费尔马大定理_怀尔斯的证明

合集下载

费马大定理证明过程

费马大定理证明过程

费马大定理证明过程篇一:费马大定理证明过程费马大定理的证明及启示摘要美国普林斯顿大学的怀尔斯经过近10年的潜心研究,终于证明了费马大定理。

他的工作的意义不仅在于证明了费马大定理,更重要的是其中的思想和方法大大地丰富和发展了数论这门学科,在某种意义上推动了数学的发展,并在数学研究等方面给予我们很多启示。

关键词:费马大定理、无穷递降法、谷山-志村猜想、椭圆曲线、模形式、弗雷命题。

The Proof and Enlightenment of the Fermat Last Theorem AbstractAndrew Wiles, a professor of Princeton University, has been studied the Fermat last theorem with great concentration for 10 years, He finally has proved the Fermat last theorem.His works’significance was not only that he had proved the Fermat last theorem,More important was that the thoughts and the methods in it greatly enriched and developed the number theory. Andrew Wiles’Works impelled mathematics development in some kinds of significance, and gave us many enlightenment on mathematics research.Key words: Fermat last theorem、Method of infinite descent、Taniyama—Shimura conjecture、Elliptic curve、Modular form、Frey proposition.篇二:费马大定理证明过程论文摘要:目前,随着我国公路建设不断发展,沥青路面结构作为主要的路面结构而被广泛应用。

费马出了一道数学难题,350年无人能解,怀尔斯耗时7年给出证明

费马出了一道数学难题,350年无人能解,怀尔斯耗时7年给出证明

费马出了一道数学难题,350年无人能解,怀尔斯耗时7年给出证明1637年的一个深夜,法国图卢兹的一所公寓内,费马正伏案阅读古代数学家丢番图的著作《算术》,看到一个平方数可以写成两个平方数之和,马上联想到一个立方数是否可以写成两个立方数之和?那么n次幂呢,他不由自主地写下了形如方程:Xⁿ+Yⁿ=Zⁿ,是否有正整数解?费马停下了笔,凝视着窗外明亮的月光,进入沉思。

忽然,他从椅子上跳了起来,手舞足蹈地喊道:“我知道答案了。

”随即,费马在丢番图译本的空白处写道:我已经想到了一个绝妙的证明,可惜书的空白处不够大,不足以把证明过程写下来。

这便是数学史上著名的费马大定理的由来,具体来说就是:当n>2,方程Xⁿ+Yⁿ=Zⁿ没有正整数解。

一、费马的故事在开始介绍费马大定理之前,先简单介绍一下费马的经历。

费马1601年出生于法国一个叫博蒙-德洛马涅的小城,父亲多米尼克·费马是一个皮鞋商人,母亲是一个议会法官的女儿。

优越的出身让费马早年衣食无忧,并受到了良好教育。

费马三十岁时在图卢兹就职,任晋见接待官,同年他与表妹路易丝结婚并生下三个儿子。

1648年费马又升任图卢兹地方议会的议员,他在这个岗位上干了十七年,于1665年1月在该城去世,终年65岁。

费马原本是一位律师,他却在数学上取得了非凡的成就,号称业余数学家之王,他是如何兼顾工作和业余两不误的呢?一位法国评论家给出了答案:费马担任议员的工作对他的智力活动有益无害。

议院评议员与其他公职人员不同,对他们的要求是:避开他们的同乡,避开不必要的社交活动,以免他们在履行职责时行贿受贿。

正因为如此,费马在繁重的工作之余,把研究数学当作一种消遣。

谁知,无心插柳柳成荫,费马深陷其中不可自拔,每当他发现一个新的公式,解决一道数学难题时,便欣喜若狂,快乐得像一个小孩子似的。

费马在数学上的贡献是巨大的,在微积分、数论、代数、光的折射原理等各个领域均有建树,尤其是费马大定理的提出,让费马名声大噪,并步入最伟大的数学家行列。

费马大定理简明完整版证明

费马大定理简明完整版证明

费马大定理证明求证不定方程对于整数n>2n n nX Y Z+=无X,Y ,Z 的整数解这就是费马猜想又称费马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

传言在1994年被安德鲁·怀尔斯攻克,但是我并不知道安德鲁·怀尔斯攻克的证明是否真实可靠。

现在来阐述最新最简易的证明如下:证明:条件:设整数(p ,q)互素,(a,b )互素,并且X,Y 均整数,如果不存在整数Z 使得n n nX Y Z+=成立,那么猜想正确,否则猜想就是错误的由条件设定已知x,y 为整数,将猜想等式左边合并变换为下式1(1())n ny Z X x=+设p y q x =则1(1())nnpu qZ X u=+=假设存在整数Z,则u 一定至少是有理数设1(1())n np au q b =+=则n ()n n n n q p b q a +=(1)()n n n n np b q a b =- 由于(p,q)互素那么q 必然是b 的因子才能使得等式两边成立设b=qt 代入(1)式得(2)()tnnna p q +=()则t 为a 的因子,至此如原条件(a,b )互素相矛盾,所以t 必须等于1得以下等式: (3)n n np q a+=假设等式依然成立得11()=nn p a q q ⎛⎫+ ⎪⎝⎭ 利用牛顿二项式广义定理展开上式得:11knk k k np a q q C q →∞=⎛⎫-= ⎪⎝⎭∑23123111111(.....)knnnnknk k k k n n n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑展开式曲线簇附图如下23123111111(.....)kn n n n knk kk k nn n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑要使得a-q 为整数,至少a-q 的小数部分为有理数,而a-q 的展开式是无限级数,那么只有一个条件下a-q 才可能是有理数,就是级数的系数的绝对值相等,由此只有n 趋近无穷大时才会出现此种情况如下:()()()()()111111lim =1lim 121..(1)1!knknk knk k k kn n x n p p p C n n k n q k n q knq ++→∞→∞-⎛⎫⎛⎫-----=⎪ ⎪⎝⎭⎝⎭只有a-q 才是-()n p q 的等比数列之和才可能是有理数,由上式知道就算是极限状态也不存在系数的绝对值相等 所以在有限整数n>2 的条件下,或n 无穷大时23123111111(......)knnnnknk k k k n n n n n p p p p p a q q C q C C C C q q q q q →∞=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-==+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑均不可能是有限的或无限循环的,那么它只能是无理数,所以a 也只能是无理数,据此整数n>2时,对于互素的p,q ,(q>p )没有整数a 使得(4)等式成立(4)11()nn p a q q ⎛⎫+= ⎪⎝⎭ 结论11()n n p u q ⎛⎫=+ ⎪⎝⎭为无理数(整数n>2, q>p ) 那么Z Xu =同样也是无理数至此对于整数n>2n n nX Y Z+=X,Y,Z 没有同为整数的解 费马猜想证明完毕 后记:11()nn p u q ⎛⎫=+ ⎪⎝⎭为无理数已经写入无理数的百度词条中,便于知识的传播。

费尔马大定理及其证明

费尔马大定理及其证明

费尔马大定理及其证明近代数学如参天大树,已是分支众多,枝繁叶茂。

在这棵苍劲的大树上悬挂着不胜其数的数学难题。

其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。

它们被称为近代三大数学难题。

300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。

费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。

这被认为是“20世纪最重大的数学成就”。

费尔马大定理的由来故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。

丢番图活动于公元250年前后。

1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程2x+2y=2z的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。

我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。

”费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。

1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。

后来,人们就把这一论断称为费尔马大定理。

用数学语言来表达就是:形如n x+n y=n z 的方程,当n大于2时没有正整数解。

费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。

1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。

童年时期是在家里受的教育。

长大以后,父亲送他在大学学法律,毕业后当了一名律师。

从1648年起,担任图卢兹市议会议员。

他酷爱数学,把自己所有的业余时间都用于研究数学和物理。

由于他思维敏捷,记忆力强,又具备研究数学所必须的顽强精神,所以,获得了丰硕的成果,使他跻身于17世纪大数学家之列。

艰难的探索起初,数学家想重新找到费尔马没有写出来的那个“美妙证法”,但是谁也没有成功。

世界十大数学猜想及其证明情况

世界十大数学猜想及其证明情况

世界十大数学猜想及其证明情况一、世界十大数学猜想(难题)世界十大数学猜想:NP 完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD 猜想,费尔马大定、四色问题、哥德巴赫猜想。

其中,世界近代三大数学难题:1、费尔马大定理,2、哥德巴赫猜想,3、四色问题。

世界七大数学难题:一、P(多项式时间)问题对NP(nondeterministicpolynomial time ,非确定多项式时间)问题,二、霍奇(Hodge)猜想,三、庞加莱(Poincare)猜想,四、黎曼(Riemann)假设,五、杨-米尔斯(Yang -Mills)存在性和质量缺口,六、纳维叶-斯托克斯(Navier -Stokes)方程的存在性与光滑性,七、贝赫(Birch)和斯维讷通-戴尔(Swinnerton -Dyer)猜想。

这十大数学猜想只证明了两个,庞加莱猜想和四色问题已被解决。

(1)世界近代三大数学难题1、费尔马大定理2、哥德巴赫猜想3、四色问题(2)世界七大数学难题1、P 问题对NP 问题2、霍奇(Hodge)猜想3、庞加莱(Poincare)猜想4、黎曼(Riemann)假设5、杨-米尔斯(Yang -Mills)存在性和质量缺口6、纳维叶-斯托克斯(Navier -Stokes)方程的存在性与光滑性7、贝赫(Birch)和斯维讷通-戴尔(Swinnerton -Dyer)猜想(3)有待破解的数学难题除了上述著名数学难题外,还有以下著名数学难题有待破解。

Abc 猜想考拉兹猜想周氏猜测(梅森素数分布猜测)阿廷猜想(新梅森猜想)哥德巴赫猜想孪素数猜想克拉梅尔猜想哈代-李特尔伍德第二猜想六空间理论先来看三大数学猜想(难题)。

(1)费马猜想又称“费马大定理”或“费马问题”,1637年由法国数学家费马提出:形如n n n z y x =+的方程,当n 大于2时没有正整数解。

剑桥大学怀尔斯在1995年彻底解决了这一大难题。

费马定理终结者-怀尔斯

费马定理终结者-怀尔斯

费马大定理终结者――数学大师安德鲁•怀尔斯北京纪行2005年08月31日00:02:59张立宪/撰文2005年8月29日,我吃了平生最智慧的一顿晚餐。

在座12人中,有北京大学数学院院长张继平、副院长田刚和刘化荣,中科院院士张恭庆、姜伯驹、丁伟岳、文兰等。

他们为之接风洗尘的是费马大定理的终结者―――美国科学院外籍院士安德鲁?怀尔斯。

此前一天,他第一次踏上中国的土地,这甚至是他第一次来到亚洲。

我坚信,这是全北京有史以来平均智商最高的一次饭局。

29日,我和北大数学院的宗传明教授陪同怀尔斯走过了天坛、天安门、故宫和北海,虽说已经入秋,这天的北京还是闷热异常,每到一块荫凉的地方,我就看到胳膊上起了一层盐粒。

怀尔斯一路上气定神闲,或温和地笑或专注地思考,望着熙熙攘攘与他擦肩而过的人流,双眼在镜片后射出和善而腼腆的目光。

人多的场合,他多是安安静静地倾听,即使说话,声音也恒定在某个分贝数之下。

一如所有接触过他的人对他的评价:温文尔雅。

这位颇具风度的英国绅士,在张继平院长眼中是数学家中的“Superstar”(巨星)。

这一天,在浏览了北京的名胜,品尝了北京的烤鸭和清蒸桂鱼,乘坐过北京的出租车和公共汽车后,我们坐在昔日的皇家公园北海的湖边。

安德鲁?怀尔斯1953年出生在英国,1974年毕业于牛津大学,之后在剑桥大学取得博士学位,1980年到美国普林斯顿大学任教。

他金发稀疏,脸色略显苍白,身材单薄高大,有一米八○左右。

他那充满了智慧的脑袋,看起来好像没有什么特别之处,甚至比例上比常人还要稍小些。

此前的热身采访中,任普林斯顿大学教授的田刚副院长描述这位同行:低调,不常露面,只出现在全系大会上,说话很少,对工作认真负责,录取学生时,会很仔细地看每一份学生的材料,受到同事们的尊敬。

这次采访之后,张继平院长笑着问我:“领略到一个真正的数学家的谈吐了吧?”是的,最像数学家的回答出现在这里。

我问:“介意说说你和太太是如何相爱并结婚的吗?”“我们在普林斯顿相识,我们在普林斯顿结婚。

高数 费马定理

高数 费马定理

高数费马定理费马定理,又称费马大定理,是数学史上的一颗明珠。

它的内容是:对于任何大于2的整数n,关于x、y、z的方程xn + yn = zn在整数域上没有解。

这个定理是由法国数学家费马于17世纪提出的,但一直未能找到完整的证明,直到1994年,英国数学家安德鲁·怀尔斯发表了一篇论文,给出了费马定理的证明。

下面我们就来了解一下费马定理的背景和证明过程。

费马定理的背景可以追溯到古希腊时代,当时的数学家们对于某些特殊的整数方程有所研究。

然而,直到费马的时代,这个问题才被提出并引起了广泛的关注。

费马本人在给朋友写信时提到了这个定理,并声称自己已经找到了简洁的证明,但他没有公开发表这个证明。

这引起了无数数学家的兴趣和挑战,他们试图寻找费马所谓的证明,但徒劳无功。

费马定理的证明是一个复杂而漫长的过程。

怀尔斯的证明主要基于椭圆曲线和模形式的理论,这些概念在数学中是相当高级和抽象的。

怀尔斯通过构造一种特殊的椭圆曲线来证明费马定理,这个曲线与方程xn + yn = zn有密切的关系。

通过研究这个椭圆曲线的性质,怀尔斯最终得出了结论:对于任何大于2的整数n,方程xn + yn = zn在整数域上没有解。

怀尔斯的证明过程非常复杂,充满了高深的数学理论和技巧。

他运用了模形式的理论,这是一种复变函数论的分支,用于研究椭圆曲线的性质。

通过这一理论的运用,怀尔斯成功地证明了费马定理,并填补了数学史上的一个重要空白。

费马定理的证明不仅仅是一个数学问题,它还涉及到数学思维的深化和数学理论的发展。

怀尔斯的证明不仅解决了费马定理这个具体问题,也为后人提供了许多新的思路和方法。

他的证明在数学界引起了巨大的反响,被誉为“20世纪最重要的数学结果之一”。

费马定理的证明不仅仅对数学有重要意义,它还对其他领域产生了广泛的影响。

例如,在密码学中,椭圆曲线密码是一种基于椭圆曲线的加密算法,它的安全性与费马定理有密切的关系。

怀尔斯的证明为椭圆曲线密码的发展提供了理论支持,使得它成为了现代密码学中最重要的算法之一。

3479 数学史上的一次艰难长征 费马大定理的证明

3479 数学史上的一次艰难长征 费马大定理的证明
心课题 。
尽管欧拉的证明存在不足之处, 但是, 对于 n 等于 3的 情形, 它实质上还是证明了费马的最后定理。此后, 又过了 一段很长的时间, 直到十九世纪二十年代, 德国数学家狄利
克雷和法国数学家勒让德才对于 n = 5 的情形证明了费马的 最后定理。他们所用的方法实质上是欧拉在证明 n 注是这样的: “ 不可能把一个立方表为两个立 方之和, 把一个四次方表为两个四次方之和, 或者一般地说, 一个次数大于 2 的方幂不可能是两个同次方幂之和。我已 发现了此命题的一个真正奇妙的证明, 但是这页边空白太小 了, 写不下这个证明。 ” 该命题后来就被称为费马的最后定
2 1 卷1 期
获得了由因子的唯一分解性所推 出的某些最重要性质。毫 无疑问, 理想的因子分解理论是十九世纪数学史上的重大成 就之一。在这一理论的基础上, 库姆尔发现了对于奇素数的 指数 P , 费马最后定理成立的充分条件。换句话说, 如果一
十 y i 的数, 其中x 与Y 是实数, i 是虚数单位。 ) 这类函数的特
大约 1 5 年后, 拉梅对 n =7 的情形证明了费马的最后定 理。此证明本身是一项了不起的成就, 但是它对未来的证明 没有多大帮助。拉梅所用的方法冗长而困难, 并且紧密地和 7 这个数联系在一起, 因此不可能把这个方法应用在 n 大于 7 的情况上。这样, 研究费马定理要取得实质性的进展就非
世界科技研究与发展
数学史
库姆尔在分圆整数的算术理论 中引进 了所谓的理想素 因子这一概念。这类理想数使得分圆整数以及先前证 明费 因而还是沿着库姆尔的老路走了下去。 模形式是处理复数的某种类型的函数( 复数就是形如 X
马最后定理的工作中所引入的其它数系( 如a 十 b丫 二3 等)
后来却认识到那个想法是错误的。由于他当时极有可能并 不打算把这些旁注公诸于世, 因此后来也就没有机会再来删 除或修正这条旁注。 此外, 自费马逝世至今的三个多世纪 中, 数学 已经取得 了长足的进展。今天的数学家们拥有的工具和手段是 费马 那个时代根本不可想象的。即使在十九世纪, 试图攻克最后 定量的数学家们所运用的方法的复杂程度也远远超 出了费 马的水平。当然, 这些事实并不能绝对排除费马找到一个极 为巧妙的简单证 明的可能性, 但是, 至少可以相当有把握地 认为, 这种可能性是微乎其微的。

费马大定理,哥德巴赫猜想和黎曼假设

费马大定理,哥德巴赫猜想和黎曼假设

费马大定理,哥德巴赫猜想和黎曼假设
费尔马大定理:费尔马大定理由17世纪法国数学家皮耶-德-费玛提出,他断言当整数n>2时,关于x,y,z的方程x^n + y^n = z^n 没有正整数解。

费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年,英国数学家安德鲁-怀尔斯宣布自己证明了费马大定理。

黎曼假设:素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。

著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。

这点已经对于开始的1500000000个解验证过。

证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

哥德巴赫猜想:哥德巴赫猜想内容为:一是任何不小于6的偶数,都是两个奇质数之和;二是任何不小于9的奇数,都是三个奇质数之和。

费马大定理及其证明方法

费马大定理及其证明方法

费马大定理及其证明方法费马大定理是数学界著名的难题之一,它的证明历经四百年,让数学界的研究者们投入了无数的精力和时间。

一、费马大定理的定义费马大定理,又称费马最后定理,是一条非常著名的代数数论问题。

它的表述方式比较简单:将指数大于二的整数幂表示为三个平方数之和的情况是不存在的。

也就是说,方程x^n+y^n=z^n在n>2时,不存在整数解。

这条定理由法国数学家费马在17世纪首次提出,并致力于证明此定理近40年之久,但他从未公布证明方案。

直到1960年才由Andrew Wiles在英国剑桥完成了证明。

二、费马大定理的历史费马大定理的历史可以追溯到17世纪。

当时,法国数学家费马在研究数学问题时提出了一个假设:如果一个整数n大于2,那么方程x^n+y^n=z^n中不存在正整数解。

费马声称自己已经发现了一种证明方法,但遗憾的是,他没有将这个证明公布出来。

此后,费马大定理便成为了数学界的一个谜题。

一方面,人们认为它是成立的,因为一些数学家通过计算发现,在一些特定情况下,这个方程是不存在正整数解的。

另一方面,也有一些数学家认为费马的想法是错误的,因为他的证明并没有被记录下来,所以根本不知道他的假设是否真的成立。

20世纪60年代以来,学者们对费马大定理提出了更为深刻的思考。

许多著名的数学家投入了大量的时间和精力,尝试寻找一个完整的证明方案。

最终,英国数学家安德鲁·怀尔斯在1994年完成了这一证明,以此圆满地结束了费马大定理的历史传说。

三、费马大定理的证明费马大定理的证明历时四百年,这是数学界难以磨灭的辉煌。

然而,这个证明方案并不是一蹴而就的,实际上,数学家们在寻找证明方案时遇到了一系列的困难。

根据怀尔斯的证明方案,费马大定理的证明分为三部分。

首先,他证明了一个定理,称为“伊万·斯蒂年奇模型”。

这个定理规定,有限域之上的模空间可以在几何上与椭圆曲线相比较。

然后,他使用了一个称为“输影结果”的独特工具,证明了另一个定理,称为“塔尼雅马分解”。

费马大定理简介

费马大定理简介

费马大定理简介费马大定理,又被称为费马最后定理或费马猜想,是数学界的一个重要问题。

它是由17世纪法国数学家费尔马在1637年提出的,直到1994年才被英国数学家安德鲁·怀尔斯证明,被认为是数学史上最著名的定理之一。

费马大定理的表述非常简洁,即:对于任何大于2的整数n,方程x^n + y^n = z^n没有正整数解。

在费马提出这个猜想后的几百年里,许多数学家都尝试过证明它,但都以失败告终,直到怀尔斯的证明出现,才彻底解决了这个问题。

费马大定理的证明过程非常复杂,涉及到许多高深的数学知识。

怀尔斯使用了现代代数几何学、模形式和椭圆曲线等数学分支的理论和方法,最终完成了对费马大定理的证明。

他的证明被广泛认可,赢得了数学界的高度赞誉,也为他赢得了1994年的菲尔兹奖,这是数学界最高荣誉。

费马大定理的证明对数学的发展产生了巨大的影响。

它不仅填补了数学史上的一个重要空白,而且也推动了许多相关领域的发展。

例如,怀尔斯证明费马大定理所使用的工具和方法,对于椭圆曲线密码学的发展起到了重要的作用。

此外,费马大定理的证明还鼓舞了许多数学家攻克其他难题的信心,推动了整个数学领域的研究。

费马大定理的证明不仅仅是一个数学问题的解决,它还具有哲学和历史的意义。

费马大定理的提出和证明过程,展示了人类对于数学的追求和智慧的体现。

它也向世人展示了数学的美丽和深度,激发了人们对数学的兴趣和热爱。

尽管费马大定理已经被证明,但它的证明过程仍然具有很高的难度。

对于普通人来说,理解费马大定理的证明需要具备相当高的数学知识和能力。

然而,即使没有深入的数学知识,我们仍然可以欣赏这个定理的重要性和它对数学发展的巨大贡献。

费马大定理的解决是数学界的一项伟大成就,它不仅证明了费马的猜想,也为数学的研究和应用开辟了新的方向。

它告诉我们,数学是一门充满挑战和乐趣的学科,它的发展推动了人类的进步和创新。

费马大定理的证明是数学史上的一个里程碑,它让我们深刻认识到数学的力量和奇妙之处。

数学黑洞的资料简写20字

数学黑洞的资料简写20字

数学黑洞的资料简写20字
哥德巴赫猜想是一个历史悠久的问题,它最初由德国数学家哥德巴赫在18世纪提出。


猜想断言任何一个大于2的偶数都可以被分解为两个素数之和,例如4=2+2,6=3+3,
8=3+5等。

虽然这个问题表面看起来很简单,但至今仍然没有人能够给出一个严格的证明。

费马大定理是另一个引发数学界广泛关注的问题,这个问题最早由法国数学家费尔马在
17世纪提出。

定理的内容是指对于任何大于2的正整数n,方程x^n+y^n=z^n在正整数
域内无解。

费尔马声称已经找到了一个证明,但他没有把证明写下来,给后来的数学家留
下了一个数学黑洞,直到1994年英国数学家安德鲁·怀尔斯提出了完整的证明,才最终解
决了这个问题。

除了上述两个问题之外,数学领域中还有许多其他的数学黑洞,例如哥德巴赫猜想的一般
化问题、黎曼猜想、庞加莱猜想等。

这些问题都是数学界的难题,需要数学家们不断努力
探索、求解。

为了解决数学黑洞,数学家们通常会通过构建数学模型、利用数学定理和方法、开展大量
的数据分析等方式来研究问题,寻找解决问题的线索。

有时候,解决一个数学黑洞可能需
要数学家们花费数十年甚至更长的时间,甚至有些问题可能永远无法得到解决。

尽管数学黑洞带来了巨大的挑战和困难,但正是这些问题的存在,激发了数学家们对数学
的兴趣和热情,推动了数学领域的发展和进步。

数学黑洞是数学发展过程中的一道难题,
是数学家们不断追求的目标和挑战,只有克服这些数学黑洞,才能使数学领域不断向前发展。

世界七大数学难题

世界七大数学难题

世界七大数学难题1、费尔马大定理费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

终于在1994年被安德鲁·怀尔斯攻克。

古希腊的丢番图写过一本著名的"算术",经历中世纪的愚昧黑暗到文艺复兴的时候,"算术"的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在"算术"的关于勾股数问题的页边上,写下猜想:x^n+y^n=z^n是不可能的(这里n大于2;x,y,z,n都是非零整数)。

此猜想后来就称为费尔马大定理。

费尔马还写道"我对此有绝妙的证明,但此页边太窄写不下"。

一般公认,他当时不可能有正确的证明。

猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。

1847年,库木尔创立"代数数论"这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。

其惊人的魅力,曾在最后时刻挽救自杀青年于不死。

他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。

无数人耗尽心力,空留浩叹。

最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。

1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在"谷山丰-志村五朗猜想"之中。

童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。

终于在1993年6月23日剑桥大学牛顿研究所的"世纪演讲"最后,宣布证明了费尔马大定理。

数学中的常见公式和定理

数学中的常见公式和定理

数学中的常见公式和定理数学是一门研究数量、结构、变化以及空间等概念的学科,被认为是自然科学的基石之一。

在数学的研究过程中,人们总结出了许多重要的公式和定理,这些公式和定理不仅是数学领域的基础,也被广泛应用于其他学科和实际生活中。

本文将介绍几个数学中常见的公式和定理,帮助读者更好地理解数学的重要性。

一、勾股定理勾股定理是古希腊数学家毕达哥拉斯提出的,它是几何学中最重要的定理之一。

勾股定理的表达方式是:在一个直角三角形中,斜边的平方等于两个直角边的平方之和。

可以用以下公式来表示:c² = a² + b²其中,c表示斜边的长度,a和b分别表示直角边的长度。

勾股定理被广泛应用于几何学和物理学等领域,用于计算三角形的边长和角度,以及直角坐标系的旋转等问题。

二、牛顿-莱布尼兹公式牛顿-莱布尼兹公式是微积分中的重要公式,描述了函数的导数与定积分之间的关系。

牛顿-莱布尼兹公式的表达方式如下:∫a˚(b) f'(x) dx = f(b) - f(a)其中,f(x)表示函数f的原函数,f'(x)表示函数f的导数。

公式的意义是,在函数f在闭区间[a, b]上可导的情况下,函数f在[a, b]上的定积分等于函数f在区间端点的函数值之差。

牛顿-莱布尼兹公式是微积分的基础,被广泛应用于物理学、工程学等领域,用于计算曲线的面积、质心位置等问题。

三、欧拉公式欧拉公式是数学中最重要的公式之一,它将三个基本数学常数(自然对数的底e、虚数单位i和π)联系在一起。

欧拉公式的表达方式如下:e^ix = cos(x) + i sin(x)其中,e表示自然对数的底,i表示虚数单位,x表示一个实数。

欧拉公式的意义是,任何一个实数x都可以用余弦和正弦函数的线性组合表示。

欧拉公式是数学分析和复变函数等领域的重要工具,应用广泛于数学、物理学和工程学等领域。

四、费马大定理费马大定理是数论中的一项重要定理,由法国数学家费尔马提出并得到了众多数学家的重视。

费马大定理最后的证明

费马大定理最后的证明

费马大定理最后的证明自费马大定理提出后的350年以来,许多优秀的数学家采用种种方法试图补证这个定理,但始终都未获得成功。

英国的数学家怀尔斯十年磨一剑,终于于1995年彻底解决了这一问题。

十七世纪法国数学家费尔马(Fermat)在刁番都(Diophantine)著作的一页边上写了一个猜测“X n+Y n=Z n当n>2时没有正整数解。

”后人称此猜想为费尔马大定理。

费尔马接着写道:“对此,我已发现了一个巧妙的证明,可惜这里页边的空白太小,写不下。

”费尔马去世之后,他的儿子把费尔马的著述、书信以及费尔马校订刁番都的著作都一起发表了,但没有发现费尔马大定理的证明,费尔马是否真正能够证明这个猜想,至今仍然是个谜。

三百多年以来,许多优秀的数学家采用种种方法试图补证这个定理,但始终都未获得成功,直至最近才有英国的怀尔斯(Andrew Wiles)解决。

历史性的转变发生在1993年6月21日至23日这三天,当时在普林斯顿数学系任教的40岁的怀尔斯正在英国剑桥大学举行一次约有40至60人出席的数学会议上,每天做一段演讲,题目是“模形式,椭圆曲线和伽罗华表示”。

从题目上看不出他要讲的是费尔马大定理,但是他演讲的最后一句话是:“这表明费尔马大定理成立,证毕。

”怀尔斯的证明引起了数学界的很大关注,他的初稿虽然有少许瑕疵,但是稍后被怀尔斯自己修正过来。

纽约时报曾在1993年6月29日以“安德鲁·怀尔斯放出数学卫星,350年的古老问题已被攻克”为题发表有关报道。

费马大定理最后的证明为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。

1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用130页长的篇幅证明了费马大定理。

怀尔斯成为整个数学界的英雄。

大问题在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不解。

E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,文明世界也许在费马大定理得以解决之前就已走到了尽头。

费马 定理

费马 定理

费马定理
费马定理,也称为费马大定理或费马最后定理,是法国数学家皮埃尔·德·费马在17世纪提出的一个数论问题。

该定理的原始陈述是:对于任何大于2的整数n,不可能找到三个正整数a、b、c使得a^n + b^n = c^n成立。

费马在其手稿中提出了这个猜想,并表示自己有证明,但未给出具体证明。

这个猜想在数学界引起了长期的关注和研究,成为数论中的一个重要问题。

直到1994年,英国数学家安德鲁·怀尔斯证明了费马定理的一个特例,即当n大于2时,方程a^n + b^n = c^n没有正整数解。

这一证明被广泛认可并获得了费尔马奖。

然而,怀尔斯的证明并不能推广到一般情况,即对于所有大于2的整数n。

至今,费马定理在一般情况下仍然是一个未解决的问题。

数学家们一直在寻找一个通用的证明方法,但目前还没有找到。

费马大定理是如何被证明的

费马大定理是如何被证明的

费马大定理是如何被证明的上世纪后半页,理论数学家们陷入了十分尴尬的境地,一方面他们已经很久没做出突破性工作,一方面借助计算机的机器证明开始兴起,著名的四色猜想就是机器证明的。

数学家们不喜欢使用蛮力的穷举法机器证明,也诟病机器证明的程序没法完全保证没有bug,以及没法验证,但心里也是颇为酸楚的。

这个时候救星出现了,他叫安德鲁怀尔斯,是普林斯顿大学的教授,美籍英裔,剑桥大学出身。

他躲在阁楼成一统,7年孤独磨一剑,又经过一年的审稿炼狱,最终证明了费马大定理!那么何为费马大定理呢?总所周知,x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。

但x^3+y^3=z^3却始终没找到整数解,最接近的是:6^3+8^3=9^-1,还是差了1。

于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。

也就是:x^n+y^n=z^n,当n大于2时没有整数解。

这是一个描述起来非常简单的猜想,但358年来困扰了包括欧拉和柯西在内的一代代大数学家,他们得到了一些进展,比如当n等于3和4时猜想成立,但x、y、z和n的取值范围是无限,要证明整个猜想谈何容易!更气人的是费马在一本书的页边处写下这个猜想后还有一个评注:我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。

这不是一种赤裸裸的挑战嘛。

1984年事情有了转机,一个叫弗莱的德国数学家提出如果费马猜想不成立,那个就可以找到三个整数使方程成立,表示为:A^N+B^N=C^N,接着他通过复杂的变换,这个等式转换成了一个椭圆方程:y^2=x^3+(A^N-B^N)*x^2-A^N*B^N而这个椭圆曲线太过古怪,他断定由于这个由费马猜想不成立引出的椭圆方程是如此古怪,所以它不可能模形式化。

后来一个叫里贝特的数学家严格证明了这个椭圆方程确实不能模形式化。

费马原理解释

费马原理解释

费马原理解释
费马原理(Fermat"s Last Theorem)是指数学家费马在1637年提出的一个猜想,即对于任何大于2的正整数n,方程a^n + b^n = c^n没有正整数解。

这个猜想在当时引起了广泛的讨论和猜测,直到1994年,数学家安德鲁·怀尔斯(Andrew Wiles)通过长期的努力,最终证明了费马原理。

怀尔斯的证明使用了现代数学中的多项式逼近论和证明技巧,这是数学中一个重要的分支。

费马原理本身是一个具有挑战性的问题,涉及到了代数几何、数论、分析等多个数学领域。

费马原理的提出是数学史上的一个里程碑,它推动了数学领域的发展,并为其他领域提供了新的思路和工具。

今天,费马原理仍然是数学中一个著名的问题,吸引着大量的数学家和学者进行探究和研究。

除了怀尔斯的证明外,还有许多其他数学家对费马原理进行了研究和探究。

例如,欧拉、拉格朗日、布洛赫等人都曾经提出过相关的猜想和理论,但都没有最终证明费马原理。

今天,费马原理仍然是数学中一个开放性的问题,吸引着众多的数学家和研究学者进行探究和研究。

拓展:
费马原理的提出是数学史上的一个里程碑,它推动了数学领域的发展,并为其他领域提供了新的思路和工具。

今天,费马原理仍然是数学中一个开放性的问题,吸引着众多的数学家和研究学者进行探究和研究。

除了怀尔斯的证明外,还有许多其他数学家对费马原理进行了研究和探究。

例如,欧拉、拉格朗日、布洛赫等人都曾经提出过相关的猜想和理论,但都没有最终证明费马原理。

今天,费马原理仍然是数学中一个开放性的问题,吸引着众多的数学家和研究学者进行探究和
研究。

费尔马大定理——怀尔斯的证明

费尔马大定理——怀尔斯的证明

费尔马大定理——怀尔斯的证明提要: 三个多世纪的著名数学难题,费尔马大定理,已被普林斯顿大学的怀尔斯证明, 并已获大奖. 震撼数学界的历史事件引起世界各界广泛热烈关注.本文浅要地介绍整个事件的概况与传奇历史, 获奖情况与各家评论及影响意义, 怀尔斯的生平和特点, 历尽曲折的八年证明中的故事, 也在最后介绍有关的现代数学知识和怀尔斯的证明思路,并附较全的资料信息源.历史大难题费尔马大定理的证明已被确认,论文已在1995年发表[1-2]. 给出证明的数学家安德鲁·怀尔斯(Andrew J. Wiles)1953年生于英国, 现为美国普林斯顿大学教授. 已获得沃尔夫奖和国家科学院奖.世界性的费尔马热向更深入的层次发展.许多地方纷纷举行有关的学术研讨班. 本文将介绍最终的证明情况和获奖评论等情况,并在最后适当解释一些数学. 有关历史及1985年前情况可见文[3-4].1. 概述费尔马大定理又称费尔马最后定理(Fermat's Last Theorem),是著名法国数学家费尔马在约1637年写下的一个猜想:对于任意大于2的整数n , 不可能有非零的整数 a, b, c满足 . 这是他写在古希腊数学家丢番图的名著?算术?的页边上的.猜想提出后二百年间,只解决了n=3, 4, 5, 7这四种情形.在约1847年,库木尔(事实上)创立了代数数论,可以发展出对于许多n的证明.但经350多年无数人的努力,直到1993年终不能完全证明。

此次的转机始于1985-86年. 福雷(G. Frey)1985年断言, 谷山丰-志村五郎(Taniyama-Shimura)猜想(即椭圆曲线都是模的)包含费尔马大定理. 1986年夏,瑞拜特(K.Ribet)用塞尔(Serre)的设想证明了福雷的断言.因此从1986年起,要想证明费尔马大定理就只要证明谷山丰-志村五郎猜想即可. 这里的数学关系其实可简述成这样(即反证法): 先假设费尔马大定理不正确, 即对某三个整数a, b, c成立,那么福雷建议考虑方程所表示的曲线E (这是一条半稳椭圆曲线). 瑞拜特证明了E不是模的; 只要能再证明E是模的, 就导致了矛盾.就说明原来的假设不对,即得费尔马大定理正确.怀尔斯得知瑞拜特的结果后,立刻决心研究. 潜心七年. 终于在1993年6月23日上午10点半左右在英国剑桥大学牛顿研究所, 在连续三天的讲演的最后, 概述证明了谷山丰-志村五郎猜想的一大部分,从而证明了费尔马大定理. 这立刻震动了世界.一片节日欢庆.但数月后,怀尔斯的证明逐渐被发现有问题. 怀尔斯在1993年12月4日发出电子信, 称证明的最后部分不完全, 但相信可修复. 一时间, 漏洞能否最终修复,世界注目,历史走到了一个关键时刻. 大多数专家相信漏洞不久可修复,并且高度评价怀尔斯工作的正确部分. 但也有各种议论. 著名专家伐尔廷斯(G.Faltings)1994年3月在《科学美国人》期刊上说:"如果它是容易的, 他到现在就该已经解决过了.严格地说, 它被宣布的时候还不是一个证明."威耳(A.Weil)也在该期刊写到:"我相信他曾有过好的想法去尝试作出证明, 但是证明不在那里. 在某种程度上, 证明费尔马大定理象爬埃佛勒斯峰(即珠穆朗玛峰—作者注). 如果一个人想要爬上埃佛勒斯峰而在离它百码之近倒下了, 那他没有爬上埃佛勒斯峰."怀尔斯的研究非常艰苦. 多种尝试, 包括他的学生泰勒(K.Taylor, 英国剑桥大学)1994年春起的协助, 均告失败. 1994年8月11日下午他在苏黎世"国际数学家大会"作大会最后报告时, 未有任何新进展, 会下笔者见他异常憔悴. 九月“当泰勒仍然不相信欧拉系统法无可挽回的时候",怀尔斯决定再最后看一眼自己曾用过的环论老想法, 突然在94年9月19日的思维闪电中找到了迷失的钥匙.然后他将此论述告知泰勒, 二人核实细节. 怀尔斯最终完成了历史性长篇论文“模椭圆曲线和费尔马大定理"; 并将支持此文的最后工作细节与泰勒合写成短文“某些亥克代数的环论性质". 1994年10月6日, 他将新证明送给三位同事看, 包括伐尔廷斯. 二文受到谨慎的欢迎. 最后发表在《数学年刊》(普林斯顿大学协办)第141卷(1995年),整整占满了全卷, 收稿日期分别标为1994年10月14日和7日(即文[1]和[2], 以下简称怀文和怀泰文). 怀尔斯的论文迅速得到国际数学界的承认,并连续获得沃尔夫奖(1996年3月)和[美国]国家科学院奖(1996年6月).怀尔斯最后发表的论文[1], 与作者原见到的他1994年10月的预印本(见文[3]中介绍)内容几乎完全相同,但引言部分已全然重写,详细地说明了他的研究历程,也简介了主要数学结果.从此引言中可以看出,怀尔斯本人确是当之无愧的费尔马大定理的唯一证明人.这澄清了前些时少数人的猜疑. 怀文共109页,五章. 在标题下首先引述了费尔马当年作出猜想的那段名言原文.接着是11页引言.引言最后写道:“很高兴感谢剑桥会议后仔细阅读此文部分早期草稿的人,特别是慨次(N.Katz),他耐心地回答了我在欧拉系统工作过程中的许多问题,并与伊录西(Illusie)一起审读了该欧拉系统论证.他们的提问引导我发现了问题的所在.慨次也审听了我在1993年秋的首次改正尝试. 我也很感谢泰勒,为了他在深入地分析欧拉系统论证中的帮助. 我很感激戴邙德(F.Diamond),为了他在准备此文最后定稿时的慷慨帮助. 除了他的许多珍贵建议外,其他一些人也作了很有帮助的评论和建议,特别是康莱德,得·沙利特, 伐尔廷斯,瑞拜特,茹宾,斯肯讷,和泰勒. 最后我极其感谢达尔蒙,为了他对于重新考虑我的老论证的鼓励.虽然我当时毫未注意他的劝告,但它当然留下了它的印迹.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档