SPSS第九讲 多因素方差分析

合集下载

spss第九章方差分析PPT课件

spss第九章方差分析PPT课件
19
多重比较方法
LSD法:实际上就是t检验的变形,只是在变异 和自由度的计算上利用了整个样本信息,因此仍 然存在放大一类错误的问题
Scheffe法:当各水平个案数不相等,或者想进 行复杂的比较时,用此法较为稳妥。但它相对比 较保守
S-N-K法:是运用最广泛的一种两两比较方法。 它采用Student Range 分布进行所有各组均值 间的配对比较。该方法保证在H0真正成立时总 的α 水准等于实际设定值,即控制了一类错误。
2
二,分析目的
方差分析是从数据间的差异入手,分析哪些因素 是影响数据差异的众多因素中的主要因素.
例如: 影响某农作物亩产量的因素(品种、施肥量、气候
等) 影响推销某种商品的推销额(不同的推销策略、价
格、包装方式、推销人员的形象等)
3
三,涉及的概念 (1)观察因素: 观测变量 (2)影响因素:
上述统计量一般十分相近 Pillai最保守,也较稳健,常用
50
应用举例
不同类型地区的居民收入和教育差异分析 பைடு நூலகம்多元单因素方差分析 •总体有差异,单个无差异 •通过Options进行直观比较
51
52
53
54
2020/1/11
55
43
SPSS调用程序: Analyze - General Linear Model -
Univariate
44
Part Seven 3 协方差分析
(1)目的:将无法或很难控制的因素作为协 变量,在排除协变量影响的条件下更精确 地分析控制变量对观察变量的影响.
45
(2)基本思路:
Sum of Squares
df

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。

它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。

SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。

本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。

二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。

它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。

在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。

三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。

一般自变量为定类变量,而因变量可以是定量或定类变量。

2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。

接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。

点击“确定”后,SPSS会生成方差分析表。

3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。

此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。

4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。

SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。

5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。

SPSS统计分析教程-多因素方差分析-推荐下载

SPSS统计分析教程-多因素方差分析-推荐下载
② Custom 选项 建立自定义的分析模型。选择了“Custom”后,原被屏蔽 的“Factors & Covariates”、 “Model”和“Build Term(s)”栏被激活。在 “Factors & Covariates”框中自动列出可以 作为因素变量的变量名,其变量 名后面的括号中标有字母“F”;和可以作为协变量的变量 名,其变量名后面的 括号中标有字母“C”。这些变量都是由用户在主对话框中定义过的。
82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 80 25 93.2 89.3
95.1 95.5 27 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5
66.9 64.9 40 25 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 31 73.6 73.2 76.4 72.5 数据保存在“DATA5-2.SAV”文件中,
④ 建立模型中的交互项 要求在分析模型中包括哪些变量的交互效应,可 以通过如下的操作建立交互项。
例如,因素变量有“a(F)”和“b(F)”,建立它们之间的相互效应。 连续在“Factors &”框的变量表中单击“a(F)”和“b(F)”变量使其 选中。 单击“Build Term(s)”栏内下拉按钮,选中交互效应“Interaction” 项。 单击“Build Term(s)”栏内的右拉按钮,“a*b”交互效应就出现在 “Model”框 中,模型增加了一个交互效应项:a*b ⑤ Sum of squares 栏分 解平方和的选择项 Type I 项,分层处理平方和。仅对模型主效应之前的每 项进行调整。一般适用于: 平衡的 AN0VA 模型,在这个模型中一阶交互 效应前指定主效应,二阶交 互效应前指定一阶交互效应,依次类推;多项 式回归模型。嵌套模型是指第一 效应嵌套在第二 效应里,第二效应嵌套在第三效应里,嵌套的形式可使用语句 指定。

SPSS-多因素方差分析

SPSS-多因素方差分析
③在Profile Plots对话框中,把Factors栏中的变量“保存时间”放入 Horizontal Axis栏,变量“保存温度”放入Separate Lines栏,再 单击Add按钮,会使变量“a*b”自动进入Plots栏,单击Continue 按钮返回。
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25

SPSS学习笔记之——重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。

在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。

重复测量数据在科学研究中十分常见。

分析前要对重复测量数据之间是否存在相关性进行球形检验。

如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。

在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。

球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。

2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。

血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。

而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。

将收治的诊断胎粪吸入综合症的新生儿共42名。

将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。

PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。

PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。

SPSS教程-多因素方差分析

SPSS教程-多因素方差分析

多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。

SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。

在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。

该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。

但也可以通过方差齐次性检验选择均值比较结果。

因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。

因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。

固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。

分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

表5-7 不同温度与不同湿度粘虫发育历期表数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。

然后输入对应的数值,如图5-6所示。

或者打开已存在的数据文件“DATA5-2.SAV”。

图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。

图5-7 多因素方差分析窗口3)设置分析变量设置因变量:在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。

设置因素变量:在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。

可以选择多个因素变量。

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于某个连续型变量的影响是否显著不同。

通常,研究者需要了解不同因素对于结果值的影响,并确定是否存在交互作用。

SPSS(统计软件包for社会科学)是一款常用的统计软件,它提供了丰富的功能和工具,可用于数据分析和建模。

本文将介绍如何使用SPSS软件进行多因素方差分析。

二、数据准备在进行多因素方差分析之前,需要先进行数据准备。

假设我们有一个研究目的是了解不同教育水平和不同工作经验对个人收入的影响。

我们收集了400位参与者的数据,包括个人收入(连续型变量),教育水平(分类变量:小学、初中、高中、本科、硕士、博士)和工作经验(分类变量:1-5年、6-10年、11-15年、16年及以上)。

三、数据导入首先,将数据导入SPSS软件。

打开SPSS软件后,选择“文件”-“读取数据”-“输入数据”。

在弹出的对话框中选择数据文件,并将其导入到SPSS软件中。

四、数据探索在进行多因素方差分析之前,我们首先需要对数据进行探索,查看教育水平、工作经验和收入之间的关系。

选择“描述统计”-“交叉表”菜单,将教育水平和工作经验作为行变量,将收入作为列变量。

点击“确定”按钮后,SPSS将生成一个交叉表,显示不同教育水平和工作经验对于收入的平均值和标准差等统计信息。

五、多因素方差分析在导入数据并进行数据探索后,我们可以开始进行多因素方差分析。

选择“分析”-“一般线性模型”-“多因素”菜单。

在弹出的对话框中,将个人收入作为因变量,将教育水平和工作经验作为因子变量。

点击“因子”按钮,将教育水平和工作经验拖动到因子变量框中。

然后,点击“选项”按钮,对方差分析的设置进行调整,如是否显示交互作用。

点击“确定”按钮,SPSS将自动生成多因素方差分析的结果报告。

在报告中,我们可以看到各个因素的显著性检验结果,以及不同因素对于个人收入的影响情况。

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤

定义数值变量对话框一
定义数值变量
然后按Add按钮,就可以调到下边的方框 了,这样定义数值标签结束,单击OK按 钮就可以了。最后转到数据对话框,录入 数据即可。
定义数值变量对话框二
2.多因素方差分析对话框
点击数据页中的Analyze,会出现General Linear Model下拉菜单中的Univariate,点击 后即出现下边的对话框。其中左边的方框里是 输入的变量名。中间的Dependent Variable表 示因变量显示窗,Fixed Factor[s]表示固定变 量 显 示 窗 , 通 常 是 指 自 变 量 。 Ramdom Factor[s]表示随机变量显示窗。Covariate[s] 表示协变量显示窗。WLS Weight表示权重变 量 显 示 窗 。 右 边 一 般 我 们 需 要 选 择 的 是 Post Hoc和Opitions这几个按钮。其数据框如下:
填写变量名对话框
1.2填写变量名对话框之定义 数值变量
点击Values下边任一单元格,会出现灰色部 分,可以弹出如下页的对话框,在下边的这个 示例中,定义的是3代表教材三,以此类推,对 方法的定义也是一样。读者照此方法定义即可。 定义完了后, Add按钮会被激活。做多因素方差 分析都需要对自变量也就是因素定义数值变量. 一般用数字定义.
多因素方差分析SPSS的 具体操作步骤
作者: 卫云红



以此为例:用三种不同教材和两种不 同的教学方法在6个小班进行英语口语教 学实验,在每个小班重复实验,得到的 成绩如SPSS所示
1.录入数据
1.1.spss首页数据对话框。其中横列是变 量名,竖列是样本量。下放的Data View 是填写数据的,Variable View 是用来填 写变量名的,单击它即可转入填写变量名 对话框。事实上,我们操作时的第一步应 该是填写变量名,但是为了使读者了解进 入填写变量名对话框的途径,所以将填写 数据对话框放到了第一步。

SPSS统计分析教程-多因素方差分析

SPSS统计分析教程-多因素方差分析

SPSS统计分析教程-多因素方差分析多因素方差分析是对一个变量是否受一个或多个因素或变量影响而进行的方差分析。

SPSS 调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。

在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。

该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。

但也可以通过方差齐次性检验选择均值比较结果。

因变量和协变量必须是数值型变量,协变量与因变量不彼此。

因素变量是分类变量,可以是数值型也可以是长度不超过8 的字符型变量。

固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。

分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%)温度℃ 重复 1 2 3 4 100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.3 80 25 93.2 89.3 95.1 95.5 27 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.9 40 25 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 31 73.6 73.2 76.4 72.5 数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤步骤1:导入数据首先,打开SPSS软件,并导入包含需要进行方差分析的数据集。

可以通过"File"菜单中的"Open"选项或者使用快捷键"Ctrl+O"来打开数据文件。

步骤2:选择菜单接下来,选择"Analyze"菜单,然后选择"General Linear Model"子菜单中的"Univariate"选项。

这将打开"Univariate"对话框。

步骤3:设置变量在"Univariate"对话框中,将需要分析的因变量(Dependent Variable)拖放到"Dependent Variable"框中。

然后,将需要分析的自变量(Independent Variables)拖放到"Fixed Factors"框中。

步骤4:设置因素在"Univariate"对话框的"Options"选项卡中,单击"Model"按钮,打开"Model"对话框。

在该对话框中,将自变量按照其因素分类拖放到"Between-Subjects Factors"框中。

步骤5:进行分析在"Univariate"对话框的"Options"选项卡中,可以对方差分析的多个选项进行设置。

比如,可以选择是否计算非标准化残差(Univariate Tests of Between-Subject Effects)、是否计算偏差(Tests of Within-Subject Effects)、是否计算构造对比(Contrasts)等。

设置完相关选项后,单击"OK"按钮进行方差分析。

SPSS软件解决-多因素方差分析

SPSS软件解决-多因素方差分析

多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。

SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。

在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。

该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。

但也可以通过方差齐次性检验选择均值比较结果。

因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。

因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。

固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。

分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

表5-7 不同温度与不同湿度粘虫发育历期表数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。

然后输入对应的数值,如图5-6所示。

或者打开已存在的数据文件“DATA5-2.SAV”。

图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。

图5-7 多因素方差分析窗口3)设置分析变量设置因变量:在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。

设置因素变量:在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。

可以选择多个因素变量。

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析多因素方差分析(ANOVA)是一种常用的统计分析方法,用于研究多个独立与自变量对因变量的影响程度。

SPSS软件是一款强大的数据分析工具,提供了多种统计方法,包括多因素方差分析。

本文将重点介绍如何,以及如何解读分析结果。

一、数据准备与导入在进行多因素方差分析之前,我们首先需要准备好要进行分析的数据,并将其导入到SPSS软件中。

SPSS软件支持各种数据格式的导入,包括Excel、CSV等。

在导入数据之后,可以使用SPSS软件的数据编辑功能进行必要的数据清洗与整理。

二、选择分析方法在SPSS软件中,多因素方差分析有两种不同的方法:多因素方差分析(逐步)和多因素方差分析(GLM)。

前者适用于符合方差齐性和正态分布要求的数据,而后者则没有这些限制。

根据实际情况选择适合的方法进行分析。

三、设置因素在进行多因素方差分析之前,需要设置自变量(因素)和因变量。

SPSS软件允许用户添加多个因素,并可以对每个因素进行设置。

例如,设置因素的水平数目、因素名称、因素标签等。

四、进行多因素方差分析设置因素之后,即可进行多因素方差分析。

在SPSS软件中,选择“分析”-“一般线性模型”-“多因素”进行分析。

进入多因素方差分析的参数设置界面后,依次选择因变量和自变量,并根据实际情况选择交互作用。

五、解读结果多因素方差分析完成后,SPSS软件会生成一系列分析结果。

这些结果包括效应大小(主效应和交互作用)、显著性检验结果(F值和P值)以及不同因素水平之间的差异(均值和置信区间)。

用户应该重点关注显著性检验结果,以判断因素是否对因变量产生显著影响。

六、结果可视化除了结果解读之外,SPSS软件还提供了数据可视化功能,可帮助用户更直观地理解分析结果。

用户可以通过绘制柱状图、折线图等图表,展示因变量在不同自变量水平之间的差异。

七、结果报告最后,用户可以根据分析结果编写一份详细的结果报告,对分析结果进行综合、客观地描述和解释。

SPSS学习笔记之——重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。

在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。

重复测量数据在科学研究中十分常见。

分析前要对重复测量数据之间是否存在相关性进行球形检验。

如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。

在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。

球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。

2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。

血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。

而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。

将收治的诊断胎粪吸入综合症的新生儿共42名。

将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。

PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。

PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。

SPSS多因素方差分析

SPSS多因素方差分析

体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。

多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。

如果再加上性别上的因素,那就成了三因素了。

如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。

如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。

下面用例子的形式来说说多因素方差分析的运用。

还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。

形成年级和不同教学法班级双因素。

分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2.因为有重复数据,所以存在在数据交互效应的可能。

我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。

交互作用是多因素实验分析的一个非常重要的内容。

如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。

在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。

在大多数场合,交互作用的信息比主效应的信息更为有用。

根据上面的判断。

根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。

这里假设他们之间有交互作用。

SPSS多因素方差分析(一般线性模型):重复测量

SPSS多因素方差分析(一般线性模型):重复测量

SPSS多因素⽅差分析(⼀般线性模型):重复测量⼀、GLM重复测量(分析-⼀般线性模型-重复度量)1、概念:“GLM 重复测量”过程在对每个主体或个案多次执⾏相同的测量时提供⽅差分析。

如果指定了主体间因⼦,这些因⼦会将总体划分成组。

通过使⽤此⼀般线性模型过程您可以检验关于主体间因⼦和主体内因⼦的效应的原假设。

可以调查因⼦之间的交互以及单个因⼦的效应。

另外,还可以包含常数协变量的效应以及协变量与主体间因⼦的交互。

在双重多变量重复测量设计中,因变量表⽰主体内因⼦不同⽔平的多个变量的测量。

例如,您可能在三个不同的时间对每个主体同时测量了脉搏和呼吸。

“GLM 重复测量”过程提供了对重复测量数据的单变量和多变量分析。

平衡与⾮平衡模型均可进⾏检验。

如果模型中的每个单元包含相同的个案数,则设计是平衡的。

在多变量模型中,模型中的效应引起的平⽅和以及误差平⽅和以矩阵形式表⽰,⽽不是以单变量分析中的标量形式表⽰。

这些矩阵称为SSCP(平⽅和与叉积)矩阵。

除了检验假设,“GLM 重复测量”过程还⽣成参数估计。

常⽤的先验对⽐可⽤于对主体间因⼦执⾏假设检验。

另外,在整体的F 检验已显⽰显著性之后,可以使⽤两两⽐较检验评估指定均值之间的差值。

估计边际均值为模型中的单元提供了预测均值估计值,且这些均值的轮廓图(交互图)允许您轻松对其中⼀些关系进⾏可视化。

残差、预测值、Cook 距离以及杠杆值可以另存为数据⽂件中检查假设的新变量。

另外还提供残差SSCP 矩阵(残差的平⽅和与叉积的⽅形矩阵)、残差协⽅差矩阵(残差SSCP 矩阵除以残差的⾃由度)和残差相关矩阵(残差协⽅差矩阵的标准化形式)。

WLS 权重允许您指定⼀个变量,⽤来针对加权最⼩平⽅(WLS) 分析为观察值赋予不同权重,这样也许可以补偿测量的不同精确度。

2、⽰例。

根据学⽣的焦虑程度检验的得分将⼗⼆个学⽣分配到⾼或低焦虑程度组。

焦虑等级被认为是主体间因⼦,因为它会将主体划分成组。

SPSS第九讲多因素方差分析

SPSS第九讲多因素方差分析

编辑课件ppt
6
步骤1:点击“univariate”,弹出对话框
编辑课件ppt
7
步骤2:选择因变量(只能选一个)和自变量
编辑课件ppt
8
步骤3:点击“Model”,弹出对话框
编辑课件ppt
9
步骤4:在Model中选择Custom,在Build Term 中选择Main effects
编辑课件ppt
第九讲 多因素方差分析
编辑课件ppt
1
什么是多因素方差分析
对两个及以上分类变量或可能出现的 协变量与一个连续变量之间的相关分 析
单因素方差分析和多因素方差分析统 称一元方差分析,即针对一个因变量 的分析
编辑课件ppt
2
多因素方差分析的三种情况
只考虑主效应,不考虑交互效应及协 变量
考虑主效应和交互效应,但不考虑协 变量
编辑课件ppt
16
步骤11:点击Continue,回到主对话框
编辑课件ppt
17
步骤12:点击OK,出现结果一
从分析结果的显著度<0.05可以得到结论:
在控制了其中一个变量之后,性别和教育对月收入的影响是
显著的
编辑课件ppt
18
结果二:均数图
编辑课件ppt
19
考虑交互效应
编辑课件ppt
20
实例2
编辑课件ppt
49
在例1中,我们分析了性别和教育 变量对受访者月收入的主效应,但进 一步的问题是,对于不同教育水平的 受访者而言,性别对月收入的影响是 否存在差异,即在性别和教育之间是 否存在交互作用?
编辑课件ppt
21
步骤1:点击“univariate”,弹出对话框

SPSS操作多因素方差分析

SPSS操作多因素方差分析

SPSS操作多因素方差分析实验题目:多因素方差分析实验类型:基本操作实验目的:掌握方差分析的基本原理及方法实验内容:某种果汁在不同地区的销售数据,调查人员统计了易拉罐包装和玻璃包装的饮料在三个地区的销售金额,利用多因素方差分析,分析销售地区和包装方式对销售金额的影响。

(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。

(2)对数据进行多因素方差分析,分析不同包装的和地区下的效果是否相同,及交互作用的效应是否显著。

实验步骤:步骤一:打开数据集,选择“分析”—“一般线性模型”—“单变量”,将操作框打开;步骤二:将“销售额”选为“因变量”,“包装形式”和“购物地区”选为“固定因子”,然后选择“选项”,将“描述统计”和“方差齐性检验”勾选。

得到描述性统计量和Levene检验,和主体间效应的结果。

实验结果:(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。

描述性统计量因变量:销售额包装形式购物地区均值标准偏差Ndime nsion1 易拉罐dimensio n2地区A 413.0657 90.86574 35地区B 440.9647 98.23860 120地区C 407.7747 69.33334 30总计430.3043 93.47877 185 玻璃瓶dimensio n2地区A 343.9763 100.47207 35地区B 361.7205 90.46076 102地区C 405.7269 80.57058 29总计365.6671 92.64058 166 总计dimensio n2地区A 378.5210 101.25839 70地区B 404.5552 102.48440 222地区C 406.7681 74.42114 59总计399.7352 98.40821 351描述性统计量的分析结果:在只考虑包装形式的情况下:易拉罐:均值=430.3043 ,标准偏差=93.47877玻璃瓶:均值=365.6671,标准偏差=92.64058在只考虑地区差异的情况下:地区A:均值=378.5210,标准偏差=101.25839地区B:均值=404.5552,标准偏差=102.4844地区C:均值=406.7681,标准偏差=74.42114由结果可知,在只考虑包装形式的情况下,采用易拉罐的形式进行销售额会有明显较高的销售额,且两种形式之间的偏差值相差不大,即采用易拉罐的形式进行销售会更有利于销售;在只考虑地区差异的情况下,三个地区之间在地区B 和地区C进行销售的销售额很接近,但是地区C的标准偏差明显比另外两个地区要小,所以建议应该在地区C加大销售力度。

SPSS数据分析—单因素及多因素方差分析

SPSS数据分析—单因素及多因素方差分析

SPSS数据分析—单因素及多因素方差分

T检验可以用于解决单个样本或两个样本的均值比较问题。

但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。

方差分析是基于变异分解的思想,利用F
分布进行比较。

在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。

在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。

方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。

由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。

在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。

在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考虑协变量
实例3 实例 在例1和例2中,我们分别考察了 性别和教育的主效应和交互效应,但 是,除了这两个分类自变量的影响外, 我们还想知道在控制了性别和教育变 量后,年龄这一连续变量是否也对月 收入产生影响?
步骤1:点击“univariate”,弹出对话框
步骤2:选择因变量(只能选一个)和自变量
步骤3:选择年龄作为斜变量
步骤4:点击“Model”,弹出对话框
步骤5:选择Custom和Interaction
步骤6:将性别、教育和年龄分别选入右侧Model
步骤7:将性别和教育变量同时选入右侧Model
步骤8:点击Continue,回到主对话框
步骤9:点击OK,出现分析结果
结果解释
步骤10:点击Add
步骤11:点击Continue,回到主对话框
步骤12:点击OK,出现结果一
从分析结果的显著度<0.05可以得到结论: 在控制了其中一个变量之后,性别和教育对月收入的影响是 显著的
结果二:均数图
考虑交互效应
实例2 实例 在例1中,我们分析了性别和教育 变量对受访者月收入的主效应,但进 一步的问题是,对于不同教育水平的 受访者而言,性别对月收入的影响是 否存在差异,即在性别和教育之间是 否存在交互作用?
只考虑主效应
实例1 实例 之前的分析发现受访者的性别会影响 其月收入,教育程度也会影响月收入,那 么这里的问题是,当我们控制了其中一个 变量后,另一个变量对月收入的单独影响 是否仍然显著,也就是性别和教育对月收 入的主效应是否显著?
步骤1:点击“univariate”,弹出对话框
步骤2:选择因变量(只能选一个)和自变量
步骤1:点击“univariate”,弹出对话框
步骤2:选择因变量(只能选一个)和自变量
步骤3:点击“Model”,弹出对话框
步骤4:在Model中选择Custom,在Build Term 中选择Interaction
步骤5:将性别和教育变量分别选入右侧Model
步骤6:将性别和教育变量同时选入右侧Model
步骤3:点击“Model”,弹出对话框
步骤4:在Model中选择Custom,在Build Term 中选择Main effects
步骤5:将性别和教育变量选入右侧Model
步骤6:点击Continue,回到主对话框
步骤7:点击Plots,弹出对话框
步骤8:将教育变量作为横坐标
步骤9:将性别变量作为两条不同水平线
从年龄的显著度=0.609>0.05,可以得到 结论,在控制了性别、教育、性别和教育 的交互作用后,年龄对月收入的影响不显 著
练习题
利用spss自带的1991GSS数据进行以下练 习:
– 如果只考虑自变量的主效应,那么性别和种族对职 业声望是否存在显著影响? – 如果考虑自变量之间的交互效应,那么性别和种族 对职业声望是否存在显著影响? – 如果再引入教育这一协变量,性别、种族和教育对 职业声望是否对存在显著影响?
第九讲 多因素方差分析
什么是多因素方差分析
对两个及以上分类变量或可能出现的 协变量与一个连续变量之间的相关分 析 单因素方差分析和多因素方差分析统 称一元方差分析,即针对一个因变量 的分析
多因素方差分析的三种情况
只考虑主效应,不考虑交互效应及协 变量 考虑主效应和交互效应,但不考虑协 变量 考虑主效应、交互效应和协变量
步骤7:点击Continue,回框
步骤9:将教育变量作为横坐标
步骤10:将性别变量作为两条不同水平线
步骤11:点击Add
步骤12:点击Continue,回到主对话框
步骤13:点击OK,出现结果一
结果二:均数图
结果解释
从性别与教育的交互作用的显著度= 0.037<0.05,可以发现性别与教育除了各 自对月收入存在显著的单独影响外,在不 同性别和教育水平的组合上还存在附加影 响。 从均数图可以发现,在不同教育水平上, 男女之间的平均月收入差异是不一样的。
相关文档
最新文档