的一个等量关系:______.(3)直接写出,,,,=++++,判断M的值能否等于2020,请说明理由.(4)设M a b c d x【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.4.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a1=a4,a2=a5,a3=a6,从而得到每三个数为一个循环组依次循环,再求出a100=a1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数, ∴a 1+a 2+a 3=a 2+a 3+a 4, a 2+a 3+a 4=a 3+a 4+a 5, a 3+a 4+a 5=a 4+a 5+a 6, ∴a 1=a 4,a 2=a 5,a 3=a 6, ∴原式为每三个数一个循环; ∵a 3=2020,a 7=-2018,a 98=-1, ∵732÷=…1,98332÷=…2, ∴a 1= a 7=-2018,a 2=a 98=-1, ∴a 1+a 2+a 3=-2018-1+2020=1; ∵100333÷=…1, ∴a 100=a 1=-2018; ∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100 =133********⨯-=-; 故选择:B. 【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.6.C解析:C 【解析】 【分析】先根据数轴判定a 、b 、a+b 、a-b 的正负,然后进行判定即可. 【详解】 解:由数轴可得, b <﹣2<0<a <2, ∴a +b <0,故选项A 错误, |b |>|a |,故选项B 错误, a ﹣b >0,故选项C 正确, a •b <0,故选项D 错误, 故答案为C . 【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.7.C解析:C 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b 是常数且a≠0). 【详解】解:A 、含有两个未知数,不是一元一次方程,选项错误; B 、不是方程是不等式,选项错误;C 、符合一元一次方程定义,是一元一次方程,正确;D 、未知项的最高次数为2,不是一元一次方程,选项错误. 故选:C . 【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.D解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3, ∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.9.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=,1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn , 所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.10.B解析:B 【解析】 【分析】根据一元一次方程的定义即可求出答案. 【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y =3,两个未知数;B. y+3=0,符合;C. x 2﹣2x =0,指数是2;D.1y+y =0,不是整式方程. 故选:B . 【点睛】考核知识点:一元一次方程.理解定义是关键.11.D解析:D 【解析】 【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.12.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.二、填空题13.【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35解析:【解析】【分析】首先找出31,32,33,34,35,36⋯32019的末位数字的规律,再求出32019+2019的末位数字即可.【详解】∵31=3,32=9,33=27,34=81,35=243,36=729⋯∴末位数字分别是3,9,7,1,每四组一个循环,∵2019÷4=504⋯3,∴32019的末位数字是7,因此,32019+2019的末位数字是6.故答案为6.本题考查了数学的变化规律,知道末位数字每四组一循环是解题的关键.14.【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,,,,要使方程的解是整数,则必须是整数,∴可以取的整数有:、,则整数解析:1,3,5±【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,23x kx -=,()23k x -=,32x k =-, 要使方程的解是整数,则32k-必须是整数, ∴2k -可以取的整数有:±1、3±,则整数k 可以取的值有:±1、3、5.故答案是:±1、3、5.【点睛】本题考查方程的整数解,解题的关键是理解方程解的定义.15.8【解析】【分析】根据几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0,知x ﹣3=0且y+5=0,求得x 、y 的值,代入求解可得.【详解】∵|x﹣3|+|y+5|=0,∴x﹣3=0解析:8【解析】【分析】根据几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0,知x ﹣3=0且y +5=0,求得x 、y 的值,代入求解可得.∵|x ﹣3|+|y +5|=0,∴x ﹣3=0且y +5=0,则x =3,y =﹣5,∴x ﹣y =3﹣(﹣5)=3+5=8. 故答案为8.【点睛】本题考查了绝对值和非负数的性质,解题的关键是掌握任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.16.【解析】【分析】设这个角的度数为x ,则其补角为,余角为,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为,余角为,根据题意可得:,解得,解析:80︒【解析】【分析】设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据题意可得:()1801090x x -=-,解得80x =,故答案为:80︒.【点睛】本题考查余角和补角,用方程思想解决问题是解题的关键.17.【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,解析:()()22212124n n n +--=⨯【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍, ()()()2221212212124n n n n n +--=++-=⨯. 故答案为:()()22212124n n n +--=⨯. 【点睛】 本题考查了数字类的变化规律,通过观察,分析、归纳并发现其中的规律,本题的关键规律是左边是两个连续奇数的平方差,右边是这两个奇数和的2倍.18.不会【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,6解析:不会 32n a +【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,64a ,128a ,…,32n a +,即无限增加,所以不断发展下去到第n 次变化时,图形的周长为32n a +;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a 2.故答案为:不会、32n a +.【点睛】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键.19.155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n 个图形的剪纸“○”的表达式,再把n =51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸解析:155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n个图形的剪纸“○”的表达式,再把n=51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸“○”,第2个图形有8个剪纸“○”,第3个图形有11个剪纸“○”,……,依此类推,第n个图形有(3n+2)个剪纸“○”,当n=51时,3×51+2=155.故答案为:155.【点睛】本题是对图形变化规律的考查,属于常考题型,观察出后一个图形比前一个图形多3个剪纸“○”是解题的关键.20.【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得解析:2221axa+ =+【解析】【分析】方程去括号,移项合并,把x系数化为1,即可表示出解.【详解】解:方程a2(x﹣1)=2﹣x,去括号得:a2x﹣a2=2﹣x,移项合并得:(a2+1)x=a2+2,解得:x=2221aa++.故答案为:x=2221aa++.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到解析:5【解析】【分析】根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.【详解】解:根据题意,从编号为2的顶点开始,第1次移位到点3,第2次移位到达点1,第3次移位到达点4,第4次移位到达点5,第5次移位到达点3,第6次移位到达点1,第7次移位到达点4,第8次移位到达点5,…依此类推,可以发现结果按四次移位为一次循环,即按照3,1,4,5循环,∵2020÷4=505,∴第2020次移位为第505个循环的第4次移位,到达点5.故答案为:5.【点睛】本题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.22.【解析】【分析】根据已知的三个等式得到规律,由此计算出答案.【详解】∵=,=,=,∴,故答案为:.【点睛】此题考查代数式的规律探究,能依据已知的代数式得到数据变化的规律是解题的 解析:11(21)n n n +- 【解析】【分析】根据已知的三个等式得到规律,由此计算出答案.【详解】 ∵2115315=+=1111(51)5(51)22++⨯+, 2117428=+=1111(71)7(71)22++⨯+, 2119545=+=1111(91)9(91)22++⨯+, ∴1111(211)(21)(211)22221n n n n +=-+-⨯-+=-11(21)n n n +-, 故答案为:11(21)n n n +-. 【点睛】此题考查代数式的规律探究,能依据已知的代数式得到数据变化的规律是解题的关键. 三、解答题23.(1)x ,1-;(2)2-或0;(3)2;(4)3【解析】【分析】(1)把|x+1|变形为|x-(-1)|可以得到解答.(2)画出到-1对应的点距离为1的点,再找出其所对应的数即可;(3)根据|x+1|+|x−1| 表示x 到-1对应的点和1对应的点的距离和进行求解;(4)|x+1|−|x−2| 表示x 到-1对应的点和2对应的点的距离差求解 .【详解】解:(1)∵|x+1| =|x-(-1)|,∴|x+1| 可以表示数 x 对应的点和数-1对应的点之间的距离;故答案为x ,-1;(2)由(1)知,|x+1| 表示数 x 对应的点和数-1对应的点之间的距离,∴|x+1|=1 的解即为到-1对应的点距离为1的点所表示的数,所以由下图可得x=-2或x=0;(3)∵|x+1|+|x−1| 表示x 到-1对应的点和1对应的点的距离和,又当x 表示的点在-1和1表示的点之间(包括-1和1)时,|x+1|+|x−1|取得最小值,最小值即为-1和1表示的点之间的距离,为2;(4)∵|x+1|−|x−2| 表示x 到-1对应的点和2对应的点的距离差,∴当x ≤-1时,|x+1|−|x−2|= -3,当x ≥2时,|x+1|−|x−2|=3,当12x -<<时,-3<|x+1|−|x−2|<3,∴式子 |x+1|−|x−2| 的最大值为3.【点睛】本题考查绝对值算式的几何意义,利用绝对值算式的几何意义把绝对值算式的计算转化为数轴上两点距离的求法是解题关键.24.(1)1;(2)-9;(3)x=-6;(4)y=72 【解析】【分析】(1)根据有理数的减法法则进行变形,再运用加法法则进行计算即可得到答案;(2)先进行乘方运算和去绝对值,然后再进行乘法运算,最后进行加减运算即可得到答案;(3)先去括号,然后移项,化系数为1,从而得到方程的解;(4)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)解:8+(–10)+(–2)–(–5)=8-10-2+5=1;(2)()100215434-⨯--⨯--=-1×5-(-12)-16=-5+12-16=-9;(3)6363(5)x x -+=--去括号,得-6x+3=6-3x+15移项,得-6x+3x=6+15-3合并同类项,得-3x=18系数化为1,得x=-6(4)2123148y y ---= 去分母,得2(2y-1)-(2y-3)=8去括号,得4y-2-2y+3=8移项,得4y-2y=8+2-3合并同类项,得2y=7系数化为1,得y=72【点睛】本题考查了有理数的混合运算以及解一元一次方程,熟练掌握运算法则是解答此题的关键.25.A <B .【解析】【分析】先计算A-B ,求A-B 与0的大小关系,从而即可比较A 与B 的大小.【详解】 解:∵A=5m 3+3m 2-2(52m-12),B=5m 3+5(m 2-m )+5, ∴A-B=5m 3+3m 2-5m+1-5m 3-5m 2+5m-5=-2m 2-4<0,则A <B .故答案为:A <B.【点睛】本题考查了整式的加减运算. 26.(1)20a =-,40b =;(2)①20; ②7.5t =或12.5秒【解析】【分析】(1)由绝对值和偶次方的非负性即可求出a 、b 值;(2)①t 秒后P 点表示的数为:204-+t ,t 秒后Q 点表示的数为:402-t ,根据t 秒后P 点和Q 点表示的是同一个数列式子即可得出t 的值;②分当P 和Q 未相遇时相距15个单位及当P 和Q 相遇后相距15个单位列式子即可得出答案.【详解】解:(1)由题意中绝对值和偶次方的非负性知,200a +=且 400b -=.解得20a =-,40b =.故答案为:20a =-,40b =.(2)① P 点向右运动,其运动的路程为4t ,t 秒后其表示的数为:204-+t ,Q 点向左运动,其运动的路程为2t ,t 秒后其表示的数为:402-t ,由于P 和Q 在t 秒后相遇,故t 秒后其表示的是同一个数,∴204402t t -+=-解得 10t =.∴此时C 在数轴上表示的数为:2041020-+⨯=.故答案为:20.② 情况一:当P 和Q 未相遇时相距15个单位,设所用的时间为1t故此时有:114+21540(20)+=--t t解得17.5=t 秒情况二:当P 和Q 相遇后相距15个单位,设所用的时间为2t故此时有:224+21540(20)-=--t t解得212.5=t 秒.故答案为:7.5t =或12.5秒【点睛】本题考查了一元一次方程的应用、两点间的距离、数轴、绝对值以及偶次方的非负性,根据两点间的距离结合线段间的关系列出一元一次方程是解题的关键.27.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COM BONMON∠+∠∠=()()7901529012159012t tt t︒︒︒︒︒︒︒-++++=810812790tt︒︒︒-+(不是定值),②如图所示,当103<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴72COM BONMON∠+∠∠=()()790152901227027t tt︒︒︒︒︒︒-++-=8108127027tt︒︒︒︒--=3(定值),综上所述,当0<t<103时,72COM BONMON∠+∠∠的值不是定值,当103<t<6时,72COM BONMON∠+∠∠的值是3.【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.28.(1)68(2)12a x =-,2b x =-,2c x =+,12d x =+(3)4a b c d x +++=(4)M 的值不能等于2020,理由见解析【解析】【分析】(1)根据图片信息可得到a 、b 、c 、d 的值,再将它们相加即可得解;(2)根据图片信息可发现a 、b 、c 、d 的值与x 的关系,从而可用含x 的式子表示出他们的值;(3)在(2)结论的基础上,将它们相加即可得到五个数之间的数量关系;(4)在(3)结论的基础上进行计算可得404x =,这与已知条件产生矛盾,从而得到结论.【详解】解:(1)∵17x =∴17125a =-=,17215b =-=,17219c =+=,171229d =+=∴515192968a b c d +++=+++=;(2)∵观察图片可知,a 比x 小12,b 比x 小2,c 比x 大2,d 比x 大12 ∴12a x =-,2b x =-,2c x =+,12d x =+;(3)∵12a x =-,2b x =-,2c x =+,12d x =+∴()()()()1222125a b c d x x x x x x x ++++=-+-+++++=∴4a b c d x +++=;(4)结论:M 的值不能等于2020理由:∵4a b c d x +++=∴5M a b c d x x =++++=∴当52020x =时,404x =∵404是偶数,而图片中的所有数均为奇数∴M 的值不能等于2020.故答案是:(1)68(2)12a x =-,2b x =-,2c x =+,12d x =+(3)4a b c d x +++=(4)M 的值不能等于2020,理由见解析【点睛】本题考查了一元一次方程的应用以及列代数式,仔细阅读图表排列规律,观察出其余四个数与最中间的数的关系是解题的关键.。
北师大版七年级上册数学期末模拟试卷(含答案)
北师大版七年级上册数学期末模拟试卷(含答案)一、选择题1.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度2.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-20203.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10094.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20135.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( ) A .1个B .2个C .3个D .4个6.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3617.下列四个选项中,不是正方体展开图形的是( )A .B .C .D .8.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >> B .0,0a b <> C .0,0a b << D .0,0a b >< 9.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒ C .40 D .45 10.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .711.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn12.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元 B .赚了12元C .亏损了12元D .不亏不损13.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .814.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >016.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个17.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =18.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +2019.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A .B .C .D .20.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强21.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=22.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,623.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7-24.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >025.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-7026.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 27.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 28.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-29.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .1013cmC .25cmD .30cm30.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >0【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为. 【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度, 故选:D . 【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.2.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1, 323a a =-+=-2, 434a a =-+=-2,5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.3.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.4.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时,解得:671x ,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.5.B解析:B【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】一元一次方程有x+1=0,12x=12,共2个,故选:B.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.6.D解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.7.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.9.B解析:B【解析】【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x)°,余角的度数为(90-x)°,代入等量关系即可求解.【详解】设:这个角的度数是x,则补角的度数为180-x,余角的度数为90-x,由题意得:()()---=x x39018020x=解得35故选B.【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.10.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.11.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.12.C解析:C【解析】试题分析:设第一件衣服的进价为x元,依题意得:x(1+25%)=90,解得:x=72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y元,依题意得:y(1﹣25%)=90,解得:y=120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C.点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.13.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a 2=a 6=a 10=…=-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12= 0∵a 1+a 2+a 3+a 4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.16.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.18.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.19.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.22.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.23.B解析:B【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b<0,a>0,且|b|>|a|,A、a-b>0,故本选项符合题意;B、a+b<0,故本选项不合题意;C、ba<0,故本选项不合题意;D 、ab <0,故本选项不合题意.故选:A .【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.25.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.26.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项.【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 27.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D .【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.28.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】 解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.29.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm,底面直径等于30πcm,∴底面周长=3030ππ⋅=cm,∴BC=20cm,AC=12×30=15(cm),∴AB2222201525AC BC+=+=(cm).答:它需要爬行的最短路程为25cm.故选:C.【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.30.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.。
北师大版七年级上册数学期末模拟试卷及答案
北师大版七年级上册数学期末模拟试卷及答案一、选择题1.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( )A .a b b a -<<-<B .a b b a >->>-C .b a b a <-<-<D .a b b a -<-<< 2.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( )A .3B .4C .5D .6 3.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2 B .-2C .-27D .27 4.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快5.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( )A .方案一B .方案二C .方案三D .不能确定 6.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数7.求1+2+22+23+...+22019的值,可令S =1+2+22+23+...+22019,则2S =2+22+23+...+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+ (52019)值为( )A .52019-1B .52020-1C .2020514-D .2019514- 8.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .9.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >0 10.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .811.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn12.下列说法中正确的是( )A .0不是单项式B .316X π的系数为16C .27ah 的次数为2D .365x y +-不是多项式二、填空题13.按下面程序计算,若开始输入x 的值为正整数,最后输出的结果为506,则满足条件的所有x 的值是___________.14.有30个数据,其中最大值为40,最小值为19,若取组距为4,则应该分成____组.15.计算(0.04)2018×[(﹣5)]2018的结果是_____.16.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b ()//b a 把绳子再剪一次时,绳子就被剪为9段;若用剪刀在虚线,a b 之间把绳子再剪若干次(剪刀的方向与a 平行).按上述规律用剪刀一共剪2020次时绳子的段数是________.17.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =12(AC +AF ),②BE =12AF ,③BE =12(AF ﹣CD ),④BC =12(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).18.统计得到的一组数据有 80 个,其中最大值为 141,最小值为 50,取组距为 10,可以分成 _______________组.19.作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,再对图(2)的每个边做相同的变化,得到图形如图(3),如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 个图形时,图形的面积_____(填写“会”或者“不会”)变化,图形的周长为________.20.观察下列等式:①9011⨯+=;②91211⨯+=;③92321⨯+=;④93431⨯+=;⑤94541⨯+=;……作出猜想,它的第n 个等式可表示为__________(n 为正整数).21.我们知道,一个两位数的十位数字为a ,个位数字为b ,其中09a <≤,09b ≤≤,且a ,b 都为整数,这个两位数可以表示为10a b +.观察下列各式:2323÷101=23,4545÷101=45,5151÷101=51,7979÷101=79,……,根据以上等式,猜想:()()101010110a b a b +÷+=______.22.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2013,最少经过_____次操作.三、解答题23.解下列方程:(1)4﹣4(x ﹣3)=2(9﹣x )(2)221153x x x ---=- 24.计算: (1)212(3)6(2)()3⨯--÷-⨯-(2)2313(3)(6)76÷-+⨯-+ 25.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 26.如图,点C 、D 为线段上两点,75AD BC AB +=(1)若9AC BD +=,求线段CD 的长.(2)若AC BD m +=,则线段CD 等于(用含m 的式子表示).27.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?28.如图,直线l 有上三点M ,O ,N ,MO =3,ON =1;点P 为直线l 上任意一点,如图画数轴.(1)当以点O 为数轴的原点时,点P 表示的数为x ,且点P 到点M 、点N 的距离相等,那么x 的值是________;(2)当以点M 为数轴的原点时,点P 表示的数为y ,当y = 时,使点P 到点M 、点N 的距离之和是5;(3)若以点O 为数轴的原点,点P 以每秒2个单位长度的速度从点O 向左运动时,点E 从点M 以每秒1个单位长度速度向左运动,点F 从点N 每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P 、点E 、点F 表示的数之和为-20.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可. 【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.2.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键.3.C解析:C【解析】【分析】将x=-m代入方程,解出m的值即可.【详解】将x=-m代入方程可得:-4m-3m=2,解得:m=-27.故选:C.【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.4.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.5.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m (1-20%)20%=0.36m ;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..6.D解析:D【解析】【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;故选:D .【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.7.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+ (5)2020)-(1+5+52+53+…52019),4S=52020-1, 所以,1+5+52+53+…+52019 =2020514- 故选C .【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.8.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.10.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B .【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.11.B解析:B【解析】【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案.【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn , 所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.12.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案.【详解】解:(A )0是单项式,故A 错误;(B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误;故选C .【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.二、填空题13.101或20【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】∵最后输出的解析:101或20【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出506,可得方程51506x +=,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】∵最后输出的结果为506,∴第一个数就是直接输出其结果时:51506x +=,则101x =>0;第二个数就是直接输出其结果时:51101x +=,则20x =>0;第三个数就是直接输出其结果时:5120x +=,则 3.8x =,不是正整数,不符合题意; 故x 的值可取101、20这2个.故答案为:101或20.【点睛】本题主要考查了代数式的求值和解方程的能力,注意理解题意与逆向思维的应用是解题的关键.14.6【解析】40-19=21,21÷4=5.25,故应分成6组.解析:6【解析】40-19=21,21÷4=5.25,故应分成6组.15..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815. 【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】 原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815=. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.16.【解析】【分析】根据题意分析出n=1时,绳子的段数由原来的1根变为了5根,即多出了4段;n=2时,绳子为1+8段,多出了4×2段;即每剪一次,就能多出4段绳子,所以,剪n 次时,多出4n 条绳子,解析:8081【解析】【分析】根据题意分析出n=1时,绳子的段数由原来的1根变为了5根,即多出了4段;n=2时,绳子为1+8段,多出了4×2段;即每剪一次,就能多出4段绳子,所以,剪n 次时,多出4n 条绳子,即绳子的段数为1+4n .据此规律即可求解.【详解】∵n=1时,绳子为5段;n=2时,绳子为1+8段;;∴剪n 次时,绳子的段数为1+4n ;剪2020次时,绳子的段数是:1420208081+⨯=(段) .故答案为:8081.【点睛】本题主要考查了图形类的规律探索,关键是运用数形的思想分析出每剪一次,就能多出4段绳子.17.① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=,CE=EF=,再根据线段和与查的计算方法逐一推导即可.【详解】∵点是线段的中点,点是线段的中点,∴AB=BD=,C解析:① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=12AD ,CE=EF=12CF ,再根据线段和与查的计算方法逐一推导即可.【详解】∵点B 是线段AD 的中点,点E 是线段CF 的中点,∴AB=BD=12AD ,CE=EF=12CF ()()()()()()1211122211222112212AE AB BEAD BD CE CD AD AD CF CD AC CD AD CF CD AC CD AF CD AC CD AF CD =+=++-⎛⎫=++- ⎪⎝⎭=+++-=++-=++- ()12AC AF =+,故①正确;()()11221212BE BD DEBD CE CDAD CF CD AD CF CD AF CD CD =+=+-=+-=+-=+- ()12AF CD =-,故②错误,③正确; ()1212BC BD CDAD CD AC CD CD =-=-=+- ()12AC CD =-,④正确 故答案为①③④.【点睛】 此题考查的是线段的和与差,掌握各个线段之间的关系和中点的定义是解决此题的关键. 18.10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,解析:10【解析】【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.19.不会【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,6解析:不会 32n a +【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,64a ,128a ,…,32n a +,即无限增加,所以不断发展下去到第n 次变化时,图形的周长为32n a +;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a 2.故答案为:不会、32n a +.【点睛】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键.20.【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1解析:()()911011n n n -+=-+【解析】【分析】根据所给几个等式可以看出:这几个等式中左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【详解】解:根据分析知:第n 个式子是9(n-1)+n=10(n-1)+1=10n-9,即9(n-1)+n=10n-9.故答案为:9(n-1)+n=10n-9.【点睛】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系.21.101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10解析:101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10a+b)=101.故答案为:101.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.22.【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2B解析:【解析】【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证S△A2B2C2=7S△A1B1C1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2013,最少经过4次操作.故答案为:4.【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题23.(1)1x =-;(2)13x =-【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,然后移项合并,即可得到答案.【详解】解:(1)去括号得:4﹣4x +12=18﹣2x ,移项合并得:﹣2x =2,解得:x =﹣1;(2)去分母得:15x ﹣3x +6=10x ﹣5﹣15,移项合并得:2x =﹣26,解得:x =﹣13.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握运算法则进行解题.24.(1)17;(2)253 【解析】【分析】(1)先算乘方运算,除法化乘法,得到1129623⎛⎫⎛⎫⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭,再进行乘法运算即可求解;(2)先算乘方运算,去绝对值符号,得到()()1927676÷-+⨯-+,再算乘除,最后算加减,即可求解.【详解】 解:(1)原式1129623⎛⎫⎛⎫=⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭181=-17=(2)原式()()1927676=÷-+⨯-+ ()1173⎛⎫=-+-+ ⎪⎝⎭ 253= 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则为解题关键.25.-x 2y ;3.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=﹣2x 2y ﹣(2xy -2xy ﹣x 2y )= ﹣2x 2y ﹣2xy +2xy +x 2y =﹣x 2y .当x =3,y 13=-时,原式=2133⎛⎫-⨯- ⎪⎝⎭=3. 【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.26.(1)6;(2)23CD m =. 【解析】【分析】(1) 把AC +BD =9代入AD +BC =75AB 得出75(9+CD )=2CD +9,求出方程的解即可.(2)把AC +BD =m 代入AD +BC =75AB 得出75(m +CD )=2CD +m ,求出方程的解即可.【详解】解:(1)∵75AD BC AB +=,AB =AC +CD +BD +CD , AC +BD =9,AB =AC +BD +CD , ∴75(9+CD )=2CD +9, 解得CD=6(2)AC +BD =m ,AB =AC +BD +CD ,∴75(a +CD )=2CD +m ,解得:CD =23m . 【点睛】本题考查了两点间的距离,得出关于CD 的方程是解此题的关键.27.(1)2;(2)1cm ;(3)910秒或116秒 【解析】【分析】 (1)将x =﹣3代入原方程即可求解;(2)根据题意作出示意图,点C 为线段AB 上靠近A 点的三等分点,根据线段的和与差关系即可求解;(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解.【详解】(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k ,解得:k =2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.28.(1)-1;(2)-0.5或4.5;(3)t =3【解析】【分析】(1)根据已知条件先确定点M 表示的数为3-,点N 代表的数为1,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离相等列出关于x 的方程,解含绝对值的方程即可得解.(2)根据已知条件先确定点N 表示的数为3-,进而利用数轴上两点之间的距离公式、以及点P 到点M 、点N 的距离之和等于5列出关于y 的方程,解含绝对值的方程即可得解.(3)设运动时间为t 秒,根据已知条件找到等量关系式,列出含t 方程即可求解.【详解】(1)∵点O 为数轴的原点,3OM =,1ON =∴ 点M 表示的数为3-,点N 代表的数为1∵点P 表示的数为x ,且点P 到点M 、点N 的距离相等∴()31x x --=-∴1x =-故答案是:1-(2)∵点M 为数轴的原点,3OM =,1ON =∴ 点N 代表的数为4∵点P 表示的数为y ∴PM y =,4PN y =-∵点P 到点M 、点N 的距离之和是5 ∴45y y +-=∴0.5y =-或 4.5y =故答案是:0.5-或4.5(3)设运动时间为t 秒P 点表示的数为2t -,E 点表示的数为3t --,F 点表示的数为13t -()()231320t t t -+--+-=-618t -=-3t =答:求运动3秒时点P 、点E 、点F 表示的数之和为20-.【点睛】本题考查了数轴上的两点之间的距离、绝对值方程以及动点问题,难度稍大,需认真审题、准确计算方可正确求解.。
北师大版(完整版)七年级数学上册期末模拟试卷及答案
北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+2.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .1009 3.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-4.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20135.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人 6.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式7.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 8.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是( ) A .30 B .35︒ C .40 D .45 9.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .710.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( ) A .亏损8元B .赚了12元C .亏损了12元D .不亏不损11.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=12.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .813.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .514.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或315.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0 16.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <0 17.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD18.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .1519.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强20.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24021.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块 22.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=23.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,624.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 25.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱 B .旅客上高铁列车前的安检 C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量26.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-27.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-< D .a b b a -<-<<28.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .13C .25cmD .30cm29.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2230.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .9【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.B解析:B 【解析】【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.3.D解析:D 【解析】 【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案. 【详解】从数轴上可以看出b <0<a ,|b|>|a |, ∴-a <0,-a >b ,-b >0,-b >a , 即b <-a <a <-b , 故选D . 【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.4.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=.当32019x=时,解得:673x=,∵673=84×8+1,∴2019不合题意,故A不合题意;当32018x=时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.5.D解析:D【解析】【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确;B、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.C解析:C【解析】【分析】根据单项式与多项式的概念即可求出答案. 【详解】解:(A )0是单项式,故A 错误; (B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误; 故选C . 【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.7.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .8.B解析:B 【解析】 【分析】列方程解决问题,本题等量关系是3×余角-补角=20°,设这个角的度数为x°,则补角的度数为(180-x )°,余角的度数为(90-x )°,代入等量关系即可求解. 【详解】设:这个角的度数是x ,则补角的度数为180-x ,余角的度数为90-x ,由题意得:()()39018020x x ---=解得35x = 故选B . 【点睛】本题考察了列方程解应用题,解题过程中要注意解应用题的步骤,正确找到等量关系是本题的关键.9.B解析:B 【解析】 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组.故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.10.C解析:C 【解析】试题分析:设第一件衣服的进价为x 元, 依题意得:x (1+25%)=90,解得:x =72, 所以盈利了90﹣72=18(元). 设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120, 所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元). 故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.11.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.12.D解析:D 【解析】 【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8. 【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环, ∵2019÷4=504…3,∴22019的末位数字是8. 故选:D 【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.13.C解析:C 【解析】 【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案. 【详解】设摆出的正方形有a 个,摆出的六边形有b 个,依题意有 3a +1+5b +1-1=60, 3a +5b =59,当a =3时,b =10,t =13; 当a =8时,b =7,t =15; 当a =13时,b =4,t =17; 当a =18时,b =1,t =19. 故t 可以取4个不同的值. 故选:C . 【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.14.A解析:A 【解析】 【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得. 【详解】 ∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负 ∵0a b c ++=∴a ,b ,c 的符号为1负2正 令0a <,0b >,0c >∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.15.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.16.A解析:A【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数.详解:∵ab >0,∴a 与b 同号,又a+b <0,则a <0,b <0.故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】根据点C 是线段AD 的中点,可得AD=2AC=2CD ,再根据2BD>AD ,可得BD> AC= CD ,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.19.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.21.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.22.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.23.B解析:B【解析】【分析】根据m在[5,15]内,n在[20,30]内,可得nm的一切值中属于整数的有2010,248,205,25 5,305,依此即可求解.【详解】∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴nm的一切值中属于整数的有20210=,2438=,2045=,2555=,3065=,综上,那么nm的一切值中属于整数的有2,3,4,5,6.故选:B.【点睛】本题考查了有理数、整数,关键是得到5≤m≤15,20≤n≤30.24.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C .【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念. 25.B解析:B【解析】A 、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B 、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C 、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D 、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B .26.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】 解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.27.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.28.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm ,底面直径等于30πcm , ∴底面周长=3030ππ⋅=cm ,∴BC =20cm ,AC =12×30=15(cm ), ∴AB 2222201525AC BC +=+=(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.29.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A、-22=-4,(-2)2=4,不相等,故A错误;B、23=8,32=9,不相等,故B错误;C、-33=(-3)3=-27,相等,故C正确;D、(-3×2)2=36,-32×22=-36,不相等,故D错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.30.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学期末模拟检测试卷及答案(1)【本试卷满分120分,测试时间120分钟】一、选择题(每小题3分,共36分)1.一个数为10,另一个数比10的相反数小2,则这两个数的和为( )A.18B.-2C.-18D.22.如图是由一些相同的小正方体构成的立体图形从三个不同方向看得到的图形,这些相同的小正方体的个数是( )A.4B.5C.6D.73.计算( )A.2B.-2C.-4 017D.04.数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.a b >B.a b >-C.a b <D.a b -<-5.如图是一无盖的正方体盒子,下列展开图不能叠合成无盖正方体的是( )6.已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E 及AE 的中点F ,那么AF 等于AB 的( ) A.41 B.83 C.81 D.163 7.如果是方程31的解,那么关于的方程的解是( )A.-10B.0C.34D.48.下列各对数中,数值相等的是( )A.与B.与C.与D.与9.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A.80元B.85元C.90元D.95元10.若与是同类项,则的值为( )A.3B.4C.5D.611.时钟9点30分时,分针和时针之间形成的角的大小等于( )A.75°B.90°C.105°D.120°12.某商场为促销,按如下规定对顾客实行优惠:①若一次购物不超过200元,则不予优惠;②若一次购物超过200元,但不超过500元,按标价给予九折优惠;③若一次购物超过500元,其中500元按第2条规定给予优惠,超过500元部分给予八折优惠. 某人两次去购物,分别付款168元与423元,如果他把这两次购买的商品一次购买,则应付( )元.A.522.8B.510.4C.560.4D.472.8二、填空题(每小题3分,共30分)13.某运动员在东西方向的公路上练习跑步,跑步的情况记录如下(设向东为正,单位:m ):1 000,-1 200,1 100,-800,900.该运动员共跑的路程为_________m .14.如图是一个数值转换机,若输入的值为-1,则输出的结果应为__________.15. “神舟八号”飞船与“天宫一号”目标飞行器经过捕获、缓冲、拉近、锁紧4个步骤,成功对接,形成组合体,对接时速达到28 000 km 以上.数据28 000用科学记数法表示为___________.16.已知,,且 ,则 的值等于___________.17.已知关于x 的一元一次方程b x x +=+2301121的解为2=x ,那么关于y 的一元一次方程b y y ++=++)()(123101121的解为 . 18.已知,,,,,…,根据前面各式的规律可猜测:_________.19.若方程是关于的一元一次方程,则_________.20.如图所示,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且 ∠BOE =31∠EOC ,∠DOE =60°,则∠EOC 的大小是____________. 21.已知线段AB =1 996 cm ,P 、Q 是线段AB 上的两个点,且线段AQ =1 200 cm ,线段BP =1 050 cm ,则线段PQ =___________.22.如图,点O 在直线AB 上,∠COE =90°,∠BOD =90°.(1)图中除∠COE 、∠BOD 外,是直角的还有__________;(2)图中相等的锐角有__________.三、解答题(共54分)23.(6分)先化简,后求值: 已知02132=⎪⎭⎫ ⎝⎛-++y x ,求代数式2223234712331291xy xy y x x y x x -++++-的值. 24.(6分)如图,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠DOE =90°.(1)求出∠BOD 的度数;(2)请通过计算说明OE 是否平分∠BOC .25.(5分)已知关于的方程332-=-bx x a 的解是,其中,且,求代数式a b b a -的值.26.(5分)某公司存入银行甲、乙两种不同性质的存款共20万元,甲种存款的年利率为1.4%,乙种存款的年利率为3.7%,一年后该公司共得利息6 250元,问两种存款各为多少元? 分析:相等关系为:甲种存款的利息+乙种存款的利息=总利息.27.(7分)某中学组织40名教师去外地参观学习.可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的汽车不留空座,也不超载.(1)请给出不同的租车方案(至少三种);(2)若8个座位的汽车的租金是300元/天,4个座位的汽车的租金是100元/天,请你设计出费用最少的租车方案,并说明理由.28.(7分)某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了________名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于__________度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是__________.29.(8分)某班参加数学兴趣小组的人数比参加绘画兴趣小组的人数的2倍少12,两个兴趣小组都参加的为3人,两个兴趣小组都不参加的为30人,全班人数为60.(1)参加数学兴趣小组和绘画兴趣小组的各有多少人?(2)只参加数学兴趣小组的有多少人?占全班的百分比为多少?(3)只参加绘画兴趣小组的有多少人?占全班的百分比为多少?(4)请根据以上计算的数据,画出只喜欢数学的人数,只喜欢绘画的人数,既喜欢数学又喜欢绘画及二者皆不喜欢的人数占全班百分比的扇形统计图.30.(8分)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?参考答案一、选择题1.B 解析:∵ 10的相反数是-10,∴ 比10的相反数小2的数是-12,∴ 这两个数的和为10+(-12)=-2,故选B .2.B 解析:第一行第一列只能有1个正方体,第二列共有3个正方体,第一行第三列有1个正方体,共需正方体1+3+1=5(个),故选B .3.D 解析:.4.C 解析:由数轴可知,|a |>b ,a <0,b >0,∴ a <b ,故选C .5.C 解析:由正方体展开图的特征可知,A 、B 、D 可以拼成无盖的正方体,只有C 不能,故选C .6.D 解析:由题意可作出下图:结合形图和题意可知:AF =21AE =41AD , 而AD =AB -BD =AB -21BC =AB -41AB =43AB , ∴ AF =41AD =41×43AB =163AB ,故选D . 7.B 解析:将代入31,得31,解得.将代入得,解得,故选B.8.B 解析:A.,,不相等;B.,,相等;C.,,不相等;D.,,不相等.故选B.9.C 解析:设该商品的进货价为元,根据题意列方程得,解得.故选C .10.C 解析:∵ 与是同类项,∴ ,,解得:,,∴ .故选C .11.C 解析:3×30°+15°=105°,∴ 分针与时针所成的角是105°,故选C .12.C 解析:第二次的价格是423÷0.9=470(元),两次合并,则总价格是:168+470=638(元),应付500×90%+(638-500)×80%=450+138×0.8=450+110.4=560.4(元),选C .二、填空题13.5 000 解析:|1 000|+|-1 200|+|1 100|+|-800|+|900|=1 000+1 200+1 100+800+900=5 000(m ).14.7 解析:依题意,所求代数式为当时,原式15.16.±4 解析:∵ ,,∴ ,.而 ,∴ ,或,.当,时,;当,时,.故答案为±4.17. 解析:将看作整体可知方程b y y ++=++)()(1231011 21的解为,所以.18. 解析:从,,,三个等式中,可以看出等式左边最后一个数+1再除以2即得到等式右边幂的底数, 2132+=,2153+=,2174+=,从而得n n =+-2112, 即:.故答案为:. 19.-2 解析:由一元一次方程的特点得:,,解得:. 20. 90° 解析:设∠BOE 为,则∠DOB .由OD 平分∠AOB ,得∠AOB =2∠DOB , 故有,解方程得,所以∠EOC =90°,故答案为90°.21. 254 cm 解析:如图,由题意得:AQ +BP =AB +PQ =1 200+1 050=2 250(cm ),∴ PQ =2 250-1 996=254(cm ).22.∠AOD ;∠COB =∠DOE 解析:(1)∵ 点O 在直线AB 上,且∠BOD =90°,∴ ∠AOD =180°-90°=90°.(2)∵ ∠COE =90°,∴ ∠COB +∠BOE =∠DOE +∠BOE ,∴ ∠COB =∠DOE .三、解答题23.解:由02132=⎪⎭⎫ ⎝⎛-++y x 得,,解得,. 将代数式化简得 2223234712331291xy xy y x x y x x -++++- 7412323191222233+-++-+=xy xy y x y x x x 7894223+++=xy y x x . 将,代入得 原式72138213394223+⨯-⨯+⨯-+-⨯=)()()()( 2162911762912-=+-=+-+-=. 24.解:(1)因为OD 平分∠AOC ,∠AOC =50°,所以∠AOD =21∠AOC =25°,所以∠BOD =180°-25°=155°. (2)因为∠BOE =180°-∠DOE -∠AOD =180°-90°-25°=65°,∠COE =90°-25°=65°,所以∠BOE =∠COE ,即OE 平分∠BOE .25.分析:根据方程解的定义,把方程的解代入原方程得到关于a 、b 的一个关系式,再将其代入ab b a -,即可求出所求代数式的值. 解:把代入原方程,得33222-=-b a ,整理得b a 34=, 将b a 34=代入a b b a -,得b b b b 3434-=4334-=127. 26.解:设甲种存款为万元,则乙种存款为万元.依题意得,解之得,则.答:甲种存款为5万元,乙种存款为15万元.27.解:(1)方案一:8×4=32(人),40-32=8(人),8÷4=2(辆),故租4辆8人座车,2辆4人座车;方案二:8×3=24(人),40-24=16(人),16÷4=4(辆),故租3辆8人座车,4辆4人座车;方案三:8×2=16(人),40-16=24(人),24÷4=6(辆),故租2辆8人座车,6辆4人座车;方案四:8×1=8(人),40-8=32(人),32÷4=8(辆),故租1辆8人座车,8辆4人座车;方案五:40÷8=5(辆),故租5辆8人座车;方案六:40÷4=10(辆),故租10辆4人座车.(2)根据方案可依次求出方案的钱数:方案一的费用:300×4+100×2=1 400(元);方案二的费用:300×3+100×4=1 300(元);方案三的费用:300×2+100×6=1 200(元);方案四的费用:300×1+100×8=1100(元);方案五的费用:300×5=1 500(元);方案六的费用:100×10=1 000(元).租用10辆4人座的客车时,用钱最少为1 000元.28.分析:(1)根据条形图可知喜欢阅读“小说”的有80人,根据在扇形图中所占比例得出调查学生总数;(2)根据条形图可知阅读“其他”的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据喜欢阅读“科普常识”的学生所占比例,即可估计该年级喜欢阅读“科普常识”的人数.解:(1)80÷40%=200(人),故这次活动一共调查了200名学生.(2)20÷200×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36°.(3)200-80-40-20=60(人),即喜欢阅读“科普常识”的学生有60人,补全条形统计图如图所示:(4)60÷200×100%=30%,600×30%=180(人),故估计该年级喜欢阅读“科普常识”的人数为180.29.解:(1)设参加绘画兴趣小组的人数为,则参加数学兴趣小组的人数为,由题意得,解得.则.即参加绘画兴趣小组的有15人,参加数学兴趣小组的有18人.(2)只参加数学兴趣小组的人数为18-3=15,占全班的百分比为15÷60×100%=25%.(3)只参加绘画兴趣小组的人数为15-3=12,占全班的百分比为12÷60×100%=20%.(4)由题意可知既喜欢数学又喜欢绘画的人数占全班的百分比为3÷60×100%=5%,二者皆不喜欢的人数占全班的百分比为30÷60×100%=50%.绘制扇形统计图如图所示:30.解:(1)设该中学库存x 套桌凳,则甲修完需要16x 天,乙修完需要816+x 天, 由题意得:2081616=+-x x , 解方程得:.答:该中学库存960套桌凳.(2)设①②③三种修理方案的费用分别为、、元, 则(元),(元),(元),综上可知,选择方案③更省时省钱.。