材料断口分析(第2-4章)

合集下载

金属材料断口机理及分析

金属材料断口机理及分析

精心整理名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。

蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。

准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。

解理断裂:在正应力作用下沿解理面发生的穿晶脆断。

应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹纹。

正断韧性: 河流花样 氢脆:卵形韧窝等轴韧窝1.2.34裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似) :断裂应力(剩余强度)a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。

断口的试样制备:截取,清洗,保存。

断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。

第三章延性断裂:12.3.1(1约成45(2(321.2.(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。

注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。

影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。

材料失效分析(第二至四章解理断裂和沿晶断裂)

材料失效分析(第二至四章解理断裂和沿晶断裂)

青鱼骨花样、瓦纳线
§3、影响解理断裂的因素
1、晶体结构 bcc、hcp—易发生解理断裂 fcc——不易发生解理断裂
2、显微组织 F—断口较光滑,微观呈河流条纹或舌状花样 P—断口呈不连续片层状 M—断口呈锯齿状,出现小刻面
3、温度 T↓,易导致解理断裂
T<Tc,晶体在塑性变形前产生解理裂纹,断口呈现脆性 T>Tc,晶体先发生塑变,后产生解理,即断裂时伴随一定的塑性变形
存在确定的位向关系
准解理裂纹形成机理示意图
准解理断口形貌
准解理断口形貌
第四章 沿晶断裂
1、定义:材料沿晶界(原奥氏体晶界、相界、焊合界面) 发生的断裂。
2、类型:韧性沿晶断裂(沿晶韧断) 脆性沿晶断裂(沿晶脆断)
3、产生原因
※脆性沉淀相沿晶界析出:钢中的碳化物
Al-Li合金中的δ(AlLi)相
扭转晶界——在亚晶界出产生新的裂纹,河流激增
大角度晶界:河流不能通过,在晶界出产生新的裂纹,向外扩展 ,
形成扇形花样
大角度晶界,扇形花样
3、舌状花样
特点:形状象“舌头”,一般在钢铁材料中成组出 现。
形成机理:
解理裂纹沿着孪晶面{112}产生二次解理及局部塑性变 形撕裂的结果。在低温、高速变形时容易发生孪生变形, 也就容易出现舌状花样。
例2 晶粒过分粗大—细化晶粒处理 晶界弱化——净化晶界 环境介质——改善工作环境 热应力——退火消除
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
瓦纳线
(二)形成机理(模型)
1、解理台阶 解理裂纹与螺位错交截形成台阶
台阶形成过程的简化图
通过二次解理或撕裂相互连接形成台阶(撕裂棱)
台阶的性质
台阶在扩展过程中会发生合并或消失(台阶高度减小) 相同方向的台阶合并后高度增加 相反方向的台阶合并后高度减小或消失 台阶高度与柏氏矢量大小、位错密度之间存在一定关系

金属材料断口分析-精彩部分

金属材料断口分析-精彩部分
断口特征
有关断口分析的基本概念介绍---10;
冲击断口的宏观形貌及示意图
V缺口试样断口
示意图
有关断口分析的基本概念介绍---11;
带有中央切口板试样的反复交变拉伸的疲劳断口
有关断口分析的基本概念介绍---12;
弯曲与旋转弯曲疲劳断口
断口分析总结
断口微观分析系统介绍:
1,解理与准解理; 2,剪切断裂; 3,疲劳断裂; 4,晶间断裂等
各种材料的解理面和滑移面
有关断口分析的基本概念介绍---4;
a,平面应 变时的 断口,正 断型;
b,平面应 力时的 断口,切 断型;
屈服区大小沿板厚方向改变的情况(穿透裂纹“哑 铃状”)
有关断口分析的基本概念介绍---4;
有关断口分析的基本概念介绍---5;
静载荷下光滑圆试样的拉伸断口宏观形貌示意图
有关断口分析的基本概念介绍---6;
断口的一般特征
解理与准解理断裂的断口具有以下之一的重要特征---解理部分:
解理与准解理断裂的断口具有以下之一的重要特征---准解理部分:
剪切断裂断口的一般特征
下面介绍:
1,疲劳断裂断口的一般时征:
1-1断口宏观上分成三个区;
1-2裂纹扩展又分两个阶段;
2疲劳纹形成机制试探讨
1-1断口宏观上分成三个区; 疲劳核心区; 疲劳裂纹扩展区; 瞬时破断区。
疲劳裂纹形成
1-2裂纹扩展又分两个阶段,---第一阶段疲劳裂纹形核;
1-2裂纹扩展又分两个阶段,---第二阶段疲劳裂纹扩展
2 疲劳纹形成机制试探讨
4,晶间断裂的断口特征
实际工程的断口是混合型断口
混合型断口判断经验之:1 ,2
混合型断口判断经验之:3,4,

断口学课件

断口学课件
钟群鹏 失效分析预测预防专家, 教育家,中国失效分析学科的
断口学 开拓者之一,中国工程院院士。
现任北京航空航天大学教授, 校学术委员会主任。
1
目录
第一章:绪论
第二章:断裂力学基础
第三章:断裂物理基础
第四章:断口分析技术
第五章:断裂失效分析的思路
第六章:韧性断裂的断口及其分析
第七章:脆性断裂的断口及其分析
14
15
16
17
第六章:韧性断裂的断口 及其分析
6.1 韧性断裂的机理及其影响因素 6.1.1 单晶的韧性断裂现象 6.1.2 多晶的断裂现象
18
19
20
21
6.1 韧性断裂的机理及其影响因素
第六章:韧性断裂的断口 6.1.4 韧性断裂的影响因素
结构特征:fcc bcc hcp
及其分析 晶粒大小:晶粒细化,韧脆转移温度降低,韧性提高 杂质、第二相 应力状态及应变速率:拉应力、压应力 形变温度及环境
22
6.2 韧性断口的特征和诊断
第六章:韧性断裂的断口 6.2.1 韧性断口的宏观特征 及其分析
23
第六章:韧性断裂的断口 及其分析
24
6.2 韧性断口的特征和诊断
第六章:韧性断裂的断口 6.2.2 韧性断口的微观特征 滑移分离 及其分析
25
6.2 韧性断口的特征和诊断
第六章:韧性断裂的断口 6.2.2 韧性断口的微观特征 韧窝 及其分析
11
5.1 断裂失效分析思路的思想方法
第五章:断裂失效分析的 5.1.2 五个具体方法 系统方法 思路 抓主要矛盾法 比较方法 历史方法 逻辑方法
12
5.2 断裂失效分析思路
第五章5.2.1 相:关性断思路裂失效分析的 思路

金属断口机理及其分析

金属断口机理及其分析

⾦属断⼝机理及其分析名词解释延性断裂:⾦属材料在过载负荷的作⽤下,局部发⽣明显的宏观塑性变形后断裂。

蠕变:⾦属长时间在恒应⼒,恒温作⽤下,慢慢产⽣塑性变形的现象。

准解理断裂:断⼝形态与解理断⼝相似,但具有较⼤塑性变形(变形量⼤于解理断裂、⼩于延性断裂)是⼀种脆性穿晶断⼝沿晶断裂:裂纹沿着晶界扩展的⽅式发⽣的断裂。

解理断裂:在正应⼒作⽤下沿解理⾯发⽣的穿晶脆断。

应⼒腐蚀断裂:拉应⼒和腐蚀介质联合作⽤的低应⼒脆断疲劳辉纹:显微观察疲劳断⼝时,断⼝上细⼩的,相互平⾏的具有规则间距的,与裂纹扩展⽅向垂直的显微条纹。

正断:断⾯取向与最⼤正应⼒相垂直(解理断裂、平⾯应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的⼤⼩,是材料强度和塑性的综合反映。

冲击韧性:冲击过程中材料吸收的功除以断的⾯积。

位向腐蚀坑技术:利⽤材料腐蚀后的⼏何形状与晶⾯指数之间的关系研究晶体取向,分析断裂机理或断裂过程。

河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。

其形状类似地图上的河流。

断⼝萃取复型:利⽤AC 纸将断⼝上夹杂物或第⼆相质点萃取下来做电⼦衍射分析确定这些质点的晶体结构。

氢脆:⾦属材料由于受到含氢⽓氛的作⽤⽽引起的低应⼒脆断。

卵形韧窝:⼤韧窝在长⼤过程中与⼩韧窝交截产⽣的。

等轴韧窝:拉伸正应⼒作⽤下形成的圆形微坑。

均匀分布于断⼝表⾯,显微洞孔沿空间三维⽅向均匀长⼤。

第⼀章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。

脆性断裂裂纹源:材料表⾯、内部的缺陷、微裂纹;断⼝:平齐、与正应⼒相垂直,⼈字纹或放射花纹。

延性断裂裂纹源:孔⽳的形成和合并;断⼝:三区,⽆光泽的纤维状,剪切⾯断裂、与拉伸轴线成45o .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。

穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。

应⼒腐蚀断⼝,氢脆断⼝。

3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断⾯的宏观取向与最⼤正应⼒的交⾓分:正断、切断正断:断⾯取向与最⼤正应⼒相垂直(解理断裂、平⾯应变条件下的断裂)切断:断⾯取向与最⼤切应⼒相⼀致,与最⼤应⼒成45o交⾓(平⾯应⼒条件下的撕裂)根据裂纹尖端应⼒分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺⼨与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应⼒强度因⼦,与K 准则相似)a Y K c c πσ?=1:断裂应⼒(剩余强度) a :裂纹深度(长度) Y :形状系数(与试样⼏何形状、载荷条件、裂纹位置有关)脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺⼨决定的量,是表征裂纹尖端应⼒场强度的计算量; KIC 是材料固有的机械性能参量,是表⽰材料抵抗脆断能⼒的试验量第⼆章裂纹源位置的判别⽅法: T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适⽤于疲劳断裂判别主裂纹)。

断口学(第一章第二章)

断口学(第一章第二章)
断口学研究的手段和方法 断口学的发展趋势:断口的准确诊断,机理研究及微观模 型的建立和应用、断口定量和反推。
1.3 断口的分类
1.3.1 宏观分类
按断口表明宏观变形分类 脆性断口、韧性断口、混合断口 按断口宏观取向分类 正断断口、切断断口、混合断口
1.3.2 微观分类
按断裂路径分类 沿晶断口、穿晶断口 按微观形貌分类 解理断口、准解理断口、韧窝断口、疲劳断口、沿晶断 口等
第二章:断裂力学基础
பைடு நூலகம் 第二章:断裂力学基础
第二章:断裂力学基础
第二章:断裂力学基础
第二章:断裂力学基础
2.1 断裂力学的起源和发展
2.1.2 线弹性断裂力学 应力强度因子理论 (4)裂纹尖端塑性区
(b)裂尖前缘塑性变形特征
第二章:断裂力学基础
第二章:断裂力学基础
第二章:断裂力学基础
第二章:断裂力学基础
2.1 断裂力学的起源和发展
2.1.1 断裂力学的起源 传统强度设计的缺陷
第二章:断裂力学基础
2.1 断裂力学的起源和发展
2.1.1 断裂力学的起源 Griffith理论
A.A. Griffith
1920年,格氏发表了他那篇著名的论文:The phenomenon of rupture and flow in solids。 该文次年刊登在皇家学会的Philosophical Transactions杂志上。他认为,材料内部有很多显微 裂纹,并从能量平衡出发得出了裂纹扩展的判据,一举 奠定了断裂力学的基石。 格氏1893年出生于伦敦,1911年毕业于曼岛的一所 中学,获得奖学金进入利物浦大学读机械工程,1914 年以一等成绩获得学士学位,并获得最高奖章。1915 年,格氏到皇家航空研究中心工作,并与G.I. Taylor 一起发表了用肥皂膜研究应力分布的开创性论文,该文 获得机械工程协会的金奖。同年,格氏获得利物浦大学 工程硕士学位。1921年,格氏以他的断裂力学成名作 获得利物浦大学工程博士学位。其后,格氏历任空军实 验室首席科学家,航空研究中心工程部主管等职,在航 空发动机设计方面做出了同样卓越的贡献,与他在断裂 方面的名望相比,这些成就就少为人知了,感兴趣的朋 友可以到网上查查。格氏于1939年加盟劳斯莱思公司, 1941年当选皇家学会院士,1960年退休,1963年 辞世,享年70岁。

材料力学性能第四章 断裂与断口分析

材料力学性能第四章 断裂与断口分析

材料的力学性能-断裂与断口分析材料的断裂断裂是工程材料的主要失效形式之一。

工程结构或机件的断裂会造成重大的经济损失,甚至人员伤亡。

如何提高材料的断裂抗力,防止断裂事故发生,一直是人们普遍关注的课题。

任何断裂过程都是由裂纹形成和扩展两个过程组成的,而裂纹形成则是塑性变形的结果。

对断裂的研究,主要关注的是断裂过程的机理及其影响因素,其目的在于根据对断裂过程的认识制定合理的措施,实现有效的断裂控制。

✓材料在塑性变形过程中,会产生微孔损伤。

✓产生的微孔会发展,即损伤形成累积,导致材料中微裂纹的形成与加大,即连续性的不断丧失。

✓损伤达到临界状态时,裂纹失稳扩展,实现最终的断裂。

按断裂前有无宏观塑性变形,工程上将断裂分为韧性断裂和脆性断裂两大类。

断裂前表现有宏观塑性变形者称为韧性断裂。

断裂前发生的宏观塑性变形,必然导致结构或零件的形状、尺寸及相对位置改变,工作出现异常,即表现有断裂的预兆,可能被及时发现,一般不会造成严重的后果。

脆性断裂断裂前,没有宏观塑性变形的断裂方式。

脆性断裂特别受到人们关注的原因:脆性断裂往往是突然的,因此很容易造成严重后果。

脆性断裂断裂前不发生宏观塑性变形的脆性断裂,意味着断裂应力低于材料屈服强度。

对脆性断裂的广义理解,包括低应力脆断、环境脆断和疲劳断裂等。

脆性断裂一般所谓脆性断裂仅指低应力脆断,即在弹性应力范围内一次加载引起的脆断。

主要包括:与材料冶金质量有关的低温脆性、回火脆性和蓝脆等;与结构特点有关的如缺口敏感性;与加载速率有关的动载脆性等。

材料的断裂比较合理的分类方法是按照断裂机理对断裂进行分类。

微孔聚集型断裂、解理断裂、准解理断裂和沿晶断裂。

有助于→揭示断裂过程的本质→理解断裂过程的影响因素→寻找提高断裂抗力的方法。

材料的断裂将环境介质作用下的断裂和循环载荷作用下的疲劳断裂按其断裂过程特点单独讨论。

金属材料的断裂-静拉伸断口材料在静拉伸时的断口可呈现3种情况:(a)(b):平断口;(c)(d):杯锥状断口;(e)尖刃断口平断口:材料塑性很低、或者只有少量的均匀变形,断口齐平,垂直于最大拉应力方向。

断口分析-文档资料

断口分析-文档资料

22Cr双相不锈钢板材的冲击断口
45钢断口形貌
从以上的分析可知:剪切韧窝与撕裂韧 窝形状没有什么区别,只从照片上很难区分, 必须对断口两侧作对应研究,看凸向是否相 同才能确定。
§3.2 韧窝的尺寸
§3.2.1 韧窝的尺寸
韧窝的尺寸包括它的平均直径和深度。影响韧窝尺寸 的主要因素为第二相质点的尺寸、形状、分布,材料本 身的相对塑性、变形硬化指数,外加应力、温度等。
12Cr1MoV980℃正火+720 ℃回火
GH4037钢的不同受力状态下的宏观断口
断口比较平坦,呈颗 粒状。断口主要为放 射区,有粗糙的放射 棱,为典型脆性断口。
断面平坦,断口呈颗 粒状,也是典型的脆 性断口。
“放射状”或“人字形”花样:解理断口另一宏观特 征是具有放射状条纹或人字条纹。放射条纹的收敛处和 人字纹的尖端为裂纹源。“人字纹”形态反映材料性质 与加载速度。材料机械性能相同时加载速度越大“人字 纹”愈明显。加载速度相同时,材料脆性越大“人字纹” 愈明显。
舌状花样
3.扇形花样 当解理裂纹起源于晶界附近的晶内时,河流花样
以扇形的方式向外扩展。根据扇形花样可以判断裂 纹源及裂纹局部扩展方向。
A3钢的扇形河流花样
4.鱼骨状花样
在体心立方金属材料中例如碳钢、不锈钢有时看到形状类 似鱼脊骨的花样。中间脊线是{100}[100]解理造成的,两侧 是{100}[100]和{112}[110]解理所引起的花样。
载荷作用等外部因素;焊接裂纹、焊缝夹杂、气孔严 重及焊后热处理条件不当;压力容器在低温或与有害 介质接触,环境介质与拉伸应力共同作用而产生的应 力腐蚀断口;上述零件的断裂经常呈解理断口,氢脆 断口有时也可见到解理断裂。
解理断裂通常是在没有觉察到的塑性变形的情况下 发生的脆性断裂。体心立方晶系一般沿{100}面解理, 也可以沿{110}、 {112}、 {111}等晶面解理。密排 六方晶体常常沿{0001}发生解理。面心立方金属由于 有大量滑移系统一般情况不发生解理断裂,但是在特 殊情况,例如冬季低温、腐蚀环境或材质较差条

断口分析报告

断口分析报告

断口分析报告1. 背景断口分析是一种通过观察和研究材料的断口特征,以了解材料断裂的原因和性质的方法。

断口分析在材料科学、工程和事故调查等领域都有广泛的应用。

本报告旨在对某一断口进行分析,以确定断裂原因并提供相关建议。

2. 断口特征通过对断口的观察,我们可以得出以下一些断口特征:2.1 断裂模式根据断裂的形态和特征,我们可以将断裂模式分为以下几种类型:•韧性断裂:断口较为平整,可见一些拉伸痕迹。

•脆性断裂:断口光滑,没有明显的变形或拉伸痕迹。

•疲劳断裂:断裂面呈现出扇形状的纹理,通常伴随着细小的裂纹。

2.2 断口形貌根据断口的形貌,我们可以得到以下一些关键信息:•断口表面的平整程度,可以判断材料的韧性。

•断口表面的颜色和气泡,可以了解材料的杂质含量和成分。

•断口表面的纹理和条纹,可以用于判断断裂过程中的应力分布和应力集中。

2.3 断口特征的意义通过对断口特征的分析,我们可以初步判断断裂原因、材料的性能和失效机制。

断口特征的意义如下:•韧性断口表明材料具有较好的韧性和延展性。

•脆性断口表明材料可能存在缺陷或材料本身较脆性。

•疲劳断裂表明材料长期受到了交变载荷的影响,可能需要进行疲劳寿命的评估。

3. 断裂原因分析基于对断口特征的观察和分析,我们进行进一步的断裂原因分析。

断裂原因分为以下几个方面:3.1 材料缺陷材料缺陷是引起断裂的常见原因之一。

缺陷可以存在于材料的制备、成型和使用过程中。

常见的材料缺陷包括:气孔、夹杂物、夹层等。

通过观察断口特征,我们可以判断是否存在明显的材料缺陷。

3.2 施加载荷材料在受到外部力的作用下可能会发生断裂。

施加在材料上的载荷可能包括拉力、压力、剪切力等。

通过观察断口形貌和纹理,我们可以初步判断受力方向和载荷大小。

3.3 环境因素环境因素也可能对材料的断裂起到一定的影响。

例如,高温、湿度、腐蚀等环境条件可能导致材料的性能变化和失效。

通过分析断口的颜色、气泡等特征,我们可以初步判断是否存在环境因素导致的断裂。

材料断口分析

材料断口分析

材料断口分析材料断口分析是一种重要的金相分析方法,通过观察金属材料在受力作用下的断口形貌,可以了解材料的性能和断裂特点。

在工程实践中,材料断口分析可以帮助工程师和科研人员更好地理解材料的性能,为材料的选用、加工和改进提供重要依据。

首先,材料断口分析需要对断口形貌进行详细的观察和描述。

通常情况下,金属材料的断口形貌可以分为韧性断口、脆性断口和疲劳断口三种类型。

韧性断口表现为比较光滑的断口,通常发生在具有良好塑性的金属材料上,表明材料具有较好的韧性和延展性。

脆性断口则表现为比较粗糙的断口,常见于强度较高但塑性较差的金属材料上,表明材料的抗拉强度较高但延展性较差。

疲劳断口则表现为呈现出一定的条纹状和海浪状的形貌,通常发生在金属材料长期受到交变载荷作用下,表明材料具有较好的耐疲劳性能。

其次,材料断口分析需要结合金相显微镜等仪器进行金相组织的观察和分析。

金相组织的观察可以帮助我们更加深入地了解材料的内部结构和性能。

通过金相显微镜观察,我们可以清晰地看到金属材料的晶粒结构、夹杂物分布和相变组织等信息,这些信息对于分析材料的性能和断裂特点具有重要意义。

最后,材料断口分析还需要进行断口形貌和金相组织的综合分析。

通过综合分析,我们可以更加全面地了解材料的性能和断裂特点,为材料的选用、加工和改进提供科学依据。

在实际工程中,材料断口分析可以帮助我们及时发现材料存在的问题,并采取相应的措施进行改进,保证工程的安全可靠性。

综上所述,材料断口分析是一种重要的金相分析方法,通过观察金属材料在受力作用下的断口形貌和金相组织,可以全面地了解材料的性能和断裂特点。

在工程实践中,材料断口分析具有重要的应用价值,可以为工程设计和科研实验提供重要依据,推动材料科学的发展和进步。

断口学ppt课件

断口学ppt课件
9
3.1 断裂宏观理论 3.2 断裂微观理论
10
4.1 断口的制备保存技术
4.1.1 主断口的确定
T型法、分叉法、变形法、氧化颜色法、疲劳扩展区长度法
11
5.1 断裂失效分析思路的思想方法
5.1.1 五个基本原则 整体观念原则—综合所有因素 从现象到本质的原则—寻找断裂原因 动态原则—相对运动状态 纵横交汇原则—不同条件不同表现 全面客观原则
(1)对材料塑性的诊断 可以根据断口上纤维区、放射区、剪切唇区等三个区域
的相对大小、纤维区纤维的长短、颈缩的大小和韧窝的尺寸。 (2)对载荷类型的判断 静拉伸应力—杯锥状或45°切断断口 静压缩应力—45°切断断口 静扭转应力—与扭转成90°断口
42
43
44
6.2 韧性断口的特征和诊断
6.2.3 韧性断口的诊断 韧性断口形成原因的诊断
23
6.2 韧性断口的特征和诊断
6.2.1 韧性断口的宏观特征
24
25
6.2 韧性断口的特征和诊断
6.2.2 韧性断口的微观特征 滑移分离
26
6.2 韧性断口的特征和诊断
6.2.2 韧性断口的微观特征 韧窝
27
6.2 韧性断口的特征和诊断
6.2.2 韧性断口的微观特征 韧窝形成机理
6.4.1 韧脆转移现象
51
连续性 长度
数量
与轧件表面角度
脱碳情况
单条、一组平行
折叠缺陷、 折叠缺陷与轧件表
轧制折 叠
连续
相对较 长
180°对称出现 面呈现一定角度, 两组平行折叠缺 越是靠近前面机架 陷、互成120° 产生的缺陷,其角

断口分析

断口分析

故障件的断口分析在形形色色的故障分析过程中,人们常会看到一些损坏零件的断口,但是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。

这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助!对于汽车常用碳素钢和合金钢而言,其常见断口有:1. 韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。

断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽看不到颗粒状形貌,断口上有相当大的延伸边缘。

2. 疲劳弯曲断口:2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区和瞬时断裂区特征(下面将详述)。

2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。

其断口特征:沿弯曲方向上下呈灰褐色无金属光泽的断层; 而内层呈银灰色白亮条状新断口(见图1)图13. 典型的金属疲劳断口典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区和瞬时断裂区三个特征。

断口具有典型的“贝壳状”或称“海滩状”。

疲劳断口示意图疲丐源疲劳区(贝纹区)3-1 疲劳裂纹源区:是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆 形,这是因为疲劳裂纹的扩展过程速度缓慢,裂纹 经反复挤压摩擦而形成的。

它所占有的面积较其他 两个区要小很多。

疲劳裂纹大多是因受交变载荷的 机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点 等缺陷形成应力集中而引起的。

疲劳裂纹点在同一 个机件上可能有多处,换句话说可能有多处疲劳裂 纹源区,这需要我们去仔细解读疲劳断口。

3-2 疲劳裂纹扩展区:是形成疲劳裂纹后慢速扩展的区域。

它是判断疲劳断裂的最重要的特征区。

它以疲 劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇 形的弧线,也称疲劳弧线呈“贝纹状”。

疲劳弧 线是因机器运转时的负载变化、反复启动和停止而 留下的塑性变形痕迹线。

金属材料的塑性好、工作 温度高及有腐蚀介质切和aj JJDOO-DB 口-D e sciljKD 450DGQ 0D 45QCJI ?^*■?住沓40"-&|>住©*4& QGIO4OO&Q o a&IJ 00'g "6 令 0 b K 0吕占0 0菖®1&QQ0『00flD劈曰-D0B *■?* I'.n-IQIDlwJldjg^Jooo&pcaDaOQd *Lg 日da00!口巳u M £ -I &D H &&&口負 L-CO O QO 口 QID C^--dcoo存在时则弧线清晰。

第四章-材料的断裂

第四章-材料的断裂
❖ 解理断口的微观形貌特征
对于理想单晶体而言,解理断裂可以是完全沿单一 结晶面的分离,其解理断口是一毫无特征的理想平面。 但在实际晶体中,由于缺陷的存在,断裂并不是沿单一 的晶面解理,而是沿一组平行的晶面解理,从而在不同 高度上平行的解理面之间形成解理台阶。从垂直断面上 看,台阶汇合形成一种所谓的河流花样,这是解理断裂 最主要的微观特征。
断裂面与正应力垂直,断口平
❖板状矩形截面拉伸试样:
齐、光亮。断面上的放射状条 “人”字纹花样的放射方向与裂纹扩展
纹汇聚于一个中心,此中心区 方向平行,但其尖顶指向裂纹源。
域就是裂纹源。
裂纹源 脆性断裂断口的放射状花样
脆性断裂断口的人字纹花样
宏观断裂类型及特征总结
❖ 宏观断裂的分类 按断裂前的塑性变形程度或按断裂过程中所
如图,当正应力垂直于微孔的平面,使微孔在此平面上各方向长大 倾向相同时,则形成等轴韧窝(图
❖ 钢的实际断裂强度比理论断裂强度小一个数 量级以上。
❖ 对一般的工程材料,实际断裂强度也只有理 论断裂强度的1/100~1/1000。只有很细、几 乎不存在缺陷的金属晶须和碳纤维的实际断 裂强度才能接近于其理论断裂强度。
❖ 对实际材料而言,必有晶体缺陷存在,其断 裂问题从本质上讲应该是含有缺陷的物体的 断裂问题,可认为是裂纹体的断裂问题。
微孔聚合断裂(韧窝形成)过程
多数情况下在钢中都能看到有非金属夹杂物等异相的存在。 因此,韧窝的形成与异相粒子有关。在外力作用下产生塑性变形 时,异相阻碍基体滑移,便在异相与基体滑移面交界处造成应力 集中,当应力集中达到异相与基体界面结合强度或异相本身强度 时,会使二者界面脱离或异相自身断裂,从而形成裂纹(微孔) ,并不断扩大,最后使夹杂物之间基体金属产生“内颈缩”,当 颈缩达到一定程度后基体金属被撕裂或剪切断裂,使空洞连接, 从而形成韧窝断口形貌。

断口分析

断口分析

拉伸断裂在断口上形成等轴状的韧窝
等轴韧窝是在拉伸正应力的作用下形成。应力 在整个断口表面上是均匀的,显微空洞沿空间三个 方向均匀长大,形成等轴韧窝。
拉伸形成的等轴韧窝
剪切断裂
剪切韧窝呈抛物线形。在剪切应力作用下显微空洞沿剪 切方向上被拉长。剪切韧窝在两个相匹配的断面上方向相 反。
卵形韧窝是由较大夹杂物或第二相粒子 先形成韧窝核,大人在长大过程中其自 由表面与一个小韧窝连通,这时小韧窝
河流花样起源于孪晶界
河流花样起源于夹杂
河流花样起源于析出相
河流花样起源于晶粒内部
河流花样在扩展过程中遇到倾斜晶界、扭转晶界和普通大角 度晶界时河流形态发生改变。
裂纹与小角度倾斜晶界相交时,河流连学地穿过晶界。小角 度倾斜晶界是由刃型位错组成。晶界两侧晶体取向差小,两侧晶 体的解理面也只是倾斜一个小角度。因此裂纹穿过时河流花样顺 延到下一个晶粒。
③解理裂纹之间产生较大的塑性变形,通过撕裂方式连接形 成台阶。
④ 通过基体和孪晶的界面发生开裂连接形成台阶。
(2)河流花样的起源
①河流花样起源于有晶面存在的地方:晶界、亚晶界、 孪晶界。
②河流花样起源于夹杂物或析出相。
③河流花样起源于晶粒内部,是由于解理面与螺型位错 交截所致。
低碳钢拉伸断口河流花样起源于晶界
河流通过小角度倾斜界面
河流通过小角度扭转界面
河流花样穿过扭转晶界时将产生河流的激增。扭转界面又称 为孪晶界,两侧晶体以晶界为公共界面旋转了一个角度。因此 解理裂纹不能简单的穿过晶界,必须重新形核后才能沿新的解 理面扩展。
当解理裂纹扩展到大角度晶界(大多数晶界属于大角 度晶界)时,由于晶界结构复杂两晶粒之间缺乏连续性, 晶粒之间的位向差又很大,这些都使解理裂纹无法连接 通过这时裂纹需要重新生核进而扩展,因此有可能在新 的晶粒中出现大量的河流,而且河流台阶的高度差很大, 这也有可能使原来的河流消失。

常见断口的失效分析-2

常见断口的失效分析-2

常见材料失效形式与分析1.概述材料失效分析技术包括:感官检查、断口分析、化学成分分析、力学性能测试、组织分析、无损检测、残余应力测试、结构受力分析、使用维护分析、环境分析等。

其中断口分析是重要的一环。

材料失效形式有断裂、变形、腐蚀、磨损等。

在机械装备的各类失效中以断裂失效最主要、危害最大。

断口是断裂失效中两断裂分离面的简称。

断口真实地记录了裂纹由萌生、扩展直至失稳断裂全过程的各种与断裂有关的信息。

对断口进行定性和定量分析,可为断裂失效模式及断裂类型的确定提供有力依据,为断裂失效原因的诊断提供线索,并且可以作为冲击试验转变温度的确定依据。

断口金相学不仅能在设备失效后进行诊断分析,还可为新产品、新装备投入使用进行预研预测。

本实验的主要内容为:观察不同载荷下失效的金属断口的宏观形貌和微观形貌,掌握其宏观形貌特征和微观形貌特征。

2.实验目的(1)了解拉伸、冲击、疲劳断口各特征区的构成及形貌特征;(2)掌握判定断口承载类型及断裂性质的方法。

3.实验装置及材料(1)扫描电子显微镜(JSM-6390A型)一台;(2)超声清洗仪(SCQ-200)一台;(3)拉伸、冲击、疲劳断口试样若干;(4)放大镜一只;(5)吹风机一只;(6)丙酮、无水酒精、导电胶带若干。

4.实验原理4.1断口形貌特征:(1)宏观形貌特征包括断口附近的残留塑性变形特征,如:缩颈量的多少、表面的凹凸程度,有无剪切唇等;断口的光泽和颜色:各区域的颜色及亮、暗程度,氧化腐蚀产物的颜色;断口的形貌特征花样:如纤维状、结晶状、发光小平面、放射线、弧形线等;特征区的位置、分布、面积;材料内部缺陷的痕迹等。

(2)微观形貌特征断口上常见的微观特征有:韧窝,特征包括微孔深度、大小,微孔形态(等轴、剪切、撕裂)等;滑移,具有滑移线、蛇形花样、涟波花样和延伸区(平直区)等特征;解理,包括台阶、河流、舌状、扇形、鱼骨状花样及瓦纳线等特征。

准解理,介于解理断裂与塑性断裂间的一种过渡断裂形式,具有解理小平面、撕裂棱、浅韧窝、涟波花样及延伸区等特征;沿晶断裂,具有岩石状、冰糖状等特征;疲劳,具有条带、二次裂纹、轮胎花样等特征;腐蚀,具有氧化物、腐蚀产物、泥纹等特征。

断口学

断口学

断口学内容简介内容简介作为失效学体系的理论论著之一,本书是作者集30多年来在断口学领域的理论研究成果和实践经验撰写而成的一本专著。

作者在吸取前人研究成果的基础上,全面系统地阐述了断口学研究的意义、方法和内容。

本书简要介绍了断口学的理论基础——断裂力学基础和断裂物理基础,详细说明了断口分析所用的技术和分析思路,从断裂机理、断口特征、断口诊断和断口定量分析等方面着重介绍了韧性断裂形成的断口、脆性断裂形成的断口(包括环境促使脆性断裂形成的断口)和疲劳断裂形成的断口等三大类断口,同时还列举了一些实际例子来说明断口学在断裂失效分析中的应用。

本书是近20年来断口学领域的第一本专著,从宏观到微观,从定性到定量,从原因诊断到机理研究,阐述了断口学的形成和发展。

书中加入了一些作者的研究成果,如以断裂事故宏微观断口的定性和定量诊断判据为依据的断口分析诊断技术、金属疲劳断口宏微观断口物理数学模型和定量反推分析、冷脆断裂机理和韧脆转移的工程应用等。

另外,书中附有大量的断口图片,形象地说明断口的特征,便于读者对断口的理解。

本书对工程金属材料、机械、失效分析预测预防等领域的科技人员有较高的指导作用和参考价值。

目录第一章绪论1.1 断口分析的重要性1.2 历史、现状和展望1.3 断口的分类参考文献第二章断裂力学基础2.1 断裂力学的起源和发展2.2 断裂力学准则判据及相互之间的关系2.3 材料的断裂韧度参考文献第三章断裂物理基础3.1 断裂宏观理论3.2 断裂微观理论参考文献第四章断口分析的技术断口分析断口分析是研究金属断裂面的学科,是断裂学科的组成部分。

金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。

简介断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程断口分析(一)的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。

通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。

金属材料的裂纹与断口分析

金属材料的裂纹与断口分析
out
21
3.1 断口样品的制备与保存
a. 断口样品的选取
b. 断口样品的切割
out
22
判定主裂纹的方法
将散落断口拼合, 测量其几何形状变 化,变形量最大的 为主裂纹。
检验断口,氧 化最严重区为 最先断裂区 (主裂纹形成)
out
23
out
24
判定裂纹源的方法
最小应变法
构件形成裂纹并逐渐 裂开后,有效截面越来 越小,宏观变形逐渐增 大, 通常源区是几乎不 变的。
① 韧性断裂与断口特征
(屈服强度)
机 理
out
7
(微观)

(宏观)
8
② 脆性断裂与断口特征
(宏观)
out
Q:何种晶体结构材料易出现脆性断裂?
9
薄板表面
薄板侧面-断口
out
10
b. 按裂纹扩展路径分类
沿 晶
混 晶
穿 晶
out
11
c. 按裂纹机制分类
out
12
out
13
d.按受力状态不同分类
实际金属零件中不可避免存在各种微裂纹。 可能产生于工艺或使用过程中,在特定载荷或环境条件 下逐渐产生并逐渐长大,一旦扩展到临界尺寸,零件即发生完 out 全破坏—断裂! 通过无损检测,内部有超过按断裂力学计算 的临界尺寸的裂纹或缺陷的零件,应报废! 3
断 口
金属构件在应力作用下分离为 互不相连的两个或两个以上部分,断 裂处暴露出的自然表面(即裂纹扫过 的面积)称为断口。 形貌特征→裂纹扩展留下的痕迹。

out
58
离子探针→断口表面分析

可分析断口表面的元素分布情况
具有探测所有元素的优点, 检测灵敏度很高(可达到100ppm含量) →分析沿晶界元素偏聚 →分析氢脆断口的氢含量

断口分析4解理断裂

断口分析4解理断裂




5显微组织不同,解理断裂路径不同。断口形貌不同;
6第二相粒子越粗大越容易发生解理断裂 。
解理断裂
准解理断裂

概念:断口形态与解理断口相似,但具有较大塑性变形 (变形量大于解理断裂、小于延性断裂)是一种脆性穿晶 断口

宏观特征:宏观断口较平整,少或无宏观塑性变形,结晶 状小刻面,亮但不发光,较明显的放射状花样
c
2 E ( P) C
P:塑性变形功
解理断裂
解理断裂的影响因素

试验温度T↓,裂纹尖端塑性变形区↓→裂纹扩展阻力↓→解
理断裂发生的容易程度上升 ;

应变速率↑→解理断裂发生的容易程度↑ ; hcp、 bcc类型金属、合金易发生解理断裂,fcc类型金 属、合金不易发生解理断裂(滑移系) ; 晶粒尺寸↑发生解理断裂的可能性↑;
解理断裂
解理断裂
解理断裂
解理断裂
解理断裂
解理断裂的萌生和扩展
1.裂纹萌生机制:

位错塞积极制 位错运动→运动受阻(晶界、孪晶界、第二相夹杂物)→ 位错堆积→(理论断裂强度)→产生微裂纹

位错反应机制: 位错运动→位错相遇→产生新位错(不动位错)→阻碍随 后的位错运动→位错堆积→→产生微裂纹

滑移解理机制 位错运动→排列成小角度晶界→部分晶界被阻碍→产生拉 应力→微裂纹
解理断裂
2.裂纹的扩展:

根据格里菲斯表达式来解释:
c
2 E C
σc :垂直裂纹面得外加平均应力(材料实际断裂强度) E:弹性模量 γ:裂纹面比表面能 C:裂纹半长度

上式只适应于完全脆性材料,当材料发生伴随少量塑性变 形的解理断裂时,格里菲斯判据改为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青鱼骨花样、瓦纳线
§3、影响解理断裂的因素 1、晶体结构 bcc、hcp—易发生解理断裂 fcc——不易发生解理断裂 2、显微组织 F—断口较光滑,微观呈河流条纹或舌状花样 P—断口呈不连续片层状 M—断口呈锯齿状,出现小刻面
3、温度 T↓,易导致解理断裂
T<Tc,晶体在塑性变形前产生解理裂纹,断口呈现脆性 T>Tc,晶体先发生塑变,后产生解理,即断裂时伴随一定的塑性变形
4、加载速度 V↑,易发生解理断裂
§4、准解理断裂
与解理相比,准解理断裂的特征: ①准解理裂纹源常在准解理平面的内部形成,而解理裂纹源在解理面 边界(晶界)形成 ②准解理裂纹扩展路径比解理裂纹要不连续得多,常在局部地方形成 并局部扩展 ③准解理包含更多的撕裂 ④准解理面的位向并不如铁素体基体的解理面{100}严格对应,不 存在确定的位向关系
准解理裂纹形成机理示意图
准解理断口形貌
准解理断口形貌
第四章
发生的断裂。
沿晶断裂
1、定义:材料沿晶界(原奥氏体晶界、相界、焊合界面) 2、类型:韧性沿晶断裂(沿晶韧断) 脆性沿晶断裂(沿晶脆断)
3、产生原因
※脆性沉淀相沿晶界析出:钢中的碳化物 Al-Li合金中的δ(AlLi)相 ※晶界弱化:杂质Na、S、P等的晶界偏析 合金钢中的高温回火脆性 ※环境:SCC、氢脆、蠕变 ※热应力:焊接材料的HAZ ※晶粒粗大 !
小刻面
放射条纹
人字纹
二、微观形貌特征及形成机理
特征: 扇形花样 解理台阶(cleavage step) 河流花样(river pattern) 舌状花样(tongue pattern) 青鱼骨花样(spine pattern) 瓦纳线(wallner line)
扇形花样
河流花样
舌状花样
青鱼骨花样
第二章
§1 概述
韧 性 断 裂
§2 韧性断裂的断口形貌特征 §3 韧窝形成机理 §4 影响韧窝形貌的因素
§1、概述
1、特点:材料断裂前发生明显的塑性变形。也 可以说塑性变形是韧断的前奏,而韧断是大量 塑性变形的结果。 2、过程:显微空洞形成、扩展、连接、断裂 3、类型: 微孔聚集型 纯剪切型
§2、韧性断裂的断口形貌特征
瓦纳线
(二)形成机理(模型) 1、解理台阶 解理裂纹与螺位错交截形成台阶
台阶形成过程的简化图
通过二次解理或撕裂相互连接形成台阶(撕裂棱)
台阶的性质
台阶在扩展过程中会发生合并或消失(台阶高度减小) 相同方向的台阶合并后高度增加 相反方向的台阶合并后高度减小或消失 台阶高度与柏氏矢量大小、位错密度之间存在一定关系 H=b N 1/2
2、河流花样
定义:解理台阶及局部塑性变形形成的撕裂脊线所组合的 条纹。其形状类似地图上的河流。 形成机理:河流花样实际上就是解理台阶的一种标志。当 裂纹扩展时,同号台阶汇合成较大的台阶,而 较大的台阶又汇合成更大的台阶,其结果就形 成河流花样。
影响因素:
小角度晶界:倾斜晶界——影响不大,延伸至相邻晶粒
一、宏观形貌特征 纤维区、剪切唇 二、微观形貌特征 韧窝花样(断面上覆盖着大量微坑) 韧窝类型:等轴韧窝 抛物线韧窝 卵形韧窝
(d)
等 轴 韧 窝
抛物线韧窝
卵型韧窝
§3、韧窝形成机理
§4、影响韧窝形貌的因素
1、夹杂物或第二相粒子
尺寸较小,且分布密集 → 促进韧窝成核,形成小而多的韧窝花样 尺寸较大,且分布变化不大→促进裂纹扩展,形成较大的韧窝花样 2、基体材料的韧性 韧性差、塑性变形能力差,韧窝尺寸较小、较浅 3、试验温度 T↑、有利于韧窝的成核与扩展,韧窝宽度和深度增加 4、应力状态 拉应力、切应力、撕裂应力
例1: 1、结晶状脆性断口(过热脆性结晶状断口) 2、产生原因: ①锻造温度过高,使原奥氏体晶粒过分粗大。 ②压下量不足,终锻温度过高,晶粒破碎不够,而再 结晶充分进行并发生了晶粒长大,使晶粒过粗或粗 细不均造成沿晶断裂裂纹所致。 3、正火发生可使晶粒细化,改善锻件质量。
例2 晶粒过分粗大—细化晶粒处理 晶界弱化——净化晶界 环境介质——改善工作环境 热应力——退火消除
4、断口形貌特征
宏观断口:结晶状形貌 冰糖块状(晶粒粗大) 灰色的石状
结晶状断口
石状断口
微观断口:多边形图象(晶粒外形轮廓) 冰糖状形貌
例1: 一批锻件毛坯在抽样检验时,发现屈服强度与断面收缩 率均不满足要求,检验人员根据断口特征决定采用正火 处理,再检验性能全部合格。试问: 1、检验人员看到断口有何特征? 2、产生的原因是什么? 3、正火后为什么强度和塑性均有提高? 例2: 在什么条件下易出现沿晶断裂?怎样防止沿晶断裂?
扭转晶界——在亚晶界出产生新的裂纹,河流激增
大角度晶界:河流不能通过,在晶界处产生新的裂纹,向外扩展 ,
形成扇形花样
大角度晶界,扇形花样
3、舌状花样
特点:形状象“舌头”,一般在钢铁材料中成组出现。
形成机理:
解理裂纹沿着孪晶面{112}产生二次解理及局部塑性变 形撕裂的结果。在低温、高速变形时容易发生孪生变 形,也就容易出现舌状花样。
应力状态Biblioteka 第三章§1 概述解理断裂
§2 解理断口形貌特征及形成机理 §3 影响解理断裂的因素 §4 准解理断裂
§1、概述
1、定义 正应力、解理面、穿晶脆断 2、发生条件 一般均在bcc、hcp金属中发生,而fcc只在特殊情 况下才发生,如腐蚀环境、材质较差时。
§2、解理断口形貌特征
一、宏观形貌特征 1、放射状条纹 2、人字纹 3、小刻面(facet):发亮的小晶面 解理断口上的结晶面 宏观上呈无规则取向 强光下可见到闪闪发光的特征 解理断口是由许多小刻面组成的,每个小刻 面代表一个晶粒
相关文档
最新文档