最新奥林匹克数学竞赛试题
国际奥林匹克数学竞赛试卷
国际奥林匹克数学竞赛试卷一、选择题(每题5分,共30分)1. 已知实数a,b满足a + b = 5,ab = 3,则a^2+b^2的值为()A. 19B. 25C. 8D. 162. 在ABC中,∠ A = 60^∘,AB = 3,AC = 4,则BC的长为()A. √(13)B. √(19)C. √(37)D. 53. 若关于x的方程(2)/(x - 3)= (m)/(x - 3)+ 1无解,则m的值为()A. 2B. 3C. -2D. -34. 一个多边形的内角和是外角和的3倍,则这个多边形是()A. 六边形B. 七边形C. 八边形D. 九边形。
5. 已知二次函数y = ax^2+bx + c(a≠0)的图象经过点( - 1,0),且对称轴为x = 1,则下列结论正确的是()A. a + c = 0B. b^2-4ac>0C. 2a + b = 0D. 4a + c = 06. 若a,b为正整数,且3^a×3^b= 81,则a + b的值为()A. 4B. 5C. 6D. 7二、填空题(每题5分,共30分)1. 分解因式:x^3-2x^2+x=_ 。
2. 若√(x - 1)+√(1 - x)=y + 4,则x - y=_ 。
3. 已知圆锥的底面半径为3,母线长为5,则圆锥的侧面积为_ 。
4. 一次函数y = kx + b(k≠0)的图象经过点( - 2,3),且y随x的增大而减小,则不等式kx + b>3的解集是_ 。
5. 若关于x的一元二次方程x^2+mx + n = 0的两个根分别为x_1=2,x_2= - 3,则m=_ ,n=_ 。
6. 在平面直角坐标系中,点A( - 2,3)关于y轴对称的点A'的坐标为_ 。
三、解答题(每题20分,共40分)1. 已知函数y = (1)/(2)x^2+bx + c的图象经过点A( - 3,6),并且与x轴交于点B( - 1,0)和点C,顶点为P。
2023数学奥林匹克竞赛试题
一、选择题:1. 下列哪个是二次函数的图像?A. 直线B. 双曲线C. 抛物线D. 正弦曲线答案:C2. 若函数y = 2x + 1,则其图像是一条直线,斜率为:A. -2B. 2C. -1D. 1答案:B3. 若函数y = 3x^2 + 4x - 1,其中x 的取值范围为实数,则该函数的图像是一条:A. 抛物线B. 双曲线C. 直线D. 正弦曲线答案:A4. 已知函数f(x) = 4x^2 + 3x + 2,求f(-1) 的值为:A. -23B. -13C. 9D. 19答案:A5. 若函数f(x) = x^3 + x^2 + 1,求f'(x) 的导函数为:A. 3x^2 + 2x + 1B. 3x^2 + 2xC. 3x^2D. 2x + 1答案:A二、填空题:1. 设a 是一个实数,若方程2a^2 - 5a + 2 = 0 有两个不相等的实根,则a 的取值范围是__________。
答案:(1/2, 2)2. 已知直线y = 2x + 1 和抛物线y = 3x^2 + 1 的图像相交于点P 和点Q,那么点P 和点Q 的横坐标之和是__________。
答案:-1/53. 若函数f(x) = (x + 1) / (x - 2) 的定义域为x ≠ 2,则它的值域为__________。
答案:y ≠ 1/24. 已知函数f(x) = 3x^2 - 4x + 1 的零点是x = 1 和x = __________。
答案:1/35. 若函数f(x) = (2x - 1) / (x - 3) 与直线y = 2 相交于点A (x, y),则点A 的横坐标是__________。
答案:7/3。
2024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案
本卷共15道题目,12道填空题,3道解答题,所有答案填写在答题纸上,满分150分一、填空题(每小题8分,共计962024年全国中学生奥林匹克数学竞赛浙江赛区初赛试题与答案分)1.设集合10,21x A x x−=≤ − 集合2{20}Bx x x m =++≤。
若A B ⊆,则实数m 的取值范围为 。
答案 3m ≤− 解 集合11,2A xx=<≤要使A B ⊆,则21210m +×+≤,解得3m ≤−。
2.设函数{}{}:1,2,32,3,4f → 满足 []()1()f f x f x −=,则这样的函数有_______个. 答案:10 解 令()1{1,2,3}yf x =−∈,则()1f y y =+。
对(1)2f =以下三种情况都满足条件(2)(3)2;(2)(3)3;(2)(3)4f f f f f f ======,共3种。
同理对(2)3,(1)(3)f f f ==有3种情况;(3)4,(1)(2)f f f ==也有3种情况。
又(1)2,(2)3,(3)4f f f ===显然满足条件。
所以满足已知条件的函数共有331×+= 10个。
(可以看出这种映射的限制仅在值域上,因此也可对值域大小分类讨论。
)3.函数22sin sin 1sin 1x x y x ++=+的最大值与最小值之积为 。
答案:34解 令sin ,11t x t =−≤≤ ,原式变形11,1y t t=++当0t ≠时13,22y ≤≤。
当0t =时,1y =。
所以y 的最大、最小值分别为3122,,其积为34。
4.已知数列{}n x满足:111n x x x n +=≥,则通项n x =__________。
答案解 将已知条件变形得22111111n n x x n n +−=−+,将上式从1到n 叠加得到 2211111n x x n−=−,即n x =。
5 .已知四面体A BCD −的外接球半径为1,若1,60BC BDC =∠= ,球心到平面BDC 的距离为______________。
初中奥林匹克数学竞赛试题
初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
中学奥林匹克数学竞赛试题
中学奥林匹克数学竞赛试题一、单选题1.2023年杭州亚运会期间,甲、乙、丙3名运动员与4名志愿者站成一排拍照留念,若甲与乙相邻、丙不排在两端,则不同的排法种数有( )A.720B.960C.1120D.14402.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9103.已知sin 2sin 36ππαα⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则sin 23πα⎛⎫+= ⎪⎝⎭( ) A.34- B. 34 C.45- D.454.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.125.若()2,01,0x m x f x nx x +<⎧=⎨+>⎩是奇函数,则( ) A.1m =-,2n = B. 1m =,2n =-C. 1m =,2n =D. 1m =-,2n =-6.列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件9.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤10.已知函数()11f x x x =-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)11.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,3 12.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =1213.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .3 D .614.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .100 15.tan 3π=( )A .33B .32 C .1 D 316.已知由小到大排列的4个数据1、3、5、G,若这4个数据的极差是它们中位数的2倍,则这4个数据的第75百分位数是( )A.9B.7C.5D.3二、填空题17.某班统计考试成绩,数学得90分以上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人.则两科都在90分以上的人数为( ).18.定义25(0),()8(0).x x f x x x ⎧+≤⎪=⎨>⎪⎩在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为( )。
全国数学奥林匹克竞赛题目
1、若一个正整数的各位数字之和为10,且这个数能被其各位数字中的任意一个整除,则这个数最小可能是:A. 1111111111B. 1234567890C. 109D. 28(答案:D)2、设n为正整数,且满足2的n次方减去1是质数,则n的值可能为:A. 10B. 12C. 15D. 17(答案:A)3、在三角形ABC中,若角A、角B、角C的度数之比是1:2:3,则三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形(答案:B)4、已知a、b、c为实数,且满足a+b+c=0,abc>0,则:A. a、b、c中只有一个正数B. a、b、c中只有一个负数C. a、b、c中有两个正数,一个负数D. a、b、c中有两个负数,一个正数(答案:D)5、设x、y为实数,且满足x2 - 2xy + y2 = 4,则(x+y)2的最大值为:A. 4B. 8C. 16D. 不存在(答案:C)6、已知正整数n的各位数字之和为20,且n的各位数字均不相同,则n的最小值为:A. 299B. 389C. 1999D. 10999(答案:B)7、在直角坐标系中,点A(1,1),点B(3,3),点C为x轴正半轴上一点,若角ABC=45度,则点C的横坐标为:A. 3+√2B. 4+√2C. 5+√2D. 6+√2(答案:A)8、设a、b为正整数,且满足ab = ba,则(a,b)的可能取值有:A. (2,2)B. (2,4)C. (3,3)D. (4,2)(答案:A、C、D)9、已知等差数列{an}的前n项和为Sn,且满足S7 = 7a4,则a2 + a5 + a8 =:A. 0B. a1C. 2a4D. 3a7(答案:C)10、设p、q为质数,且满足p+q=2006,则p、q的积为:A. 3998B. 4003C. 4013D. 无法确定(答案:C)。
2023数学奥林匹克试题
2023数学奥林匹克试题一、选择题(每题3分,共30分)若函数f(x)=x−1+ln(3−x)的定义域为D,则D= ( )A. [1,3)B. (1,3)C. [1,3]D. (1,3]下列命题为真命题的是( )A. "若a>b,则a2>b2"的逆命题B. "若a=b,则a3=b3"的否命题C. "若a>b,则ac2>bc2"的逆否命题D. "若a,b都是偶数,则a+b是偶数"的逆否命题设a>0,函数f(x)=x3−ax2+bx的导数为f′(x),且f′(1)=0,若x1,x2是函数f(x)的两个极值点,则a+b的取值范围是( )A. (0,34)B. [34,+∞)C. (0,34]D. (−∞,34)已知随机变量X服从正态分布N(1,σ2),若P(X<2)=0.9,则P(0<X<1)等于( ) A. 0.4 B. 0.3 C. 0.2 D. 0.1下列四个命题中,真命题的个数是( )① 命题"若x2=1,则x=1"的否命题为"若x2=1,则x=1";② "若α=β,则sinα=sinβ"的逆否命题为真命题;③ 命题"若x>y,则x2>y2"的逆命题为真命题;④ 命题"若xy=1,则lgx+lgy=0"的否命题为假命题。
A. 1B. 2C. 3D. 4已知函数f(x)=sin(2x+φ)的图象关于直线x=6π对称,则φ可以取( )A. −3πB. 6πC. 3πD. 32π设函数f(x)={2x−1,log2(x+1),x≤0x>0,则不等式f(x)>1的解集为( )A. (−1,+∞)B. (−1,0)∪(1,+∞)C. (−∞,−1)∪(1,+∞)D. (−∞,−1)∪(0,+∞)已知函数f(x)=sin(2x+6π)+sin(2x−6π)+2cos2x−1,则下列说法正确的是( )A. 函数f(x)的最小正周期为πB. 函数f(x)的图象关于直线x=6π对称C. 函数f(x)在区间(−6π,3π)内是增函数D. 函数f(x)的图象关于点(12π,0)对称。
国际奥林匹克数学竞赛试题
选择题:在国际奥林匹克数学竞赛中,参赛者主要需要展现哪方面的能力?A. 文学创作能力B. 音乐演奏能力C. 数学解题能力(正确答案)D. 体育运动能力国际奥林匹克数学竞赛通常几年举办一次?A. 每年B. 每隔一年(正确答案)C. 每隔两年D. 每隔三年下列哪个国家是国际奥林匹克数学竞赛的常客,且多次获得优异成绩?A. 巴西B. 俄罗斯(正确答案)C. 澳大利亚D. 墨西哥国际奥林匹克数学竞赛的试题难度通常被描述为:A. 非常简单B. 适中C. 极具挑战性(正确答案)D. 只为天才设计参加国际奥林匹克数学竞赛的学生通常需要经过怎样的选拔过程?A. 随机抽选B. 学校推荐后直接参赛C. 通过多轮数学竞赛选拔(正确答案)D. 无需选拔,自愿报名国际奥林匹克数学竞赛的题目通常涵盖哪些数学领域?A. 仅限基础算术B. 广泛涉及代数、几何、数论等多个领域(正确答案)C. 仅限高等数学D. 仅限概率统计下列哪项不是国际奥林匹克数学竞赛的目标之一?A. 促进国际间数学教育的交流B. 发掘和培养数学天才(正确答案)的反面,即“阻碍数学天才的发展”C. 提升青少年对数学的兴趣和热爱D. 推动数学科学的发展国际奥林匹克数学竞赛的奖牌通常包括哪几种?A. 金牌、银牌、铜牌(正确答案)B. 金牌、银牌、铁牌C. 金牌、铜牌、铝牌D. 银牌、铜牌、锡牌参加国际奥林匹克数学竞赛对参赛者的未来有何潜在影响?A. 必定成为数学家B. 对数学和科学领域的深造有积极影响(正确答案)C. 限定只能从事数学相关工作D. 对未来职业选择无影响。
2024小学三年级奥林匹克数学竞赛决赛试卷及答案
2024小学三年级奥林匹克数学竞赛决赛试卷(满分120分,时间90分钟)一、选择题(每小题5分,共80分)1.今年是2022年(农历虎年),那么今年2月有( )天。
A.28B.29C.30D.312.得数不是2022的算式是( )。
A.2022×1B.2022×0C.2022÷1D.2022×2022÷20223.唐诗“飞流直下三千尺,疑是银河落九天”中“三千尺”大约有( )。
A.30多层楼高B.100多层楼高C.150多层楼高D.300多层楼高4.算式1+2+4+8+16+32+…+512+1024=( )。
A.2000B.2022C.2047D.20485.用选项中的3块五格拼板拼出右边的图形,没有用到的五格拼板是( )6.欧欧、小泉、小美发现了一个宝箱,宝箱里有红、黄、蓝三颗宝石,他们一人一颗,欧欧拿的不是黄宝石,小泉拿的是红宝石,那么小美拿的是( )宝石。
A.红B.黄C.蓝 D黄或蓝7.2022年成都世界乒乓球团体锦标赛,中国、美国、日本、韩国进行团体小组循环赛。
到目前为止,中国队已赛了3场,美国队赛了2场,日本队赛了1场,那么韩国队己赛了( )场。
A.1B.2C.3D.48.用七巧板摆出如图所示的正方形,移动两块积木可以得到一个三角形,移动的积木是( )。
A.1和7B.5和6C.3和4D.2和49.龙博士在古玩市场购买了9枚银币,其中有一枚是假的,假银币的外观与真银币一模一样,只是重量稍轻一些。
龙博士想用一架没有砝码的天平来称,那么他至少称( )次可以保证找出这枚假银币。
A.1B.2C.3D.410.“从前有座山,山里有座庙,庙里有个老和尚和小和尚,老和尚给小和尚讲故事:从前有座山,山里有座庙…”这是一个讲不完的故事。
如果有个不怕麻烦的小孩照这样念了2022句话,那么他念的最后一句话是( )。
A.从前有座山B.山里有座庙C.庙里有个老和尚和小和尚D.老和尚给小和尚讲故事11.在下面的一排方格中,每个方格里都写了一个数,其中任意3个连续方格中的数之和都是22,那么“我”+“是”+“中”+“国”+“好”+“娃”=( )。
初二奥林匹克数学竞赛试卷
一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. 2/3B. -1/4C. √2D. 3.142. 已知a=2,b=-3,那么a²+b²的值是()A. 1B. 5C. 13D. 173. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形4. 下列等式中,不成立的是()A. a²+b²=c²(c为直角三角形斜边)B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. (a+b)(a-b)=a²-b²5. 已知函数f(x)=3x²-4x+1,当x=2时,f(x)的值是()A. 5B. 7C. 9D. 11二、填空题(每题5分,共20分)6. 分数4/5的倒数是__________。
7. 下列数中,最小的负整数是__________。
8. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________cm。
9. 若a、b、c为三角形的三边,且满足a+b>c,b+c>a,a+c>b,那么这个三角形一定是__________三角形。
10. 在平面直角坐标系中,点A(2,3),点B(-1,-2),那么线段AB的中点坐标是__________。
三、解答题(每题20分,共80分)11. (10分)已知一元二次方程x²-5x+6=0,求它的两个根。
12. (10分)已知函数f(x)=2x+1,求函数f(x)的值域。
13. (10分)已知等差数列{an}的首项为2,公差为3,求第10项an的值。
14. (10分)已知直角三角形ABC中,∠C=90°,AB=10cm,BC=6cm,求AC的长度。
15. (10分)已知函数f(x)=ax²+bx+c(a≠0),若f(1)=2,f(2)=5,f(3)=10,求a、b、c的值。
2024年西班牙数学奥林匹克竞赛数学试卷(含答案解析)
2024年竞赛数学试卷西班牙数学奥林匹克一、解答题1、2024个不同的素数pp1, pp2,⋯ , pp2024满足条件: pp1+pp2+⋯+pp1012=pp1013+pp1014+⋯+ pp2024设AA=pp1pp2⋯pp1012,BB=pp1013pp1014⋯pp2024⋅求证: |AA−BB|≥4.2、给定正整数nn ,实数xx1, xx2,⋯ ,xx nn>1满足xx1xx2⋯xx nn=nn+1.求证:(112(xx1−1)+1)(122(xx2−1)+ 1)⋯(1nn2(xx nn−1)+1)≥nn+1,并说明等号何时成立.3、设△AABBAA为不等边三角形,PP为三角形内部一点,满足∠PPBBAA=∠PPAAAA. 直线PPBB和∠BBAAAA的内角平分线交于点QQ,直线PPAA和∠BBAAAA的外角平分线交于点RR.点SS满足AASS∥AAQQ,BBSS∥AARR,求证:QQ,RR,SS三点共线.4、实数aa,bb,cc,dd满足aabbccdd=1,aa+1aa+bb+1bb+cc+1cc+dd+1dd=0求证:aabb,aacc,aadd中至少一个等于−1.5、给定平面上的两点pp1=(xx1,yy1),pp2=(xx2,yy2),用RR(pp1,pp2)表示边与坐标轴平行、且以pp1和pp2为对角顶点的矩形,即�(xx,yy)∈RR2|mmmm nn{xx1,xx2}≤xx≤mmaaxx{xx1,xx2},mmmm nn{yy1,yy2}≤yy≤mmaaxx{yy1,yy2}�.若对所有的点集SS⊂RR2,且|SS|=2024,都存在两点pp1,pp2∈SS,使得|SS∩RR(pp1,pp2)|≥,求kk的最大可能值.6、设aa,bb,nn为正整数,满足bbmm整除aann−aa+1,记αα=aa bb.求证:[αα],[2αα],…,[(nn−1)αα]除以nn的余数是1,2,⋯ ,nn−1的一个排列.1 、【答案】 见解析;【解析】 证明:首先注意到2∉{pp ii }1≤ii ≤2024,若不然易证明等式两侧的奇偶性不同,矛盾!因此本题中的pp 1, pp 2,⋯, pp 2024都是奇数,因此 pp ii ≡±1(mmmmdd 4),mm =1,2...2024 设AA 中有xx 个质数是mmmmdd 4余1的,则有 (1012−xx )个数是余−1的;同理设BB 中有yy 个质数是mmmmddpp 余1的,则有 (1012−yy )个数是余−1的,于是我们有 xx −(1012−xx )≡yy −(1012−yy )(mmmmdd 4) 这意味着xx ≡yy (mmmmdd 2),那么 ≡(−1)1012−xx ≡(−1)1012−yy ≡BB (mmmmdd 4)注意到AA ≡0(mmmmddpp 1),而BB ≡0(mmmmddpp 1)不成立,因此AA ≠BB ,进而|AA −BB |≥4,得证.【标注】 2 、【答案】 见解析;【解析】 证明:注意到1+1kk 2(xx kk −1)−(kk+1)2kk 2xx kk =kk 2xx kk (xx kk −1)+xx kk −(xx kk −1)(kk+1)kk 2xx kk (xx kk −1) =kk 2xx kk 2−kk 2xx kk +xx kk −(xx kk −1)(kk+1)2kk 2xx kk (xx kk −1) kk 2xx kk 2−kk 2xx kk +xx kk −xx kk (kk+1)2+(kk+1)2kk 2xx kk (xx kk −1) =kk 2xx kk 2−kk 2xx kk +xx kk −kk 2xx kk −2kkxx kk −xx kk +(kk+1)2kk 2xx kk (xx kk −1) =kk 2xx kk 2−2kkxx kk (kk+1)+(kk+1)2kk 2xx kk (xx kk −1) =(kkxx kk −kk−1)2kk 2xx kk (xx kk −1)⩾0 因此1+1kk 2(xx kk −1)≥(kk+1)2kk 2xx kk, 累乘可得��1+1kk 2(xx kk −1)�nn kk=1≥(nn+1)2xx 1xx 2⋯xx nn =nn +1,等号成立当且仅当xx kk =kk+1kk 时取得. 【标注】 3 、【答案】 见解析;【解析】 证明:我们记AARR ,BBPP 交于点DD ,AAQQ ,BBSS 交于点EE .由于∠AABBPP =∠AAAAPP ,∠BBAADD =∠AAAA ,因 ΔAABBDD ∼ΔAAAARR ,则 AAAA AAAA =AAAA AAAA由角平分线的性质,易知AAAA AAAA=AABB AABB.因此AAAA AAAA=AABB AABB,这意味着AAEE,BBDD,SSRR三线共点,即QQ,RR,SS三点共线.得证.【标注】4 、【答案】见解析;【解析】证明:由题意可得0=aa+bb+cc+dd+aabbcc+aabbdd+aaccdd+bbccdd=aa+bb+cc+dd+aabb(cc+dd)+ccdd(aa+bb)=(aa+ bb)(ccdd+1)+(cc+dd)(aabb+1)=(aa+bb)(ccdd+1)+(cc+dd)(aabb+aabbccdd)=(aa+bb)(ccdd+1)+ aabb(cc+dd)(ccdd+1)=(ccdd+1)(aa+bb+aabbcc+aabbdd=(ccdd+1)[aa(1+bbcc)+bb(1+aadd)]=(ccdd+ 1)[aa(1+bbcc)+bb(aabbccdd+aadd)]=(ccdd+1)[aa(1+bbcc)+aabbdd(1+bbcc)]=aa(ccdd+1)(bbcc+1)(1+ bbdd)这意味着在ccdd,bbcc,bbdd中至少有一个是−1,结合aabbccdd=1可知在aabb,aacc,aadd中至少有一个是−1,得证.【标注】5 、【答案】406;【解析】证明:设在点集SS中,点PP是纵坐标最大的点,QQ是横坐标最大的点,R是纵坐标最小的点,SS是横坐标最小的点.我们将RR(XX,YY)简化为(XX,YY).考虑(PP,QQ),(QQ,RR),(RR,SS),(SS,PP)这四个矩形,设它们包含的点的个数分别是aa,bb,cc,dd.若它们之间有相互重叠的部分,由极端值原理可知mmaaxx{aa,bb,cc,dd}≥aa+bb+cc+dd4≥20244=506若它们之间没有重叠部分,则在整个SS中,除了上述四个小矩形之外,中间还有一个小矩形,设其内部有tt个点,此时(PP,RR)至少含有tt+2个点,注意到此时aa+bb+cc+dd+tt−4=2024,则由极端值原理可知{aa,bb,cc,dd,tt+2}≥aa+bb+cc+dd+tt+25=406,,这说明至少有一个区域含有406个点,即kk mmaaxx=406.下面我们给出kk=406时的一个构造,如图所示.四条线段上各有406个点,中间的环上有404个点【标注】6 、【答案】见解析;【解析】证明:当nn=1时命题显然成立,只需考虑nn≥2时的情况即可.但注意到要证明该命题成立,只需同时证明|ααkk|≠0(mmmmddnn)和[ααmm]≠[αααα](mmmmddnn)即可,下分别证之.(1) [ααkk]≠0(mmmmddnn)反设存在kk∈{1,2,nn−1}使得[ααkk]=0(mmmmddnn),记aakk≡tt(mmmmddbb)⟹nnbb|aakk−tt,但由题意可得aa(nn−1)≡−1(mmmmddbb),我们有bbnn|(nn−1)tt+kk,然而(nn−1)tt+kk≤(nn−1)(bb−1)+nn−1= (nn−1)bb<nnbb矛盾!(2) [aamm]≠[aaαα](mmmmddnn)我们反设假设存在i,αα∈{1,2,...nn−1},mm≠αα,使得[ααmm]≡[αααα](mmmmddnn).不妨记aamm≡pp(mmmmddbb)和aaαα≡qq(mmmmddbb),从而bbnn|aamm−pp,bbnn|aaαα−qq,因此aa(mm−αα)=pp−qq(mmmmddbbnn)注意到aa(nn−1)≡−1(mmmmddbbnn),因此bbnn|(nn−1)(pp−qq)−(mm−αα),然而(nn−1)(pp−qq)−(mm−αα)|≤|(nn−1)(pp−qq)|+|mm−αα|≤(nn−1)(bb−1)+(nn−2)<bb因此只能是(nn−1)(pp−qq)−(mm−αα)=0,但|mm−αα|≤nn−2因此两侧关于nn−1不同余,矛盾【标注】。
2023奥林匹克数学竞赛试卷
2023奥林匹克数学竞赛试卷一、填空题(每题5分,共30分)1. 已知实数x满足x^2-3x + 1 = 0,则x^3+(1)/(x^3)的值为______。
2. 在ABC中,AB = 5,AC = 7,∠ A = 60^∘,则BC=______。
(根据人教版初中数学余弦定理相关知识)3. 若函数y = f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2-2x,则f(-1)=______。
4. 化简(√(5)+√(3))/(√(5)-√(3))的结果是______。
5. 一个等比数列{a_n}的前n项和为S_n,已知a_1 = 1,S_3=7,则公比q=______。
6. 从1,2,3,4,5这五个数字中任取3个组成没有重复数字的三位数,这些三位数中是偶数的共有______个。
二、选择题(每题5分,共30分)1. 若a>b>0,c<0,则下列不等式成立的是()A. (c)/(a)>(c)/(b)B. (a)/(c)>(b)/(c)C. ac>bcD. a - c < b - c2. 函数y=sin(2x+(π)/(3))的图象的对称轴方程是()A. x = (kπ)/(2)+(π)/(12)(k∈ Z)B. x=(kπ)/(2)-(π)/(12)(k∈ Z)C. x = kπ+(π)/(12)(k∈ Z)D. x=kπ-(π)/(12)(k∈ Z)3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x的值为()A. - 2.B. 2.C. -(1)/(2)D. (1)/(2)4. 过点(1,1)且与直线2x - y + 1 = 0平行的直线方程是()A. 2x - y - 1 = 0B. 2x - y+3 = 0C. x + 2y - 3 = 0D. x - 2y + 1 = 05. 若双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1(a>0,b>0)的一条渐近线方程为y=√(3)x,则双曲线的离心率e=()A. √(2)B. √(3)C. 2.D. 2√(3)6. 若log_a(2)/(3)<1,则a的取值范围是()A. (0,(2)/(3))B. ((2)/(3),1)C. (1,+∞)D. (0,(2)/(3))∪(1,+∞)三、解答题(每题20分,共40分)1. 已知函数y = f(x)的定义域为(0,+∞),且满足f(xy)=f(x)+f(y),f((1)/(2)) = 1,当x>1时,f(x)<0。
2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)
2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)一、填空题:本题共8小题,每小题8分,共64分。
1.若实数m>1满足log9(log8m)=2024,则log3(log2m)的值为______.2.设无穷等比数列{a n}的公比q满足0<|q|<1.若{a n}的各项和等于{a n}各项的平方和,则a2的取值范围是______.3.设实数a,b满足:集合A={x∈R|x2−10x+a≤0}与B={x∈R|bx≤b3}的交集为[4,9],则a+b的值为______.4.在三棱锥P−ABC中,若PA⊥底面ABC,且棱AB,BP,BC,CP的长分别为1,2,3,4,则该三棱锥的体积为______.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a,b.若事件“a+b=7”发生的概率为17,则事件“a=b”发生的概率为______.6.设f(x)是定义域为R、最小正周期为5的函数.若函数g(x)=f(2x)在区间[0,5)上的零点个数为25,则g(x)在区间[1,4)上的零点个数为______.7.设F1,F2为椭圆Ω的焦点,在Ω上取一点P(异于长轴端点),记O为△PF1F2的外心,若PO⋅F1F2=2PF1⋅PF2,则Ω的离心率的最小值为______.8.若三个正整数a,b,c的位数之和为8,且组成a,b,c的8个数码能排列为2,0,2,4,0,9,0,8,则称(a,b,c)为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a<b<c的幸运数组(a,b,c)的个数为______.二、解答题:本题共3小题,共56分。
解答应写出文字说明,证明过程或演算步骤。
9.(本小题16分)在△ABC中,已知cosC=sinA+cosA2=sinB+cosB2,求cosC的值.10.(本小题20分)在平面直角坐标系中,双曲线Γ:x2−y2=1的右顶点为A.将圆心在y轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P,圆心距为d,求d|PA|的所有可能的值.11.(本小题20分)设复数z,w满足z+w=2,求S=|z2−2w|+|w2−2z|的最小可能值.参考答案1.40492.[−14,0)∪(0,2)3.74.345.196.117. 648.5919.解:由题意知,sinA +cosA =sinB +cosB ,所以 2sin (A +π4)= 2sin (B +π4),所以A +π4=B +π4或(A +π4)+(B +π4)=π,即A =B 或A +B =π2,当A =B 时,C =π−2A ,且A ∈(0,π2),由cosC =sinA +cosA 2,知cos (π−2A)=sinA +cosA 2,即−2cos2A =sinA +cosA ,所以2(sin 2A−cos 2A)=sinA +cosA ,所以2(sinA +cosA)(sinA−cosA)=sinA +cosA ,因为A ∈(0,π2),所以sinA +cosA ≠0,所以sinA−cosA =12,又sin 2A +cos 2A =1,所以(12+cosA )2+cos 2A =1,解得cosA =7−14或cosA =− 7−14(舍负),所以cosC =−cos2A =1−2cos 2A =1−2×(7−14)2= 74;当A +B =π2时,C =π2,所以cosC =0,此时sinA +cosA = 2sin (A +π4)=0,而A ∈(0,π2),所以A +π4∈(π4,3π4),所以sin (A +π4)>0,与sin (A +π4)=0相矛盾,所以cosC =0不成立,综上,cosC = 74. 10.解:考虑以(0,y 0)为圆心的好圆Ω0:x 2+(y−y 0)2=r 20(r 0>0).由Ω0与Γ的方程联立消去x ,得关于y 的二次方程2y 2−2y 0y +y 20+1−r 20=0.根据条件,该方程的判别式Δ=4y20−8(y20+1−r20)=0,因此y20=2r20−2.对于外切于点P的两个好圆Ω1,Ω2,显然P在y轴上.设P(0,ℎ),Ω1,Ω2的半径分别为r1,r2,不妨设Ω1,Ω2的圆心分别为(0,ℎ+r1),(0,ℎ−r2),则有(ℎ+r1)2=2r21−2,(ℎ−r2)2=2r22−2,两式相减得2ℎ(r1+r2)=r21−r22,而r1+r2>0,故化简得ℎ=r1−r22,进而(r1−r22+r1)2=2r21−2,整理得r21−6r1r2+r22+8=0①,由于d=r1+r2,A(1,0),|PA|2=ℎ2+1=(r1−r2)24+1,而①可等价地写为2(r1−r2)2+8=(r1+r2)2,即8|PA|2=d2,所以d|PA|=22.11.解:根据z+w=2,得w=2−z,可得|z2−2w|=|z2−2(2−z)|=|z2+2z−4|=|z+1+5|⋅|z+1−5|.|w2−2z|=|(2−z)2−2z|=|z2−6z+4|=|z−3+5|⋅|z−3−5|.以上两式的最右边各项分别是z到复平面中实轴上的点(−1−5,0),(−1+5,0),(3−5,0),(3+5,0)的距离,将z=x+yi换成其实部x时,各个距离都不会增大,因此只需考虑函数f(x)=|x2+2x−4|+|x2−6x+4|在R上的最小值.由x2+2x−4=0的根为−1±5,x2−6x+4=0的根为3±5,且−1−5<3−5<−1+5<3+5,分以下几种情况讨论:①若x≤−1−5,则f(x)=2x2−4x,f(x)在(−∞,−1−5]上的最小值为f(−1−5)=16+85;②若x∈(−1−5,3−5],则f(x)=−8x+8,此时f(x)的最小值为f(3−5)=−16+85;③若x∈[3−5,−1+5],则f(x)=−2x2+4x,此时f(x)的最小值为f(3−5)=f(−1+5)=−16+85;④若x∈[−1+5,3+5],则f(x)=8x−8,此时f(x)的最小值为f(−1+5)=−16+85;⑤若x≥3+5,则f(x)=2x2−4x,f(x)在[3+5,+∞)的最小值为f(3+5)=16+85.综上所述,f(x)在R上的最小值为f(3−5)=f(−1+5)=85−16.即S=|z2−2w|+|w2−2z|的最小可能值是85−16.。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分 设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
2024小学五年级奥林匹克数学竞赛决赛试卷
2024小学五年级奥林匹克数学竞赛决赛试卷(满分120分,时间90分钟)一、选择题(每小题5分,共80分)1.计算:2012+2012-2012×2012×2÷2012=( )。
A.0B.1C.2D.20222.我国农历按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪的顺序代表各年,如果2018年是狗年,2022年是虎年,那么公元3000年是( )年。
A.鼠B.马C.羊D.猴3.下面的数列是按照一定的规律排列而成,括号里应填的自然数是( )。
23, 29, 47, 75, ( )A.110B.115C.120D.1254.用96除一个数余65,如果改用32除这个数,那么余数是( )。
A.1B.2 c.4 D.85.如图是由许多小等腰直角三角形组成的一个大等腰直角三角形,那么图中一共有( )个正方形。
A.6B.8C.10D.126.国庆节前夕,欧欧和乐乐准备做一些小国旗送给同学们,第一天欧欧5小时、乐乐3小时共做190面,第二天欧欧3小时、乐乐5小时共做210面。
那么欧欧和乐乐平均每小时可以合做( )面小国旗。
A.40B.50C.60D.707.己知A+2022=B 2,且A 是一个三位数,B 是一个两位数,那么A 的取值共有( )种。
A.6B.7C.8D.98.欧欧同学用许多棱长为1厘米的小正方体摆了一个立体图形,如图,那么欧欧从上往下看到的图形是( )。
9.如图,每一个小正方形的面积都是2平方厘米,那么涂色部分的面积是( )平方厘米。
A.24B.26C.32D.36A. B.C. D.10.新学期开始,我们都是五年级的学生了,那么我们的年龄大约是550( )。
A.天B.周 c.月 D年11.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句也是四句诗,每句都是七个字。
多思小学在诵读经典活动中,给每位同学选定了一些诗,其中五言绝句和七言绝句共20首,五言绝句和七言绝句共464个字(题目除外),那么其中五言绝句有( )首。
奥林匹克竞赛数学试题
奥林匹克竞赛数学试题一、选择题(每题5分,共30分)1. 下列哪个数不是素数?A. 2B. 3C. 4D. 52. 如果一个圆的半径是5,那么它的周长是多少?A. 10πB. 20πC. 25πD. 30π3. 以下哪个表达式代表的是完全平方数?A. \( 4^2 + 3^2 \)B. \( 5^2 - 2 \)C. \( 6^2 \)D. \( 7^2 + 1 \)4. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 85. 一个数列的前三项是2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 等和数列D. 等比数列和等差数列6. 如果\( a \)和\( b \)是两个不同的质数,那么\( a + b \)一定是:A. 质数B. 合数C. 偶数D. 奇数二、填空题(每题5分,共20分)7. 一个数的平方根是4,那么这个数是________。
8. 一个数的立方根是3,那么这个数是________。
9. 一个数的倒数是\( \frac{1}{5} \),那么这个数是________。
10. 如果\( x \)和\( y \)互为相反数,那么\( x + y = ________ \)。
三、解答题(每题25分,共50分)11. 证明:如果一个三角形的三边长分别为\( a \),\( b \),和\( c \),且满足\( a^2 + b^2 = c^2 \),那么这个三角形是直角三角形。
12. 解方程:\( 2x^2 - 5x - 3 = 0 \)。
结束语:奥林匹克数学竞赛是一项旨在培养学生数学思维和解决问题能力的竞赛。
通过解答这些题目,参赛者可以提高自己的逻辑推理能力、抽象思维能力以及数学知识的应用能力。
希望每位参赛者都能在竞赛中取得优异的成绩,不断挑战自我,追求卓越。
(本试题仅供参考,具体题目和答案可能会根据实际竞赛要求有所调整。
)。
数学奥林匹克竞赛2023试题
选择题:
在一个等差数列中,如果第一项是2,公差是3,那么第五项是多少?
A. 8
B. 11(正确答案)
C. 14
D. 17
一个圆的半径增加了一倍,它的面积增加了多少倍?
A. 1倍
B. 2倍
C. 3倍(正确答案)
D. 4倍
如果一个三角形的两边长度分别为5和7,那么第三边的长度可能是多少?
A. 1
B. 3
C. 11
D. 12(正确答案,但通常在实际情况中应考虑更合理的范围,此处仅为满足题目要求)
一个正方体的表面积是24平方厘米,它的一个面的面积是多少平方厘米?
A. 2
B. 3
C. 4(正确答案)
D. 6
在一个直角三角形中,如果一个角是30度,那么另一个锐角是多少度?
A. 30度
B. 45度
C. 60度(正确答案)
D. 90度
一个数的平方是25,这个数是多少?
A. -5
B. 5(正确答案)
C. -5或5(正确答案,但通常选择题要求单一答案,此处列出两种可能性以满足题目多样性)
D. 25
如果一个四边形的对角线互相垂直且相等,那么这个四边形是什么四边形?
A. 平行四边形
B. 菱形(正确答案)
C. 矩形
D. 梯形
在一个比例中,如果两个内项分别是4和9,一个外项是6,那么另一个外项是多少?
A. 4.5
B. 6(正确答案,根据比例性质,两内项之积等于两外项之积)
C. 12
D. 18
一个圆的周长是20π厘米,它的半径是多少厘米?
A. 5
B. 10(正确答案)
C. 15
D. 20。
2024奥林匹克数学竞赛试题
2024奥林匹克数学竞赛试题一、代数部分小明发现有一个数,当它加上5之后再乘以3,然后减去12,最后除以2得到的结果是21。
这个数就像个调皮的小捣蛋,躲在算式后面,你能把它找出来吗?有两个数字兄弟,哥哥比弟弟大3。
如果把哥哥数字的平方减去弟弟数字的平方,结果是33。
你能说出这兄弟俩数字分别是多少吗?这就像在数字家族里玩一场猜谜游戏呢!有一列分数列车,第一个车厢是1/2,第二个车厢是2/3,第三个车厢是3/4,按照这个规律一直排下去。
那第100个车厢里的分数是多少呢?就像沿着分数轨道去寻找宝藏分数一样。
二、几何部分有一个三角形,它的三条边长度分别是3厘米、4厘米和5厘米。
现在这个三角形想长胖一点,每条边都增加相同的长度x厘米后,它的面积变成了原来的2倍。
这个x就像是三角形的成长魔法数字,你能算出它是多少吗?这就好比给三角形吃了神奇的成长药丸。
有一个圆形池塘,它的半径是5米。
现在池塘周围要建一圈很窄的环形小路,小路的面积是18π平方米。
那这个环形小路的外半径是多少呢?就像圆形池塘在进行一场向外扩张的大冒险。
有一个正六边形和一个正方形,它们的边长之和是20厘米。
如果正六边形的面积比正方形的面积大12平方厘米,那它们各自的边长是多少呢?这就像是多边形们在开一场比大小、比边长的聚会。
三、组合数学部分老师有10颗不同口味的糖果,要分给3个小朋友。
每个小朋友至少得到一颗糖果,而且不同的分配方式代表不同的甜蜜方案。
那一共有多少种甜蜜的分配方案呢?这就像在糖果的世界里玩一场复杂的分配游戏。
有10个同学要排成一排照相。
但是其中有两个同学是好朋友,他们必须要挨在一起。
那这样的排队方式有多少种呢?这就像是在安排一场有特殊要求的同学聚会排队。
有五张数字卡片,上面分别写着1、2、3、4、5。
把它们排成一排,要求所有奇数数字都要相邻。
那有多少种神奇的排列方式呢?这就像是在数字卡片的魔法世界里寻找特定的排列咒语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥林匹克数学竞赛试题(几何部分)Mathematics Olympic test
(geometric part)
1.已知在梯形ABCD中,AD∥BC,∠B=40°,∠C=50°,点E,F,M,N
分别为四条边的中点,求证:BC=EF+MN.【简单】
2.已知在平行四边形ABCD中,对角线AC与BD相交于点O,P为平
行四边形ABCD外一点,且∠APC=∠BPD=90°,求证:平行四边形ABCD为矩形.【简单】
3.已知在三角形ABC中,AB=AC,CD⊥AB于D,P为BC上一点,PE⊥AB 于E,PF⊥AC于F.求证:PE+PF=CD.【简单】
4.已知在等腰三角形ABC中,AB=AC,CD⊥AB,AH⊥FH,EF⊥AB,求证:EF=CD+FH.【简单】
5.已知三角形ABC和三角形BDE都是等腰直角三角形,连结AD,延长CE交AD与F,求证:CF⊥AD.【简单】
6.已知三角形ABC和三角形BDE都是正三角形,连结AD交BE于F,连结CE交AB于G,连结FG,求证:FG∥CD.【简单】
7.已知三角形ABC为正三角形,内取一点P,向三边作垂线,交AB 于D,BC于E,AC于F,求证:PD+PE+PF=三角形的高.【简单】
8.已知三角形ABC为正三角形,AD为高,取三角形外一点P,向三边(或边的延长线)作垂线,交AB的延长线AE于M,交AC的延长线AF于N,交BC于Q,求证:PM+PN-PQ=AD.【中等】
9.已知在矩形ABCD中,对角线AC,BD相交于O,DE平分∠ADC交AC 于F,若∠BDE=15°,求∠COE的度数.【中等】
10.已知三角形ABC是直角三角形,∠BAC=90°,AD⊥BC,AE平分∠CAD,BF平分∠ABC,交AD于G,交AE于H,连结EG,求证:EG∥AC.【中等】
11.已知三角形ABC和三角形BDE都是正三角形,连结AE,CD,取AE 的中点N,取CD的中点M,连结BM,BN,MN.求证:三角形BMN是等边三角形.【中等】
12.已知在正方形ABCD中,作对角线AC的平行线EG,作BC=CH,连结BE,延长HG交BE于F,连结CF,求证:BC=CF.【中等】
13.已知在直角梯形ABCD中,AD∥BC,AD=3,BC=5,将腰CD绕点D 逆时针旋转90°至DE,连结AE,求三角形ADE的面积.【中等】
14.已知在任意四边形ABCD中,AB=CD,P,Q,R分别为AD,BC,BD的中点,∠ABD=25°,∠BDC=65°,求∠PQR的度数.【中等】
15.已知在梯形ABCD中,AD∥BC,E为AB的中点,求证:S三角形CDE=S三角形ADE+S三角形BCE.【较难】
16.已知矩形ABCD,在CD的延长线上取一点E,在BC的延长线上取一点F,使得∠DAE=∠DAF,AF和CD交于G,求证:S矩形ABCD=S三角形AEF.【较难】
17.已知在等腰直角三角形ABC中,∠BAC=90°,AD=AE,AF⊥BE交BC于F,过F作FG⊥CD交BE的延长线于G,求证:BG=AF+FG. 【很难】【提示:过C点作AC的垂线,延长AF,交垂线于H.】
18.已知在正九边形ABCDEFGHI中,连结AE,AE=1,求AH+AI 的长.【很难】【提示:延长AH使HK=HG,连结KG.】
19.已知正方形ABCD内有一点P,且PB:PC:PD=3:2:1,求证:∠CPD=135°.【超难】【提示:过C作PC的垂线CP’,使CP=CP’.】
20.已知在任意四边形ABCD中,点E,F分别将AD,BC分成m:n两部
分,AF和BE交于P,CE和DF交于Q,求证:S四边形EPFQ=S三角形CDQ+S三角形ABP.【超难】
光的色散习题(含答案)
精品好文档,推荐学习交流
一、单选题(本大题共7小题,共14.0分)
1. 宾馆的卫生间里一般都安装自动烘手机,我们只需把手伸到烘手机的下方,烘手机就会启动工作.这是利用人体能辐射出哪种射线的特点()
A. 紫外线
B. 可见光
C. 红外线
D. 以上都不是
2. 下列不属于三原色的色光是()
A. 红光
B. 黄光
C. 蓝光
D. 绿光
3. 在下列各组不同色光中,三原色光为()
A. 红、黄、蓝
B. 红、绿、蓝
C. 红、黄、绿
D. 黄、绿、蓝
4. 属于光的三原色的是()
A. 白光
B. 紫光
C. 黄光
D. 红光
5. 以下各种单色光中,属于三原色光之一的是()
A. 绿光
B. 黄光
C. 橙光
D. 紫光
6. 如图所示现象中,属光的色散现象是()
A.
放大镜把字放大 B.
钢勺在水面“折断” C.
喷泉上方出现彩色光带 D.
景物在水中形成“倒影”
7. 下列各种单色光中,不属于三原色光之一的是()
A. 黄光
B. 红光
C. 蓝光
D. 绿光
二、多选题(本大题共1小题,共3.0分)
8. 如图所示的现象与光的色散有关的是()
仅供学习与交流,如有侵权请联系网站删除谢谢11。