计算机进制转换
进制转换_实验报告
一、实验目的1. 理解不同进制之间的转换原理。
2. 掌握二进制、八进制、十进制和十六进制之间的相互转换方法。
3. 培养实际操作能力和逻辑思维能力。
二、实验原理进制转换是计算机科学和数字电路中的基本概念。
常见的进制有二进制、八进制、十进制和十六进制。
它们之间的转换主要基于位权原理。
- 二进制:基数为2,只有0和1两个数字,每一位的值是2的幂次方。
- 八进制:基数为8,每一位的值是8的幂次方。
- 十进制:基数为10,每一位的值是10的幂次方。
- 十六进制:基数为16,每一位的值是16的幂次方,其中A-F表示10-15。
三、实验器材- 计算机- 文档编辑软件(如Microsoft Word)四、实验步骤1. 二进制转十进制- 将二进制数按照位权原理进行计算。
- 例如,二进制数1101转换为十进制:\(1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13\)。
2. 十进制转二进制- 使用除以2的方法,将十进制数不断除以2,记录余数。
- 将余数从下到上排列,得到二进制数。
- 例如,十进制数13转换为二进制:\(13 \div 2 = 6\) 余 1,\(6 \div 2 = 3\) 余 0,\(3 \div 2 = 1\) 余 1,\(1 \div 2 = 0\) 余 1,所以13的二进制为1101。
3. 八进制转十进制- 将八进制数按照位权原理进行计算。
- 例如,八进制数123转换为十进制:\(1 \times 8^2 + 2 \times 8^1 + 3 \times 8^0 = 64 + 16 + 3 = 83\)。
4. 十进制转八进制- 使用除以8的方法,将十进制数不断除以8,记录余数。
- 将余数从下到上排列,得到八进制数。
- 例如,十进制数83转换为八进制:\(83 \div 8 = 10\) 余 3,\(10 \div 8 = 1\) 余 2,\(1 \div 8 = 0\) 余 1,所以83的八进制为123。
二进制八进制十六进制转换方法
二进制八进制十六进制转换方法二进制、八进制和十六进制是计算机领域中常用的进制表示方式,它们在计算机内部的数据储存和处理中起着重要的作用。
本文将介绍二进制、八进制和十六进制之间的相互转换方法。
一、二进制转八进制二进制是以2为基数的数字系统,只包含0和1两个数字。
而八进制是以8为基数的数字系统,包含0至7共8个数字。
将二进制数转换为八进制数的方法如下:1. 将二进制数从右往左每三位一组进行分组,如果最左边的组不足三位,则在左边补0,直到凑齐三位。
例如,11101分组后为011 101。
2. 将每个分组转换为对应的八进制数。
对照八进制数的权值表,将每个分组转换为对应的八进制数。
例如,011转换为3,101转换为5。
3. 将得到的八进制数按照从左到右的顺序排列,即为最终的八进制数。
例如,011 101转换为35。
二、八进制转二进制将八进制数转换为二进制数的方法与二进制转八进制相反,具体步骤如下:1. 将八进制数的每一位转换为对应的三位二进制数。
对照八进制数的权值表,将每一位转换为对应的三位二进制数。
例如,八进制数35转换为011 101。
2. 去掉左边多余的0,即为最终的二进制数。
例如,011 101去掉左边的0后为11101。
三、二进制转十六进制十六进制是以16为基数的数字系统,包含0至9的十个数字和A 至F的六个字母。
将二进制数转换为十六进制数的方法如下:1. 将二进制数从右往左每四位一组进行分组,如果最左边的组不足四位,则在左边补0,直到凑齐四位。
例如,1101101分组后为0011 01101。
2. 将每个分组转换为对应的十六进制数。
对照十六进制数的权值表,将每个分组转换为对应的十六进制数。
例如,0011转换为3,01101转换为D。
3. 将得到的十六进制数按照从左到右的顺序排列,即为最终的十六进制数。
例如,0011 01101转换为3D。
四、十六进制转二进制将十六进制数转换为二进制数的方法与二进制转十六进制相反,具体步骤如下:1. 将十六进制数的每一位转换为对应的四位二进制数。
计算机进制之间的转换
计算机进制之间的转换进制是计算机中用于表示数值的一组符号系统,包括二进制、八进制、十进制和十六进制等。
在计算机科学中,进制转换是一种常见且重要的操作。
本文将详细介绍计算机进制之间的转换方法。
1. 二进制 (Binary) 转换为十进制 (Decimal):方法1:将二进制数从右往左按位展开,每一位的值与2的幂相乘,然后将得到的结果相加。
例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=13方法2:使用公式法。
将二进制数从高位到低位按权展开,并将每一位的值乘以相应权重,然后将结果相加。
例如,二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=132. 十进制 (Decimal) 转换为二进制 (Binary):方法1:使用除二取余法。
将十进制数从右往左不断除以2,直到商为0。
最后,将得到的余数按照从下往上的顺序排列,即为二进制数。
例如,十进制数13转换为二进制,计算过程如下:13÷2=商6、余16÷2=商3、余03÷2=商1、余11÷2=商0、余1将得到的余数按从下往上的顺序排列,即为二进制数1101方法2:使用公式法。
将十进制数转换为相应的二进制幂的和。
例如,十进制数13转换为二进制,计算过程如下:13=(2^3)+(2^2)+(2^0)=11013. 十进制 (Decimal) 转换为八进制 (Octal):方法1:使用除八取余法。
将十进制数从右往左不断除以8,直到商为0。
最后,将得到的余数按从下往上的顺序排列,即为八进制数。
例如,十进制数86转换为八进制,计算过程如下:86÷8=商10、余610÷8=商1、余21÷8=商0、余1将得到的余数按从下往上的顺序排列,即为八进制数126方法2:使用公式法。
将十进制数转换为相应的八进制幂的和。
计算机编码及进制转换
1. 进制转换1.1 二进制(八进制、十六进制)转换成十进制【例1】二进制转十进制:(1011)2 = 1*23 + 0*22 + 1*21 + 1*20 = 8+2+1 = 11 【例2】八进制转十进制:(362)8 = 3*82 + 6*81 + 2*80 = 192+48+2 = 242【例3】十六进制转十进制:(16A)16 = 1*162 + 6*16+ 10 = 256 + 96 + 10 = 362 思考:其它进制如何转换成十进制?1.2 二进制与十六进制转换【方法】二进制转十六进制,将二进制数从低位起,每四位划分成一组,各组分别转换成十六进制数。
【例】求(11010110)2=(?)16思考:1.求(101100111)2=(?)16。
提示:将101100111看成 1 0110 0111。
最高组不足四位,可在前面补0,变成0001 0110 0111。
2.求(5A3)16 = (?)2。
提示:分别将每个十六进制数码转换成二进制。
5(0101),A(1010),3(0011),连起来即010*********,所以(5A3)16 = (0101 1010 0011)2 = (10110100011)23.如何进行二进制与八进制转换?1.3 十进制转换成二进制(八进制、十六进制)【方法】通过用目标基数作长除法;从最低位起列出余数“数字”。
【例1】十进制转二进制,求(23)10 = (?)223 / 2 = 11 余111 / 2 = 5 余15 / 2 = 2 余12 / 2 = 1 余01 /2 = 0 余1 = (10111)2直到商为’0’,结束【例2】十进制转十六进制,求(95)10 = (?)1695 / 16 = 5 余15 (F)5 / 16 = 0 余 5 = (5F)16思考:如何将十进制转换成其它进制?2. 计算机编码一个八位二进制数可以表示成十进制数:0~255(从00000000到11111111)。
计算机进制之间相互转换
计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制。
在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。
下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。
例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的。
每一个数位赋予的数值称为位权,简称权。
权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权。
例如,543.21各数位的权分别为102、101、100、10-1和10-2。
3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
二、计算机中的常用的几种进制。
在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。
二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。
1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。
其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。
2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。
3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的。
其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。
计算机进制之间转换
计算机进制之间转换计算机中常用的进制有二进制、十进制、八进制和十六进制,它们之间的转换是计算机编程和网络通信中非常重要的基础知识。
本文将详细介绍这四种进制之间的转换方法。
1. 二进制(Binary)二进制是计算机中最基本的进制,它的基数是2,使用0和1表示。
每一位二进制数称为一个比特(bit)。
二进制转换为其他进制:理解二进制转换为其他进制的基本原理是将二进制数按权展开。
例如,将二进制数1101转换为十进制数,可以使用以下公式计算:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=13其他进制转换为二进制:将其他进制的数转换为二进制的基本原理是使用除二取余法。
例如,将十进制数13转换为二进制数,可以使用以下步骤:13÷2=6余16÷2=3余03÷2=1余11÷2=0余1所以,十进制数13转换为二进制数为11012. 十进制(Decimal)十进制是我们日常生活中最常用的进制,它的基数是10,使用0到9这10个数字表示。
十进制转换为其他进制:理解十进制转换为其他进制的基本原理是使用除以目标进制取余法。
例如,将十进制数123转换为八进制数,可以使用以下步骤:123÷8=15余315÷8=1余71÷8=0余1所以,十进制数123转换为八进制数为173其他进制转换为十进制:理解其他进制转换为十进制的基本原理是将数按权展开。
例如,将八进制数173转换为十进制数,可以使用以下公式计算:(1*8^2)+(7*8^1)+(3*8^0)=1233. 八进制(octal)八进制是计算机中常用的进制之一,它的基数是8,使用0到7这8个数字表示。
八进制转换为其他进制:理解八进制转换为其他进制的基本原理是将八进制数转换为二进制数,再将二进制数转换为目标进制。
例如,将八进制数173转换为十进制数,可以按以下步骤进行:把每一位八进制数转换为对应的三位二进制数:1->001,7->111,3->011所以,八进制数173转换为十进制数为123其他进制转换为八进制:理解其他进制转换为八进制的基本原理是先将其他进制数转换为二进制数,再将二进制数每3位分组转为八进制数。
计算机的进制转换方法
计算机的进制转换方法计算机中常用的进制是二进制、八进制和十六进制。
进制转换是指将一个数从一种进制表示转换为另一种进制表示的过程。
本文将详细介绍二进制、八进制和十六进制之间的相互转换方法。
1.二进制转换为八进制:二进制转换为八进制的方法是按照三位一组的方式进行转换。
首先,将二进制数从右向左每三位一组进行划分。
如果最左边的组不足三位,则在最高位补0。
然后,将每一组转换为八进制数。
八进制数的基数是8,所以每组中的数的权重分别为4、2和1、将每组的三位二进制数与相应的权重相乘,得到的结果相加即可得到八进制数。
2.二进制转换为十六进制:二进制转换为十六进制的方法是按照四位一组的方式进行转换。
首先,将二进制数从右向左每四位一组进行划分。
如果最左边的组不足四位,则在最高位补0。
然后,将每一组转换为十六进制数。
十六进制数的基数是16,所以每组中的数的权重分别为8、4、2和1、将每组的四位二进制数与相应的权重相乘,得到的结果相加即可得到十六进制数。
3.八进制转换为二进制:八进制转换为二进制的方法是将八进制数的每个数字转换为对应的三位二进制数,然后将所有的三位二进制数连起来。
4.八进制转换为十六进制:八进制转换为十六进制的方法是先将八进制数转换为二进制数,然后再将二进制数转换为十六进制数。
5.十六进制转换为二进制:十六进制转换为二进制的方法是将十六进制数的每个数字转换为对应的四位二进制数,然后将所有的四位二进制数连起来。
6.十六进制转换为八进制:十六进制转换为八进制的方法是先将十六进制数转换为二进制数,然后再将二进制数转换为八进制数。
7.其他进制之间的转换:进制转换的方法可以应用于其他进制之间的转换。
首先,将原数按照转换前的基数进行分组(注意每组的位数要与转换前的基数对应),然后将每一组转换为与转换后的基数对应的数。
最后,将每组的数相加或连起来得到转换后的数。
总结:通过上述方法,我们可以相互转换二进制、八进制和十六进制之间的数。
各种进制的转换(计算机基础呀)
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
计算机各进制换算
一:十进制数转换成二进制数。
随便拿出一个十进制数“39”,(假如你今天买书用了39元)先来把这个39转换成2进制数。
商余数步数39/2= 19 1第一步19/2= 9 1 (这里的19是第一步运算结果的商)第二步9/2= 4 1 (这里的9是第二步运算结果的商)第三步4/2= 2 0 (这里的4是第三步运算结果的商)第四步2/2= 1 0 (这里的2是第四步运算结果的商)第五步1/2= 0 1 (这里的1是第五步运算结果的商)第六步那么十进制数39转换成2进制数就是100111. 既39(10)=100111(2)解析一:1. 当要求把一个10进制数转换成2进制数的时候,就用那个数一直除以2得到商和余数。
2. 用上一步运算结果的商在来除以2,再来得到商和余数。
3. 就这样,一直用上一步的商来除以2,得到商和余数!那么什么时候停止呢?4. 请看上述运算图,第六步的运算过程是用1除以2.得到的商是0,余数是1. 那么请你记住,记好了啊共2点。
A: 当运算到商为“0”的时候,就不用运算了。
B:1/2的商为“0”余数为“1”。
这个你要死记住,答案并不是0.5!答案就是商为“0”余数为“1”。
你不用去思考为什么,记好了就行了!5. 在上述图中你会清晰的看到每一步运算结果的余数,你倒着把它们写下来就是“100111”了。
那么这个就是结果了。
6. 在上述图中符号“/”代表“除以”。
二:十进制数转换成八进制数。
随便拿出一个十进制数“358”,(假如你今天买彩票中了358元)。
358是我们现实生活中所用10进制表达出来的一个数值,转换成八进制数十多少?商余数步数358/8= 44 6第一步44/8= 5 4 (这里的44是第一步运算结果的商)第二步5/8= 0 5 (这里的5是第二步运算结果的商)第三步那么十进制数358转换成8进制数就是546。
既358(10)=546(8)解析二: 1.没什么好说的啦,10进制数转换成2进制数和10进制数转换成8进制数的唯一不一样的地方就是除数变了,除数由“2” 变成了“8”。
进制之间的转换方法
进制之间的转换方法进制是计算机科学中非常重要的概念之一。
进制之间的转换方法是在计算机科学中非常基础、重要的技能,它是计算机编程和数据处理必备的知识之一。
在本文档中,将介绍如何在不同进制之间进行转换,包括二进制、八进制、十进制和十六进制,并提供相关的实例。
二进制(Binary)在计算机科学中,二进制是最常见的进制,因为计算机中的所有数据处理都是在二进制的基础上完成的。
二进制表示的是由 0 和 1 组成的数字系统。
在二进制中,每一位上的数字的权值都是 2 的幂次方,从右往左依次为1、2、4、8、16……如下表所示。
2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0128 64 32 16 8 4 2 1因此,一个八位的二进制数可以表示 0 ~ 255 的十进制数。
例如,二进制数 01100100 表示的是十进制数100 。
二进制转八进制将一个二进制数转换成八进制数,可以将二进制数每三位分为一组(从右往左),然后将每一组转换成相应的八进制数。
例如,将二进制数 11010 转换成八进制,可以按下面的方法进行:1. 将二进制数每三位分为一组:011 010 。
因为二进制数是从右往左数的,所以最后一组的位数不足三位,需要在最高位补 0 使其成为三个二进制位。
2. 将每组的二进制数转换成相应的八进制数。
011 对应的八进制数是 3,010 对应的八进制数是 2。
因此,11010 的八进制表示为 32。
二进制转十进制将一个二进制数转换成十进制数,可以将每一位上的数字乘以相应的权值,然后将所有的结果相加。
例如,将二进制数 101010 转换成十进制数,可以按下面的方法进行:1. 将每一位上的数字乘以相应的权值,从右往左依次为 1、2、4、8、16、32。
因此,101010 转换成十进制数为:0x20 + 2x16 + 0x8 + 1x4 + 0x2 + 1x1 = 42。
二进制转十六进制将一个二进制数转换成十六进制数,可以将二进制数每四位分为一组(从右往左),然后将每一组转换成相应的十六进制数。
计算机进制之间相互转换
计算机进制之间的相互转换一、进位计数制所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制.在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。
下面先来介绍一下进制中的基本概念:1、基数数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。
例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。
2、权在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的.每一个数位赋予的数值称为位权,简称权。
权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权.例如,543.21各数位的权分别为102、101、100、10-1和10—2.3、进位计数制的按权展开式在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。
任意进位制的数都可以写成按权展开的多项式和的形式。
二、计算机中的常用的几种进制。
在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。
二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。
1、二进制(Binary System)二进制数中,是按“逢二进一”的原则进行计数的。
其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。
2、八进制(Octave System)八进制数中,是按“逢八进一”的原则进行计数的。
其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。
3、十进制(Decimal System)十进制数中,是按“逢十进一”的原则进行计数的.其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。
计算机非十进制数之间的转换
计算机非十进制数之间的转换
常见的非十进制数包括二进制(base-2)、八进制(base-8)和十六进制(base-16),下面介绍它们之间的转换方法:
1.二进制转八进制。
将二进制数(比如1101101010)按照从右往左每三个一组进行分组(最后一组如果不足三个填充0),然后将每组二进制数转换成对应的八进制数,最后将这些八进制数按照从左往右的顺序依次排列即可得到八进制数(比如1572)。
2.八进制转二进制。
将八进制数的每个数字转换成对应的三位二进制数,然后将这些二进制数依次连接起来即可得到二进制数。
3.二进制转十六进制。
将二进制数(比如1101101010)按照从右往左每四个一组进行分组(最后一组如果不足四个填充0),然后将每组二进制数转换成对应的十六进制数,最后将这些十六进制数按照从左往右的顺序依次排列即可得到十六进制数(比如DA)。
4.十六进制转二进制。
将十六进制数的每个数字转换成对应的四位二进制数,然后将这些二进制数依次连接起来即可得到二进制数。
5.八进制转十六进制。
将八进制数先转换成对应的二进制数,然后将二进制数按照从右往左每四个一组进行分组(最后一组如果不足四个填充0),然后将每组二进制数转换成对应的十六进制数,最后将这些十六进制数按照从左往右的顺序依次排列即可得到十六进制数。
6.十六进制转八进制。
将十六进制数先转换成对应的二进制数,然后将二进制数按照从右往左每三个一组进行分组(最后一组如果不足三个填充0),然后将每组二进制数转换成对应的八进制数,最后将这些八进制数按照从左往右的顺序依次排列即可得到八进制数。
计算机非十进制数之间的转换
计算机非十进制数之间的转换计算机中使用的最常见的进制是十进制(Decimal)和二进制(Binary),两者之间的转换是计算机科学的基础知识之一。
本文将介绍如何在十进制和二进制之间进行转换,以及为什么这种转换对于计算机编程和数据处理非常重要。
一、十进制转二进制十进制是我们最常用的进制,它是以10为基数的进制系统。
而二进制是计算机系统中使用的进制,它是以2为基数的进制系统。
在计算机中,所有的数据都是以二进制的形式存储和处理的。
要将一个十进制数转换为二进制,我们可以使用除2取余法。
具体步骤如下:1. 将十进制数除以2,得到的商和余数分别为下一个计算的十进制数和当前位的二进制数。
2. 重复上述步骤,直到十进制数为0为止。
举个例子,将十进制数13转换为二进制数:```13 ÷ 2 = 6 余 16 ÷ 2 = 3 余 03 ÷ 2 = 1 余 11 ÷2 = 0 余 1```从最后一步开始,我们可以得到二进制数1101,即13的二进制表示为1101。
二、二进制转十进制要将一个二进制数转换为十进制,我们可以使用乘法法则。
具体步骤如下:1. 将二进制数的每一位与它所在的位置相乘,得到一个乘积。
2. 将所有乘积相加,得到最终的十进制数。
举个例子,将二进制数1101转换为十进制数:```1 × 2^3 + 1 × 2^2 + 0 × 2^1 + 1 × 2^0 = 8 + 4 + 0 + 1 = 13```所以二进制数1101的十进制表示为13。
三、其他进制的转换除了十进制和二进制之外,计算机还可以使用其他进制,如八进制(Octal)和十六进制(Hexadecimal)。
八进制是以8为基数的进制系统,十六进制是以16为基数的进制系统。
将十进制数转换为八进制和十六进制,可以采用类似于十进制转二进制的方法,只不过基数变为8或16。
将二进制数转换为八进制和十六进制,可以将二进制数按照3位或4位一组进行分割,然后将每一组转换为对应的八进制或十六进制数。
计算机的进制转换
一、不同进制的表示(10111)2(34)10(17)8(AA)1610111B34D17O AA H十六进制数0 12 3 4 5 6 7 8 9 A(10) B C D E(14) F(15)八进制数0 12 3 4 5 6 7二进制数0 1二、任何进制转换成十进制——按权展开式1234567=1*106+2*105+3*104+4*103+5102+6101+710010111B=1*24+0*23+1*22+1*21+1*20=16+4+2+1=23D17O=1*81+7*80=8+7=15DAAH=10*161+10*160=160+10=170D三、八-二相互转换23=8 三位二进制数的大小相当于一位八进制数的大小101B=5D=5O 不足三位在前面加0补齐010*********B 2 166O2166O 2 1 6 610001 110 110十六-二相互转化24=16 四位二进制数的大小相当于一位十六进制数的大小010*********B 47 6H0100B=1*22=4数值为7 的十进制数如何写7,八进制数7 ,十六进制7数值为9 的十进制数如何写9,八进制数10 ,十六进制9数值为14 的十进制数如何写14,八进制数16 ,十六进制E14D=8+6=1*81+6*80三、十进制转换二进制数(整数部分和小数部分)整数部分-》除2取余法,直到尚未结束,得到的数从下往上的顺序,写出来101商余数10D 10÷2 5 05÷2 2 12÷2 1 01÷2 0 123D 21÷2 11 111÷2 5 15÷2 2 12÷2 1 01÷2 0 110111小数部分-》乘2取整法0.125D 0.125*2=0.250.25*2=0.50.5*2=1.00.001B0.33333 0.33333*2=0.666660.6666*2=1.33320.3332*2=0.3334 0.010B。
计算机进制转换
计算机进制转换计算机中常用的进制有二进制、八进制、十进制和十六进制。
这些进制之间可以互相转换,下面是计算机进制转换的三种方法。
打开计算器,选择查看菜单中的“程序员”选项;在“程序员”界面中,选择查看菜单中的“进制转换”;在“进制转换”界面中,选择需要转换的进制和数值,点击“=”即可得到转换结果。
打开编程语言(如Python)的集成开发环境(IDE);利用编程语言的内置函数将数值转换为目标进制,如Python中的int()函数可以将十进制转换为其他进制,bin()函数可以将其他进制转换为二进制等。
以上三种方法都可以实现计算机进制之间的转换,具体使用哪种方法取决于实际情况和个人偏好。
随着科技的飞速发展,计算机技术已经成为了我们生活中不可或缺的一部分。
计算机系统作为计算机技术的核心,具有至关重要的作用。
本文将介绍计算机基础理论和计算机系统的基本概念、组成、分类和发展趋势。
计算机基础理论是计算机技术的基石,它包括了计算机科学的各个方面,如计算机体系结构、操作系统、数据结构与算法、数据库系统等。
这些理论为计算机系统的设计和应用提供了坚实的支撑。
计算机体系结构是计算机系统的基本构成和组织结构,它决定了计算机的性能、价格和用途。
计算机体系结构主要分为三种类型:单处理器系统、多处理器系统和分布式系统。
操作系统是计算机系统的核心,它负责管理和控制计算机的硬件和软件资源。
操作系统的主要功能包括进程管理、内存管理、文件管理和设备管理。
数据结构与算法是计算机科学的核心,它们决定了计算机处理数据的效率和方式。
常用的数据结构包括数组、链表、栈、队列、树等,常用的算法包括排序、搜索、递归等。
数据库系统是用于存储、管理和检索数据的软件系统。
数据库系统具有高效、可靠和安全的特点,广泛应用于商业、金融、科研等领域。
计算机系统由硬件系统和软件系统组成。
硬件系统是指计算机的物理组件,如中央处理器、内存、硬盘、显示器等。
软件系统是指运行在计算机上的程序和数据,如操作系统、应用程序、数据库等。
计算机数值之间的转换
计算机数值之间的转换计算机数值之间的转换是计算机科学中一个非常基础且重要的知识点。
在计算机编程和算法设计中,常常需要进行不同数值之间的转换,比如整数到浮点数的转换、二进制到十进制的转换等等。
本文将介绍常见的数值转换方法及其实现原理。
1.十进制到二进制的转换:十进制数转换为二进制数的方法是通过不断除以2并记录余数,直到商为0为止,然后将记录下来的余数倒序排列,即为二进制数。
例如,将十进制数27转换为二进制数:27÷2=13余113÷2=6余16÷2=3余03÷2=1余11÷2=0余12.二进制到十进制的转换:1×2^4+1×2^3+0×2^2+1×2^1+1×2^0=16+8+0+2+1=273.十进制到十六进制的转换:十进制数转换为十六进制数的方法是通过不断除以16并记录余数,直到商为0为止,然后将记录下来的余数倒序排列,并将10、11、12、13、14、15分别表示为A、B、C、D、E、F,即为十六进制数。
例如,将十进制数255转换为十六进制数:255÷16=15余15(F)15÷16=0余15(F)倒序排列余数:FF,即将十进制数255转换为十六进制数FF。
4.十六进制到十进制的转换:十六进制数转换为十进制数的方法是将十六进制数按权相加。
例如,将十六进制数FF转换为十进制数:15×16^1+15×16^0=240+15=255即将十六进制数FF转换为十进制数255浮点数是计算机中用来表示实数的一种方式,一般由符号位、指数位和尾数位组成。
在计算机中,浮点数的表示采用IEEE754标准。
1.十进制到浮点数的转换:十进制数转换为浮点数的方法是通过科学计数法,将实数部分转换为二进制,并使用指数表示小数点的位置。
例如,将十进制数2.5转换为单精度浮点数:2.浮点数到十进制的转换:浮点数到十进制数的转换是将浮点数的各个部分按照IEEE754标准进行计算和转换。
计算机进制之间的转换
56
十六进制与二进制之间的转换
十六进制转为二进制数
学习项目 记一记 看一看 练一练 想一想
通过介绍十六进制 转为二进制数的方法, 使学生掌握转换过程。
58
十六进制转为二进制数方法
方法:
将每一位十六进制数转为四 位二进制数,不足四位时: 进行左补零。
59
十六进制转为二进制数例题
1、(0.75)10=( 0.11
)2
2、(2.23)10=( 10.001 )2三位小数
欢迎进入高等测试
28
十进制转为二进制数注意事项
十进制整数
方法:除2取余
倒序回
除数为0止
十进制小数
方法:规则- 乘2取整
正序回
小数位为0止
不规则-乘2取整
正序回
保留有效位数
十进制数既含整数又含小数时:分别对整数和小数进行转 换,最后将结果进行相加即可
①电子器件的实现很容易。电路开关的闭合与 断开、电灯的亮与灭、二极管的导通与截止、 高电平与低电平等。
②二进制运算简单。运算器结构大大简化,控 制简单
③便于进行逻辑运算。二进制的0、1两种状态, 可以代表逻辑运算中的“假”和“真”两种值
④可靠性高。二进制的0、1两种状态,在传输 和处理时不容易出错。
3、数制表示
❖制数表示:一般用括号后加数字下标2、8、 10、16来分别表示二进制、八进制、十进 制和十六进制数字,如(5)l0=表示10进制5; (101)2表示2进制101。
11
❖对于r进制的数,在数值的后面使用特定的 字母标注
(101) 2 Binary (101) 8 Octal (101) 10 Decimal (101) 16 Hexadecimal
计算机各进制换算
计算机各进制换算计算机中常用的进制包括十进制、二进制、八进制和十六进制。
换算不同进制之间的方法是很基础和重要的,下面我们来看一下如何进行这些进制之间的转换。
1.十进制转二进制:十进制数可以被2整除或除2取余数的方式转为二进制数。
具体步骤如下:-将十进制数除以2,得到的商再除以2,如此类推,直到商为0。
将得到的余数从下往上排列,就得到了对应的二进制数。
例如,十进制数10转为二进制数:10÷2=5,余数为0,5÷2=2,余数为1,2÷2=1,余数为0,1÷2=0,余数为1、所以10的二进制表示为1010。
2.二进制转十进制:二进制数可以通过加权求和的方式转为十进制数。
具体步骤如下:-从二进制数的最右边(低位)开始,依次对每一位乘以2的n次方(n为该位的索引)。
-将得到的结果相加,即可得到对应的十进制数。
例如,二进制数1010转为十进制数:1x2^3+0x2^2+1x2^1+0x2^0=8+0+2+0=10。
3.十进制转八进制:十进制数可以被8整除或除8取余数的方式转为八进制数。
具体步骤如下:-将十进制数除以8,得到的商再除以8,如此类推,直到商为0。
将得到的余数从下往上排列,就得到了对应的八进制数。
例如,十进制数25转为八进制数:25÷8=3,余数为1,3÷8=0,余数为3、所以25的八进制表示为314.八进制转十进制:八进制数可以通过加权求和的方式转为十进制数。
具体步骤与二进制转十进制相同,只是将每一位乘以8的n次方(n为该位的索引)。
例如,八进制数31转为十进制数:3x8^1+1x8^0=24+1=255.十进制转十六进制:十进制数可以被16整除或除16取余数的方式转为十六进制数。
-将十进制数除以16,得到的商再除以16,如此类推,直到商为0。
将得到的余数从下往上排列,用A表示10、B表示11、C表示12、D表示13、E表示14、F表示15,就得到了对应的十六进制数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二进制、八进制、十进制、十六进制之间转换二进制、八进制、十进制、十六进制之间转换
一、十进制与二进制之间的转换
(1)十进制转换为二进制,分为整数部分和小数部分
①整数部分
方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:
例:将十进制的168转换为二进制
得出结果将十进制的168转换为二进制,(10101000)2
分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000
(2)小数部分
方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分
为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:
例1:将0.125换算为二进制
得出结果:将0.125换算为二进制(0.001)2
分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;
第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;
第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;
第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)
大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。
那么,我们可以得出结果将0.45转换为二进制约等于0.0111
上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:
1)十进制转换为二进制,需要分成整数和小数两个部分分别转换
2)当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法
3)注意他们的读数方向
因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111。
(3)二进制转换为十进制不分整数和小数部分
方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数。
例
将二进制数101.101转换为十进制数。
得出结果:(101.101)2=(5.625)10
大家在做二进制转换成十进制需要注意的是
1)要知道二进制每位的权值
2)要能求出每位的值
二、二进制与八进制之间的转换
首先,我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这
关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。
接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。
现在我们来练习二进制与八进制之间的转换。
(1)二进制转换为八进制
方法:取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。
如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。
例
①将二进制数101110.101转换为八进制
得到结果:将101110.101转换为八进制为56.5
②将二进制数1101.1转换为八进制
得到结果:将1101.1转换为八进制为15.4
(2)将八进制转换为二进制
方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。
例:
①将八进制数67.54转换为二进制
因此,将八进制数67.54转换为二进制数为110111.101100,即110111.1011
大家从上面这道题可以看出,计算八进制转换为二进制
首先,将八进制按照从左到右,每位展开为三位,小数点位置不变
然后,按每位展开为22,21,20(即4、2、1)三位去做凑数,即a×22+ b×21 +c×20=该位上的数(a=1或者a=0,b=1或者b=0,c=1或者c=0),将abc排列就是该位的二进制数
接着,将每位上转换成二进制数按顺序排列
最后,就得到了八进制转换成二进制的数字。
以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是
1)他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换
2)大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边(即整数的最高位和小数的最低位)才能添0或者去0,否则将产生错误
三、二进制与十六进制的转换
方法:与二进制与八进制转换相似,只不过是一位(十六)与四位(二进制)的转换,下面具体讲解
(1)二进制转换为十六进制
方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数。
如果向左(向右)取四位后,取到最高(最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足四位。
①例:将二进制11101001.1011转换为十六进制
得到结果:将二进制11101001.1011转换为十六进制为E9.B
②例:将101011.101转换为十六进制
因此得到结果:将二进制101011.101转换为十六进制为2B.A
(2)将十六进制转换为二进制
方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧。
①将十六进制6E.2转换为二进制数
因此得到结果:将十六进制6E.2转换为二进制为01101110.0010即110110.001
四、八进制与十六进制的转换
方法:一般不能互相直接转换,一般是将八进制(或十六进制)转换为二进制,然后再将二进制转换为十六进制(或八进制),小数点位置不变。
那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转
五、八进制与十进制的转换
(1)八进制转换为十进制
方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数。
例:①将八进制数67.35转换为十进制
(2)十进制转换为八进制
十进制转换成八进制有两种方法:
1)间接法:先将十进制转换成二进制,然后将二进制又转换成八进制
2)直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:①整数部分
方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。
②小数部分
方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入。
例:将十进制数796.703125转换为八进制数
解:先将这个数字分为整数部分796和小数部分0.703125
整数部分
小数部分
因此,得到结果十进制796.703125转换八进制为1434.55
上面的方法大家可以验证一下,你可以先将十进制转换,然后在转换为八进制,这样看得到的结果是否一样
六、十六进制与十进制的转换
十六进制与八进制有很多相似之处,大家可以参照上面八进制与十进制的转换自己试试这两个进制之间的转换。
通过上面对各种进制之间的转换,我们可以将前面的转换图重新完善一下:
本文介绍了二进制、十进制、八进制、十六进制四种进制之间相互的转换,大家在转换的时候要注意转换的方法,以及步骤,特别是十进制转换为期于三种进制之间,要分为整数部分和小数部分,最后就是小数点的位置。
但是要保证考试中不出现错误还是需要大家经常练习,这样才能熟能生巧。