高二数学同步答案
高二数学选修1-2全册同步练习2、1章末
1章末一、选择题1.在画两个变量的散点图时,下面哪个叙述是正确的( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在y 轴上 C .可以选择两个变量中任意一个变量在x 轴上 D .可以选择两个变量中任意一个变量在y 轴上 [答案] B[解析] 在统计中,y 称为预报变量,在y 轴上,x 称为解释变量,在x 轴上. 2.已知x 与y 之间的一组数据:x 0 1 2 3 y1357则y 与x 的线性回归方程y =b ^x +a 必过( ) A .(2,2)点 B .(1.5,0)点 C .(1,2)点D .(1.5,4)点[答案] D[解析] 计算得x =1.5,y =4,由于回归直线一定过(x ,y )点,所以必过(1.5,4)点. 3.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )p (K 2>k ) 0.50 0.40 0.25 0.15 0.10 k 0.455 0.708 1.323 2.072 2.706 p (K 2>k ) 0.05 0.025 0.010 0.005 0.001 k3.84 5.0246.6357.87910.83A.25%C .2.5%D .97.5%[答案] D[解析] 查表可得K 2>5.024.因此有97.5%的把握认为“x 和y 有关系”. 二、填空题4.有下列关系:(1)人的年龄与他(她)拥有的财富之间的关系;(2)曲线上的点与该点的坐标之间的关系;(3)苹果的产量与气候之间的关系;(4)森林中的同一种树木,其断面直径与高度之间的关系;(5)学生与他(她)的学号之间的关系,其中有相关关系的是________.[答案] (1)(3)(4)5.若由一个2×2列联表中的数据计算得K 2的观测值k =4.01,那么有________把握认为两个变量有关系.[答案] 95%[解析] ∵k =4.013>3.841,故有95%的把握认为两个变量有关系.6.线性回归模型y ^=b ^x +a ^+e ^中,b ^=__________,a ^=________,e ^称为________.[答案] ∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2y -b ^x 随机误差 7.硕士和博士生毕业的一个随机样本给出了关于所获取学位类别与学生性别的分类数据如表.根据表中数据,认为获取学位类别与性别______.(填“无关”或“有关”)[答案] 有关[解析] K 2=340×(162×8-27×143)2189×151×305×35=7.343>6.635故有99%的把握认为获取学位类别与性别有关. 三、解答题8.假定小麦基本苗数x (千棵)与成熟期有效穗数y (千棵)之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图; (2)求y 与x 之间的线性回归方程;(3)求相关指数R 2,并说明基本苗数对有效穗数变化的贡献率. [解析] (1)散点图如图所示:(2)由散点图可以看出x 与y 之间具有线性相关关系,设线性回归方程为y ^=b ^x +a ^. 计算可得b ^≈0.291,a ^≈34.664.故所求线性回归方程为y ^=0.291x +34.664(3)相关指数R 2=1-Σ5i =1 (y i -y ^i )2Σ5i =1(y i -y )2≈0.832.所以基本苗数对有效穗数约贡献了83.2%.。
人教版高二上学期数学(选择性必修二)《4.4数学归纳法》同步测试题带答案
人教版高二上学期数学(选择性必修二)《4.4数学归纳法》同步测试题带答案一、单选题1.利用数学归纳法证明不等式1111()2321nf n ++++<-(2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了( ) A .12k -项 B .2k 项 C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++,在验证1n =成立时,左边所得的代数式是( )A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++=()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是( ) A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321nn ++++<-,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是( ) A .2kB .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证( ) A .1n k =+时等式成立 B .2n k =+时等式成立 C .22n k =+时等式成立 D .()22n k =+时等式成立6.现有命题:()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是( ) A .不能用数学归纳法判断此命题的真假 B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题 二、多选题7.用数学归纳法证明不等式11111312324++++>++++n n n n n 的过程中,下列说法正确的是( ) A .使不等式成立的第一个自然数01n = B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++ D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++n n n n n 的过程中,下列说法正确的是( ) A .使不等式成立的第一个自然数01n = B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++ D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为 . 10.用数学归纳法证明:()()122342n n n -+++++=(n 为正整数,且2n)时,第一步取n = 验证. 四、解答题11.用数学归纳法证明:()*11111231n n n n +++>∈+++N 12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:1.证明当0n n =(0n ∈N )时命题成立;2.假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.如7321=⨯+,则7mod31=;再如3703=⨯+,则3mod73=.当mod 0a b =时,则称b 整除a .现从序号分别为0a 1a 2a 3a …n a 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a . (1)求10mod3;(2)当1n ≥时 ()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.参考答案1.B【分析】根据给定条件,探讨n 从k 变到1k +不等式左边增加的部分即可得解. 【详解】当(2,N )n k k k *=≥∈时,不等式左边为11112321k++++- 当1n k =+时,不等式左边为11111111232122121k k k k +++++++++-+-增加的项为111111122121221221k k k k k k k++++=++++-++-,共有2k 项. 故选:B 2.C【分析】根据题意结合数学归纳法分析判断.【详解】当1n =时212113n +=⨯+=,所以左边为123++. 故选:C. 3.D【分析】由数学归纳法的证明步骤可得答案. 【详解】由数学归纳法的证明步骤可知: 当1n =时,等式的左边是1234+++. 故选:D . 4.A【分析】列出增加的项,即可得解.【详解】从n k =到1n k =+成立时,左边增加的项为12k 121k + (1121)k +- 因此增加的项数是21012k k --+=.故选:A . 5.B【分析】直接利用数学归纳法的证明方法分析判断即可.【详解】由数学归纳法的证明步骤可知,假设n k =(2k ≥,k 为偶数)时命题为真 还需要再证明下一个偶数,即2n k =+时等式成立. 故选:B 6.B【分析】直接用数学归纳法证明可得答案.【详解】①当1n =时,左边1=,右边1=,左边=右边,即1n =时,等式成立; ①假设()*1,n k k k =≥∈N 时,等式成立即1111123456(1)(1)442k k k k ++⎛⎫-+-+-++-=+-+ ⎪⎝⎭则当1n k =+时 121211123456(1)(1)(1)(1)(1)(1)442k k k k k k k k ++++⎛⎫-+-+-++-+-+=-++-+ ⎪⎝⎭211(1)1442k k k +⎛⎫=+-+-- ⎪⎝⎭ 2111(1)442k k ++⎛⎫=+-+ ⎪⎝⎭即当1n k =+时,等式成立. 综上,对任意n +∈N 等式1111123456(1)(1)442n n n n ++⎛⎫-+-+-++-=+-+ ⎪⎝⎭恒成立 所以ACD 错误. 故选:B . 7.BC【分析】根据数学归纳法逐项分析判断. 【详解】当1n =时,可得113224<;当2n =时,可得111413342424+=>; 即使不等式成立的第一个自然数02n =,故A 错误,B 正确; 当n k =时,可得1111123k k k k k++++++++; 当1n k =+时,可得11111232122k k k k k k ++++++++++;两式相减得:()()1111212212122k k k k k +-=+++++ 所以n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++,故C 正确,D 错误;故选:BC. 8.BC【分析】根据数学归纳法逐项分析判断. 【详解】当1n =时,可得113224<;当2n =时,可得111413342424+=>; 即使不等式成立的第一个自然数02n =,故A 错误,B 正确; 当n k =时,可得1111123k k k k k++++++++; 当1n k =+时,可得11111232122k k k k k k ++++++++++; 两式相减得:()()1111212212122k k k k k +-=+++++ 所以n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++,故C 正确,D 错误;故选:BC.9.()22133(2)k x x x -+++【分析】按数学归纳法写出证明过程即可得答案.【详解】设当n k =时 ()121*(1)(2)k k x x k +-+++∈N 能被233x x ++整除所以1n k =+时 221(1)(2)k k x x +++++()12211(1)(2)(2)k k x x x x +-=+++++()1212211(1)(1)(2)(33)(2)k k k x x x x x x x +--=+++++++++ ()1212211[(1)(2)](33)(2)k k k x x x x x x +--=++++++++因此必须有代数式()22133(2)k x x x -++⋅+. 故答案为:()22133(2)k x x x -++⋅+10.2【分析】利用数学归纳法证明的步骤一:取证明的命题对象中的最小自然数,即可得出. 【详解】用数学归纳法证明:()()122342n n n -+++++=(n 为正整数,且2n ≥)时第一步取2n =验证. 故答案为:2. 11.证明见解析【分析】利用数学归纳法的证明步骤进行证明即可. 【详解】①当1n =时,左边11113123412=++=>,左边>右边,不等式成立; ①假设n k =时不等式成立,即11111231k k k +++>+++ 则当1n k =+时,左边()()111112313231311k k k k k =+++++++++++ ()()1111111123113231311k k k k k k k ⎛⎫=+++-+++ ⎪++++++++⎝⎭ ()()()22616111211132343191889189k k k k k k k k k ⎡⎤++>++-=+->⎢⎥+++++++⎢⎥⎣⎦即当1n k =+时,不等式也成立. 由①①可知,原不等式成立. 12.(1)10mod31= (2)()5,33f =,答案见解析(3)()()1,221mod 2kf n n ⎡⎤+=+⎣⎦,证明见解析【分析】(1)用模取余法可求结论;(2)由()()()6,35,33mod60f f =+= ()5,35f < 可求()5,3f ;从1n +个人中选出一个幸运者时,幸运者的序号下标为()1,f n m +,从n 个人中选出一个幸运者时,幸运者的序号下标为(),f n m ,后者的圆环可以认为是前者的圆环退出一人而形成的,可推得结论; (3)取1,2,3,4,5,6,7n =时,分别求得()2,20f = ()3,22f = …… ()8,20f =;可得当1212k k n +≤+<(k ∈N )时()()1,221mod 2k f n n ⎡⎤+=+⎣⎦,进而利用数学归纳法证明即可.【详解】(1)因为10331=⨯+,所以10mod31=. (2)因为()()()6,35,33mod60f f =+=,且()5,35f < 所以()5,336f +=,故()5,33f =.当n m ≥时,递推关系式的实际意义:当从1n +个人中选出一个幸运者时,幸运者的序号下标为()1,f n m + 而从n 个人中选出一个幸运者时,幸运者的序号下标为(),f n m .如果把二者关联起来,后者的圆环可以认为是前者的圆环退出一人而形成的 当然还要重新排序,由于退出来的是1m a -,则原环的m a 就成了新环的0a 也就是说原环的序号下标要比新环的大m ,原环的n a 就成了新环的n m a -. 需要注意,新环序号n m a -后面一直到1n a -,如果下标加上m ,就会超过n . 如新环序号1n m a -+对应的是原环中的0a ,…,新环序号1n a -对应的是原环中的2m a -. 也就是说,得用新环的序号下标加上m 再减去()1n +,才能在原环中找到对应的序号 这就需要用模取余,即()()()()1,,mod 1f n m f n m m n +=++. (3)由题设可知()1,20f =,由(2)知:()()()2,21,22mod22mod20f f =+==; ()()()3,22,22mod32mod32f f =+==; ()()()4,23,22mod44mod40f f =+==; ()()()5,24,22mod52mod42f f =+==; ()()()6,25,22mod64mod64f f =+==; ()()()7,26,22mod76mod76f f =+==; ()()()8,27,22mod88mod80f f =+==;由此推测,当1212k k n +≤+<(k ∈N )时 ()()1,221mod 2k f n n ⎡⎤+=+⎣⎦.下面用数学归纳法证明:1.当0112n +==时()()01,2021mod 2f ==,推测成立;2.假设当12k n t +=+(k ∈N ,t ∈N 且02k t ≤<)时推测成立即()()2,222mod 22k k kf t t t ⎡⎤+=+=⎣⎦.由(2)知()()()()21,22,22mod 21k k kf t f t t ++=++++()()22mod 21k t t =+++.(①)当021k t ≤<-时 ()()21,222221mod 2k k kf t t t ⎡⎤++=+=++⎣⎦; (①)当21k t =-时 ()21,20kf t ++=,此时1212k k t +++= 即()()1112,222mod 2k k k f +++=.故当121k n t +=++时,推测成立.综上所述,当1212k k n +≤+<(k ∈N )时 ()()1,221mod 2kf n n ⎡⎤+=+⎣⎦.推测成立.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言; (3)将已知条件代入新定义的要素中; (4)结合数学知识进行解答.。
高二数学人教A版选择性必修第二册第五章5.3.2 第1课时 函数的极值同步练习及解析答案
高中数学人教A 版(新教材)选择性必修第二册5.3.2第1课时 函数的极值一、选择题1.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( ) A .-x 0是-f (-x )的极小值点 B .对任意x ∈R ,f (x )≤f (x 0) C .-x 0是f (-x )的极小值点 D .x 0是-f (x )的极大值点2.已知函数f (x )的导函数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(0,1)D .(-1,0)3.函数f (x )的导函数f ′(x )的图象如图所示则( )A .12为f (x )的极大值点B .-2为f (x )的极大值点C .2为f (x )的极大值点D .45为f (x )的极小值点4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ) A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9xD .y =x 3+6x 2-9x5.已知a 为常数,函数f (x )=x ln x -ax 2+x 有两个极值点,则实数a 的取值范围为( ) A .⎝⎛⎭⎫0,e2 B .(0,e) C .⎝⎛⎭⎫e 2,eD .⎝⎛⎭⎫e 2,e 26.(多选题)定义在R 上的可导函数y =f (x )的导函数的图象如图所示,以下结论正确的是( )A .-3是f (x )的一个极小值点B .-2和-1都是f (x )的极大值点C .f (x )的单调递增区间是(-3,+∞)D .f (x )的单调递减区间是(-∞,-3)7.(多选题)若函数f (x )=x 3+2x 2+a 2x -1有两个极值点,则a 的值可以为( ) A .0 B .1 C .2 D .3 二、填空题8.已知函数f (x )=13x 3-12x 2+cx +d 无极值,则实数c 的取值范围为________.9.若可导函数f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,则f ′(1)=________,1是函数f (x )的________值.10.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.11.已知函数f (x )=(x 2-mx -m )e x +2m (m ∈R ,e 是自然对数的底数)在x =0处取得极小值,则m =________,这时f (x )的极大值是________.12.已知函数f (x )=x e 2x -1,则函数f (x )的极小值为________,零点有________个. 三、解答题13.已知函数f (x )=x 3+ax 2+bx -1,曲线y =f (x )在x =1处的切线方程为y =-8x +1. (1)求函数f (x )的解析式;(2)求y =f (x )在区间(-1,4)上的极值.14.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1是函数的极大值点还是极小值点,并说明理由. 15.已知函数f (x )=2x 2-kx +ke x (k ∈R ).(1)k 为何值时,函数f (x )无极值?(2)试确定k 的值,使f (x )的极小值为0.参考答案一、选择题 1.答案:A答案:对于A ,函数-f (-x )与函数f (x )的图象关于原点对称,因此-x 0是-f (-x )的极小值点;对于B ,极值是一个局部性概念,因此不能确定在整个定义域上f (x 0)是否最大;对于C ,函数f (-x )与函数f (x )的图象关于y 轴对称,因此-x 0是f (-x )的极大值点;对于D ,函数f (x )与函数-f (x )的图象关于x 轴对称,因此x 0是-f (x )的极小值点,故D 错误. 2.答案:D解析:∵f ′(x )=a (x +1)(x -a ),若a <-1,∴f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增,∴f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值,符合题意;若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. 3.答案:A解析:对于A 选项,当-2<x <12时,f ′(x )>0,当12<x <2时,f ′(x )<0,12为f (x )的极大值点,A 选项正确; 对于B 选项,当x <-2时,f ′(x )<0,当-2<x <12时,f ′(x )>0,-2为f (x )的极小值点,B 选项错误;对于C 选项,当12<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,2为f (x )的极小值点,C 选项错误;对于D 选项,由于函数y =f (x )为可导函数,且f ′⎝⎛⎭⎫45<0,45不是f (x )的极值点,D 选项错误. 故选A. 4.答案:B解析:∵三次函数过原点,故可设为y =x 3+bx 2+cx ,∴y ′=3x 2+2bx +c . 又x =1,3是y ′=0的两个根,∴⎩⎨⎧1+3=-2b 3,1×3=c3,即⎩⎪⎨⎪⎧b =-6,c =9,∴y =x 3-6x 2+9x , 又y ′=3x 2-12x +9=3(x -1)(x -3),∴当x =1时,f (x )极大值=4 , 当x =3时,f (x )极小值=0,满足条件,故选B.] 5.答案:A解析:[f ′(x )=ln x +2-2ax ,函数f (x )有两个极值点,则f ′(x )有两个零点,即函数y =ln x 与函数y =2ax -2的图象有两个交点,当两函数图象相切时,设切点为(x 0,y 0),对函数y=ln x 求导(ln x )′=1x ,则有⎩⎪⎨⎪⎧y 0=ln x 0,y 0=2ax 0-2,1x 0=2a ,解得⎩⎪⎨⎪⎧y 0=-1,x 0=1e ,a =e 2,要使函数图象有两个交点,则0<2a <e ,即0<a <e2.故选A.]6.答案:ACD解析:当x <-3时,f ′(x )<0,x ∈(-3,+∞)时f ′(x )≥0,∴-3是极小值点,无极大值点,增区间是(-3,+∞),减区间是(-∞,-3).故选ACD. 7.答案:AB解析:∵f (x )=x 3+2x 2+a 2x -1,∴f ′(x )=3x 2+4x +a 2.∵函数f (x )=x 3+2x 2+a 2x -1有两个极值点,则f ′(x )=3x 2+4x +a 2与x 轴有两个交点, 即Δ=42-4×3×a 2>0解得-233<a <233,故满足条件的有AB.故选AB.二、填空题8.答案:⎣⎡⎭⎫14,+∞解析:∵f ′(x )=x 2-x +c ,要使f (x )无极值,则方程f ′(x )=x 2-x +c =0没有变号的实数解,从而Δ=1-4c ≤0,∴c ≥14.9.答案:0 极大解析:[由题意可知,当x <1时,f ′(x )>0,当x >1时,f ′(x )<0, ∴f ′(1)=0,1是函数f (x )的极大值.] 10.答案:4解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2取得极值, 所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0. ① 又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0, ②联立①②可得a =-1,b =0,所以f ′(x )=3x 2-6x =3x (x -2). 当f ′(x )>0时,x <0或x >2;当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=0+c ,极小值为f (2)=-4+c , 故函数的极大值与极小值的差为0-(-4)=4,故答案为4. 11.答案:0 4e -2解析:由题意知f ′(x )=[x 2+(2-m )x -2m ]e x ,由f ′(0)=-2m =0,解得m =0, 则f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,令f ′(x )=0,解得x =0或x =-2,故函数f (x )的单调递增区间是(-∞,-2),(0,+∞),单调递减区间是(-2,0), 所以函数f (x )在x =-2处取得极大值,且有f (-2)=4e -2. 12.答案:-12e-1 1解析:∵f (x )=x e 2x -1,f ′(x )=e 2x +2x e 2x =(1+2x )e 2x , 令f ′(x )=0,可得x =-12,如下表所示:所以,函数y =f (x )的极小值为f ⎝⎛⎭⎫-12=-12e -1,f (x )=0⇒e 2x =1x, 则函数y =f (x )的零点个数等于函数y =e 2x 与函数y =1x的图象的交点个数,如图所示:两个函数的图象有且只有一个交点,即函数y =f (x )只有一个零点. 三、解答题13.解: (1)因为f (x )=x 3+ax 2+bx -1,所以f ′(x )=3x 2+2ax +b . 所以曲线y =f (x )在x =1处的切线方程的斜率k =f ′(x )|x =1=f ′(1)=3+2a +b . 又因为k =-8,所以2a +b =-11. ① 又因为f (1)=1+a +b -1=-8×1+1, 所以a +b =-7, ②联立①②解得a =-4,b =-3. 所以f (x )=x 3-4x 2-3x -1.(2)由(1)知,f ′(x )=3x 2-8x -3=3⎝⎛⎭⎫x +13(x -3), 令f ′(x )=0得,x 1=-13,x 2=3.当-1<x <-13,f ′(x )>0,f (x )单调递增;当-13≤x <3,f ′(x )<0,f (x )单调递减;当3≤x <4,f ′(x )>0,f (x )单调递增.所以f (x )在区间(-1,4)上的极小值为f (3)=-19,极大值为f ⎝⎛⎭⎫-13=-1327. 14.解: f ′(x )=3ax 2 +2bx +c , (1)法一:∵x =±1是函数的极值点, ∴x =±1是方程3ax 2+2bx +c =0的两根.由根与系数的关系知⎩⎨⎧-2b3a=0, ①c3a =-1, ②又f (1)=-1,∴a +b +c =-1,③由①②③解得a =12,b =0,c =-32.法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0, ① 3a -2b +c =0, ②又f (1)=-1,∴a +b +c =-1, ③由①②③解得a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时f ′(x )>0,当-1<x <1时,f ′(x )<0.∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数. ∴当x =-1时,函数取得极大值,x =-1为极大值点; 当x =1时,函数取得极小值,x =1为极小值点.15.解: (1)∵f (x )=2x 2-kx +k e x ,∴f ′(x )=-2x 2+(k +4)x -2ke x .要使f (x )无极值,只需f ′(x )≥0或f ′(x )≤0恒成立即可. 设g (x )=-2x 2+(k +4)x -2k ,∵e x >0,∴f ′(x )与g (x )同号. ∵g (x )的二次项系数为-2,∴只能满足g (x )≤0恒成立,∴Δ=(k +4)2-16k =(k -4)2≤0,解得k =4,∴当k =4时,f (x )无极值. (2)由(1)知k ≠4,令f ′(x )=0,得x 1=2,x 2=k2.①当k2<2,即k <4时,当x 变化时,f ′(x ),f (x )的变化情况如下表:由题意知f ⎝⎛⎭⎫k 2=0,可得2·⎝⎛⎭⎫k 22-k ·k 2+k =0,∴k =0,满足k <4. ②当k2>2,即k >4时,当x 变化时,f ′(x ),f (x )的变化情况如下表:由题意知f (2)=0,可得2×22-2k +k =0,∴k =8,满足k >4.综上,当k=0或k=8时,f (x)有极小值0.。
全国高二高中数学同步测试带答案解析
全国高二高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、填空题1.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是________.2.已知集合A ={1,2,3,4},B ={5,6,7},C ={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合 ,则一共可以组成集合的个数为________.3.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种类是________(用数字作答).4.210的正约数有________个.5.计算C 82+C 83+C 92=________.6.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成________个平行四边形.7.7名志愿者安排6人在周六、周日参加上海世博会宣传活动,若每天安排3人,则不同的安排方案有________种(用数字作答).8.若C 12n =C 122n-3,则n =________.9.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种.10.某区有7条南北向街道,5条东西向街道(如图).则从A 点走到B 点最短的走法有________种.11.某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为________.12.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示).13.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有________种.二、解答题1.要从12人中选出5人参加一项活动,其中A 、B 、C 3人至多2人入选,有多少种不同选法?2.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?3.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法? 4.求20C n+55=4(n +4)C n+3n-1+15A n+32中n 的值.5.从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法? (1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.6.6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法?7.某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?全国高二高中数学同步测试答案及解析一、填空题1.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是________. 【答案】41【解析】分三类:一年级比赛的场数是C 52,二年级比赛的场数是C 82,三年级比赛的场数是C 32,再由分类计数原理求得总赛场数为C 52+C 82+C 32=41.2.已知集合A ={1,2,3,4},B ={5,6,7},C ={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合 ,则一共可以组成集合的个数为________. 【答案】26【解析】由C 41·C 31+C 31·C 21+C 41·C 21=26.3.某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种类是________(用数字作答). 【答案】266【解析】由题知,按钱数分10元钱,可有两大类,第一类是买2本1元,4本2元的共C 32C 84种方法;第二类是买5本2元的书,共C 85种方法. ∴共有C 32C 84+C 85=266(种).4.210的正约数有________个. 【答案】16【解析】由于210=2×3×5×7,则2、3、5、7中的任意一个数,或两个数之积,或三个数之积,或四个数之积,都是210的约数.又1也是一个约数,所以约数共有C 41+C 42+C 43+C 44+1=16(个).5.计算C 82+C 83+C 92=________. 【答案】120【解析】C 82+C 83+C 92=(C 82+C 83)+C 92 =C 93+C 92=C 103==120.6.平面内有两组平行线,一组有m 条,另一组有n 条,这两组平行线相交,可以构成________个平行四边形. 【答案】C m 2·C n 2【解析】分别从一组m 条中取两条,从另一组n 条中取两条,可组成平行四边形,即共有C m 2·C n 2个平行四边形.7.7名志愿者安排6人在周六、周日参加上海世博会宣传活动,若每天安排3人,则不同的安排方案有________种(用数字作答). 【答案】140【解析】分两步:第一步,安排周六,有C 种方案;第二步,安排周日,有C 43种方案,故共有C 73C 43=140(种)不同的安排方案.8.若C 12n =C 122n-3,则n =________. 【答案】3或5【解析】由C 12n =C 122n-3,得n =2n -3或n +2n -3=12, 解得n =3或n =5.9.从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________种. 【答案】140【解析】当甲、乙两人都参加时,有C 82=28(种)选法; 当甲、乙两人中有一人参加时, 有C 83·C 21=112(种)选法.∴不同的挑选方法有28+112=140(种).10.某区有7条南北向街道,5条东西向街道(如图).则从A 点走到B 点最短的走法有________种. 【答案】210【解析】每条东西向街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段是走南北方向的),共有C 106=C 104=210(种)走法.11.某地政府召集5家企业的负责人开会,已知甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为________. 【答案】16【解析】分两类:①含有甲C 21C 42,②不含有甲C 43, 共有C 21C 42+C 43=16种.12.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种________种(结果用数值表示). 【答案】7【解析】设餐厅至少还需准备x 种不同的素菜. 由题意,得C 52·C x 2≥200,从而有C x 2≥20. 即x(x -1)≥40.∴x 的最小值为7.13.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有________种. 【答案】70【解析】满足题设的情形分为以下2类:第一类,从4名教师选1人,又从5名学生中任选2人,有C 41C 52种不同选法; 第二类,从4名教师选2人,又从5名学生中任选1人,有C 42C 51种不同选法. 因此共有C 41C 52+C 42C 51=70(种)不同的选法.二、解答题1.要从12人中选出5人参加一项活动,其中A 、B 、C 3人至多2人入选,有多少种不同选法? 【答案】756【解析】解:法一 可分三类:①A ,B ,C 三人均不入选,有C 95种选法; ②A ,B ,C 三人中选一人,有C 31·C 94种选法; ③A ,B ,C 三人中选二人,有C 32·C 93种选法. 由分类计数加法原理,共有选法C 95+C 31·C 94+C 32·C 93=756(种).法二 先从12人中任选5人,再减去A ,B ,C 三人均入选的情况,即共有选法C 125-C 92=756(种).2.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形? 【答案】216【解析】解:我们把从共线的4个点取点中的多少作为分类的标准: 第一类:共线的4个点中有2个点作为三角形的顶点,共有C 42·C 81=48(个)不同的三角形; 第二类:共线的4个点中有1个点作为三角形的顶点,共有C 41·C 82=112(个)不同的三角形; 第三类:共线的4个点中没有点作为三角形的顶点,共有C 83=56(个)不同的三角形. 由分类计数原理,不同的三角形共有48+112+56=216(个).3.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种? (3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法? 【答案】(1)161700 (2)9506 (3)9604 (4)57036【解析】解:(1)所求不同的抽法数,即从100个不同元素中任取3个元素的组合数,共有C 1003==161700(种).(2)抽出的3件中恰好有一件是次品这件事,可以分两步完成: 第一步,从2件次品中任取1件,有C 21种方法; 第二步,从98件正品中任取2件,有C 982种方法. 根据分步计数原理,不同的抽取方法共有 C 21·C 982=2×=9506(种).(3)法一 抽出的3件中至少有一件是次品这件事,分为两类: 第一类:抽出的3件中有1件是次品的抽法,有C 21C 982种; 第二类:抽出的3件中有2件是次品的抽法,有C 21C 981种. 根据分类计数原理,不同的抽法共有C 21·C 982+C 22·C 981=9506+98=9604(种).法二 从100件产品中任取3件的抽法,有C 1003种,其中抽出的3件中没有次品的抽法,有C 983种.所以抽出的3件中至少有一件是次品的抽法,共有C 1003-C 983=9604(种). (4)完成题目中的事,可以分成两步: 第一步,选取产品,有C 21C 982种方法;第二步,选出的3个产品排列,有A 33种方法. 根据分步计数原理,不同的排列法共有 C 21C 982A 33=57036(种).4.求20C n+55=4(n +4)C n+3n-1+15A n+32中n 的值. 【答案】n =2 【解析】解:20×=4(n +4)×+15(n +3)(n +2)即:=+15(n +3)(n +2)∴(n +5)(n +4)(n +1)-(n +4)(n +1)·n =90, 即5(n +4)(n +1)=90,∴n 2+5n -14=0,即n =2或n =-7, ∵n≥1且n ∈Z ,∴n =2.5.从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法? (1)男、女同学各2名;(2)男、女同学分别至少有1名;(3)在(2)的前提下,男同学甲与女同学乙不能同时选出. 【答案】(1)60 (2)120 (3)99 【解析】解:(1)C 52·C 42=60. (2)C 51·C 43+C 52·C 42+C 53·C 41=120. (3)120-=99.6.6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法? 【答案】(1)20 (2)62【解析】解:(1)先派3人进第一间屋,再让其余3人进第二间屋,有:C 63·C 33=20(种).(2)按第一间屋子内进入的人数可分为五类:即进一人、进2人、进3人、进4人、进5人,所以方法总数:C 61C 55+C 62C 44+C 63C 33+C 64C 22+C 65C 11=62(种).7.某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种? 【答案】84【解析】解:由于每队至少抽1辆,故问题转化为从7个车队中抽3辆车,可分类计算. 第一类:3辆车都从1个队抽,有C 71种; 第二类:3辆车从2个队抽,有A 72种; 第三类:3辆车从3个队抽,有C 73种.由分类计数原理,共有C 71+A 72+C 73=84(种).。
2023年上海高二上学期数学同步精讲练第10章 空间直线与平面(基础、典型、压轴)(解析版)
第10章 空间直线与平面(基础、典型、新文化、压轴)分类专项训练【基础】一、单选题1.(2021·上海市嘉定区安亭高级中学高二阶段练习)“直线l 与平面α没有公共点”是“直线l 与平面α平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【分析】从充分性和必要性两方面来分析即可.【详解】若直线l 与平面α没有公共点,那直线l 与平面α只能平行,故充分条件成立;若直线l 与平面α平行,则直线l 与平面α没有公共点,故必要性也成立,所以“直线l 与平面α没有公共点”是“直线l 与平面α平行”的充分必要条件.故选:C2.(2022·上海市建平中学高二阶段练习)空间四个点中,三点共线是这四个点共面的( ) A .充分非必要条件; B .必要非充分条件; C .充要条件;D .既非充分又非必要条件.【答案】A【分析】空间四个点中,有三个点共线,根据一条直线与直线外一点可以确定一个平面得到这四个点共面,前者可以推出后者,当四个点共面时,不一定有三点共线,后者不一定推出前者.【详解】解:空间四个点中,有三个点共线,根据一条直线与直线外一点可以确定一个平面得到这四个点共面,前者可以推出后者,当四个点共面时,不一定有三点共线,后者不一定推出前者,∴空间四个点中,有三个点共线是这四个点共面的充分不必要条件, 故选:A .二、填空题3.(2021·上海市徐汇中学高二阶段练习)在平行六面体1111ABCD A B C D -的所有棱中,既与AB 共面,又与1CC 共面的棱的条数为___________.【答案】5【分析】有两条平行直线确定一个平面,和两条相交直线确定一个平面可得答案,【详解】解:如图,满足条件的有BC ,DC ,1BB ,1AA ,11D C ,故答案为:5.4.(2021·上海·华东师大附属枫泾中学高二期中)不共线的三点确定___________个平面.(填数字)【答案】1【分析】由空间几何的公理求解即可【详解】不在同一条直线上的三个点确定唯一的一个平面故答案为:15.(2022·上海市建平中学高二阶段练习)不同在任何一个平面上的两条直线的位置关系是_________【答案】异面【分析】根据异面直线的定义,直接判断.【详解】不同在任何一个平面上的两条直线的位置关系是异面.故答案为:异面6.(2021·上海·西外高二期中)空间中两条直线的位置关系有___________.【答案】平行、相交、异面【分析】根据空间中两条直线的位置关系即可作答.【详解】空间中两条直线的位置关系有:平行、相交、异面.故答案为:平行、相交、异面.7.(2021·上海市复兴高级中学高二阶段练习)如图,在棱长为1的正方体1111ABCD A B C D 中,异面直线1AB与1BC 所成角的大小为___________.【答案】60︒##3π 【分析】连接1,DC BD ,由正方体的结构特征知:11//DC AB 且△1BDC 为等边三角形,即可知异面直线1AB 与1BC 所成角.【详解】连接1,DC BD ,由正方体的结构特征知:11//DC AB ,∴1DC 与1BC 所成角即为异面直线1AB 与1BC 所成角,又△1BDC 为等边三角形,∴1DC 与1BC 所成角60︒,即异面直线1AB 与1BC 所成角为60︒.故答案为:60︒8.(2022·上海虹口·高二期末)在正四面体ABCD 中,直线BC 与AD 所成角的大小为________.【答案】2π 【分析】根据空间位置关系直接证明判断即可.【详解】如图所示,取BC 中点E ,连接AE ,DE ,由已知ABCD 为正四面体,则ABC ,DBC △均为正三角形,所以AE BC ⊥,DE BC ⊥,所以BC ⊥平面ADE ,故BC AD ⊥,即直线BC 与直线AD 的夹角为2π, 故答案为:2π. 9.(2021·上海市行知中学高二阶段练习)过直线外一点有_________条直线与该直线垂直.【答案】无数【分析】根据点和直线、直线和直线的位置关系即可得出结果.【详解】空间中过直线外一点可以作无数条直线与该直线垂直.故答案为:无数10.(2021·上海市宝山中学高二阶段练习)若平面α∥平面β,,a b αβ⊂⊂,则直线a 和b 的位置关系是_____________.【答案】异面或平行【分析】利用分别在两个平行平面内的两个直线没有公共点即可判断作答.【详解】因平面α∥平面β,则平面α与平面β没有公共点,而a α⊂,b β⊂,于是得直线a 和b 没有公共点,所以直线a 和b 是异面直线或者是平行直线.故答案为:异面或平行11.(2020·上海松江·高二期末)已知正方体1111ABCD A B C D -的棱长为a ,异面直线BD 与11A B 的距离为__________.【答案】a【分析】根据线面垂直性质可得1BB BD ⊥,又111BB A B ⊥,可知所求距离为1BB ,从而得到结果.【详解】1BB ⊥平面ABCD ,BD ⊂平面ABCD 1BB BD ∴⊥又111BB A B ⊥ ∴异面直线BD 与11A B 之间距离为1BB a =故答案为a【点睛】本题考查异面直线间距离的求解,属于基础题.12.(2022·上海·复旦附中高二期中)棱长为1的正方体中,异面直线1A D 与11B C 之间的距离为______.【答案】1【分析】根据题意,证得111A B A D ⊥且1111A B B C ⊥,得到11A B 为异面直线1A D 与11B C 的公垂线,即可求解.【详解】如图所示,在正方体1111ABCD A B C D -中,可得11A B ⊥平面11ADD D ,11A B ⊥平面11BCC B ,因为1A D ⊂平面11ADD D ,11B C ⊂平面11BCC B ,所以111A B A D ⊥且1111A B B C ⊥,所以11A B 为异面直线1A D 与11B C 的公垂线,又由正方体的棱长为1,可得111A B =,所以异面直线1A D 与11B C 的距离为1.故答案为:1.13.(2021·上海奉贤区致远高级中学高二期中)若正方体1111ABCD A B C D -的棱长为1,则异面直线AB 与11D B 之间的距离为___________.【答案】1【分析】作出正方体图像,观察即可得到答案﹒【详解】如图:∵1BB 与AB 、11B D 均垂直,∴1BB 即为两异面直线的距离,故答案为:1三、解答题14.(2021·上海市行知中学高二阶段练习)如图,三棱锥P ABC - 中,已知PA ⊥ 平面,ABC 3,6PA PB PC BC ==== .求二面角P BC A --的正弦值 【答案】33【分析】取BC 的中点D ,连结PD ,AD,根据线面垂直关系可知PDA ∠即为二面角P BC A --的平面角,根据所给边长关系可求得PDA ∠的正弦值.【详解】取BC 的中点D ,连结PD ,AD∵PB PC = ∴PD BC ⊥∵PA ⊥平面ABC ,∴PA BC ⊥,且BC PAD ⊥面即BC AD ⊥∴PDA ∠即为二面角P BC A --的平面角∵6PB PC BC ===∴3PD 633==PA sin PDAPD ∠===P BC A --【点睛】本题考查了二面角的求法,关键是找到二面角的平面角,属于基础题.【典型】一、单选题1.(2021·上海·闵行中学高二阶段练习)在空间内,异面直线所成角的取值范围是( )A .0,2π⎛⎫ ⎪⎝⎭B .0,2π⎛⎤ ⎥⎝⎦C .0,2π⎡⎫⎪⎢⎣⎭D .0,2π⎡⎤⎢⎥⎣⎦【答案】B【分析】由异面直线所成角的定义可得出答案.【详解】由异面直线所成角的定义可知,过空间一点分别作相应直线的平行线,两条相交直线所成的直角或锐角为异面直线所成角,所以两条异面直线所成角的取值范围是(0,]2π, 故选B.【点睛】本题考查立体几何中异面直线所成的角,需要学生熟知异面直线的定义以及性质,考查了转化思想,属于基础题.2.(2021·上海·高二专题练习)若a 、b 是异面直线,则下列命题中的假命题为( )A .过直线a 可以作一个平面并且只可以作一个平面α与直线b 平行B .过直线a 至多可以作一个平面α与直线b 垂直C .唯一存在一个平面α与直线a 、b 等距D .可能存在平面α与直线a 、b 都垂直【答案】D 【分析】在A 中,把直线b 平移与直线a 相交,确定一个平面内平行于b ;在B 中,反设过直线a 能作平面α、β使得b α⊥、b β⊥,推出矛盾;在C 中,过异面直线a 、b 的公垂线段的中点作与该公垂线垂直的平面可满足条件;在D 中,若存在平面α与直线a 、b 都垂直,则//a b .【详解】在A 中,由于a 、b 是异面直线,把直线b 平移与直线a 相交,可确定一个平面,这个平面与直线b 平行,A 选项正确;在B 中,若过直线a 能作平面α、β使得b α⊥、b β⊥,则//αβ,这与a αβ⋂=矛盾,所以,过直线a 最多只能作一个平面α与直线b 垂直,由a α⊂,可得b a ⊥,当直线a 与b 不垂直时,过直线a 不能作平面与直线b 垂直,B 选项正确;在C 中,由于a 、b 是异面直线,则两直线的公垂线段只有一条,过该公垂线段的中点作平面α与该公垂线垂直,这样的平面α有且只有一个,且这个平面α与直线a 、b 等距,C 选项正确;在D 中,若存在平面α与直线a 、b 都垂直,由直线与平面垂直的性质定理可得//a b ,D 错误.故选:D.【点睛】本题考查命题真假的判断,着重考查与异面直线相关的性质,考查推理能力,属于中等题. 3.(2021·上海市宝山中学高二阶段练习)对于两个平面,αβ和两条直线,m n ,下列命题中真命题是 A .若,m m n α⊥⊥,则//n αB .若//,m ααβ⊥,则m β⊥C .若//,//,m n αβαβ⊥,则m n ⊥D .若,,m n αβαβ⊥⊥⊥,则m n ⊥【答案】D【分析】根据线面平行垂直的位置关系判断.【详解】A 中n 可能在α内,A 错;B 中m 也可能在β内,B 错;m 与n 可能平行,C 错;,ααβ⊥⊥m ,则m β⊂或//m β,若m β⊂,则由n β⊥得n m ⊥,若//m β,则β内有直线//c m ,而易知c n ⊥,从而m n ⊥,D 正确.故选D .【点睛】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.二、填空题4.(2021·上海市亭林中学高二阶段练习)异面直线a 与b 成60°角,若//c a ,则c 与b 所成的角等于__________【答案】60°【分析】由已知可得c 与b 相交或异面.分两种情况,根据异面直线所成的角的概念结合平行公理即可得出结论.【详解】∵,a b 异面,//c a ,∴c 与b 相交或异面.当c 与b 相交时,根据异面直线a 与b 所成角的概念可知c 与b 所成的角为60°角;当c 与b 异面时,自空间不在,,a b c 上的一点分别作,a b 的平行线//,//m a n b ,∵//c a ,∴//m c ,根据异面直线所成角的定义,相交直线,m n 所成的不超过直角的角既是异面直线a 与b 所成的角,又是异面直线c 与b 所成的角,根据异面直线a 与b 成60°角,故异面直线c 与b 所成的角为60°角.故答案为:60°. 5.(2021·上海南汇中学高二阶段练习)二面角l αβ--为60,异面直线a 、b 分别垂直于α、β,则a 与b 所成角的大小是____【答案】60【分析】根据二面角的定义,及线面垂直的性质,我们可得若两条直线a 、b 分别垂直于α、β两个平面,则两条直线的夹角和二面角相等或互补,由于已知的二面角l αβ--为60,故异面直线所成角与二面角相等,即可得到答案.【详解】解:根据二面角的定义和线面垂直的性质设异面直线a 、b 的夹角为θ∵二面角l αβ--为60,异面直线a 、b 分别垂直于α、β则两条直线的夹角和二面角相等或互补,∴60οθ=故答案为60【点睛】本题主要考查二面角的定义、异面直线所成的角和线面垂直的性质.三、解答题6.(2019·上海·华师大二附中高二阶段练习)在正方体A 1B 1C 1D 1﹣ABCD 中,E 、F 分别是BC 、A 1D 1的中点. (1)求证:四边形B 1EDF 是菱形;(2)作出直线A 1C 与平面B 1EFD 的交点(写出作图步骤).【分析】(1)取AD 中点G ,连接FG ,BG ,可证四边形B 1BGF 为平行四边形,四边形BEDG 为平行四边形,得到四边形B 1EDF 为平行四边形,再由△B 1BE ≌△B 1A 1F ,可得B 1E =B 1F ,得到四边形B 1EDF 是菱形;(2)连接A 1C 和AC 1,则A 1C 与AC 1的交点O ,即为直线A 1C 与平面B 1EFD 的交点.【详解】(1)证明:取AD 中点G ,连接FG ,BG ,如图1所示,则B 1B ∥FG ,B 1B =FG ,∴四边形B 1BGF 为平行四边形,则BG ∥B 1F ,由ABCD ﹣A 1B 1C 1D 1为正方体,且E ,G 分别为BC ,AD 的中点,可得BEDG 为平行四边形,∴BG ∥DE ,BG =DE ,则B 1F ∥DE ,且B 1F =DE ,∴四边形B 1EDF 为平行四边形,由△B 1BE ≌△B 1A 1F ,可得B 1E =B 1F ,∴四边形B 1EDF 是菱形;(2)连接A 1C 和AC 1,则A 1C 与AC 1的交点O ,即为直线A 1C 与平面B 1EFD 的交点,如图所示.【点睛】本题考查了空间中的平行关系应用问题,也考查了空间想象与逻辑推理能力,是中档题.关键是掌握正方体的性质和熟练使用平行公理.【新文化】一、填空题1.(2021·上海·华东师范大学第三附属中学高二阶段练习)刍甍,中国古代算数中的一种几何形体,《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也,甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”如图为一个刍瓷的五面体,其中四边形ABCD 为矩形,ADE 和BCF △都是等腰三角形,2AE ED BF CF AD ====,//EF AB ,若3AB EF =,且2AD EF =,则异面直线AE 与CF 所成角的大小为______.【答案】3π 【分析】作平行四边形AGFE ,得到//AE GF ,异面直线AE 与CF 所成角为GFC ∠,求出GFC 的边长求角即可.【详解】设1EF =,在AB 上取点G 满足1AG EF ==,如图,故//AG EF 且AG EF =,故四边形AGFE 是平行四边形,故//AE GF异面直线AE 与CF 所成角为GFC ∠或其补角 ,22GF CF ==, 22222222CG GB BC =+=+=故GFC 为等边三角形 故3GFC π∠=故答案为:3π 【压轴】1.(2021·上海·西外高二期中)三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是________. 【答案】4(0,]3; 【详解】由于,,,AB AP AB AC AB AP A AB ⊥⊥⋂=∴⊥ 平面APC ,1233APC APC V S AB S ∆∆=⋅= ,在APC ∆ 中,4AP AC +=,要使APC ∆ 面积最大,只需0,90AP AC APC =∠=,APC S ∆的最大值为12222⨯⨯=,V 的最大值为142233⨯⨯=,该三棱锥的体积V 的取值范围是4(0,]3.。
高二数学人教A版选择性必修第二册第四章4.3.2等比数列前n项和公式的应用-同步练习及解析答案
高中数学人教A 版(新教材)选择性必修第二册4.3.2第2课时 等比数列前n 项和公式的应用一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A .152 B .314 C .334 D .1723.设各项都是正数的等比数列{a n },S n 为其前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A .150B .-200C .150或-200D .4004.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10 ,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025B .1 024C .10 250D .20 2405.已知公差d ≠0的等差数列{a n } 满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( ) A .30B .20C .10D .5或406.(多选题)已知S n 是公比为q 的等比数列{a n }的前n 项和,若q ≠1,m ∈N *,则下列说法正确的是( ) A .S 2m S m =a 2ma m +1B .若S 6S 3=9,则q =2C .若S 2m S m =9,a 2m a m =5m +1m -1,则m =3,q =2D .若a 6a 3=9,则q =37.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( ) A .3n-1 B .1-(-3)n 2C .1+3n 2D .3n 2+n 2二、填空题8.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k =________. 9.等比数列{a n }共有2n 项,它的全部各项的和是奇数项的和的3倍,则公比q =________. 10.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为a n =________.11.等比数列{a n }的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q =________,又令该数列的前n 项的积为T n ,则T n 的最大值为________. 12.设数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的第n 项为a n ,前n 项和为S n ,则a n =________,S n =________. 三、解答题13.一个项数为偶数的等比数列,全部项之和为偶数项之和的4倍,前3项之积为64,求该等比数列的通项公式.14.在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.15.设数列{a n }的前n 项和为S n .已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.参考答案一、选择题 1.答案:C解析:由题意得4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2, ∴q =2,∴S 4=1·(1-24)1-2=15.]2.答案:B解析:显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4⎝⎛⎭⎫1-1251-12=314.]解析:依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列, 因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),解得S 20=-20或S 20=30, 又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80,S 40=150.故选A. 4.答案:C解析:∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0, ∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.] 5.答案:A解析:设等差数列的公差为d ,因为a 2,a 4-2,a 6成等比数列,所以(a 4-2)2=a 2·a 6, 即(a 1+3d -2)2=(a 1+d )·(a 1+5d ),即(3d -1)2=(1+d )·(1+5d ),解得d =0或d =3,因为公差d ≠0,所以d =3,所以a m -a n =a 1+(m -1)d -a 1-(n -1)d =(m -n )d =10d =30,故选A.] 6.答案:ABC解析:[∵q ≠1,∴S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q =1+q m.而a 2m a m =a 1q 2m -1a 1qm -1=q m ,∴A 正确;B 中,m =3,∴S 6S 3=q 3+1=9,解得q =2.故B 正确;C 中,由S 2m S m =1+q m =9,得q m =8.又a 2ma m =q m =8=5m +1m -1,得m =3,q =2,∴C 正确;D 中,a 6a 3=q 3=9,∴q =39≠3,∴D 错误,故选ABC.]7.答案:A解析:由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a n a n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1(1-q n )1-q =2×(3n -1)3-1=3n-1.]二、填空题解析:由a n +1=ca n 知数列{a n }为等比数列.又∵S n =3n +k , 由等比数列前n 项和的特点S n =Aq n -A 知k =-1.] 9.答案:2解析:设{a n }的公比为q ,则奇数项也构成等比数列,其公比为q 2,首项为a 1, S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q 2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.10.答案:2n -1解析:设等差数列{a n }的公差为d ,(d ≠0), 则S 1=5-2d ,S 2=10-3d ,S 4=20-2d ,因为S 22=S 1·S 4,所以(10-3d )2=(5-2d )(20-2d ),整理得5d 2-10d =0,∵d ≠0,∴d =2, a n =a 3+(n -3)d =5+2(n -3)=2n -1.] 11.答案:122解析:设数列{a n }共有2m +1项,由题意得S 奇=a 1+a 3+…+a 2m +1=8532,S 偶=a 2+a 4+…+a 2m =2116,S 奇=a 1+a 2q +…+a 2m q =2+q (a 2+a 4+…+a 2m )=2+2116q =8532, ∴q =12,∴T n =a 1·a 2·…·a n =a n 1q 1+2+…+n -1=232n -n 22,故当n =1或2时,T n取最大值,为2.] 12.答案:2n -1 2n +1-n -2 解析:因为a n =1+2+22+…+2n -1=1-2n 1-2=2n-1, 所以S n =(2+22+23+…+2n )-n =2(1-2n )1-2-n =2n +1-n -2. 三、解答题13.解:设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇,S 偶, 由题意,知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,得a 1=12.故所求通项公式为a n =12×⎝⎛⎭⎫13n -1.14.解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.15.解:(1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,故a n =3n -1(n ≥2,n ∈N *),又当n =1时也满足a n =3n -1, 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.n ≥3时,T n =3+9(1-3n -2)1-3-(n -2)(3+n +4)2=3n -n 2-5n +112.∴T n=⎩⎪⎨⎪⎧2, n =1,3, n =2,3n-n 2-5n +112,n ≥3.高中数学选修2-1《常用逻辑用语》单元过关平行性测试卷(A 卷)一.单项选择题:本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“x <0”是“ln(x +1)<0”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件(2)下列命题正确的是( )A . “x =y ”是“sinx =siny ”的充分不必要条件;B . 命题“p ∧q ”为假命题,则命题p 与命题q 都是假命题;C . “am 2<bm 2”是“a <b ”成立的必要不充分条件;D . 命题“存在x 0∈R ,使得x 02+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”.(3)对任意实数a ,b ,c ,给出下列命题: ①“a b =”是“ac bc =”的充要条件②“5a +是无理数”是“a 是无理数”的充要条件; ③“a b >”是“22a b >”的充分不必要条件 ④“5a <”是“3a <”的必要不充分条件, 其中真命题的个数为( )A .1B .2C .3D .4(4)有下列结论: ①命题 p:∀x ∈R ,x 2>0为真命题 ;②设p:x x+2>0 ,q:x 2+x −2>0,则 p 是 q 的充分不必要条件 ;③已知实数0x >,0y >,则“1xy <”是“1133log log 0x y +>”的充要条件;④非零向量a ⃑与b ⃑⃑满足|a ⃑|=|b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑与a ⃑+b⃑⃑的夹角为300. 其中正确的结论有( )A . 3个B . 2个C . 1个D . 0个(5)命题p :若a <b ,则ac 2<bc 2;命题q ;∃x 0>0,使得ln x 0=1−x 0,则下列命题中为真命题的是( ;A . p ∧qB . p ∨(¬q )C . (¬p )∧qD . (¬p )∧(¬q )(6)设x ∈R ,若“log 2(x −1)<1”是“x >2m 2−1”的充分不必要条件,则实数m 的取值范围是( )A . [−√2,√2]B . (−1,1)C . (−√2,√2)D . [−1,1] 二.多项选择题:本大题共2小题,每小题4分,共8分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.(7) 下列说法正确的是( ) A.x >3是x 2>4的充分不必要条件 B.命题“∃x 0∈R , x 0+1x 0≥2"的否定是“∀x ∈R , x +1x>2”C.若tan (π+α)=2,则sin2α=±45D.定义在[a,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最大值为30 (8)下列说法正确的有( )A.已知a,b ∈R ,且a −3b +6=0,则2a +18b 的最小值为14B.函数y =sin (2x +π5)的图象向右平移π10个单位长度,得到的函数在区间[34π,54π]上单调递增C.命题“∀x ≥1,x −1≥0”的否定形式为“∃x ≥1,x −1≤0”D.函数y =log a (x +1)(a >0且a ≠1)恒过定点(1,0) 三、填空题:本大题共4题,每小题4分,共16分.(9)已知:40p x m -<,:22q x -≤≤,若p 是q 的一个必要不充分条件,则m 的取值范围为___________.(10)“a =1”是“直线ax −y +2a =0与直线(2a −1)x +ay +a =0互相垂直”的___________条件(填“必要不充分”“充分不必要”“充要”或“既不充分又不必要”). (11)已知x ∈R ,则“|x −1|<2成立”是“x x−3<0成立”的_________条件.(请在“充分不必要.必要不充分.充分必要”中选择一个合适的填空).(12)有下列命题: ;“x >2且y >3”是“x +y >5”的充要条件;;“b 2−4ac <0”是“一元二次不等式ax 2+bx +c <0的解集为R”的充要条件; ;“a =2”是“直线ax +2y =0平行于直线x +y =1”的充分不必要条件; ;“xy =1”是“lgx +lgy =0”的必要不充分条件.其中真命题的序号为____________.四、解答题:本大题共3小题,共52分,解答应写出文字说明,证明过程或演算步骤. (13)(本小题满分16分)已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(I)求m的值;(II)当x∈[−1,2]时,记f(x),g(x)的值域分别为集合A,B,设命题p:x∈A,命题q:x∈B,若命题p是q成立的必要条件,求实数k的取值范围.(14)(本小题满分18分)设命题p:a>0;命题q:关于x的不等式a−x≥0对一切x∈[−2,−1]均成立。
(新教材人教A版)高二数学选择性必修第三册同步练习 分类变量与列联表 基础练(解析版)
8.3 分类变量与列联表---A基础练一、选择题1.(2021·全国高二课时练习)如表是一个2×2列联表:则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,52【答案】C【详解】a=73-21=52,b=a+22=52+22=74.故选:C.2.(2021·江苏高二)为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时,用什么方法最有说服力()A.平均数B.方差C.回归分析D.独立性检验【答案】D【详解】分析已知条件,得如下表格.的值,再与临界值比较,检验这些中学生眼睛近视是否与性别有关,根据列联表利用公式可得2故利用独立性检验的方法最有说服力.故选:D.3.(2021·全国高二课时练)对于分类变量X与Y的随机变量x2的值,下列说法正确的是()A.x2越大,“X与Y有关系”的可信程度越小B.x2越小,“X与Y有关系”的可信程度越小C.x2越接近于0,“X与Y没有关系”的可信程度越小D.x2越大,“X与Y没有关系”的可信程度越大【答案】B【详解】根据独立性检验的基本思想可知,分类变量X与Y的随机变量x2的观测值越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大;x2越小,“X与Y有关系”的可信程度越小,“X 与Y没有关系”的可信程度越大,故ACD错误,B正确.故选:B.4.(2021·江苏星海实验中学高二)某班班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:临界值表:根据表中数据分析,以下说法正确的是()A.有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系B.有99.5%的把握认为学生的学习积极性与对待班级工作的态度有关系C.有99%的把握认为学生的学习积极性与对待班级工作的态度有关系D.没有充分的证据显示学生的学习积极性对待班级工作的态度有关系【答案】A【详解】2250(181976)11.5410.82825252426χ⨯⨯-⨯=≈>⨯⨯⨯, 所以有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系.故选:A.5.(多选题)(2021·全国高二课时练习)因防疫的需要,多数大学开学后启用封闭式管理.某大学开学后也启用封闭式管理,该校有在校学生9000人,其中男生4000人,女生5000人,为了解学生在封闭式管理期间对学校的管理和服务的满意度,随机调查了40名男生和50名女生,每位被调查的学生都对学校的管理和服务给出了满意或不满意的评价,经统计得到如下列联表:附表:附:22()()()()()n ad bc a b c d a c b d χ-=++++ 以下说法正确的有( )A .满意度的调查过程采用了分层抽样的抽样方法B .该学校学生对学校的管理和服务满意的概率的估计值为0.6C .有99%的把握认为学生对学校的管理和服务满意与否与性别有关系D .没有99%的把握认为学生对学校的管理和服务满意与否与性别有关系 【答案】AC【详解】因为男女比例为4000︰5000,故A 正确.满意的频率为204020.667903+=≈,所以该学校学生对学校的管理和服务满意的概率的估计值约为0.667,所以B 错误.由列联表2290(20102040)9 6.63540506030χ⨯⨯-⨯==>⨯⨯⨯,故有99%的把握认为学生对学校的管理和服务满意与否与性别有关系,所以C 正确,D 错误.故选:AC.6.(多选题)(2021·全国高二课时练)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关“作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有( )人 附表:附: 22()()()()()n ad bc a b c d a c b d χ-=++++ A .25 B .35 C .45 D .60【答案】CD【详解】设男生可能有x 人,依题意得女生有x 人,可得22⨯列联表如下:若有95%的把握认为是否喜欢抖音和性别有关,则2 3.841K >,即224231225555 3.841732155x x x x x x x x x x χ⎛⎫⋅⋅-⋅ ⎪⎝⎭==>⋅⋅⋅,解得40.335x >,由题意知0x >,且x 是5的整数倍,所以45和60都满足题意.故选:CD. 二、填空题7.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人的一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”。
全国高二高中数学同步测试带答案解析
全国高二高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列说法正确的有()①最小二乘法指的是把各个离差加起来作为总离差,并使之达到最小值的方法;②最小二乘法是指把各离差的平方和作为总离差,并使之达到最小值的方法;③线性回归就是由样本点去寻找一条直线,贴近这些样本点的数学方法;④因为由任何一观测值都可以求得一个回归直线方程,所以没有必要进行相关性检验.A.1个B.2个C.3个D.4个2.设有一个回归直线方程,则变量增加1个单位时()A.y平均增加1.5个单位B.y平均增加2个单位C.y平均减少1.5个单位D.y平均减少2个单位3.线性回归直线方程必过定点()A.B.C.D.4.下列变量关系是相关关系的是()①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.A.①②B.①③C.②③D.②④5.下列变量关系是函数关系的是()A.三角形的边长与面积之间的关系B.等边三角形的边长与面积之间的关系C.四边形的边长与面积之间的关系D.菱形的边长与面积之间的关系二、填空题1.线性回归模型中,,.2.我们可用相关指数来刻画回归的效果,其计算公式为.3.我们常利用随机变量来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验,其思想类似于数学上的.4.从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为.5.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表患慢性气管炎未患慢性气管炎合计根据列联表数据,求得.三、解答题1.在7块面积相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据(单位:kg)施化肥量水稻产量(1)试求对的线性回归方程;(2)当施化肥量kg时,预测水稻产量.2.某大型企业人力资源部为了研究企业员工工作积极性和对企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:积极支持企业改革不赞成企业改革合计3.某10名同学的数学、物理、语文成绩如下表:全国高二高中数学同步测试答案及解析一、选择题1.下列说法正确的有()①最小二乘法指的是把各个离差加起来作为总离差,并使之达到最小值的方法;②最小二乘法是指把各离差的平方和作为总离差,并使之达到最小值的方法;③线性回归就是由样本点去寻找一条直线,贴近这些样本点的数学方法;④因为由任何一观测值都可以求得一个回归直线方程,所以没有必要进行相关性检验.A.1个B.2个C.3个D.4个【答案】B【解析】由统计学定义知最小二乘法是“指把各离差的平方和作为总离差,并使之达到最小值的方法;”故选B。
新课标高中数学同步测试题含答案
新课标高二数学期末同步测试题说明:本试卷分第一卷和第二卷两部分,第一卷50分,第二卷100分,共150分;答题时间120分钟。
第Ⅰ卷(选择题共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.设a >0, b >0,则以下不等式中不恒成立....的是 ( )A .)11)((b a b a ++≥4B .33b a +≥22abC .222++b a ≥b a 22+D .b a -≥b a -2.△ABC 中,BC=1,B A ∠=∠2,则AC 的长度的取值范围为 ( )A .(1,21) B .(23,1)C .[1,21] D .[23,1] 3.下列四个结论中正确的个数有( )①y = sin|x |的图象关于原点对称;②y = sin(|x |+2)的图象是把y = sin|x |的图象向左平移2个单位而得; ③y = sin(x +2)的图象是把y = sin x 的图象向左平移2个单位而得;④y = sin(|x |+2)的图象是由y = sin(x +2)( x ≥0)的图象及y = -sin(x -2) ( x <0)的图象 组成的.A .1个B .2个C .3个D .4个 4.已知sin θ-cos θ=21, 则sin 3θ- cos 3θ的值为 ( )A .167 B .-1611 C .1611D .-1675.平面直角坐标系中, O 为坐标原点, 已知两点A(3, 1), B(-1, 3), 若点C 满足OC =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为( )A .3x +2y -11=0B .(x -1)2+(y -2)2=5C .2x -y=0D .x +2y -5=06.已知钝角三角形的三边分别是a,a+1,a+2,其最大内角不超过120°,则a 的取值范围是( )A .23≥a B .30<<aC .323<<a D .323<≤a 7.已知f(x )=b x +1为x 的一次函数, b 为不等于1的常数, 且g (n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n ,设a n = g (n)- g (n -1) (n ∈N ※), 则数列{a n }是( )A .等差数列B .等比数列C .递增数列D .递减数列8.定义()3nn N *∈为完全立方数,删去正整数数列1,2,3……中的所有完全立方数,得到一个新数列,这个数列的第2005项是( )A .2017B .2018C .2019D .20209.已知θ为第二象限角,且2cos2sin θθ<,那么2cos2sinθθ+的取值范围是 ( )A .(-1,0)B .)2,1(C .(-1,1)D .)1,2(--10.若对任意实数a ,函数y =5sin(312+k π,x -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )A .2B .4C .3或4D .2或3第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.10cos 310sin 1-的值为 . 12.已知等差数列{a n }的公差d ≠0, 且a 1, a 3, a 9成等比数列, 则1042931a a a a a a ++++的值是 .13.已知向量),sin ,(cos θθ=a 向量)1,3(-=b , 则b a -2的最大值是 . 14.已知α、β是实数, 给出四个论断:①|α+β|=|α|+|β|; ②|α-β|≤|α+β|; ③|α|>22,|β|>22; ④|α+β|>5. 以其中的两个论断作为条件, 其余论断作为结论, 写出正确的一个 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)。
(新教材人教A版)高二数学选择性必修第三册同步练习 分类变量与列联表 提高练(解析版)
8.3 分类变量与列联表 ---B 提高练一、选择题1.(2021·全国高二课时练)在一次独立性检验中,得出列联表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .200 B .720 C .100 D .180 【答案】B 【详解】由题意知a ab +与c c d+基本相等,由列联表知2001000与180180a +基本相等,2001801000180a=+,解得720a =.故选:B 2.(2021·江苏高二专题练习)为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算得x 2=7.01,则认为“喜欢乡村音乐与性别有关系”的把握约为( )A .0.1%B .1%C .99%D .99.9% 【答案】C【详解】易知x 2=7.01>6.635,对照临界值表知,有99%的把握认为喜欢乡村音乐与性别有关系. 故选:C3.(2021·江苏盐城市高二月考)某词汇研究机构为对某城市人们使用流行语的情况进行调查,随机抽取了200人进行调查统计得下方的22⨯列联表.则根据列联表可知( )参考公式:独立性检验统计量22()()()()()n ad bcXa b c d a c b d-=++++,其中n a b c d=+++.下面的临界值表供参考:A.有95%的把握认为“经常用流行用语”与“年轻人”有关系B.没有95%的把握认为“经常用流行用语”与“年轻人”有关系C.有97.5%的把握认为“经常用流行用语”与“年轻人”有关系D.有97.5%的把握认为“经常用流行用语”与“年轻人”没有关系【答案】A【详解】22200(25152535)4.167 3.8411604050150X⨯⨯-⨯==>⨯⨯⨯,根据临界值知有95%的把握认为经常用流行语与年轻人有关系,故选:A4.(2021·河南信阳市高二月考)某医疗研究所为了检验新开发的流感疫苗对流感的预防作用,根据1000名注射了疫苗的人与另外1000名未注射疫苗的人半年的感冒记录作出如下的22⨯的列联表,并提出假设:oH“这种疫苗不能起到预防流感的作用”’则下列说法正确是()附:22()()()()()n ad bcXa b c d a c b d-=++++.A.这种疫苗能起到预防流感的有效率为99%;B.若某人未使用该疫苗,则他在半年中有超过99%的可能性得流感;C.有1%的把握认为“这种疫苗能起到预防流感的作用”;D.有99%的把握认为“这种疫苗能起到预防流感的作用”.【答案】D【详解】222()2000(200740260800)=10.164 6.635 ()()()()100010004601540n ad bcXa b c d a c b d-⨯-⨯=≈> ++++⨯⨯⨯,由临界值表可知,有99%的把握认为“这种疫苗能起到预防流感的作用”,故选:D5.(多选题)(2021·山东泰安一中高二月考)为了增强学生的身体素质,提高适应自然环境、克服困难的能力,某校在课外活动中新增了一项登山活动,并对“学生喜欢登山和性别是否有关”做了一次调查,其中被调查的男女生人数相同,得到如图所示的等高条形统计图,则下列说法中正确的有()附:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.A.被调查的学生中喜欢登山的男生人数比喜欢登山的女生人数多B.被调查的女生中喜欢登山的人数比不喜欢登山的人数多C.若被调查的男女生均为100人,则有99%的把握认为喜欢登山和性别有关D.无论被调查的男女生人数为多少,都有99%的把握认为喜欢登山和性别有关【答案】AC【详解】因为被调查的男女生人数相同,由等高条形统计图可知,喜欢登山的男生占80%,喜欢登山的女生占30%,所以A 正确,B 错误;设被调查的男女生人数均为n ,则由等高条形统计图可得22⨯列联表如下:由公式可得()2220.80.70.30.2501.10.999n n n n n n n n n n χ⨯⨯-⨯==⨯⨯⨯. 当100n =时,250006.63599χ=>,所以有99%的把握认为喜欢登山和性别有关; 当10n =时,2500 6.63599χ=<,所以没有99%的把握认为喜欢登山和性别有关,显然2χ的值与n 的取值有关,所以C 正确,D 错误.故选:AC.6.(多选题)(2021·全国高二专题练)在一次恶劣气候的飞行航程中,调查男女乘客在机上晕机的情况,如下表所示:则下列说法正确的是( )附:参考公式:()()()()()22n ad bc a c b d a b c d χ-=++++ ,其中n a b c d =+++. 独立性检验临界值表A .11126n n n ++> B .2 2.706χ<C .有90%的把握认为,在恶劣气候飞行中,晕机与否跟男女性别有关D .没有理由认为,在恶劣气候飞行中,晕机与否跟男女性别有关 【答案】ABD【详解】由列联表数据,知1112211122211261528156284646n n n n n n n n n n +++++++=⎧⎪+=⎪⎪+=⎪⎨+=⎪⎪+=⎪+=⎪⎩,得11221121213182719n n n n n +++=⎧⎪=⎪⎪=⎨⎪=⎪⎪=⎩ ∴11121246627919n n n ++==>=,即A 正确∴2246(1213615)0.77518281927χ⨯⨯-⨯=≈⨯⨯⨯< 2.706,即B 正确且没有理由认为,在恶劣气候飞行中,晕机与否跟男女性别有关;即D 正确,故选:ABD 二、填空题7.(2021·河南濮阳市高二期末)下表是不完整的22⨯列联表,其中3a c =,2b d =,则a =______.【答案】15【详解】由题意得5512055a b c d +=⎧⎨+=-⎩,又3a c =,2b d =,所以255365a d a d +=⎧⎨+=⎩,解得15a =. 8. (2021·山东高二专题练习)为了判断某高中学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (x 2≥3.841)≈0.05,P (x 2≥6.635)≈0.01.根据表中数据,得到x 2=250(1320107)23272030⨯⨯-⨯⨯⨯⨯≈4.844,则认为选修文科与性别有关系出错的概率约为________. 【答案】0.05【详解】因为x 2≈4.844>3.841,而P (x 2≥3.841)≈0.05,故认为选修文科与性别有关系出错的概率约为0.05. 9.(2021·江苏高二专题练习)某卫生机构对366人进行健康体检,有阳性家族史者糖尿病发病的有16例,不发病的有93例,有阴性家族史者糖尿病发病的有17例,不发病的有240例,认为糖尿病患者与遗传有关系的概率约为________.参考数据:P (x 2≥3.841)≈0.05,P (x 2≥6.635)≈0.01. 【答案】95%【详解】列出2×2列联表:所以随机变量x 2的值为x 2=2366(162401793)10925733333⨯⨯-⨯⨯⨯⨯≈6.067>3.841,而P (x 2≥3.841)≈0.05, 所以在犯错误的概率不超过0.05的前提下,即有95%的把握认为糖尿病患者与遗传有关. 10.(2021·河南郑州市高二)假设有两个分类变量X 和Y ,它们的可能取值分别为{}12,x x 和{}12,y y ,其22⨯列联表如表,对于以下数据,对同一样本能说明X 和Y 有关系的可能性最大的一组为______. ①9,8,7,6a b c d ==== ②9,7,6,8a b c d ====③8,6,9,7a b c d ==== ④6,7,8,9a b c d ====【答案】② 【详解】对于选项A,69872ad bc -=⨯-⨯=;对于选项B,896730ad bc -=⨯-⨯=;对于选项C,87692ad bc -=⨯-⨯=;对于选项D,69872ad bc -=⨯-⨯=;由ad bc-越大,说明X 和Y 有关系的可能性越大.三、解答题11.(2020·江苏南京市高三期中)在20人身上试验某种血清对预防感冒的作用,把他们一年中是否患感冒的人数与另外20名未用血清的人是否患感冒的人数作比较,结果如下表所示.(1)从上述患过感冒的人中随机选择4人,以进一步研究他们患感冒的原因.记这4人中使用血清的人数为X ,试写出X 的分布列;(2)有多大的把握得出“使用该种血清能预防感冒”的结论?你的结论是什么?请说明理由. 附:对于两个研究对象Ⅰ(有两类取值:类A ,类B )和Ⅱ(有两类取值:类1,类2)统计数据的一个2×2列联表:有22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++. 临界值表(部分)为【详解】(1)因为使用血清的人中感冒的人数为3,未使用血清的人中感冒的人数为6,一共9人,从这9人中选4人,其中使用血清的人数为X ,则随机变量X 的可能值为0,1,2,3.因为0436495(0)42C CP X C ===,13364910(1)21C C P X C ===, 2236495(2)14C C P X C ===,3136491(3)21C C P X C ===, 所以随机变量X 的分布列为(2)将题中所给的2×2列联表进行整理,得提出假设0H :是否使用该种血清与感冒没有关系.根据2χ公式,求得2240(176314) 1.29032020319χ⨯⨯-⨯=≈⨯⨯⨯.因为当0H 成立时,“20.708χ≥”的概率约为0.40,“21.323χ≥”的概率约为0.25,所以有60%的把握认为:是否使用该种血清与感冒有关系,即“使用该种血清能预防感冒”,得到这个结论的把握不到75%. 由于得到这个结论的把握低于90%,因此,我的结论是:没有充分的证据显示使用该种血清能预防感冒,也不能说使用该种血清不能预防感冒.12.(2021·江苏南通高二月考)学生视力不良问题突出,是教育部发布的我国首份《中国义务教育质量监测报告》中指出的众多现状之一.习近平总书记作出重要指示,要求全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来.为了落实总书记指示,掌握基层情况,某单位调查了某校学生的视力情况,随机抽取了该校100名学生(男生50人,女生50人),统计了他们的视力情况,结果如下:(1)是否有90%的把握认为近视与性别有关? 附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.(2)如果用这100名学生中男生和女生近视的频率分别代替该校男生和女生近视的概率,且每名学生是否近视相互独立.现从该校学生中随机抽取4人(2男2女),设随机变量X 表示4人中近视的人数,试求X 的分布列及数学期望()E X . 【详解】(1)根据22⨯列联表中的数据可得22100(25302520)100 1.01 2.7065050455599χ⨯⨯-⨯=≈<⨯⨯⨯=,根据临界值表可知,没有90%的把握认为近视与性别有关; (2)由题意可知男生近视的概率为12,女生近视的概率为35,X 的可能取值为0,1,2,3,4,则 220022121(0)2525P X C C ⎛⎫⎛⎫==⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭, 22210021222121231(1)252555P X C C C C ⎛⎫⎛⎫⎛⎫==⋅⋅⋅+⋅⋅⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,22222200211222222121312337(2)2525255100P X C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,22221122222123133(3)2552510P X C C C C ⎛⎫⎛⎫⎛⎫==⋅⋅⋅⋅+⋅⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,222222139(4)25100P X C C ⎛⎫⎛⎫==⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭, 所以X 的分布列如下:于是X 的数学期望为11373911()01234255100101005E X =⋅+⋅+⋅+⋅+⋅=. 35。
高二人教A版数学选修1-1同步练习3-2-2导数的运算法则 Word版含答案
2.2.1导数的运算法则一、选择题1.函数y =cos x x 的导数是( )A .-sin xx 2 B .-sin xC .-x sin x +cos xx 2 D .-x cos x +cos xx 2[答案] C[解析] y ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x ·(x )′x 2=-x sin x -cos xx 2.2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是() A.193 B.163C.133D.103[答案] D[解析] f ′(x )=3ax 2+6x ,∵f ′(-1)=3a -6,∴3a -6=4,∴a =103.3.曲线运动方程为s =1-tt 2+2t 2,则t =2时的速度为() A .4 B .8C .10D .12[答案] B[解析] s ′=⎝ ⎛⎭⎪⎫1-t t 2′+(2t 2)′=t -2t 3+4t ,∴t =2时的速度为:s ′|t =2=2-28+8=8.4.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6,∴y ′=6x 5+12x 2.5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x+2x D .y =1cos x [答案] C[解析] ∵函数y =1x+2x 在x =0处无定义, ∴函数y =1x+2x 在点x =0处没有切线. 6.函数y =sin ⎝⎛⎭⎫π4-x 的导数为( )A .-cos ⎝⎛⎭⎫π4+xB .cos ⎝⎛⎭⎫π4-xC .-sin ⎝⎛⎭⎫π4-xD .-sin ⎝⎛⎭⎫x +π4 [答案] D[解析] ∵y =sin π4cos x -cos π4·sin x =22cos x -22sin x , ∴y ′=22(-sin x )-22cos x =-22(sin x +cos x ) =-sin ⎝⎛⎭⎫x +π4,故选D. 7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x =x 0处( )A .可导B .不可导C .不一定可导D .不能确定 [答案] B8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6D .-5x 4[答案] C [解析] (x -5)′=-5x -6.9.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6[答案] C [解析] ∵y =3x (x 2+2)=3x 3+6x ,∴y ′=9x 2+6.10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1[答案] A[解析] f (x )=(x -1)2+3(x -1)=x 2+x -2,f ′(x )=2x +1,f ′(1)=3.二、填空题11.若函数f (x )=1-sin x x,则f ′(π)________________. [答案] π-1π2[解析] f ′(x )=(1-sin x )′·x -(1-sin x )x ′x 2=sin x -x cos x -1x 2, ∴f ′(π)=sinπ-πcosπ-1π2=π-1π2. 12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是____________.[答案] 34[解析] 由⎩⎪⎨⎪⎧y =1x y =x 2得交点为(1,1), y ′=⎝⎛⎭⎫1x ′=-1x 2,y ′=(x 2)′=2x , ∴曲线y =1x 在点(1,1)处的切线方程为x +y -2=0,曲线y =x 2在点(1,1)处的切线方程为2x -y -1=0,两切线与x 轴所围成的三角形的面积为34. 13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )=________.[答案] x sin x +cos x[解析] ∵f ′(x )=[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′=a sin x +(ax +b )cos x +c cos x -(cx +d )sin x =(a -d -cx )sin x +(ax +b +c )cos x .为使f ′(x )=x cos x ,应满足⎩⎪⎨⎪⎧ a -d =0,c =0,a =1,b +c =0,解方程组,得⎩⎪⎨⎪⎧ a =1,b =0,c =0,d =1.从而可知,f (x )=x sin x +cos x .14.设f (x )=ln a 2x (a >0且a ≠1),则f ′(1)=________.[答案] 2ln a[解析] ∵f (x )=ln a 2x =2x ln a ,∴f ′(x )=(2x ln a )′=2ln a (x )′=2ln a ,故f ′(1)=2ln a .三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5); (2)1+x 1-x +1-x 1+x; (3)f (x )=ln x +2xx 2. [解析] (1)∵f ′(x )=[2x 5+8x 4-5x 3+2x 2+8x -5]′,∴f ′(x )=10x 4+32x 3-15x 2+4x +8.(2)∵f (x )=1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴f ′(x )=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. (3)f ′(x )=⎝⎛⎭⎫ln x x 2+2x x 2′=⎝⎛⎭⎫ln x x 2′+⎝⎛⎭⎫2xx 2′ =1x ·x 2-ln x ·2x x 4+2x (ln2·x 2-2x )x 4=(1-2ln x )x +(ln2·x 2-2x )·2xx 4=1-2ln x +(ln2·x -2)2xx 3. 16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).[解析] 题设中有四个参数a 、b 、c 、d ,为确定它们的值需要四个方程.由f (2x +1)=4g (x ),得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d . 于是有⎩⎪⎨⎪⎧a +2=2c , ①a +b +1=4d , ② 由f ′(x )=g ′(x ),得2x +a =2x +c ,∴a =c .③由f (5)=30,得25+5a +b =30.④∴由①③可得a =c =2.由④得b =-5,再由②得d =-12. ∴g (x )=x 2+2x -12.故g (4)=16+8-12=472. 17.(2010·湖北文,21)设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.[解析] 由f (x )=13x 3-a 2x 2+bx +c ,得f (0)=c ,f ′(x )=x 2-ax +b ,f ′(0)=b ,又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,得f(0)=1,f′(0)=0,故b=0,c=1.18.已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.[解析]∵f(x)=2x3+ax图象过点P(2,0),∴a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.对于g(x)=bx2+c,图象过点P(2,0),则4b+c=0.又g′(x)=2bx,g′(2)=4b=f′(2)=16,∴b=4.∴c=-16.∴g(x)=4x2-16.综上,可知f(x)=2x3-8x,g(x)=4x2-16.。
高二下数学同步训练:互斥事件与相互独立事件(附答案)
高二数学同步检测十六互斥事件与相互独立事件说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题栏,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.1.两个事件对立是两个事件互斥的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A 解析:由互斥事件、对立事件定义可知.2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,其中: (1)恰有1名男生和恰有2名男生 (2)至少有1名男生与至少有1名女生 (3)至少有1名男生和全是男生 (4)至少有1名男生和全是女生上述各对事件中,互斥事件的个数是A .1B .2C .3D .4答案:B 解析:由互斥事件的定义可知(1),(4)正确,故选B. 3.抛掷一枚硬币十次恰好三次正面向上的概率为A .C 310(12)3B .C 77(12)3 C .C 310(12)10D .3×(12)10 答案:C 解析:由独立重复试验的概率公式可知:P =C 310(12)3(1-12)7=C 310(12)10.故选C. 4.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一目标,则他们都中靶的概率为A.1425B.1225C.34D.35答案:A 解析:设“甲命中”为事件A ,“乙命中”为事件B ,则P (A )=810=45,P (B )=710,由题知,P (A ·B )=45×710=1425. 5.掷一个骰子的试验,事件A 表示“小于5点的偶数点出现”,事件B 表示“小于5点的数出现”,则在1次试验中,事件A +B 发生的概率为A.13B.12C.23D.56答案:C 解析:因为P (A )=26=13,P (B )=46=23,故P (A +B )=P (A )+1-P (B )=23.6.甲、乙两人独立解答某一道数学题,已知该题被甲独立解出的概率为0.6,被乙或甲解出的概率为0.92,则该题被乙独立解出的概率为A .0.4B .0.6C .0.8D .0.9答案:C 解析:设甲独立解出该题为事件A ,乙独立解出该题为事件B ,可知P (A )=0.6,P (A ·B +A ·B +A ·B )=0.92,故P (B )=0.8.7.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,则至少摸到2个黑球的概率等于A.27B.38C.37D.49答案:A 解析:至少摸到2个黑球也就是摸到2黑1白或3黑,故P =C 15C 23C 38+C 33C 38=27,故选A.8.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,数列{a n }满足:a n =⎩⎪⎨⎪⎧-1,第n 次为红球,1,第n 次为白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为A .C 57(13)2(23)5B .C 27(23)2(13)5 C .C 57(23)5(13)2D .C 57(23)2(23)5答案:B 解析:从口袋中摸出一红球的概率为23,白球的概率为13,由题可知S 7=3表示从口袋里摸出红球2次,白球5次,又有放回摸取可看作独立重复试验,故由公式可得P=C 27(23)2(13)5. 9.两个篮球运动员在罚球时投球的命中率分别为23和12,每人投篮3次,则2人都恰好进两球的概率为A.14B.25C.16D.18答案:C 解析:记“甲运动员罚球3次投中2次”为事件A ,“乙运动员罚球3次中2次”为事件B ,则P =P (A )·P (B )=C 23(23)2(13)·C 23(12)2(12)=16,故选C. 10.某人参加一次考试,4道题中解对3道题则为及格,他解题的正答率为0.4,则他能及格的概率约是A .0.18B .0.28C .0.37D .0.48答案:A 解析:因为他解这4道题之间没有影响且正答率相等,故可看作做4次独立重复试验,又能及格可分为解对3道或4道题,所以P =P 4(3)+P 4(4)=C 34×0.43×0.6+C 44×0.44≈0.18.第Ⅱ卷(非选择题 共60分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.11.花生的发芽率为0.9,发育为壮苗的概率为0.6,若每穴播两粒,则此穴缺苗的概率为________;此穴无壮苗的概率为________.答案:0.01 0.16 解析:此穴缺苗即两粒均不发芽,故P =(1-0.9)·(1-0.9)=0.01;此穴无壮苗即两粒均不是壮苗,故P =(1-0.6)(1-0.6)=0.16.12.从男、女生共36名的班级中,任选出两名委员,任何人都有同样的当选机会,如果选得同性委员的概率等于12,则男、女生相差________人.答案:6 解析:设男生x 名,女生36-x 名,由题知C 2xC 236+C 236-x C 236=12,解得x =15或x =21.13.有一道竞赛题,甲解出它的概率为12,乙解出它的概率为13,丙解出它的概率为14,则甲、乙、丙三人独立解答此题,只有1人解出此题的概率是________.答案:1124解析:设“甲解出该题”为事件A ;“乙解出该题”为事件B ;“丙解出该题”为事件C ,则P (A )=12;P (B )=13;P (C )=14.由题知,只有1人解出此题的概率为P =P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=1124.14.如图电路中a 、b 、c 三个开关,每个开关断开或闭合的概率都是12,且是相互独立的,则在某时刻灯泡甲,乙亮的概率分别是________,________.答案:18 38 解析:因为甲亮须a 、c 闭合,b 开启,所以P 甲=12×12×12=18;因为乙亮须a 闭合,b 、c 一个闭合即可,所以P 乙=12(12×12+12×12+12×12)=38.三、解答题:本大题共5小题,共44分.解答需写出文字说明、证明过程或演算步骤. 15.(本小题8分)某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率.解:(1)记“射中10环”为事件A ,记“射中7环”为事件B ,由于在一次射击中,A 与B 不可能同时发生,故A 与B 是互斥事件,“射中10环或7环”的事件为A +B ,故P(A+B)=P(A)+P(B)=0.21+0.28=0.49.答:射中10环或7环的概率为0.49.(2)记“不够7环”为事件C,则事件C为“射中7环或8环或9环或10环”.而P(C)=0.21+0.23+0.25+0.28=0.97,从而P(C)=1-P(C)=1-0.97=0.03.答:不够7环的概率为0.03.16.(本小题8分)甲、乙两人各进行1次体能测试,如果两人通过测试的概率都是0.8,计算:(1)两人都通过测试的概率;(2)其中恰有1人通过测试的概率;(3)至少有1人通过测试的概率.解:(1)记“甲、乙两人各进行1次体能测试甲通过”为事件A ;记“甲、乙两人各进行1次体能测试乙通过”为事件B ,由题可知A 、B 相互独立,则P(A·B)=P(A)P(B)=0.8×0.8=0.64. 答:两人都通过测试的概率为0.64. (2)两人体能测试恰有1人通过,包括:一种为甲通过乙未通过(A·B ),另一种为甲未通过乙通过(A ·B),知A·B 与A ·B 互斥.故P =P(A·B +A ·B)=P(A·B )+P(A ·B)=P(A)P(B )+P(A )P(B)=0.32.(3)“至少有1人通过体能测试”的对立事件为“两人都不能通过”. 故P =1-P(A ·B )=1-P(A )P(B )=0.96.17.(本小题8分)甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约,乙、丙则约定,两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是12,且面试是否合格互不影响,求:(1)至少有1人面试合格的概率;(2)恰有1人签约的概率;(3)恰有2人签约的概率.解:用A 、B 、C 分别表示事件甲、乙、丙面试合格,由题意知A 、B 、C 相互独立且P(A)=P(B)=P(C)=12.(1)至少有1人面试合格的概率是1-P(A ·B ·C )=1-P(A )P(B )P(C )=1-(12)3=78.(2)恰有1人签约即甲签约,需甲面试合格,乙、丙至少有1人面试不合格,故概率P =P(A·B ·C )+P(A·B ·C)+P(A·B·C )=P(A)P(B )P(C )+P(A)P(B )P(C)+P(A)P(B)P(C )=38. (3)恰有2人签约即乙、丙签约,需甲面试不合格,乙、丙合格,故概率P =P(A ·B·C)=P(A )P(B)P(C)=12×12×12=18.18.(本小题10分)(2009北京高考,文17)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min .(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)这名学生在上学路上因遇到红灯停留时间至多是4 min 的概率. 解:(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为:P(A)=(1-13)×(1-13)×13=427.(2)设这名学生在上学路上因遇到红灯停留的总时间至多是4 min 为事件B ,这名学生在上学路上遇到k 次红灯为事件B k (k =0,1,2),则由题意可得P(B 0)=(23)4=1681,P(B 1)=C 14(13)×(23)3=3281, P(B 2)=C 24(13)2(23)2=2481,由于事件B 等价于“这名学生在上学路上至少遇到2次红灯”,∴事件B 的概率为P(B)=P(B 0)+P(B 1)+P(B 2)=89.19.(本小题10分)甲、乙两队在进行一场五局三胜制的排球比赛,规定先胜三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率是0.6,乙队获胜的概率为0.4,且每局比赛的胜负是相互独立的.求:(1)甲队以3∶2获胜的概率;(2)乙队获胜的概率.解:(1)设甲队以3∶2获胜为事件A ,则第五局甲必胜,前四局各胜两局,∴P(A)=C 24×0.62×0.42×0.6=0.207 36.(2)设乙队获胜为事件B ,则B 包括三种情况有:①3∶0乙胜;②3∶1乙胜;③3∶2乙胜,∴P(B)=0.43+C 23×0.42×0.6×0.4+C 24×0.42×0.62×0.4=0.317 44.。
人教版高二上学期数学(选择性必修一)《2.4.2圆的一般方程》同步测试题及答案
人教版高二上学期数学(选择性必修一)《2.4.2圆的一般方程》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.若x 2+y 2-x +y -2m =0是一个圆的方程,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-14B.⎝ ⎛⎭⎪⎫14,+∞ C.⎝ ⎛⎭⎪⎫-14,+∞ D.⎝ ⎛⎭⎪⎫-∞,14 2.若点P (1,1)在圆x 2+y 2+x -y +k =0的外部,则实数k 的取值范围是( )A.(-2,+∞)B.⎣⎢⎡⎦⎥⎤-2,-12 C.⎝ ⎛⎭⎪⎫-2,12 D.(-2,2) 3.当圆C :x 2+y 2-4x -2my +2m =0的面积最小时,m 的值为( )A.4B.3C.2D.14.已知圆C :(x -a )2+(y -b )2=1过点A (1,0),则圆C 的圆心的轨迹是( )A.点B.直线C.线段D.圆5.当方程x 2+y 2+kx +2y +k 2=0所表示的圆取得最大面积时,直线y =(k -1)x +2的倾斜角α等于( )A.π2B.π4C.3π4D.π56.圆x 2+y 2-ax -2y +1=0关于直线x -y -1=0对称的圆的方程是x 2+y 2-4x +3=0,则a 的值为( )A.0B.1C.2D.37.(多选)圆x 2+y 2-4x -1=0( )A.关于点(2,0)对称B.关于直线y =0对称C.关于直线x +3y -2=0对称D.关于直线x -y +2=0对称8.(多选)如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,那么实数a 的值可以是( )A.-2B.0C.1D.3二、填空题9.过三点O(0,0),M(1,1),N(4,2)的圆的一般方程为___________________10.已知△ABC的顶点A(0,0),B(4,0),且AC边上的中线BD的长为3,则顶点C的轨迹方程是______________11.已知点A(1,2)在圆x2+y2+2x+3y+m=0外部,则实数m的取值范围是________12.已知圆C经过点(4,2),(1,3)和(5,1),则圆C与两坐标轴的四个截距之和为________三、解答题13.若方程x2+y2+2mx-2y+m2+5m=0表示圆.(1)求实数m的取值范围;(2)写出圆心坐标和半径.14.已知A(2,2),B(5,3),C(3,-1).(1)求△ABC的外接圆的一般方程;(2)若点M(a,2)在△ABC的外接圆上,求a的值.15.点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆上的动点.(1)求线段AP的中点M的轨迹方程;(2)若∠PBQ=90°,求线段PQ的中点N的轨迹方程.参考答案及解析一、选择题1.C 解析:根据题意,得(-1)2+12-4×(-2m )>0,所以m >-14. 2.C 解析:因为点P (1,1)在圆x 2+y 2+x -y +k =0的外部,所以需满足⎩⎨⎧1+1+1-1+k >0,1+1-4k >0,解得-2<k <12. 3.D 解析:由圆C :x 2+y 2-4x -2my +2m =0,得圆C 的标准方程为(x -2)2+(y -m )2=m 2-2m +4,从而对于圆C 的半径r 有r 2=m 2-2m +4=(m -1)2+3≥3,所以当m =1时,r 2取得最小值,此时圆C 的面积最小.4.D 解析:∵圆C :(x -a )2+(y -b )2=1过点A (1,0),∴(1-a )2+(0-b )2=1∴(a -1)2+b 2=1,∴圆C 的圆心的轨迹是以(1,0)为圆心,1为半径的圆.5.C 解析:x 2+y 2+kx +2y +k 2=0化为标准方程为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=1-34k 2,所以当k =0时圆的半径最大,面积也最大,此时直线的斜率为-1,故倾斜角为3π4. 6.C 解析:由于圆x 2+y 2-ax -2y +1=0的圆心为M ⎝ ⎛⎭⎪⎫a 2,1,圆x 2+y 2-4x +3=0的圆心为N (2,0),又两圆关于直线x -y -1=0对称,故有1-0a 2-2×1=-1,解得a =2.7.ABC 解析:x 2+y 2-4x -1=0⇒(x -2)2+y 2=5,即圆心的坐标为(2,0).A 项,圆是关于圆心对称的中心对称图形,而点(2,0)是圆心,故正确;B 项,圆是关于直径所在直线对称的轴对称图形,直线y =0过圆心,故正确;C 项,圆是关于直径所在直线对称的轴对称图形,直线x +3y -2=0过圆心,故正确;D 项,圆是关于直径所在直线对称的轴对称图形,直线x -y +2=0不过圆心,故不正确.8.ACD 解析:圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22,由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,所以1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1.故选ACD.二、填空题9.答案:x 2+y 2-8x +6y =0解析:设过三点O (0,0),M (1,1),N (4,2)的圆的方程为x 2+y 2+Dx +Ey +F =0则⎩⎨⎧ F =0,1+1+D +E +F =0,16+4+4D +2E +F =0,解得⎩⎨⎧ D =-8,E =6,F =0,故所求圆的一般方程为x 2+y 2-8x +6y =0.10.答案:(x -8)2+y 2=36(y ≠0)解析:设C (x ,y )(y ≠0),则D ⎝ ⎛⎭⎪⎫x 2,y 2. ∵B (4,0),且AC 边上的中线BD 长为3,∴⎝ ⎛⎭⎪⎫x 2-42+⎝ ⎛⎭⎪⎫y 22=9,即(x -8)2+y 2=36(y ≠0). 11.答案:⎝ ⎛⎭⎪⎫-13,134 解析:由点A (1,2)在圆x 2+y 2+2x +3y +m =0的外部.得1+4+2+6+m >0,解得m >-13. 又由4+9-4m >0得m <134,所以-13<m <134. 12.答案:-2解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,将(4,2),(1,3),(5,1)代入方程中 得⎩⎨⎧ 16+4+4D +2E +F =0,1+9+D +3E +F =0,25+1+5D +E +F =0,解得⎩⎨⎧ D =-2,E =4,F =-20,所以圆的方程为x 2+y 2-2x +4y -20=0.令x =0,则y 2+4y -20=0,由根与系数的关系得y 1+y 2=-4;令y =0,则x 2-2x -20=0 由根与系数的关系得x 1+x 2=2,故圆C 与两坐标轴的四个截距之和为y 1+y 2+x 1+x 2=-4+2=-2.三、解答题13.解:(1)由表示圆的充要条件,得(2m )2+(-2)2-4(m 2+5m )>0解得m <15,即实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,15. (2)将方程x 2+y 2+2mx -2y +m 2+5m =0写成标准方程为(x +m )2+(y -1)2=1-5m 故圆心坐标为(-m ,1),半径r =1-5m .14.解:(1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0由题意,得⎩⎨⎧ 22+22+2D +2E +F =0,52+32+5D +3E +F =0,32+(-1)2+3D -E +F =0,解得⎩⎨⎧ D =-8,E =-2,F =12. 即△ABC 的外接圆的一般方程为x 2+y 2-8x -2y +12=0.(2)由(1)知,△ABC的外接圆的方程为x2+y2-8x-2y+12=0易知M的一个坐标为(2,2),即a=2又点M(a,2)在△ABC的外接圆上,∴a2+22-8a-2×2+12=0即a2-8a+12=0,解得a=6,综上,a=2或6.15.解:(1)设线段AP的中点M(x,y),由中点坐标公式,得点P的坐标为(2x-2,2y).∵点P在圆x2+y2=4上,∴(2x-2)2+(2y)2=4故线段AP的中点M的轨迹方程为(x-1)2+y2=1.(2)设线段PQ的中点N(x,y)在Rt△PBQ中,|PN|=|BN|.设O为坐标原点,连接ON(图略),则ON⊥PQ∴|OP|2=|ON|2+|PN|2=|ON|2+|BN|2∴x2+y2+(x-1)2+(y-1)2=4故线段PQ的中点N的轨迹方程为x2+y2-x-y-1=0.。
全国高二高中数学同步测试带答案解析
全国高二高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、选择题1.设a,b,m 都是正数,且a<b,则下列不等式中恒成立的是 ( ) A .<<1 B .≥C .≤≤1D .1<<2.“a>1”是“<1”的 ( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件3.设a,b ∈R +,A=+,B=,则A,B 的大小关系是 ( )A .A≥B B .A≤BC .A>BD .A<B4.已知a>b>0,c>d>0,m=-,n=,则m 与n 的大小关系是( ) A .m<nB .m>nC .m≥nD .m≤n5.已知下列不等式:①x 2+3>2x;②a 5+b 5>a 3b 2+a 2b 3;③a 2+b 2≥2(a -b-1). 其中正确的个数为 ( ) A .0 B .1 C .2D .36.设a>0,b>0,下列不等式中不正确的是 ( ) A .a 2+b 2≥2abB .+≥2C .+≥a+bD .+≤7.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5与b 5的大小关系为 ( ) A .a 5>b 5 B .a 5<b 5 C .a 5=b 5 D .不确定8.设a>0,b>0且ab-(a+b)≥1,则 ( ) A .a+b≥2(+1) B .a+b≤+1 C .a+b≤(+1)2D .a+b>2(+1)9.若1<x<10,下面不等式中正确的是 ( )A .(lgx)2<lgx 2<lg(lgx)B .lgx 2<(lgx)2<lg(lgx)C.(lgx)2<lg(lgx)<lgx2D.lg(lgx)<(lgx)2<lgx210.下列三个不等式中:①a<0<b;②b<a<0;③b<0<a,其中能使<成立的充分条件有()A.①②B.①③C.②③D.①②③11.要证a2+b2-1-a2b2≤0,只要证()A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1) (b2-1)≥012.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A.S≥2P B.P<S<2PC.S>P D.P≤S<2P13.设x1和x2是方程x2+px+4=0的两个不相等的实数根,则()A.|x1|>2且|x2|>2B.|x1+x2|<4C.|x1+x2|>4D.|x1|=4且|x2|=1二、填空题1.已知0<x<1,a=2,b=1+x,c=,则其中最大的是.2.若x是正数,且x3-x=2,则x与的大小关系为.3.设A=+,B=(a>0,b>0),则A,B的大小关系为.4.等式“=”的证明过程:“等式两边同时乘以得,左边=·===1,右边=1,左边=右边,故原不等式成立”,应用了的证明方法.(填“综合法”或“分析法”)5.设x,y,z为正实数,满足x-2y+3z=0,则的最小值是.6.设a,b,c都是正实数,a+b+c=1,则++的最大值为.三、解答题1.已知a>0,b>0,求证:+≥+.2.若a,b,m,n都为正实数,且m+n=1.求证:≥m+n.3.已知函数f(x)=x2+ax+b,当p,q满足p+q=1时,证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x,y都成立的充要条件是0≤p≤1.4.用分析法证明:当x>0时,sinx<x.5.用分析法证明:当x>1时,x>ln(1+x).6.已知x,y,z均为正数,求证:++≥++.7.在某两个正数x,y之间,若插入一个数a,使x,a,y成等差数列,若插入两个数b,c,使x,b,c,y成等比数列,求证:(a+1)2≥(b+1)(c+1).全国高二高中数学同步测试答案及解析一、选择题1.设a,b,m都是正数,且a<b,则下列不等式中恒成立的是()A.<<1B.≥C.≤≤1D.1<<【答案】A【解析】选A.真分数的分子、分母同加上一个正数,分数值增大,可知A正确.2.“a>1”是“<1”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.,A=+,B=,则A,B的大小关系是()3.设a,b∈R+A.A≥B B.A≤BC.A>B D.A<B【答案】C【解析】选C.因为A2-B2=(+)2-()2=2>0,所以A>B.4.已知a>b>0,c>d>0,m=-,n=,则m与n的大小关系是()A.m<n B.m>n C.m≥n D.m≤n【答案】C【解析】选C.因为a>b>0,c>d>0,所以m2=ac+bd-2,n2=ac+bd-bc-ad,所以m2-n2=bc+ad-2=(-)2≥0.所以m2≥n2,又m>0,n>0,所以m≥n.5.已知下列不等式:①x2+3>2x;②a5+b5>a3b2+a2b3;③a2+b2≥2(a-b-1).其中正确的个数为()A.0B.1C.2D.3【解析】选C.①x 2+3-2x=(x-1)2+2>0, 所以①正确;②当a=b 时,a 5+b 5=a 3b 2+a 2b 3, 所以②不正确;③a 2+b 2-2(a-b-1)=a 2-2a+1+ b 2+2b+1=(a-1)2+(b+1)2≥0,所以③正确.6.设a>0,b>0,下列不等式中不正确的是 ( ) A .a 2+b 2≥2abB .+≥2C .+≥a+bD .+≤【答案】D 【解析】选D.+-=-==>0.7.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5与b 5的大小关系为 ( ) A .a 5>b 5 B .a 5<b 5 C .a 5=b 5 D .不确定【答案】A【解析】选A.由等比数列的性质知a 5=, 由等差数列的性质知b 5=2b 3-b 1, 所以a 5-b 5=-2b 3+b 1 ==>0,所以a 5>b 5.8.设a>0,b>0且ab-(a+b)≥1,则 ( ) A .a+b≥2(+1) B .a+b≤+1 C .a+b≤(+1)2D .a+b>2(+1)【答案】A 【解析】选A.因为≤,所以ab≤(a+b)2,所以(a+b)2-(a+b)≥ab -(a+b)≥1, 所以(a+b)2-4(a+b)-4≥0, 所以a+b≤2-2或a+b≥2+2.又a>0,b>0,所以a+b≥2+2.9.若1<x<10,下面不等式中正确的是 ( )A .(lgx)2<lgx 2<lg(lgx)B .lgx 2<(lgx)2<lg(lgx)C .(lgx)2<lg(lgx)<lgx 2D .lg(lgx)<(lgx)2<lgx 2【解析】选D.因为1<x<10,所以0<lgx<1,所以0<(lgx)2<1,0<lgx2<2,lg(lgx)<0.又(lgx)2-lgx2=(lgx)2-2lgx=lgx(lgx-2)<0,所以0<(lgx)2<lgx2,所以lg(lgx)<(lgx)2<lgx2.10.下列三个不等式中:①a<0<b;②b<a<0;③b<0<a,其中能使<成立的充分条件有()A.①②B.①③C.②③D.①②③【答案】A【解析】选A.①a<0<b⇒<;②b<a<0⇒<;③b<0<a⇒>,故选A.11.要证a2+b2-1-a2b2≤0,只要证()A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1) (b2-1)≥0【答案】D【解析】选D.a2+b2-1-a2b2=-(a2-1)(b2-1),要证原不等式成立,只需证-(a2-1)(b2-1)≤0,即证(a2-1)(b2-1)≥0.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A.S≥2P B.P<S<2PC.S>P D.P≤S<2P【答案】D【解析】选D.因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,所以a2+b2+c2≥ab+bc+ca,即S≥P.又三角形中|a-b|<c,所以a2+b2-2ab<c2,同理b2-2bc+c2<a2,c2-2ac+a2<b2,所以a2+b2+c2<2(ab+bc+ca),即S<2P.13.设x1和x2是方程x2+px+4=0的两个不相等的实数根,则()A.|x1|>2且|x2|>2B.|x1+x2|<4 C.|x1+x2|>4D.|x1|=4且|x2|=1【答案】C【解析】选C.由方程有两个不等实根知Δ=p2-16>0,故>4.又x1+x2=-p,所以=>4.二、填空题1.已知0<x<1,a=2,b=1+x,c=,则其中最大的是.【答案】c【解析】因为0<x<1,所以a>0,b>0,c>0,又a2-b2=(2)2-(1+x)2=-(1-x)2<0,所以a2-b2<0,所以a<b.又c-b=-(1+x)=>0,所以c>b,所以c>b>a.2.若x是正数,且x3-x=2,则x与的大小关系为.【答案】x>【解析】由x3-x=2知x2-1=,所以(x2-1)(x2+1)=(x2+1)=2>4,即x4-1>4,从而x4>5,所以x>.3.设A=+,B=(a>0,b>0),则A,B的大小关系为.【答案】A≥B【解析】【解题指南】本题可考虑使用作商法,另外化简时可考虑使用基本不等式.解:因为==×=≥=1(当且仅当a=b时,等号成立).又因为B>0,所以A≥B.4.等式“=”的证明过程:“等式两边同时乘以得,左边=·===1,右边=1,左边=右边,故原不等式成立”,应用了的证明方法.(填“综合法”或“分析法”)【答案】综合法【解析】由综合法的特点可知,此题的证明用的是综合法.5.设x,y,z为正实数,满足x-2y+3z=0,则的最小值是.【答案】3【解析】由x-2y+3z=0得y=,代入得=≥=3,当且仅当x=3z时,取等号.6.设a,b,c都是正实数,a+b+c=1,则++的最大值为.【答案】【解析】【解题指南】本题需把++的最大值问题转化为(++)2的最大值问题,注意“1”的使用. 解:因为(++)2=a+b+c+2+2+2≤1+(a+b)+(b+c)+(c+a)=1+2(a+b+c)=3,所以++≤,当且仅当a=b=c=时等号成立.三、解答题1.已知a>0,b>0,求证:+≥+.【答案】见解析【解析】证明:===≥=1,所以+≥+.【一题多解】本题还可用以下方法证明:+-(+)==.因为+>0,>0,(-)2≥0,所以+≥+.2.若a,b,m,n都为正实数,且m+n=1.求证:≥m+n.【答案】见解析【解析】证明:因为()2-(m+n)2=ma+nb-m2a-n2b-2mn=m(1-m)a+n(1-n)b-2mn=mn(-)2≥0,又>0,m+n>0,所以≥m+n.3.已知函数f(x)=x2+ax+b,当p,q满足p+q=1时,证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x,y都成立的充要条件是0≤p≤1.【答案】见解析【解析】证明:pf(x)+qf(y)-f(px+qy)=p(x2+ax+b)+q(y2+ay+b)-(px+qy)2-a(px+qy)-b=p(1-p)x2+q(1-q)y2-2pqxy=pq(x-y)2(因为p+q=1).充分性:若0≤p≤1,q=1-p∈[0,1].所以pq≥0,所以pq(x-y)2≥0,所以pf(x)+qf(y)≥f(px+qy).必要性:若pf(x)+qf(y)≥f(px+qy),则pq(x-y)2≥0,因为(x-y)2≥0,所以pq≥0.即p(1-p)≥0,所以0≤p≤1.综上,原命题成立.4.用分析法证明:当x>0时,sinx<x.【答案】见解析【解析】证明:当x>0时,要证sinx<x,即证f(x)=sinx-x<0=f(0),即证f'(x)=cosx-1≤0,显然当x>0时,f'(x)=cosx-1≤0,故原命题成立.5.用分析法证明:当x>1时,x>ln(1+x).【答案】见解析【解析】证明:当x>1时,要证x>ln(1+x),即证f(x)= x-ln(1+x)>0=f(0),即证f'(x)=1-=>0,显然x>1时,f'(x)>0,所以原命题成立.6.已知x,y,z均为正数,求证:++≥++.【答案】见解析【解析】证明:因为x,y,z均为正数,所以+=≥,同理得+≥,+≥(当且仅当x=y=z时,以上三式等号都成立),将上述三个不等式两边分别相加,并除以2,得++≥++.7.在某两个正数x,y之间,若插入一个数a,使x,a,y成等差数列,若插入两个数b,c,使x,b,c,y成等比数列,求证:(a+1)2≥(b+1)(c+1).【答案】见解析【解析】证明:方法一:由条件得消去x,y即得:2a=+,且有a>0,b>0,c>0,要证(a+1)2≥(b+1)(c+1),只需证a+1≥,因为≤=+1,所以只需证2a≥b+c,而2a=+,所以只需证+≥b+c,即b3+c3≥bc(b+c),(b+c)(b2+c2-bc)≥bc(b+c),而b+c>0,则只需证b2+c2-bc≥bc,即(b-c)2≥0,上式显然成立.所以原不等式成立.方法二:由等差、等比数列的定义知:用x,y表示a,b,c得所以(b+1)(c+1)=(+1)(+1)≤=(2x+y+3)(x+2y+3)≤==(a+1)2,所以原不等式成立.。
高二人教A版数学选修1-1同步练习3-1-2导数的几何意义 Word版含答案
3.1.2导数的几何意义一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-1 [答案] A[解析] Δy =(2+Δx )3-3(2+Δx )-23+6=9Δx +6Δx 2+Δx 3,Δy Δx=9+6Δx +Δx 2, lim Δx →0 Δy Δx =lim Δx →0(9+6Δx +Δx 2)=9, 由导数的几何意可知,曲线y =x 3-3x 在点(2,2)的切线斜率是9.2.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( ) A .30°B .45°C .135°D .60° [答案] B[解析] Δy =13(-1+Δx )3-13×(-1)3=Δx -Δx 2+13Δx 3,Δy Δx =1-Δx +13Δx 2, lim Δx →0 Δy Δx =lim Δx →0 (1-Δx +13Δx 2)=1, ∴曲线y =13x 3-2在点⎝⎛⎭⎫-1,-73处切线的斜率是1,倾斜角为45°. 3.函数y =-1x 在点(12,-2)处的切线方程是( ) A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 [答案] B[解析] Δy =2Δx Δx +12,Δy Δx =2Δx +12,lim Δx →0 2Δx +12=4, ∴切线的斜率为4.∴切线方程为y =4⎝⎛⎭⎫x -12-2=4x -4. 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在[答案] B[解析] 由导数的几何意义可知f ′(x 0)=-12<0,故选B. 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线[答案] C[解析] 由于对导数在某点处的概念及导数的几何意义理解不透彻,不能认真分析题中所给选项,事实上A 、B 是一样的.它们互为逆否命题,讨论的是“f ′(x 0)存在与否”与切线存在与否的关系,而在导数的几何意义中讨论的是“切线的斜率”与“f ′(x 0)”,得C 是正确的,而A 、B 、D 都是不正确的,可一一举例说明.6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2 [答案] B[解析] lim x →0f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f (1)-2x=lim -2x →0 f [1+(-2x )]-f (1)-2x=f ′(1)=-1.7.在曲线y =x 2上的点________处的倾斜角为π4( ) A .(0,0)B .(2,4)C .(14,116) D .(12,14) [答案] D[解析] 倾斜角的正切值即为斜率,设点(x 0,y 0)则k =y ′|x =x 0=lim Δx →0(x 0+Δx )2-x 20Δx =lim Δx →02x 0Δx +Δx 2Δx =lim Δx →0(2x 0+Δx )=2x 0=1, ∴x 0=12,y 0=x 20=14,∴点坐标(12,14). 8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( )A .90°B .0°C .锐角D .钝角 [答案] C[解析] 函数图像在点(4,f (4))处的切线斜率为f ′(4)=-sin4>0,所以函数图像在点(4,f (4))处的切线的倾斜角为锐角.9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1) [答案] C[解析] k =lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0(x 0+Δx )3+(x 0+Δx )-x 30-x 0Δx =lim Δx →0[3x 20+3x 0Δx +(Δx )2+1] =3x 20+1=4,∴3x 20=3,即x 0=±1, ∴点P 0的坐标为(1,0)或(-1,-4).10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B.12 C .-12D .-1[答案] A[解析] ∵y ′|x =1=lim Δx →1a (1+Δx )2-a ×12Δx =lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a , ∴2a =2,∴a =1.二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.[答案] 12[解析] f ′(2)=lim Δx →0(2+Δx )3+2-23-2Δx =lim Δx →0(2+Δx -2)[(2+Δx )2+(2+Δx )·2+22]Δx =lim Δx →0[4+4Δx +(Δx )2+4+2Δx +4] =lim Δx →0[12+6Δx +(Δx )2]=12. 12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.[答案] (2,4)[解析] 设切点坐标为(x 0,y 0),y ′|x =x 0=lim Δx →0(x 0+Δx )2-3(x 0+Δx )-(x 20-3x 0)Δx =lim Δx →02x 0Δx -3Δx Δx =2x 0-3=1=k , 故x 0=2,y 0=x 20=4,故切点坐标为(2,4).13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.[答案] 83[解析] y ′=lim Δx →0(x +Δx )3-x 3Δx =3x 2,所以k =y ′|x =1=3×1=3,所以在点(1,1)处的切线方程为y =3x -2,它与x 轴的交点为⎝⎛⎭⎫23,0,与x =2的交点为(2,4),所以S =12×⎝⎛⎭⎫2-23×4=83. 14.曲线y =x 3+x +1在点(1,3)处的切线是________.[答案] 4x -y -1=0[解析] 因为y ′=lim Δx →0(x +Δx )3+(x +Δx )+1-(x 3+x +1)Δx =3x 2+1, 所以k =y ′|x =1=3+1=4,所以切线的方程为y -3=4(x -1),即4x -y -1=0.三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.[分析] 点是曲线上的点→求切线的斜率k →得切线方程[解析] y ′|x =1=lim Δx →0(1+Δx )2+3(1+Δx )+1-(12+3×1+1)Δx =lim Δx →05Δx +(Δx )2Δx =lim Δx →0(5+Δx )=5, 即切线的斜率k =5,∴曲线在点(1,5)处的切线方程为y -5=5(x -1)即5x -y =0.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.[解析] 设直线l 与曲线C 相切于P (x 0,y 0)点.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx =3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1. 于是切点的坐标为⎝⎛⎭⎫-13,2327或(1,1).当切点为⎝⎛⎭⎫-13,2327时,2327=-13+a ,a =3227; 当切点为(1,1)时,1=1+a ,a =0(舍去).∴a 的值为3227,切点坐标为(-13,2327). [点评] 利用曲线在一点处的导数等于在这一点的切线的斜率,确定出切点.17.求过点(2,0)且与曲线y =1x相切的直线方程. [解析] 易知(2,0)不在曲线y =1x 上,令切点为(x 0,y 0),则有y 0=1x 0. 又y ′=lim Δx →0 Δy Δx =lim Δx →01x +Δx -1x Δx =-1x 2, 所以y ′|x =x 0=-1x 20, 即切线方程为y =-1x 20(x -2)① 而y 0x 0-2=-1x 20② 由①②可得x 0=1,故切线方程为y +x -2=0.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.[解析] 设P (x 0,y 0),Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x ·Δx +(Δx )2-3Δx ,Δy Δx =2x ·Δx +(Δx )2-3Δx Δx=2x +Δx -3. lim Δx →0 Δy Δx =lim Δx →0(2x +Δx -3)=2x -3, ∴y ′|x =x 0=2x 0-3,令2x 0-3=0得x 0=32, 代入曲线方程得y 0=-94, ∴P ⎝⎛⎭⎫32,-94.。
高二数学人教B选修22同步练习321 含答案
选修2-2 3.2.1一、选择题1.|(3+2i)-(4-i)|等于()A.58B.10C.2 D.-1+3i[答案] B[解析]原式=|-1+3i|=(-1)2+32=10.2.复数(1-i)-(2+i)+3i等于()A.-1+i B.1-iC.i D.-i[答案] A[解析]原式=(1-2)+(-1-1+3)i=-1+i.3.已知z1=a+bi,z2=c+di,若z1+z2是纯虚数,则有()A.a-c=0且b-d≠0B.a-c=0且b+d≠0C.a+c=0且b-d≠0D.a+c=0且b+d≠0[答案] C4.设f(z)=z,且z1=1+5i,z2=-3+2i,则f(z1-z2)的值是() A.-2+3i B.-2-3iC.4-3i D.4+3i[答案] D[解析]∵z1-z2=(1+5i)-(-3+2i)=4+3i∴z1-z2=4-3i,∵f(z)=z,∴f(4-3i)=4-3i=4+3i.故选D.5.设z∈C,且|z+1|-|z-i|=0,则|z+i|的最小值为()A.0B.1C.22 D.12[答案] C[解析]∵|z+1|=|z-i|,∴复数z的对应点轨迹为连结点A(-1,0),B(0,1)的线段的中垂线y=-x,而|z+i|表示直线y=-x上的点到定点(0,-1)的距离,∴|z+i|≥22.故选C.6.已知|z-3|+|z+3|=10且|z-5i|-|z+5i|=8,则复数z等于()A.4i B.-4iC.±4i D.以上都不对[答案] B[解析]由几何意义可知复数z的对应点在以F1(-3,0),F2(3,0)为焦点、长轴长为10的椭圆上,又在F3(0,-5),F4(0,5)为焦点、实轴长为8的双曲线的下支上.如图故z=-4i.故选B.7.△ABC的三个顶点对应的复数分别为z1、z2、z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点为△ABC的()A.内心B.垂心C.重心D.外心[答案] D[解析]由几何意义知,z到△ABC三个顶点距离都相等,z对应的点是△ABC的外心.8.如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是()A.1 B. 2C.2 D. 5[答案] A[解析]设复数-i、i、-1-i在复平面内对应的点分别为Z1、Z2、Z3,因为|z+i|+|z -i|=2,|Z1Z2|=2,所以点Z的集合为线段Z1Z2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,∵|Z 1Z 3|=1.故选A.9.满足条件|z |=1及⎪⎪⎪⎪z +12=⎪⎪⎪⎪z -32的复数z 的集合是( ) A.⎩⎨⎧⎭⎬⎫-12+32i ,-12-32i B.⎩⎨⎧⎭⎬⎫12+12i ,12-12i C.⎩⎨⎧⎭⎬⎫12+32i ,12-32i D.⎩⎨⎧⎭⎬⎫22+22i ,22-22i [答案] C[解析] 解法1:设z =x +yi (x 、y ∈R ),依题意得⎩⎪⎨⎪⎧ x 2+y 2=1⎝⎛⎭⎫x +122+y 2=⎝⎛⎭⎫x -322+y 2,解得⎩⎨⎧ x =12y =±32∴z =12±32i . 解法2:根据复数模的几何意义知|z |=1是单位圆,⎪⎪⎪⎪z +12=⎪⎪⎪⎪z -32是以A ⎝⎛⎭⎫-12,0,B ⎝⎛⎭⎫32,0为端点的线段AB 的中垂线x =12. ∴满足此条件的复数z 是以12为实部的一对共轭复数,由模为1知选C.故选C. 10.A 、B 分别是复数z 1、z 2在复平面上对应的两点,O 是原点,若|z 1+z 2|=|z 1-z 2|,则△AOB 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形[答案] B[解析] 由复数与向量的对应关系,|z 1+z 2|=|z 1-z 2|⇔|OA →+OB →|=|OA →-OB →|,∴以OA →、OB →为邻边的平行四边形为矩形,∴∠AOB 为直角.故选B.二、填空题11.在复平面内,若复数z 满足|z +3|+|z -3|=10,则z 在复平面内对应的点的轨迹方程为____________.[答案] x 225+y 216=1 [解析] 根据模的几何意义,复数z 在复平面内对应的点到两定点(-3,0)、(3,0)的距离之和为定值10,故其轨迹是以(-3,0)、(3,0)为焦点的椭圆.∵2c =6,2a =10,∴b =4,从而其轨迹方程是x 225+y 216=1. 12.已知|z |=1,则|1-3i -z |的最大值是________,最小值是________.[答案] 3 1[解析] 因为|z |=1,所以z 在半径为1的圆上,|1-3i -z |=|z -(-1+3i )|即圆上一点到点(-1,3)的距离,d max =3,d min =1.13.已知z =1+i ,设ω=z -2|z |-4,则ω=________.[答案] -(3+22)+i[解析] ∵z =1+i ,∴|z |=2,∴ω=z -2|z |-4=(1+i )-22-4=-(3+22)+i .14.设m ∈Z ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),(1)若z 为实数,则m =________;(2)若z 为纯虚数,则m =________.[答案] (1)1或2 (2)-12[解析] (1)z =(2+i )m 2-3(1+i )m -2(1-i )=(2m 2-3m -2)+(m 2-3m +2)i .由题意:m 2-3m +2=0,即m =1或m =2时,z 是实数.(2)依题意⎩⎪⎨⎪⎧2m 2-3m -2=0m 2-3m +2≠0解得m =-12,∴当m =-12时,z 是纯虚数. 三、解答题15.已知复数z 满足方程|2z -1+i |=|z +1|,求复数z 对应点的轨迹.[解析] 设z =x +yi (x 、y ∈R ),则(2x -1)2+(2y +1)2=(x +1)2+y 2,整理得(x -1)2+⎝⎛⎭⎫y +232=109. ∴轨迹是以点⎝⎛⎭⎫1,-23为圆心,103为半径的圆. 16.已知点P 对应复数z 1,点Q 对应复数2z 1+3-4i ,若P 在圆|z |=2上运动,求Q 点的轨迹.[解析] 设Q 点对应复数为z .则z =2z 1+3-4i ,∴z 1=12(z -3+4i ) ∵|z 1|=2,∴⎪⎪⎪⎪12(z -3+4i )=2. 即|z -(3-4i )|=4.∴Q 点的轨迹是以3-4i 对应点(3,-4)为圆心,半径为4的圆.17.若f (z )=2z +z -3i .f (z +i )=6-3i ,试求f (-z ).[解析] ∵f (z )=2z +z -3i ,∴f (z +i )=2(z +i )+(z +i )-3i =2z +2i +z -i -3i =2z +z -2i , 又f (z +i )=6-3i ,∴2z +z -2i =6-3im 即2z +z =6-im设z =a +bi (a ,b ∈R ),则z =a -bi .∴2(a -bi )+(a +bi )=6-i ,即⎩⎪⎨⎪⎧ 3a =6-b =-1,∴⎩⎪⎨⎪⎧a =2b =1, ∴z =2+i ,∴f (-z )=-2z -z -3i =-2(2+i )-(2-i )-3i=-6-4i .18.已知z 1,z 2∈C ,求证:(1)|z 1|-|z 2|≤|z 1±z 2|≤|z 1|+|z 2|;(2)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.[证明] (1)如图所示,根据复数加、减法的几何意义,令z 1,z 2分别对应向量AB →,AD →,则向量AC →,DB →分别对应复数z 1+z 2,z 1-z 2.∵|AB →|-|BC →|≤|AC →|≤|AB →|+|BC →|,∴|z 1|-|z 2|≤|z 1+z 2|≤|z 1|+|z 2|. 又∵|AB →|-|AD →|≤|DB →|≤|AB →|+|AD →|∴|z 1|-|z 2|≤|z 1-z 2|≤|z 1|+|z 2|.故|z 1|-|z 2|≤|z 1±z 2|≤|z 1|+|z 2|.(2)设z 1=a +bi ,z 2=c +di ,则|z 1+z 2|2=a 2+b 2+c 2+d 2+2ac +2bd ,|z 1-z 2|2=a 2+b 2+c 2+d 2-2ac -2bd ,∴|z 1+z 2|2+|z 1-z 2|2=(a 2+b 2+c 2+d 2+2ac +2bd )+(a 2+b 2+c 2+d 2-2ac -2bd ) =2(a 2+b 2+c 2+d 2)=2(a 2+b 2)+2(c 2+d 2)=2|z 1|2+2|z 2|2,即|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.。
全国高二高中数学同步测试带答案解析
全国高二高中数学同步测试班级:___________ 姓名:___________ 分数:___________一、填空题1.把一枚硬币任意抛掷两次,记第一次出现正面为事件A,第二次出现正面为事件B,则P(B|A)等于________.2.已知P(AB)=,P(A)=,则P(B|A)=________.3.设A、B是两个事件,0<P(A)<1,P(|A)=1.则下列结论:①P(AB)=0;②P(A+)=P(A);③P()=P(B);④P(A)=P().其中正确的是________.4.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为________.5.6位同学参加百米短跑初赛,赛场共有6条跑道,已知甲同学排在第一跑道,则乙同学在第二跑道的概率为________.6.抛掷两颗均匀的骰子,已知它们的点数不同,则至少有一颗是6点的概率为________.7.一个家庭中有两个小孩,假定生男,生女是等可能的.已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是________.8.已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________.9.某种电子元件用满3000小时不坏的概率为,用满8000小时不坏的概率为.现有一只此种电子元件,已经用满3000小时不坏,还能用满8000小时的概率是________.10.已知A、B是相互独立事件,且P(A)=,P(B)=,则P(A)=________;P()=________.11.将一枚硬币连续抛掷5次,5次都出现正面朝上的概率是________.12.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为________.13.有一道数学难题,在半小时内甲能解决的概率是,乙能解决的概率为,两人试图独立地在半小时解决,则两人都未解决的概率为________.14.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做这两题的可能性均为.则其中甲、乙两名学生选做同一道题的概率为________.15.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率为________,三人中至少有一人达标的概率为________.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.17.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是________(假定体型与身体关节构造合格与否相互之间没有影响).二、解答题1.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,求它能活到25岁的概率.2.盒子里装有16只球,其中6只是玻璃球,另外10只是木质球.而玻璃球中有2只是红色的,4只是蓝色的;木质球中有3只是红色的,7只是蓝色的,现从中任取一只球,如果已知取到的是蓝色的球,求这个球是玻璃球的概率.3.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.(1)求P(A),P(B),P(AB);(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.4.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问从2号箱取出红球的概率是多少?5.设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率.6.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三个人该课程考核都合格的概率(结果保留三位小数).7.如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(1)求p ;(2)求电流能在M 与N 之间通过的概率.8.甲、乙两人破译一密码,它们能破译的概率分别为和,试求:(1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率; (4)至多有一人能破译的概率;(5)若要使破译的概率为99%,至少需要多少乙这样的人?全国高二高中数学同步测试答案及解析一、填空题1.把一枚硬币任意抛掷两次,记第一次出现正面为事件A ,第二次出现正面为事件B ,则P(B|A)等于________. 【答案】【解析】事件A 与事件B 相互独立, 故P(B|A)=P(B)=.2.已知P(AB)=,P(A)=,则P(B|A)=________. 【答案】【解析】P(B|A)===.3.设A 、B 是两个事件,0<P(A)<1,P(|A)=1. 则下列结论:①P(AB)=0;②P(A +)=P(A);③P()=P(B);④P(A)=P().其中正确的是________. 【答案】①【解析】由P(|A)=1,得P(B|A)=0, 即=0,所以P(AB)=0.4.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为________. 【答案】【解析】设第一次摸出红球为事件A ,第二次摸出红球为事件B , 则P(A)=,P(AB)==.∴P(B|A)==.5.6位同学参加百米短跑初赛,赛场共有6条跑道,已知甲同学排在第一跑道,则乙同学在第二跑道的概率为________. 【答案】【解析】甲排在第一跑道,其他5位同学共有A 55种排法,乙排在第二跑道共有A 44种排法,所以P ==.6.抛掷两颗均匀的骰子,已知它们的点数不同,则至少有一颗是6点的概率为________. 【答案】【解析】事件A 为至少有一颗是6点,事件B 为两颗骰子点数不同,则n(B)=6×5=30,n(A∩B)=10,P(A|B)==.7.一个家庭中有两个小孩,假定生男,生女是等可能的.已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是________. 【答案】【解析】一个家庭的两个小孩只有4种可能{两个都是男孩},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题意知,这4个事件是等可能的.设基本事件空间为Ω,A =“其中一个是女孩”,B =“其中一个是男孩”,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}, ∴P(B|A)===.8.已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________. 【答案】19%【解析】A =“产品为合格品”,B =“产品为一级品”,P(B)=P(AB)=P(B|A)P(A)=0.2×0.95=0.19.所以这种产品的一级品率为19%.9.某种电子元件用满3000小时不坏的概率为,用满8000小时不坏的概率为.现有一只此种电子元件,已经用满3000小时不坏,还能用满8000小时的概率是________. 【答案】【解析】记事件A :“用满3000小时不坏”,P(A)=;记事件B :“用满8000小时不坏”, P(B)=.因为B ⊂A ,所以P(AB)=P(B)=,则P(B|A)===×=.10.已知A 、B 是相互独立事件,且P(A)=,P(B)=,则P(A )=________;P()=________.【答案】【解析】P(A)=,∴P()=,P()=1-P(B)=.∵A、B相互独立,∴A与,与也相互独立,∴P(A)=P(A)·P()=,∴P()=P()·P()=.11.将一枚硬币连续抛掷5次,5次都出现正面朝上的概率是________.【答案】【解析】每一次出现正面朝上的概率为,且它们相互独立,所以P=5=.12.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为________.【答案】【解析】设该队员每次罚球的命中率为p(其中0<p<1),则依题意有1-p2=,p2=.又0<p<1,因此有p=.13.有一道数学难题,在半小时内甲能解决的概率是,乙能解决的概率为,两人试图独立地在半小时解决,则两人都未解决的概率为________.【答案】【解析】都未解决的概率为×=.14.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做这两题的可能性均为.则其中甲、乙两名学生选做同一道题的概率为________.【答案】【解析】设事件A表示“甲选做第14题”,事件B表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“AB+”,且事件A、B相互独立∴P(AB+)=P(A)P(B)+P()P()=×+×=.∴甲、乙两名学生选做同一道题的概率为.15.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率为________,三人中至少有一人达标的概率为________.【答案】0.240.96【解析】每个人是否达标是相互独立的,“三人中至少有一人达标”的对立事件为“三人均未达标”,设三人都达标为事件A,三人中至少有一人达标为事件B,则P(A)=0.8×0.6×0.5=0.24,P(B)=1-0.2×0.4×0.5=0.96.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.【答案】0.128【解析】此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.17.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是________(假定体型与身体关节构造合格与否相互之间没有影响).【答案】【解析】两项都不合格的概率为P=×=,∴至少有一项合格的概率是1-=.二、解答题1.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,求它能活到25岁的概率.【答案】0.5【解析】解:设A=“能活到20岁”,B=“能活到25岁”,则P(A)=0.8,P(B)=0.4.而所求概率为P(B|A),由于B⊆A,故P(AB)=P(B),所以P(B|A)====0.5,所以这个动物能活到25岁的概率为0.5.2.盒子里装有16只球,其中6只是玻璃球,另外10只是木质球.而玻璃球中有2只是红色的,4只是蓝色的;木质球中有3只是红色的,7只是蓝色的,现从中任取一只球,如果已知取到的是蓝色的球,求这个球是玻璃球的概率.【答案】【解析】解:设A表示“任取一球,是玻璃球”,B表示“任取一球,是蓝色的球”,则AB表示“任取一球是蓝色玻璃球”.P(B)=,P(AB)=,P(A|B)==.3.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.(1)求P(A),P(B),P(AB);(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.【答案】(1) (2)【解析】解:(1)①P(A)==.②∵两个骰子的点数之和共有36个等可能的结果,点数之和大于8的结果共有10个.∴P(B)==.③当蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的结果有5个,故P(AB)=.(2)由(1)知P(B|A)===.4.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问从2号箱取出红球的概率是多少?【答案】【解析】解:记事件A={从2号箱中取出的是红球},事件B={从1号箱中取出的是红球}.P(B)==,P()=1-P(B)=.P(A|B)=,P(A|)==. 从而P(A)=P(A)+P(AB)=×+×=.即从2号箱取出红球的概率是.5.设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率. 【答案】0.94 0.44【解析】解:设A k 表示“第k 人命中目标”,k =1,2,3.这里,A 1,A 2,A 3独立,且P(A 1)=0.7,P(A 2)=0.6,P(A 3)=0.5.从而,至少有一人命中目标的概率为1-P(1·2·3)=1-P(1)P(2)P(3)=1-0.3×0.4×0.5=0.94. 恰有两人命中目标的概率为 P(A 1·A 2·3+A 1·2·A 3+1·A 2·A 3) =P(A 1·A 2·3)+P(A 1·2·A 3)+P(1·A 2·A 3) =P(A 1)P(A 2)P(3)+P(A 1)P(2)P(A 3)+P(1)P(A 2)P(A 3)=0.7×0.6×0.5+0.7×0.4×0.5+0.3×0.6×0.5=0.44.∴至少有一人命中目标的概率为0.94,恰有两人命中目标的概率为0.44.6.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三个人该课程考核都合格的概率(结果保留三位小数). 【答案】(1) 0.902 (2) 0.254【解析】解:记“甲理论考核合格”为事件A 1,“乙理论考核合格”为事件A 2,“丙理论考核合格”为事件A 3,记事件i 为A i 的对立事件,i =1,2,3.记“甲实验考核合格”为事件B 1,“乙实验考核合格”为事件B 2,“丙实验考核合格”为事件B 3.(1)记“理论考核中至少有两人合格”为事件C ,记为事件C 的对立事件, P(C)=P(A 1A 2A 3+A 1A 2+A 1A 3+A 2A 3)=P(A 1A 2A 3)+P(A 1A 2)+P(A 1A 3)+P(A 2A 3)=0.9×0.8×0.7+0.9×0.8×0.3+0.9×0.2×0.7+0.1×0.8×0.7=0.902. 所以,理论考核中至少有两人合格的概率为0.902. (2)记“三个人该课程考核都合格”为事件D. P(D)=P[(A 1·B 1)·(A 2·B 2)·(A 3·B 3)] =P(A 1·B 1)·P(A 2·B 2)·P(A 3·B 3) =P(A 1)·P(B 1)·P(A 2)·P(B 2)·P(A 3)·P(B 3) =0.9×0.8×0.8×0.7×0.7×0.9≈0.254.所以,这三个人该课程考核都合格的概率为0.254.7.如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(1)求p ;(2)求电流能在M 与N 之间通过的概率. 【答案】(1)p =0.9 (2)0.9891【解析】解:记A i 表示事件:电流能通过T i ,i =1,2,3,4.A 表示事件:T 1,T 2,T 3中至少有一个能通过电流.B 表示事件:电流能在M 与N 之间通过.(1)=1·2·3,A 1,A 2,A 3相互独立, P()=P(1·2·3)=P(1)P(2)P(3)=(1-p)3,又P()=1-P(A)=1-0.999=0.001,故(1-p)3=0.001,p =0.9. (2)B =A 4+(4·A 1·A 3)∪(4·1·A 2·A 3) P(B)=P(A 4)+P(4·A 1·A 3+4·1·A 2·A 3),=P(A 4)+P(4)P(A 1)P(A 3)+P(4)P(1)P(A 2)P(A 3) =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9 =0.9891.8.甲、乙两人破译一密码,它们能破译的概率分别为和,试求:(1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率; (4)至多有一人能破译的概率;(5)若要使破译的概率为99%,至少需要多少乙这样的人? 【答案】(1)(2)(3)(4)(5)16个【解析】解:设事件A 为“甲能译出”,事件B 为“乙能译出”,则A 、B 相互独立,从而A 与、与B 、与均相互独立.(1)“两人都能译出”为事件AB ,则 P(AB)=P(A)P(B)=×=.(2)“两人都不能译出”为事件,则 P()=P()P()=[1-P(A)][1-P(B)] ==.(3)“恰有一人能译出”为事件A +B ,又A与B 互斥,则P(A+B)=P(A)+P(B)=P(A)P()+P()P(B) =×+×=. (4)“至多一人能译出”为事件A +B +,且A 、B 、互斥,故P(A +B +)=P(A)P()+P()P(B)+P()P() =×+×+×=.(5)设至少需n 个乙这样的人,而n 个乙这样的人译不出的概率为n,故n 个乙这样的人能译出的概率为1-n≈99%.解得n =16.故至少需16个乙这样的人,才能使译出的概率为99%.。