飞机飞行的原理图解
第三章 飞机飞行的原理
• 为了描述大气状态的变化,引入了气温、 气压、湿度、能见度和风、云等基本气象 要素。
• 1.气温的概念
• 气温是指空气的冷暖程度。空气冷热程度 的实质是空气分子平均动能大小的表现。 当空气获得热量时,它的分子平均动能增 加,气温也就升高;反之则为减小,气温随 之降低。所以,气温的高低,反映了空气 分子平均动能的大小。
绝对湿度:单位体积中所含水汽的质量。 又称水汽密度。
水汽压:潮湿空气中水汽的分压。它是气 压的一部分。在温度一定的情况下,单位 体积空气中能容纳的水汽量有一定的限度 如果水汽含量达到了这个限度,就是饱和 空气。此时的水汽压叫饱和水汽压。
比湿:湿空气中水汽质量和潮湿空气质量之比。 即在1000克湿空气中含有多少克水汽。
系式为:
• 在理论计算中,常使用绝对温度的概念。 当空气分子停止不规则的热运动时,即分 子的运动速度为零时,我们把此时的温度 作为绝对温度的零度。绝对温度用开氏度 (K)表示,绝对温度的行性能,
• 例如当气温升高时,则大气密度必然会减 小,空气的压缩性差,使发动机的推力减 小;当气温降低时,空气密度加大,自然发 动机功率也加大,平飞最大速度也增加。 经过试验,气温由+30℃下降到-30°C,发 动机功率可以相差45 %。
相对温度:为空气中的实际水汽压与同温度的 饱和水汽压的百分比。
露点温度:当空气中水汽含量不变且气压一定 时,气温降低到使空气达到饱和时的温度称为露 点温度,简称露点。
上述数据就是分析天气形势的重要参数,在 这些参数中,核心是水汽。水汽由地球表面蒸发 而来;水汽进人大气后,在一定条件下,会凝结产 生云、雾、雨、雪等天气现象,从而影响着飞机 的飞行。
飞 机 着 陆 遇 侧 风
云是空中水气的凝结物。云的不同形状和变化,既能反映 当时大气运动的状态,又能预示未来的天气变化,有经验的 飞行人员把云称为“空中地形”和“空中的路标”。云对飞 行的影响有以下几点:
图解飞机的飞行原理
图解飞机的飞行原理本文根据互联网资料整理,版权归原作者所有。
本文图片有多张是动图,如果你是从微信或网页打开的,可能是看不到动画效果的,建议你在简书里阅读,将获取最佳阅读体验!没有看到动画的话,此文的效果将大打折扣!大众对飞机是比较好奇的,心中总会有许许多多的问号,飞机是怎么飞起来的?飞机是怎么操纵的?飞机的构成是怎样的?其实,飞机并不神秘,相信看完这些图,你就会秒懂一些飞机相关的知识,保你成为半个飞机设计专家!大多数飞机由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置。
飞机的操纵面可不能说飞机是由钢铁造成的,钢铁只占很少一部分飞机的受力升力的产生--气流流过的压力差产生了升力,飞行的根本流速越快,压力越小机翼受力与迎角大小的关系飞机运动的三轴简化,俯仰、滚转、偏航滚转是副翼控制的俯仰运动靠升降舵控制偏航运动靠方向舵控制实际的飞机舵面是这么动的飞机的操纵驾驶舱操控装置一般为如下形式:控制杆——或者一个控制曲柄,固连在一根圆柱上,通过操纵副翼和升降舵控制飞机的滚转和俯仰。
方向舵踏板——控制飞机的偏航。
操纵飞机的基本方法飞行员操纵驾驶盘(或驾驶杆)、脚蹬板,使升降舵、副翼和方向舵偏转,能使飞机向各个方向转动。
后拉驾驶盘,升降舵上偏,机头上仰;前推驾驶盘,则升降舵下偏,机头下俯。
向左压驾驶盘,左边副翼上偏,右边副翼下偏,飞机向左滚转;反之,向右压驾驶盘右副翼上偏,左副翼下偏,飞机向右滚转。
向前蹬左脚蹬板(即蹬左舵),方向舵左偏,机头向偏转;反之,向前蹬右脚蹬板(即蹬右舵),方向舵右偏,机头向右偏转。
<航空发动机--飞机前进的动力提供涡轮风扇发动机,大型运输机的发动机。
涡扇气路两条,外边这条提供基本70-80%的推力,里边这条仅提供20-30%的推力。
涡轮喷气发动机,喷气就靠喷来推动了。
涡轮螺旋桨发动机活塞发动机直升机力的抵消直升机前进和上升控制起落架收放示意自从世界上出现飞机以来,飞机的结构形式虽然在不断改进,飞机类型不断增多,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由下面五个主要部分组成,即:机翼、机身、尾翼、起落装置和动力装置。
飞机的飞行原理PPT课件
风切变——指某高度和另一高度间风速的变化。飞行员在 降落和爬升阶段要注意是否有风切变现象。 下降时,风速突然减弱,造成飞机失速,未抵达机场跑道就 坠毁;风速突然增强,造成飞机超越跑道降落;爬升时,风 速突然减弱,飞机爬升角度减小,风速突然增强,爬升角度 增大。
第22页/共40页
一、飞机的操纵
飞机的操纵,主要是通过3个操纵面 -------升降舵(有时 是全动平尾),方向舵和副翼来实现的。这些操纵面可分为 主要的,次要的和辅助的三类。
第23页/共40页
一、飞机的操纵
驾驶员操纵舵面改变飞机飞行状态,应该和人体的自然 动作趋势一致。驾驶员的常见操纵动作:
第24页/共40页
飞 机 着 陆 遇 侧 风
第8页/共40页
一、大气的结构和气象要素
云是空中水气的凝结物。云的不同形状和变化,既能反映 当时大气运动的状态,又能预示未来的天气变化,有经验的 飞行人员把云称为“空中地形”和“空中的路标”。云对飞 行的影响有以下几点:(1)低云妨碍飞机的起飞、降落。 (2)云中飞行可能出现颠簇。(3)云中飞行还可能造成飞 机积冰。
第9页/共40页
一、大气的结构和气象要素
降水是云雾中的水滴或冰晶降到地面的现象。降水通常 指雨、雪、冰、雹等。
降水对飞行的影响: 1.降水使能见度减小。 2.过冷雨滴会造成飞机结冰。 3.降水影响了跑道的正常使用。
第10页/共40页
降水改变了滑行阶段的摩擦系数,增长了滑行距离。 跑道可分为干跑道和湿跑道二类,干跑道属于正常起降, 而湿跑道,则要分下面四种情况:
飞行原理--飞机的平衡、稳定性与操纵性 ppt课件
m.a.c
15
●MAC图示
Mean Aerodynamic chord.
16
●重心位置在MAC上的表示 重心的前后位置常用重心在MAC上的投影到该翼弦
前端的距离,占该翼弦的百分数来表示。重心必须在其 前后极限范围内。
CG
Forward limit
Mean Aerodynamic chord. Aft
30
●获得方向平衡的条件:
M y 0
31
4.1.4 飞机的横侧平衡
飞机的横侧平衡是指作用于飞机的各滚转力矩之和 为零,坡度不变。
32
●滚转力矩主要有:
① 两翼升力对重心产生的滚转力矩 ② 螺旋桨反作用力矩对重心产生的滚转力矩
33
●获得横侧平衡的条件:
M x 0
34
4.1.5 影响飞机平衡的主要因素
44
●保持横侧平衡的主要方法
飞行员可利用偏转副翼产生的横侧操纵力矩来平衡 滚转力矩以保持横侧平衡。
纵轴
左滚
45
本章主要内容
4.1 飞机的平衡 4.2 飞机的稳定性 4.3 飞机的操纵性
46
飞行原理/CAFUC
4.2 飞机的稳定性
ppt课件
37
●起落架收放
一方面导致飞机重心移动;另一方面,起落架附加 阻力变化会引起俯仰力矩变化。
38
●重心位置变化
重心移动对机翼的俯仰力矩影响较大。
➢重心前移:
39
●保持俯仰平衡的主要方法
飞行员可利用偏转升降舵产生的俯仰操纵力矩来平 衡俯仰力矩以保持俯仰平衡。
横轴
下俯
40
② 影响方向平衡的主要因素
13
CG
X CG
直升机飞行原理(图解)
飞行原理(图解)直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。
旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。
旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题.直升机主旋翼反扭力的示意图没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法直升机抵消反扭力的方案有很多,最常规的是采用尾桨。
主旋翼顺时针转,对机身就产生逆时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力.抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。
有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。
各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。
尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。
极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆.尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。
为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性.尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制.在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。
飞行器飞行原理ppt课件
2.3 飞机飞行原理
可重复使用的放热材料
用于像航天飞机类似的可重复使用的航天器的防热。 根据航天器表面不同温度的区域,采用相应的可重复使 用的防热材料。
例如:机身头部、机翼前缘温度最高,采用增强碳 碳复合材料,温度可耐受1593度;机身、机翼下表面前 部和垂尾前缘温度高,可采用防热隔热陶瓷材料;机身、 机翼上表面前部和垂尾前缘气动加热不是特别严重处, 可采用防热隔热的陶瓷瓦材料;机身中后部两侧和有效 载荷舱门处,温度相对较低(约350度),可采用柔性的 表面隔热材料;对于温度最高的区域,采用热管冷却和 强制循环冷却和发汗冷却等。
材料来制造飞机的重要受力构件和蒙皮; 2. 用隔热层来保护机内设备和人员; 3. 采用冷却液冷却结构内表面。
美国SR-71的机体结构的93%采用钛合 金越过热障,达到3.3倍音速。
52
2.3 飞机飞行原理
航天器的防热方法:
材料:石墨、陶瓷等。 高温下的热解和相变:固 液,固 气,液 气。 应用:烧蚀法适用于不重复使用的飞船、卫星等。
60
2.3 飞机飞行原理
B. 超声速飞机的机翼平面形状和布局形式
61
2.3 飞机飞行原理
62
2.3 飞机飞行原理
F-14 Tomcat 舰载机
米格-23
B-1 Lancer轰炸机
63
2.3 飞机飞行原理
边条涡
64
2.3 飞机飞行原理
超声速飞机的气动外形
鸭翼产生的脱体漩涡
机翼升力
鸭翼升力 机翼升力
流体黏性和温度有关,气体温度升高,黏性增大。液体相反。
4. 可压缩性
当气体的压强改变时,其密度和体积也改变,为气体可压缩性。 5. 声速
飞机飞行原理ppt
2、飞机的方向安定性:
指飞机受到扰动使方向平衡遭到破坏,扰 动消失后,飞机又趋向于恢复原来的方向 平衡
状态。飞机的方向安定力矩是在侧滑中产 生的。飞机的侧滑是指飞机的运动方向同 收音机的
对称面不平衡,相对气流是侧前方(左、 右侧)流向飞机的飞行状态。飞机主要依 靠垂直尾
翼的作用、产生一个对飞机重心的安定力 矩使机头左、右偏转来消除飞机侧滑的。
第二章、飞机的升力和阻力
第一节、气流特性
气流特性是指空气在流动中各点流速、压 力、密度等参数的变化规律,气流特性是 空气动力学的重要研究课题,对飞机的飞 行原理非常重要。
空气动力:空气流过物体或物体在空 气中运动时,空气对物体的作用力称为空 气动力。如有风的时候,我们站着不动, 会感到有空气的力量作用在身上;没有风 的时候,我们跑步时也感到有空气的力量 作用在身上。这是空气动力的表现形式。 再如:飞机在飞行中受到的升力和阻力也 是空气动力的表现形式。
(三)尾翼
尾翼包括水平尾翼和垂直尾翼。水平尾 翼由固定的水平安定面和可动的升降舵租 成。垂直尾翼则包括固定的垂直安定面和 可动的方向舵。尾翼的主要功用是用来操 纵飞机俯仰和偏转,并保证飞机能平稳地 飞行。
(四)起落装置
起落装置是用来支持飞机并使它能在地 面和水平面起落和停放。
陆上飞机的起落装置,大都又减震支柱 和机轮等租成。它是用于起飞、着陆滑跑, 地面滑行和停放时支撑飞机。
第三节 影响升力和阻力的因素
1.机翼迎角的影响 (1)在一定范围内,机翼迎角增加,升力则增大。因为机翼迎角增加后,
机翼上表面气流的流线更加密集,流速更块,压力更小(吸力更大),压差 更大。 (2)机翼迎角增加,阻力随之增大。因为随着机翼迎角的增加,机翼后部 的涡流区也不断扩大,压力减小;而机翼前部气流压力增大,前后压力差 (阻力)增大。机翼升力增加诱导阻力页随之增加。 2.速度的影响 相对气流的速度越大,升力和阻力就越大。实验证明:升力和阻力与速 度的平方成正比。 (1)根据柏努利定理,机翼上表面的相对气流流速越快,静压越小,上下 压力差则越大,升力就越大。 (2)气流流速越快,机翼前部的气流动压越大,受档后转换成的静压也就 越大,前后压力差也越大。压差阻力越大.另外由于相对速度大摩擦阻力 也随之增大。 。
飞机结构及飞行原理
机身的主要结构
第二节 飞机结构
2.机翼 机翼是飞机的重要部件之一,安装在机
身上,用于产生升力,也起到一定的稳定和 操纵作用。机翼的一些部位(主要是前缘和 后缘)可以活动,飞行员操纵这些部位控制 机翼升力或阻力的分布,以达到增加升力或 改变飞机姿态的目的。
飞机的机体轴
第三节 飞机飞行原理
3.飞机的平衡 飞机处于平衡状态时,飞行
速度和方向都保持不变,也不绕 重心转动。飞机的平衡包括作用 力平衡和力矩平衡两种。
(1)作用力平衡 作用力平衡包括升力和重力 平衡、阻力和推力平衡
40 第 三 章 飞 机 结 构 及 飞 行 原 理
2.机翼 2)副翼。副翼是指安装在机翼后缘外侧的一小块可动的翼面,飞
行员利用左右副翼差动偏转所产生的滚转力矩进行滚转操纵,如飞行员 向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降,右机翼上的 副翼向下偏转,右机翼升力增加,在两个机翼升力差作用下飞机向左滚 转。
17 第 三 章 飞 机 结 构 及 飞 行 原 理
成,它在飞机上主要起方向平衡和方向操纵的作用。
22 第 三 章 飞 机 结 构 及 飞 行 原 理
第二节 飞机结构
4.动力装置 动力装置是指为飞机飞行提供动力的整个系统,是飞机的核心部分,
主要包括发动机、辅助动力装置及其他附件,其中最主要的部件是发动 机。发动机的主要作用是提供推力或拉力。
23 第 三 章 飞 机 结 构 及 飞 行 原 理
7
第三章 飞机结构及飞行原理
第一节 飞机与航空器
2.按发动机类型分类 按照发动机类型不同,飞机可以分为螺旋桨式飞机和喷气式飞机两
类。螺旋桨式飞机利用螺旋桨的转动将空气向后推动,借其反作用力推 动飞机前进。喷气式飞机利用空气与燃料混合燃烧后产生大量气体推动 涡轮运转,然后以高速度将气体排出体外,借其反作用力使飞机前进。 喷气式飞机包括涡轮喷气式飞机、涡轮风扇喷气式飞机和涡轮螺旋桨式 飞机三种。
飞机升力与阻力详解(图文)
飞行基础知识①升力与阻力详解(图文)升力是怎样产生的任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。
前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。
远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。
飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。
哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。
这一基本原理在足球运动中也得到了体现。
大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。
这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
单元五 飞机飞行的原理与飞行过程
民航飞机的运行和性能
飞机的飞行过程:飞机要完成一次飞行任务要经 过滑行、起飞、爬升、巡航、下降、着陆几个阶 段。
整个飞行过程中,操作最复杂的是起飞和降落阶 段,据统计航空事故的68%出现在这两个阶段, 因而在飞机设计上和驾驶员的训练上这两个阶段 都是重点,以确保飞行安全。
飞机起飞视频
图:A380休闲区
大气层的构造
大气层:0~100公里 (航空活动) 近地空间:100—2000~3000公里 电离层和逸散层 (载
人航天器) 大气层的构造:
对流层 平流层
大气层的构造
对流层 也称为变温层,海平面算起平均高度为11公里; 这是航空器活动的主要区域; 有云、雾、风、雪等气候现象;
大气物理参数
航空器活动的环境为大气空间,对飞行影响最大的大 气物理参数是气压、温度、空气密度和音速。
空气密度 概念:空气密度是指单位体源自内的空气质量。 理解:空气的密度如同人口密度一样,人口密度越 大,单位体积内人口的数量就越大,空气密度越大, 单位体积内空气分子的数量就越多,反之,越少。
爬升阶段
爬升阶段 固定的角度持续爬升
优点:节省时间,但发动机所需的功率大,燃 料消耗大。
阶梯式的爬升 优点:由于飞机的升力随速度升高而增加,同 时燃油的消耗使飞机的重量不断减轻,因而这 样的爬升最节约燃料。
巡航阶段 飞机达到预定高度后,保持水平等速飞行状态,
这时如果没有天气变化的影响,驾驶员可以按照 选定的航线以一定速度和姿态稳定飞行,飞机几 乎不需要操纵,驾驶员一般只需进行必要的监控。 这一阶段的飞行事故率最低。
空机重量:或称飞机基本重量,指除商务载重(旅客 及行李、货物邮件)和燃油外飞机作好执行飞机 飞行任务准备的飞机重量。
概论 2章飞机飞行的基本原理1、2、3
3.机翼的迎角
• 迎角:翼弦与相对气流速度之间的夹角。
• 相对气流方向指向机翼下表面,为正迎角; • 相对气流方向指向机翼上表面,为负迎角; • 相对气流方向与翼弦重合,迎角为零。
2.3.3 阻力
2.3.4 影响飞机升力和阻力的因素
该层内空气非常稀薄,质量仅占整个大气质量的 1/3000。
4.电离层
电离层位于中间层以上,上界离地面约800公里,其 特点是,空气密度极小,由于空气直接受到太阳短 波辐射,高度升高,气温迅速上升,并且空气具有 很大的导电性,故称电离层。由于温度较高。又称 暖层。
5.散逸层
散逸层是大气的最外层,它是地球大气的最外层, 在此层内,空气极其稀薄,又远离地面,受地球引 力很小,因而大气分子不断地向星际空间散逸,故 称散逸层。推算,散逸层离地球表面约2000一3000 公里。
迎角改变对机翼阻力的影响
• • • • • • • • • 低速飞行时包括:摩擦阻力、压差阻力和诱导 阻力。 ������ 迎角增大,摩擦阻力变化不大 ������ 迎角增大,压差阻力增大 ������ 迎角增大,诱导阻力增大,超过临界迎角, 迎角增大,升力降低,诱导阻力减小。 总体上,迎角增大,阻力增大;迎角越大,阻 力增加越多;超过临界迎角,阻力急剧增大。 简单说:迎角增大,阻力增大;迎角越大,阻力 增加越多;超过临界迎角,阻力急剧增大。
流管内流体的质量是守恒的。 通常所取的“流管”都是“细流管”。 细流管的截面积 S 0 ,就称为流线 。
2.2.3 连续性定理
描述了定常流动的流体任一流管中流体元在不同截面处的流 速 v 与截面积 S 的关系。 Δt S v
qm VA
飞机的飞行原理ppt课件
P = RρT
公式中: R为气体常数,是一个有量刚的常数,
其含义是指在等压的情况下,温度每升高1ºK时,1千
克的气体膨胀所做的功。在海平面上,空气的气体常
数 R=287.06 (焦尔/千克·ºK)。
精选PPT课件
9
二、空气的物理性质
1、空气的粘性
精选PPT课件
10
空气粘性的物理实质,是空气分子作无规则运 动的结果,当相邻两层空气具有不同流速时,流得 快的那层空气分子的动量大,它作无规则运动而进 入小速度层,通过分子间的掺和碰撞,会增加该层 分子的能量,从而牵动该层空气加速;速度小的那 一层空气分子,会碰入大速度层面,使该层速度减 小。这种相邻两层空气的相互牵扯的特性,就是空 气的粘性。而这种层与层之间的作用力就是空气的 粘性力(也叫空气的内摩擦力),用下列公式表示:
精选PPT课件
2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。
这层空气不利于飞机飞行,只有探空气球飞行。
精选PPT课件
21
4、电离层(暖层、热层)
电离层位于中间层之上,顶界离地面大约 800公里。
电离层的特点:
1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。
F = μ ·Δv/ΔY·S
μ为粘性系数, Δv/ΔY为速度梯度,S为接触面积。
精选PPT课件
11
2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。
影响空气压缩性的主要因素:
1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。
飞机飞行原理(116页PPT课件)
热力学基本单位—温度
(1)摄氏温标(Centigrade) : 也称“百分温标”。 规定:在标准大气条件下, 水的冰点为零度,沸点为 100度,中间分为100等分, 每个等分代表1度。 摄氏温度用℃表示。它是 1742 年 由 瑞 典 人 摄 尔 司 发 明的。
100C °
C0°
热力学基本单位—温度
关于开氏温标的说明:到目前, 要物质的热运动完全停止还是 不可能的。-273.15℃只不过是 人们可以无限接近,但永远也 不可能达到的温度。因此,才 把它叫做绝对零度,意思是说, -273.15℃才是温度的真正零度。
热力学基本单位—温度
100C
°
(3)华氏温标(Fahrenheit) :
212°F
用°R 表R°=示。
R°1=.8×°K
672R 212F
°
°
R
F
492R 32F
°
°
R 0°
-F 460°
13
热力学基本单位—温度
温度刻度相 同
温度刻度相 同
沸点
671.69 212度 100度 373.1K5
°
冰点 491.69
32度 0度
273.1K5
°
绝对 零度
0度 -459.69 -
0度
兰氏温标华氏温标摄27氏3.1温5 标开氏温标
大气压强 P
空气的的压强,是指物体单位面积上 所受空气垂直作用力。从数量说,即 是物体单位面积上所承受的大气柱的 重量。习惯上也称之为大气压力。大 气压力的产生是地球引力作用的结果。
大气密度ρ
大气的密度是指单位体积空气的 质量
状态方程
一般空气可以看作是完全气体,其状态参 数满足方程:
《飞机的飞行原理》课件
翼型和气流
飞机的翼型设计和气流的流动状态相互影响,直接决定了飞机的升力和阻力。
升力和重力的平衡
飞机通过控制升降舵和副翼来调整升力和重力之间的平衡,实现飞行状态的 稳定。
阻力和推力的关系
飞机在飞行中需要克服空气阻力,同时通过发动机产生的推力来推动飞机前 进。
相关的物理律
飞行原理涉及到一系列物理定律,包括伯努利定律、牛顿第三定律等,这些 定律解释了飞机飞行中的各种现象。
《飞机的飞行原理》PPT 课件
飞机的飞行原理是指通过翼型和气流相互作用产生升力和重力平衡,以及阻 力和推力之间的关系。它涉及到一系列相关的物理定律,同时也与飞行器的 稳定性和自动驾驶技术的发展密切相关。
飞行原理的定义
飞行原理是指飞机通过翼型和气流的相互作用,产生升力和重力平衡,实现飞行的基本原理。
飞行器的稳定性
飞行器的稳定性是指飞机在飞行中保持平衡的能力,包括纵向、横向和垂向 的稳定性。
自动驾驶技术的发展
随着科技的进步,自动驾驶技术在飞行器中得到了广泛应用,提高了飞行的 安全性和效率。
飞行原理 第五章 平飞、上升、下降
V1到V2,加油
门,随速度的增加, 顶杆保持高度。 减速:
V2到V1,收油 门,随速度的降低,
油门大
迎角大 速度小
油门小
油门小 迎角大
迎角小 速度小
速度大
油门大 迎角小 速度大
带杆保持高度。
0 V1 V2 VMP
VI
V1 V2
●在第二速度范围内
加速: V1到V2,最初需
第二速 度范围
第一速 度范围
加油门使飞机加速,P
顶杆保持高度,然
后逐步收油门。
油门大
减速: V2到V1,最初需
迎角大 速度小
油门小
油门小 迎角大
迎角小 速度小
收油门使飞机减速, 速度大
带杆保持高度,然
油门大 迎角小 速度大
后逐步加油门。
0 V1 V2 VMP
VI
V1 V2
5.2 巡航性能
巡航性能主要研究 飞机的航程和航时。航 时是指飞机耗尽其可用 燃油在空中所能持续飞 行的时间。航程是指飞 机耗尽其可用燃油沿预 定方向所飞过的水平距 离。
前称有利速度。
120
对应的迎角称最
0°
小阻力迎角,以前 80
8°
2°
4°
称有利迎角。
40
VMD
VI
80 120 160 200 240 260
⑷最小功率速度
平飞所需功率最小的速度,VMP平飞最小 功率速度在平飞所需功率曲线的最低点。以 前称经济速度,对应的迎角称最小功率迎角, 以前称经济迎角。
N
120
VI
180
220
随着平飞 速度的增 大,平飞 所需功率 先减小后 增大。
③平飞拉力曲线和剩余拉力
飞机的飞行原理
飞机的飞行原理升力原理:飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。
而升力的来源是飞行中空气对机翼的作用。
在下面这幅图里,有一个机翼的剖面示意图。
机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快(V1=S1/T >V2=S2/T1)。
根据伯奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。
”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。
F1、F2的合力必然向上,这就产生了升力。
动力原理:;;;从机翼的原理,我们也就可以理解螺旋桨的工作原理。
螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。
旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。
当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。
老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。
飞行需要动力,使飞机前进,更重要的是使飞机获得升力。
早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。
这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。
下图为典型的星型活塞发动机。
现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。
下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。
风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。
而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机飞行的原理图解
飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。
飞机飞行原理:
1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。
2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。
3、当飞机前进的速度越大,这个压强差,即升力也就越大。
所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。
当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。
飞机的组成:
大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。
机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。
在机翼上一般安装有副翼和襟翼。
操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。
另外,机翼上还可安装发动机、起落架和油箱等。
1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。
2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。
水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。
尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。
3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
4.动力装置:主要用来产生拉力和推力,使飞机前进。
其次还可为飞机上的其他用电设备提供电源等。
除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。