数学建模-最优化模型_图文.
数学建模中的优化模型ppt课件
2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)
数学建模最优化模型优秀课件 (2)
xmax=x fmax=-fval
MATLAB(wliti2)
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
2.多元函数无约束优化问题
标准 fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options);
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f (x) x1 x x2
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options)
(3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…) (5)[x,fval,exitflag,output]= fminbnd(…)
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
output= iterations: 108 funcCount: 202
algorthm: 'Nelder-Mead simplex direct search '
最优化问题的数学模型
建立数学模型时要尽可能简单,而且要能完整地描述所 研究的系统,具体建立怎样的数学模型需要丰富的经验和熟练 的技巧。即使在建立了问题的数学模型之后,通常也必须对模 型进行必要的数学简化以便于分析、计算。
f1='-2*exp(-x).*sin (x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果: xmin = 3.9270 xmax = 0.7854
数学建模~最优化模型(课件)
投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
05 第五节数学建模——最优化
第五节 数学建模——最优化在实际应用中,常常会遇到最大值和最小值的问题.如用料最省、容量最大、花钱最少、效率最高、利润最大等.此类问题在数学上往往可归纳为求某一函数(通常称为目标函数)的最大值或最小值问题.分布图示★ 最大值最小值的求法★例1 ★例2 ★ 例3 ★例4 ★例5 ★ 例6★例7★ 对抛射体运动建模 ★例8 ★例9★ 在经济学中的应用 ★例10 ★例11★例12 ★例13 ★例14 ★例15 ★例16★ 内容小结★课堂练习★ 习题3-5 ★ 返回内容要点一、求函数的最大值与最小值在实际应用中,常常会遇到求最大值和最小值的问题. 如用料最省、容量最大、花钱最少、效率最高、利润最大等. 此类问题在数学上往往可归结为求某一函数(通常称为目标函数)的最大值或最小值问题.求函数在],[b a 上的最大(小)值的步骤如下:(1)计算函数)(x f 在一切可能极值点的函数值,并将它们与),(a f )(b f 相比较,这些值中最大的就是最大值,最小的就是最小值;(2) 对于闭区间],[b a 上的连续函数)(x f ,如果在这个区间内只有一个可能的极值点,并且函数在该点确有极值,则这点就是函数在所给区间上的最大值(或最小值)点. 二、对抛射体运动建模三、光的折射原理 四、在经济学中的应用例题选讲例1 (E01) 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值. 解 ),1)(2(6)(-+='x x x f 解方程,0)(='x f 得.1,221=-=x x 计算;23)3(=-f ;34)2(=-f ;7)1(=f ;142)4(=f 比较得最大值,142)4(=f 最小值.7)1(=f例2 求函数x x y -=2sin 在⎥⎦⎤⎢⎣⎡-2,2ππ上的最大值及最小值.解 函数x x y -=2sin 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,,12cos 2)(-='='x y x f令,0='y 得.6π±=x,22ππ=⎪⎭⎫ ⎝⎛-f ,22ππ-=⎪⎭⎫ ⎝⎛f ,6236ππ-=⎪⎭⎫ ⎝⎛f .6236ππ+-=⎪⎭⎫⎝⎛-f故y 在 ⎥⎦⎤⎢⎣⎡-2,2ππ上最大值为,2π最小值为.2π-例3 (E02) 设工厂A 到铁路线的垂直距离为20km, 垂足为B . 铁路线上距离B 为100km 处有一原料供应站C , 如图3-5-4. 现在要在铁路BC 中间某处D 修建一个原料中转车站, 再由车站D 向工厂修一条公路. 如果已知每km 的铁路运费与公路运费之比为3:5, 那么, D 应选在何处, 才能使原料供应站C 运货到工厂A 所需运费最省?解 x BD =(km), x CD -=100(km), .2022x AD +=铁路每公里运费,3k 公路每公里,5k 记那里目标函数(总运费)y 的函数关系式:CD k AD k y ⋅+⋅=35即 ).1000()100(340052≤≤-++⋅=x x k x k y问题归结为:x 取何值时目标函数y 最小.求导得,340052⎪⎪⎭⎫ ⎝⎛-+='x x k y 令0='y 得15=x (km). 由于.26100)100(,380)15(,400)0(k y k y k y ===从而当15=BD (km)时,总运费最省.例4(E03) 某房地产公司有50套公寓要出租, 当租金定为每月180元时, 公寓会全部租出去. 当租金每月增加10元时, 就有一套公寓租不出去, 而租出去的房子每月需花费20元的整修维护费. 试问房租定为多少可获得最大收入?解 设房租为每月x 元,租出去的房子有⎪⎭⎫⎝⎛--1018050x 套,每月总收入为,1068)20(1018050)20()(⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛---=x x x x x R,570101)20(1068)(x x x x R -=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛-='解,0)(='x R 得350=x (唯一驻点).故每月每套租金为350元时收入最高.最大收入为 10890)350(=R (元).求函数的最大值最小值例5 求内接于椭圆12222=+by a x 而面积最大的矩形的各边之长.解 设),(y x M 为椭圆上第一象限内任意一点,则 以点M 为一顶点的内接矩形的面积为,0,422)(22a x x a x aby x x S ≤≤-=⋅=且.0)()0(==a S S22222222244)(x a x a a b x a x xx a a b x S --=⎥⎥⎦⎤⎢⎢⎣⎡--+-=' 由,0)(='x S 求得驻点20a x =为唯一的极值可疑点. 依题意, )(x S 存在最大值,故20a x =是)(x S 的最大值,最大值ab a a aa b S 222422max=⎪⎪⎭⎫ ⎝⎛-⋅= 对应的y 值为,2b 即当矩形的边长分别为,2a b 2时面积最大.例6 由直线8,0==x y 及抛物线2x y =围成一个曲边三角形, 在曲边2x y =上求一点, 使曲线在该点处的切线与直线0=y 及8=x 所围成三角形面积最大.解 根据几何分析, 所求三角形面积为),80)(16(2182102000≤≤-⎪⎭⎫ ⎝⎛-=x x x x S由,0)1616643(41020=⨯+-='x x S解得,3160=x 160=x (舍去). ,08316<-=⎪⎭⎫⎝⎛n S274096316=⎪⎭⎫ ⎝⎛∴S 为极大值.故274096316=⎪⎭⎫ ⎝⎛S 三角形为所有中面积的最大者.例7 求数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=n n e n n a 122}{2的最大项(已知3723>e ). 解 令,1),122()(22+∞≤≤--=-x x x e x f x则)86(21)(22---='-x x e x f x由,0)(='x f 得唯一驻点.173+=x当)173,1(+∈x 时, ;0)(>'x f 当),173(+∞+∈x 时, ;0)(<'x f 所以当时, 173+=x 时,函数)(x f 取得极大值 ,由于,81737<+<又,23)7(7e f =,36)8(4e f =,136373623)8()7(>>=e f f 因此当7=n 时, 得数列的最大项,7a.23)7(77ef a ==例8 (E04) 在地面上以400m/s 的初速度和3π的抛射角发射一个抛射体. 求发射10秒后抛射体的位置.解 由400=v m/s ,3πα=,10=t ,则()2000103cos 40010=⨯⎪⎭⎫ ⎝⎛=πx()2974108.921103sin 400102≈⨯⨯-⨯⎪⎭⎫ ⎝⎛=πy即发射10秒后抛射体离开发射点的水平距离为2000米,在空中的高度为2974米.虽然由参数方程确定的运动轨迹能够解决理想抛射体的大部分问题. 但是有时我们还需要知道关于它的飞行时间、射程(即从发射点到水平地面的碰撞点的距离)和最大高度.由抛射体在时刻0≥t 的竖直位置解出t .021sin =⎪⎭⎫ ⎝⎛-gt v t α⇒0=t ,g v t αsin 2=. 因为抛射体在时刻0=t 发射,故gv t αsin 2=必然是抛射体碰到地面的时刻. 此时抛射体的水平距离,即射程为 ()()αααα2sin cos 2sin 2sin 2gv tv t x gv t gv t ====. 当12sin =α时即4πα=时射程最大.抛射体在它的竖直速度为零时,即()0sin =-='gt v x y α从而 gv t αs i n =,故最大高度()()()g v g v g g v v x y gv t 2sin sin 21sin sin 22sin ααααα=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==. 根据以上分析,不难求得例8中的抛射体的飞行时间、射程和最大高度: 飞行时间70.703sin 8.94002sin 2≈⨯==παg v t (秒) 射程1413932sin 8.94002sin 22max≈==παg v x (米) 最大高度 ()()61228.923sin 4002sin 22max≈⨯⎪⎭⎫ ⎝⎛==παgv x y (米)例9(E05) 在1992年巴塞罗那夏季奥运会开幕式上的奥运火炬是由射箭铜牌获得者安东尼奥·雷波罗用一枝燃烧的箭点燃的,奥运火炬位于高约21米的火炬台顶端的圆盘中,假定雷波罗在地面以上2米距火炬台顶端圆盘约70米处的位置射出火箭,若火箭恰好在达到其最大飞行高度1秒后落入火炬圆盘中,试确定火箭的发射角α和初速度0v .(假定火箭射出后在空中的运动过程中受到的阻力为零,且,2/10s m g =, 5.469.2022arctan ≈≈ 5.46sin 0.725) 解 建立如图所示坐标系, 设火箭被射向空中的初速度为0v 米/秒,即)(ααsin ,cos 000v v v =,则火箭在空中运动t 秒后的位移方程为()()()()t y t x t s ,==),(2005sin 2cos t t v t v -+αα.火箭在其速度的竖直分量为零时达到最高点,故有()()010sin 5sin 2020=-='-+=t v t t v dt t dy αααsin 100v t =⇒ ,于是可得出当火箭达到最高点1秒后的时刻其水平位移和竖直位移分别为22000110sin 2170cos 2.31sin 10cos )(0-==+=+=ααααv vv t x v t )(21320sin )(220110sin 0=-=+=ααv t y v t解得:22sin 0≈αv ,9.20cos 0≈αv , 从而9.2022tan =α⇒ 5.46≈α 又 5.4622sin 0≈≈αα,v⇒3.300≈v (米/秒)所以,火箭的发射角α和初速度0v 分别约为5.46和3.30米/秒.例10(E06) 设每月产量为x 吨时, 总成本函数为4900841)(2++=x x x C (元), 求最低平均成本和相应产量的边际成本.解 又.09800)140(3>=''x C 故140=x 是)(x C 的极小值点,也是最低平均成本为7814049008)140(41)140(=++⨯=C (元).边际成本函数为.821)(+='x x C故当产量为140吨时,边际成本为78)140(='C (元).例11(E07) 某人利用原材料每天要制作5个贮藏橱. 假设外来木材的运送成本为6000元,而贮存每个单位材料的成本为8元. 为使他在两次运送期间的制作周期内平均每天的成本最小,每次他应该订多少原材料以及多长时间订一次货?解 设每x 天订一次货,那么在运送周期内必须订x 5单位材料. 而平均贮存量大约为运送数量的一半,即25x. 因此每个周期的成本=运送成本+贮存成本=8256000⋅⋅+x x平均成本()x xx x C 206000+==每个周期的成本,0>x由()2060002+-='x x C 解方程()0='x C ,得驻点 32.173101≈=x ,32.173102-≈-=x (舍去).因 ()312000xx C ='',则 ()01>''x C ,所以在32.173101≈=x 天处取得最小值. 贮藏橱制作者应该安排每隔17天运送外来木材85175=⨯单位材料.例12(E08) 某计算器零售商店每年销售360台计算器. 库存一台计算器一年的费用是8元. 为再订购,需付10元的固定成本,以及每台计算器另加8元. 为最小化存贷成本,商店每年应订购计算器几次?每次批量是多少?解 设x 表示批量.存货成本表示为=)(x C (年度持产成本) + (年度再订购成本).我们分别讨论年度持产成本和年度再订购成本.现有平均存货量是2/x ,并且每台库存花费10元. 因而.428)()(x x=⋅=⋅=平均台数每台年度成本年度持产成本 已知x 表示批量.又假定每年再订购n 次.于是⇒=360nx ./360x n = 因而 年度再订购成本 = (每次订购成本) ∙(再订购次数).28803600360)810(+=+=xx x因此.288036004)(++=xx x C 令,036004)(2=-='x x C 解得驻点.30±=x 又.0100000)(3>=''xx C 因为在区间[1,360]内只有一个驻点,即,30=x 所以在30=x 处有最小值. 因此,为了最小化存货成本,商店应每年订货1230360=(次).例13(E09) 再讨论例12, 除了把存货成本8元改为9元, 采用例3给出的所有数据.为使存货成本最小化, 商店应按多大的批量再订购计算器且每年应订购几次?解 把这个例子与例6作比较,求其存货成本,它变成 .3240360029360)910(29)(++=++⋅=xx x x x x C 然后求),(x C '令它等于0来求解:x 0360029)(2=-='xx C .2.28800≈=⇒x 因为每次再订购28.2台没有意义,考虑与28.2最接近的两个整数,它们是28和29.现在有57.3494)28(≈C 元和 64.3494)29(≈C 元.由此可得,最小化存货成本的批量是28, 尽管相差0.07元并不重要.(注意:这一步骤不是对所有类型的函数都能行得通,但是对于这里正在讨论的函数是可行的.)应再订购的次数是,1328/360≈所以仍然涉及某个近似值.例14(E10)某服装有限公司确定,为卖出x 套服装, 其单价应为x p 5.0150-=. 同时还确定,生产x 套服装的总成本可表示成225.04000)(x x C +=.(1) 求总收入).(x R (2) 求总利润).(x L(3) 为使利润最大化,公司必须生产并销售多少套服装? (4) 最大利润是多少?(5) 为实现这一最大利润, 其服装的单价应定为多少?解 (1)总收入 p x x R ⋅=⋅=单价服装套数)()(.5.0150)5.0150(2x x x x -=-= (2)总利润.400015075.0)25.04000()5.0150()()()(222-+-=+--=-=x x x x x x C x R x L(3)为求)(x L 的最大值, 先求.1505.1)(+-='x x L 解方程0)(='x L ,得.100=x注意到05.1)(<-=''x P , 因为只有一个驻点,所以)100(L 是最大值.(4) 最大利润是3500400010015010075.0)100(2=-⨯+⨯-=L (元) 由此公司必须生产并销售100套服装来实现3500元的最大利润. (5) 实现最大利润所需单价是 1001005.0150=⨯-=p (元).例15(E11)某大学正试图为足球票定价. 如果每张票价为6元,则平均每场比赛有70000名观众. 每提高1元,就要从平均人数中失去10000名观众. 每名观众在让价上平均花费1.5元. 为使收入最大化,每张票应定价多少?按该票定价,将有多少名观众观看比赛?解 设每张票应提价的金额x (如果x 是负值, 则票价下跌) . 首先把总收入R 表示成x 的函数.)(5.1)()()()()(人数票价人数让价收益票价收益+⋅=+=x R)1000070000(5.1)6)(1000070000(x x x -++-= 5250005000100002+--=x x .为求使)(x R 最大的,x 先求:)(x R '.500020000)(--='x x R 解方程0)(='x R ,得25.0-=x 元.注意到020000)(<-=''x R ,因为这是唯一的驻点,所以)25.0(-R 是最大值.因此,为使收入最大化, 足球票定价为75.525.06=-元.也就是说,下调后的票价将吸引更多的观众去看球赛,其人数是72500)25.0(1000070000=-⨯-这将带来最大的收入.例16(E12) 录像带商店设计出一个关于其录像带租金的需求函数,并把它表示为 P Q 20120-=其中Q 是当每盒租金是P 元时每天出租录像带的数量. 求解下列各题: (1) 求当2=P 元和4=P 元时的弹性,并说明其经济意义. (2) 求()1=P η时P 的值,并说明其经济意义. (3) 求总收益最大时的价格P . 解 (1)首先求出需求弹性 ()PP P P Q Q P P --=--⋅='⋅=62012020η 当2=P 元,有()212622-=--=η. ()1212<=η,表明出租数量改变量的百分比与价格改变量的百分比的比率小于1. 价格的小幅度增加所引起出租数量百分比的减少小于价格改变量的百分比. 当4=P 元,有()24644-=--=η. ()122>=η,表明出租数量改变量的百分比与价格改变量的百分比的比率大于1. 价格的小幅度增加所引起出租数量百分比的减少大于价格改变量的百分比. (2)令()1=P η,即316=⇒=--P PP因此,当每盒租金是3元时,出租数量改变量的百分比与价格改变量的百分比的比率是1.(3)总收益是()220120P P PQ P R -==()P P R 40120-=',()40-=''P R令()0='P R ,解得3=P . 又()040<-=''P R ,所以3=P 为()2P R 的极大值点,也是最大值点. 即当每盒租金是3元时,总收益最大.在上例中得到,使()1=P η的P 值与使总收益最大的P 值是相同的. 这一事实总是成立的.课堂练习1. 下列命题正确吗?若0x 为)(x f 的极小值点, 则必存在0x 的某领域, 在此领域内, )(x f 在0x 的左侧下降, 而在0x 的右侧上升.2 .若)(a f 是)(x f 在[a , b ]上的最大值或最小值, 且)(a f '存在, 是否一定有0)(='a f ?。
数学建模最优化模型
数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。
在众多的数学建模方法中,最优化模型是一种常用的方法。
最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。
最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。
决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。
最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。
线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。
线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。
非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。
非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。
整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。
max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。
最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。
通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。
总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。
最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。
数学建模最优化模型
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
数学建模最优化模型
解 设剪去的正方形的边长为 x ,则水槽的容积为: (3 2x)2 x
建立无约束优化模型为:min y =- (3 2x)2 x , 0< x <1.5
先编写M文件fun0.m如下:
function f=fun0(x)
f=-(3-2*x).^2*x; 主程序为wliti2.m:
[x,fval]=fminbnd('fun0',0,1.5);
计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
最优化:在一定的条件下,寻求 使得目标最大(最小)的策略
• 约一半以上的问题与最优化问题有关。如: 飞行管理问题(95A) 最优捕鱼策略(96A) 节水洗衣机(96B) 零件的参数设计(97A) 投资收益和风险(98A) 钢管订购和运输(2000B)
一般的模型简化工作包括以下几类: (1)将离散变量转化为连续变量。 (2)将非线性函数线性化。 (3)删除一些非主要约束条件。
建立最优化问题数学模型的三要素:
(1)决策变量和参数。
决策变量是由数学模型的解确定的未知数。参数表 示系统的控制变量,有确定性的也有随机性的。
(2)约束或限制条件。
由于现实系统的客观物质条件限制,模型必须包括 把决策变量限制在它们可行值之内的约束条件,而这 通常是用约束的数学函数形式来表示的。
min f (x) x
2、约束条件下极值问题的数学模型
min f (x) x
s.t. gi (x) 0, i 1, 2,..., m hi (x) 0, i 1, 2,..., n
其中,极大值问题可以转化为极小值问题来
进行求解。如求: max f (x) x 可以转化为:min f (x) x
数学建模-最优化模型
8 4 x 8 3 x 32 x 24 x 1 2 1 2
因检验员错检而造成的损失为:
( 8 25 2 % x 8 15 5 % x ) 2 8 x 12 x 1 2 1 2
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?
解
设剪去的正方形的边长为 x ,则水槽的容积为: (3 2 x) 2 x
2 建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
线性规划 整数规划 非线性规划
动态规划
多目标规划
对策论
两个引例
问题一:某工厂在计划期内要安排生产I、II两种产品, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗,如下表所示
I 设备 1 II 2 8台时
原材料A
原材料B
4
0
0
4
16kg
12kg
该工厂每生产一件产品I可获利2元,每生产一件产品 II可获利3元。问应如何安排计划使该工厂获利最多?
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。
数学建模最优化模型
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
最优化:在一定的条件下,寻求 使得目标最大(最小)的策略
• 约一半以上的问题与最优化问题有关。如: 飞行管理问题(95A) 最优捕鱼策略(96A) 节水洗衣机(96B) 零件的参数设计(97A) 投资收益和风险(98A) 钢管订购和运输(2000B)
2
min
m i 1
yi
a1
1
a3
a2 ln 1 exp
xi
x4 a5
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。
非线性最优化:目标函数和约束条件如果含 有非线性的,则称为非线性最优化。
(二)静态最优化:如果可能的方案与时间无关, 则是静态最优化问题。
或[x,fval,exitflag,output]= fminsearch(...)
例 用fminsearch函数求解 输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2'; [x,fval,exitflag,output]=fminsearch(f,[-1.2 2])
运行结果:
f x* f x 则称 x*是最优化问题的整体最优解。
数学建模之优化模型
从最小规模的子问题开始,逐步求解更大规模的子问 题,最终得到原问题的最优解。
自顶向下求解
从原问题开始,将其分解为子问题,通过迭代求解子 问题,最终得到原问题的最优解。
状态转移方程
通过状态转移方程描述子问题之间的关系,从而求解 子问题和原问题。
动态规划模型的应用实例
最短路径问题
如Floyd-Warshall算法,通过动 态规划求解所有节点对之间的最 短路径。
遗传算法
03
模拟生物进化过程的自然选择和遗传机制,通过种群迭代优化
,找到最优解。
整数规划模型的应用实例
生产计划问题
通过整数规划模型优化生产计划,提高生产效 率、降低成本。
投资组合优化
通过整数规划模型优化投资组合,实现风险和 收益的平衡。
资源分配问题
通过整数规划模型优化资源分配,提高资源利用效率。
THANKS
需要进行调整和改进。
02
CATALOGUE
线性规划模型
线性规划模型的定义与特点
线性规划模型是数学优化模型的 一种,主要用于解决具有线性约 束和线性目标函数的优化问题。
线性规划模型的特点是目标函数 和约束条件都是线性函数,形式
简单且易于处理。
线性规划模型广泛应用于生产计 划、资源分配、投资决策等领域
背包问题
如0-1背包问题、完全背包问题和 多重背包问题等,通过动态规划 求解在给定容量的限制下使得总 价值最大的物品组合。
排班问题
如工作调度问题,通过动态规划 求解满足工作需求和工人技能要 求的最优排班方案。
05
CATALOGUE
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊的线性规划,要求决策变量取整数值。