高一数学函数解析式、定义域、值域解题方法

合集下载

高中数学函数的定义定义域值域解析式求法

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一)一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。

表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A=∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。

显然,值域是集合B 的子集。

(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;(2)二次函数2y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。

(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。

(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3)满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。

符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例:求函数()x 323y -+=的值域。

点拨:根据算术平方根的性质,先求出()x 3-2的值域。

解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。

点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。

练习:求函数()5x 0x y ≤≤=的值域。

(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例:求函数2x 1x y ++=的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数x-x -xx 10101010y ++=的值域。

(答案:{}1y 1-y |y 或)。

三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。

例:求函数()2x x-y 2++=的值域。

点拨:将被开方数配方成平方数,利用二次函数的值求。

解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。

此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:x 4-155-x 2y +=的值域。

(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。

(完整版)高一数学函数解析式的七种求法

(完整版)高一数学函数解析式的七种求法

函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

高中函数题型及解题方法

高中函数题型及解题方法

高中函数题型及解题方法1. 分析函数的解析式:给定一个函数,要求分析该函数的解析式,即找出函数的表达式形式。

解题方法:通过对函数给定的条件进行分析,利用对应的函数性质和已知信息,推导出函数的解析式。

2. 求函数的定义域:给定一个函数,要求确定该函数的定义域,即使该函数在哪个区间或值集上有意义。

解题方法:根据函数的定义,找出对函数的约束条件,推导出函数的定义域。

3. 求函数的值域:给定一个函数,要求确定该函数的值域,即使该函数在实数范围内能够取到的所有值。

解题方法:通过对函数的性质进行分析,找到函数的最大值和最小值,推导出函数的值域范围。

4. 求函数的导数:给定一个函数,要求求出该函数的导数,即该函数的变化率。

解题方法:使用导数的定义或导数的性质进行求解,并化简表达式。

5. 求函数的极值点:给定一个函数,要求确定该函数的极值点,即函数在哪些点上达到最大值或最小值。

解题方法:求出函数的导数,令导数为0,解方程得到函数的极值点。

6. 求函数的最值:给定一个函数,要求确定该函数的最大值或最小值。

解题方法:找到函数的极值点,并比较极值点和区间端点的函数值,确定函数的最值。

7. 求函数的反函数:给定一个函数,要求确定该函数的反函数,即使得该函数复合反函数为恒等函数的逆运算。

解题方法:通过函数的定义和性质,进行变量的代换和方程的转换,求解反函数。

8. 求函数的零点:给定一个函数,要求确定该函数的零点,即函数取到0的点。

解题方法:将函数的表达式设置为0,解方程得到函数的零点。

9. 求函数的不等式解集:给定一个函数,要求确定该函数的不等式解集,即满足给定不等式的函数取值范围。

解题方法:对不等式进行转化和化简,然后根据函数和不等式的性质,确定函数的解集。

10. 求函数的复合函数:给定两个函数,要求确定它们的复合函数,即通过一个函数对另一个函数进行运算。

解题方法:将一个函数的表达式代入另一个函数的表达式中,得到复合函数的表达式。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

心) X t 解:设 2 f (x ) X X X ,则1,x 1 。

x 2 X 1 x 2 ,试求 f (X )。

1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。

故得: 说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。

f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。

f( 去说明: 定义域由解析式确定,不需要另外给出。

例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。

若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。

由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高一数学函数解析式、定义域、值域解题方法含答案

高一数学函数解析式、定义域、值域解题方法含答案

A. [-1,3]B. [-3,1]C. [-2,2]D. [-1,1]解∵函数y=f 〔*〕的值域是[-2,2],∴y=f 〔*〕的最大值为2,最小值为-2又∵函数y=f 〔*+1〕的图象是由y=f 〔*〕向左平移1个单位而得∴函数y=f 〔*+1〕最大值是2,最小值是-2所以函数y=f 〔*+1〕的值域仍是[-2,2]应选C2、函数f 〔*〕=*2-2*,则函数f 〔*〕在区间[-2,2]上的最大值为〔 〕 A. 2 B. 4 C. 6 D. 8 解答:二次函数求最值3、一等腰三角形的周长为20,底边长y 是关于腰长*的函数,则其解析式和定义域是〔 〕 A. y =20-2*〔*≤10〕 B.y =20-2*〔*<10〕C.y =20-2*〔4≤*<10〕D.y =20-2*〔5<*<10〕解:Y=20-2* Y>0,即20-2*>0,*<10, 两边之和大于第三边, 2*>Y , 即2*>20-2* 4*>20 *>5。

此题定义域较难,很容易忽略*>5。

∴54、二次函数y =*2-4*+4的定义域为[a ,b ]〔a<b 〕,值域也是[a ,b ],则区间[a ,b ]是〔 〕 A. [0,4] B. [1,4] C. [1,3] D. [3,4]解: a ,由于对称轴为*=2,当*=0或*=4时有最大值y=4,*=2时有最小值y=05、函数y =f 〔*+2〕的定义域是[3,4],则函数y =f 〔*+5〕的定义域是〔 〕 A. [0,1] B. [3,4] C. [5,6] D. [6,7] 解: y =f 〔*+2〕的定义域是[3,4],即 3≤*≤4 则3+2 ≤*+2≤4+2,所以5≤*+2≤6 所以 y=f(*)的定义域为[5,6] 则5≤*+5≤6,则0≤*≤1 所以y =f 〔*+5〕的定义域为[0,1]6、函数22234x y x x +=+的值域是〔 〕 317317317317.[,].,4444317317317317.(,][,).(,)(,)4444A B C D ⎛⎫---+---+ ⎪ ⎪⎝⎭---+---+-∞⋃+∞-∞⋃+∞解:判别式法 7、〔2007〕图中的图像所表示的函数的解析式是〔 〕333.1(02).1(02)2223.1(02).11(02)2A y x x B y x x C y x x D y x x =-≤≤=--≤≤=--≤≤=--≤≤二. 填空题。

高中函数求值域的九种方法和例题讲解

高中函数求值域的九种方法和例题讲解

之吉白夕凡创作高中函数值域和定义域的大小,是高中数学常考的一个知识点,本文介绍了函数求值域最经常使用的九种办法和例题讲解.一.不雅察法通过对函数定义域、性质的不雅察,结合函数的解析式,求得函数的值域. 例1求函数y=3+√(2-3x)的值域.点拨:按照算术平方根的性质,先求出√(2-3x)的值域.解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3.∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性.本题通过直接不雅察算术平方根的性质而获解,这种办法对于一类函数的值域的求法,简捷明了,不失为一种巧法.练习:求函数y=[x](0≤x≤5)的值域.(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域.解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y -1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}.点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数.这种办法体现逆向思维的思想,是数学解题的重要办法之一.练习:求函数y=(10x+10-x)/(10x-10-x)的值域.(答案:函数的值域为{y∣y<-1或y>1})三.配办法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配办法求函数值域例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求.解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2].此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不单要重视对应关系的应用,并且要特别注意定义域对值域的制约作用.配办法是数学的一种重要的思想办法.练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域.例4求函数y=(2x2-2x+3)/(x2-x+1)的值域.点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域.解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3当y=2时,方程(*)无解.∴函数的值域为2<y≤10/3.点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非正数,可求得函数的值域.常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数.练习:求函数y=1/(2x2-3x+1)的值域.(答案:值域为y≤-8或y>0).五.最值法对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与鸿沟值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域.例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域.点拨:按照已知条件求出自变量x的取值规模,将目标函数消元、配方,可求出函数的值域.解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较鸿沟的大小.当x=-1时,z=-5;当x=3/2时,z=15/4.∴函数z的值域为{z∣-5≤z≤15/4}.点评:本题是将函数的值域问题转化为函数的最值.对开区间,若存在最值,也可通过求出最值而获得函数的值域.练习:若√x为实数,则函数y=x2+3x-5的值域为()A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)(答案:D).六.图象法通过不雅察函数的图象,运用数形结合的办法得到函数的值域.例6求函数y=∣x+1∣+√(x-2)2的值域.点拨:按照绝对值的意义,去掉符号后转化为分段函数,作出其图象.解:原函数化为-2x+1(x≤1)y=3(-1<x≤2)2x-1(x>2)它的图象如图所示.显然函数值y≥3,所以,函数值域[3,+∞].点评:分段函数应注意函数的端点.利用函数的图象求函数的值域,体现数形结合的思想.是解决问题的重要办法.求函数值域的办法较多,还适应通过不等式法、函数的单调性、换元法等办法求函数的值域七.单调法利用函数在给定的区间上的单调递增或单调递减求值域.例1求函数y=4x-√1-3x(x≤1/3)的值域.点拨:由已知的函数是复合函数,即g(x)=-√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内辨别讨论函数的增减性,从而确定函数的值域.解:设f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-√1-3x在定义域为x≤1/3上也为增函数,并且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}.点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域.练习:求函数y=3+√4-x的值域.(答案:{y|y≥3})八.换元法以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域.例2求函数y=x-3+√2x+1的值域.点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域.解:设t=√2x+1(t≥0),则x=1/2(t2-1).于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函数的值域为{y|y≥-7/2}.点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域.这种解题的办法体现换元、化归的思想办法.它的应用十分广泛.练习:求函数y=√x-1–x的值域.(答案:{y|y≤-3/4}九.机关法按照函数的结构特征,付与几何图形,数形结合.例3求函数y=√x2+4x+5+√x2-4x+8的值域.点拨:将原函数变形,机关平面图形,由几何知识,确定出函数的值域.解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形.设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22,KC=√(x+2)2+1.由三角形三边关系知,AK+KC≥AC=5.当A、K、C三点共线时取等号.∴原函数的知域为{y|y≥5}.点评:对于形如函数y=√x2+a±√(c-x)2+b(a,b,c均为正数),均可通过机关几何图形,由几何的性质,直不雅明了、便利简捷.这是数形结合思想的体现.练习:求函数y=√x2+9+√(5-x)2+4的值域.(答案:{y|y≥5√2})以上九种是函数求值域最经常使用的办法,下面介绍三种特殊情况下求值域的几种办法.十.比例法对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域.例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域.点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数.解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)∴x=3+4k,y=1+3k,∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1.当k=-3/5时,x=3/5,y=-4/5时,zmin=1函数的值域为{z|z≥1}.点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题办法体现诸多思想办法,具有一定的创新意识.练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y 的值域.(答案:{f(x,y)|f(x,y)≥1})十一.利用多项式的除法例5求函数y=(3x+2)/(x+1)的值域.点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和.解:y=(3x+2)/(x+1)=3-1/(x+1).∵1/(x+1)≠0,故y≠3.∴函数y的值域为y≠3的一切实数.点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种办法.练习:求函数y=(x2-1)/(x-1)(x≠1)的值域.(答案:y≠2)十二.不等式法例6求函数Y=3x/(3x+1)的值域.点拨:先求出原函数的反函数,按照自变量的取值规模,机关不等式.解:易求得原函数的反函数为y=log3[x/(1-x)],由对数函数的定义知x/(1-x)>01-x≠0解得,0<x<1.∴函数的值域(0,1).时间:二O二一年七月二十九日点评:考查函数自变量的取值规模机关不等式(组)或机关重要不等式,求出函数定义域,进而求值域.不等式法是重要的解题东西,它的应用很是广泛.是数学解题的办法之一.时间:二O二一年七月二十九日。

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。

例1:求函数y=x+1的值域。

解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。

例2:求函数y=1/x的值域。

解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。

解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。

注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。

二、配方法:配方法式求“二次函数类”值域的基本方法。

形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。

例1:求函数y=x2-2x+5,x∈[-1,2]的值域。

解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。

变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。

解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。

例:已知函数f(x)=sinx+cosx,求函数的值域。

高一数学必修一函数题型与解法

高一数学必修一函数题型与解法

高一数学必修一函数题型与解法函数的定义函数是一种描述两个数集之间关系的规则,它将自变量的值对应到因变量的值上。

通常用符号y=f(x)表示,其中x是自变量,y是因变量,f(x)表示函数的运算规则。

函数的解题方法1.函数的图象与解析式之间的转化函数可以用图象表示,也可以用解析式表示。

图象可以帮助我们更直观地理解函数的性质和特点,而解析式则便于计算和推导。

因此,函数的图象与解析式之间的转化是十分重要的。

对于已知函数的图象,要根据图象求出函数的解析式,可以通过观察图象上点的坐标来找到函数的规律。

例如,对于线性函数y=kx+b,可以通过观察函数图象上两个点的坐标来确定k和b的值。

对于其他函数,我们可以通过观察函数图象的特点,如最值、对称轴、零点等来确定函数的解析式。

对于已知函数的解析式,要根据解析式求出函数的图象,可以通过转换解析式的形式,如改变k和b的值、对解析式加减乘除等操作,来确定函数的图象。

例如,对于一次函数y=kx+b,可以通过改变k和b的值来确定函数的斜率和截距,从而确定函数图象的性质。

2.函数的性质与判断在解题过程中,我们常常需要根据已知条件判断函数的一些性质。

下面介绍一些常见的函数性质及其判断方法。

奇偶性:若对于函数中的任意一个数a,都有f(-a)=-f(a),则函数f(x)是奇函数;若对于函数中的任意一个数a,都有f(-a)=f(a),则函数f(x)是偶函数;若对于函数中的任意一个数a,都有f(-a)≠-f(a),且存在一些点b,有f(-b)=f(b),则函数f(x)既不是奇函数也不是偶函数。

判断奇偶性的方法很简单,只需要将函数的自变量用负号代入函数中计算即可。

单调性:若对于任意的x1<x2,有f(x1)<f(x2),则函数f(x)是递增函数;若对于任意的x1<x2,有f(x1)>f(x2),则函数f(x)是递减函数;若对于任意的x1<x2,总存在x1'和x2',有x1<x1'<x2'<x2,使得f(x1')<f(x2'),则函数f(x)是不单调函数。

高一求求函数值域的7类题型和15种方法讲义

高一求求函数值域的7类题型和15种方法讲义

高一求求函数值域的7类题型和15种方法讲义题型一:一次函数()0y ax b a =+≠的值域(最值)1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ;2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。

若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。

题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)1、二次函数)0()(2≠++=a c bx ax x f , 当其 定义域为R 时,其值域为()()224 044 04ac b y a aac b y a a ⎧-≥>⎪⎪⎨-⎪≤<⎪⎩2、二次函数)0()(2≠++=a c bx ax x f 在区间[],m n 上的值域(最值) 首先判定其对称轴2bx a=-与区间[],m n 的位置关系 (1)若[],2b m n a -∈,则当0a >时,()2bf a-是函数的最小值,最大值为(),()f m f n 中较大者;当0a <时,()2bf a-是函数的最大值,最大值为(),()f m f n 中较小者。

(2)若[],2bm n a-∉,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。

特别提醒:①若给定区间不是闭区间,则可能得不到最大(小)值;②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。

例1:已知 ()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为 (],1-∞ 。

例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为 ()1,17 。

高中函数值域的7类题型和16种方法

高中函数值域的7类题型和16种方法

高中函数值域的7类题型和16种方法函数值域是指函数输出值的集合。

在高中数学中,我们常常遇到一些关于函数值域的问题。

下面将介绍高中函数值域的7类题型以及解决这些问题的16种方法。

1. 函数值域的确定式题:给出一个函数的解析式,要求确定函数的值域。

解决方法:- 通过分析函数的定义域和性质推导函数的值域。

- 使用函数的图像来确定函数的值域。

- 借助导数和极值的概念来确定函数的值域。

2. 函数值域的确定性问题:给出一个函数的图像,要求确定函数的值域。

解决方法:- 通过观察图像的特点,确定函数的最大值和最小值。

- 借助极值和区间的概念,确定函数的值域。

3. 函数值域的不等式问题:给出一个函数的不等式解析式,要求确定函数的值域。

解决方法:- 分析给定不等式的解集,确定函数的值域。

- 将不等式转化为等式,解出方程,确定函数的值域。

4. 函数值域的集合表示问题:给出一个函数的值域,要求将其表示为集合。

解决方法:- 分析函数的定义域和性质,将函数的值域表示为集合。

- 借助函数的图像来表示函数的值域。

5. 函数值域的推导题:给出一个函数的值域,要求推导出函数的解析式。

解决方法:- 分析给定的值域,推导出函数的定义域和性质,再根据推导出的定义域和性质写出函数的解析式。

6. 函数值域的综合题:综合运用多种方法,确定函数的值域。

解决方法:- 根据题目要求,运用不同的方法来确定函数的值域。

- 分析题目中给出的条件,结合函数的性质来确定函数的值域。

7. 函数值域的实际问题:将函数值域与实际问题联系起来,解决实际问题。

解决方法:- 将实际问题转化为函数模型,通过确定函数的值域来解决实际问题。

- 根据实际问题给出的条件和约束,运用适当的方法来确定函数的值域,作为问题的解答。

以上是高中函数值域的7类题型和16种方法。

对于不同类型的问题,我们可以根据题目要求和给定条件,选择合适的方法来求解函数的值域。

通过练习这些题型,我们可以提高对函数值域的理解和分析能力。

函数定义域、值域与解析式

函数定义域、值域与解析式

函数定义域、值域与解析式(一)知识梳理1、求函数解析式的常用方法 方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; (3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f ;(4)若已知函数关于某点或者某条直线的对称函数时,一般用代入法。

2、函数的定义域方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦ 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。

3、求值域的几种常用方法 方法总结:(1)直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)(2)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域 (3)函数的单调性法:(4)配方法:对于(可化为)“二次函数型”的函数常用配方法, (5)基本不等式法 : 如对勾函数y=x+m x,(m>0),m<0就是单调函数了 (6)数形结合法:其题型是函数解析式具有明显的某种几何意义,如两点的距离公式、直线斜率等等(7)判别式法:通过对二次方程的实根的判别求值域。

如求函数22122+-+=x x x y 的值域(8)换元法:通过等价转化换成常见函数模型(如二次函数),如y ax b cx d =+±+(a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

(9)分离常数法:常用来求“分式型”函数的值域。

如求函数3243x y x +=-的值域(10)函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

高一人教版必修一数学函数定义域、值域、解析式题型

高一人教版必修一数学函数定义域、值域、解析式题型

高一函数定义域、值域、解析式题型一、具体函数的定义域问题1求以下函数的定义域1〔1〕y x1xx ;〔2〕yx12x5x6〔2〕〔3〕假设函数 2f(x)mxmx1的定义域为R,那么实数m的取值X围是〔〕(A)0m4(B)0m4(C)m4(D)0m4二、抽象函数的定义问题〔一〕函数f(x)的定义域,求函数f[g(x)]的定义域2.函数f(x)的定义域为[0,1],求函数 2f(2x)的定义域。

〔二〕函数f[g(x)]的定义域,求函数f(x)的定义域3.函数f(2x1)的定义域为[1,2],求函数f(x)的定义域。

〔三〕函数f[g(x)]的定义域,求函数f[h(x)]的定义域4.函数 2f(x1)的定义域为(2,5),求函数 f1()x的定义域。

5.函数f(x)的定义域为[1,1],且函数F(x)f(x m)f(xm)的定义域存在,XX数m的取值X围。

〔一〕配凑法5. f21x13(1)2xxx,求f(x)的解析式。

〔二〕换元法6.f(12x)2xx,求f(x)的解析式。

〔三〕特殊值法7.对一切x,yR,关系式f(x y)f(x)(2xy1)y且f(0)1,求f(x)。

待定系数法8.f(x)是二次函数,且 2f(x1)f(x1)2x4x4,求f(x)。

〔四〕转化法9.设f(x)是定义在(,)上的函数,对一切xR,均有f(x)f(x2)0,当1x1时,f(x)2x1,求当1x3时,函数f(x)的解析式。

〔五〕消去法11.函数f(x)满足〔六〕分段求解法123f(x)f()xx,求f(x)12.函数f(x)2x1,g(x) x xo2,2,1,x0,求f[g(x)]的解析式(一〕配方法13.求二次函数256(32)yxxx的值域。

〔二〕图象法〔数形结合法〕14.求 4 2yx4(x[2,3])的值域。

3〔三〕别离常数法abx15.求定义域在区间[1,1]上的函数(0)yababx〔四〕换元法的值域。

16.求函数yx12x的值域。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。

例1、 已知,试求。

解:设,则,代入条件式可得:,t ≠1。

故得:。

说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。

例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。

例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用得式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,得两个程就行了。

【解题过程】⑴设,由得, 由,得恒等式,得。

故所求函数得解析式为。

(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。

(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。

(4)因为 ① 用代替得 ② 解①②式得。

【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。

若函数程中同时出现,,则一般将式中得用代替,构造另一程。

高一数学求函数值域的方法仅限高一

高一数学求函数值域的方法仅限高一

仅限高一求函数值域的方法:1、 直接法直接根据函数表达式来求值域,例:y = x 2 , x ∈(2,3)2、 单调性法利用函数的单调性来求值域例:y=x-x 21-;解:定义域⎭⎬⎫⎩⎨⎧≤21|x x ,函数y=x,y=-x 21-均在⎥⎦⎤ ⎝⎛∞-21,上递增,故y≤.21212121=⨯-- ∴函数的值域为⎥⎦⎤ ⎝⎛∞-21,. 3、 图象法利用函数图象来求值域例:y = x 3 x ∈(-2,5)4、 配方法把函数化简成二次函数的形式,利用二次函数的性质来求, 例: y=12+-x x 解:∵y=412+-x x 能构成完全平方而y=412+-x x +43 ∴4321y 2+-=)(x ∵x R ∈ ∴值域为y ≥435、 判别式法把式子化成一元二次方程的形式,利用判别式法来求,例:y=;122+--x x x x解:由y=,122+--x x x x 得(y-1).0)1(2=+-+y x y x∵y=1时,≠∴∅∈y x , 1.又∵∈x R ,∴必须∆=(1-y)2-4y(y-1)≥0. ∴.131≤≤-y ∵,1≠y ∴函数的值域为⎪⎭⎫⎢⎣⎡-1,31. 6、 换元法把带根号或者带分式等不容易看出来的式子用一个新元代替了,换完元后,一定要注意新元的范围,根据新元的范围来求值域。

例1:y=x-x 21-;解:令x 21-=t,则t≥0,且x=.212t - ∴y=-21(t+1)2+1≤21(t≥0), ∴y∈(-∞,21]. 例2:y=|x|21x -. 解:∵1-x 2≥0,令x=sin α,则有y=|sin αcos α|=21|sin2α|, 故函数值域为[0,21].7、分离常数法适用于分子与分母同样的次幂,最终化成只有分母有x 。

例:y=521+-x x ;解:y=-)52(2721++x ,∵)52(27+x ≠0,∴y≠-21. 故函数的值域是{y|y∈R,且y≠-21}. 8、反求法用y来表达x,适用于x的范围知道,且能用y来表示x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、配方法
例12. 求函数y=2x2+4x的值域。
解:y=2x2+4x=2(x2+2x+1)-2=2(x+1)2-2≥-2,故值域为{y|y≥-2}。
说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y=af2(x)+bf(x)+c。
解:Y=20-2X
Y>0,即20-2X>0,X<10,
两边之和大于第三边,
2X>Y,
即2X>20-2X
4X>20
X>5。
本题定义域较难,很容易忽略X>5。
∴5
4、二次函数y=x2-4x+4的定义域为[a,b](a<b),值域也是[a,b],则区间[a,b]是( )
A.[0,4]B. [1,4]C. [1,3]D. [3,4]
当x>2时,2/(2-x) 6≥2-x => x≥-4
∴定义域:[-4,2)
三. 解答题
10、求函数 的定义域。
11、已知 ,若f(a)=3,求a的值。
12、已知函数f(x)满足2f(x)-f(-x)=-x2+4x,试求f(x)的表达式。
解:2f(-x)-f(x)=-x2-4x 4f(x)-2f(-x)=-2x2+8x 相加得 f(x)=-x2+4x/3
2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例2. (1)已知 ,试求 ;
(2)已知 ,试求 ;
解:(1)由条件式,以 代x,则得 ,与条件式联立,消去 ,则得: 。
(2)由条件式,以-x代x则得: ,与条件式联立,消去 ,则得: 。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;
5、分段函数的定义域是各个区间的并集;
6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;
7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;
一:求函数解析式
1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
例1. 已知 ,试求 。
解:设 ,则 ,代入条件式可得: ,t≠1。故得: 。
说明:要注意转换后变量范围的变化,必须确保等价变形。
(二)求函数定义域
1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;
2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;
3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;
6、函数 的值域是( )
解:判别式法
7、(2007安徽)图中的图像所表示的函数的解析式是( )
二. 填空题
8、若f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),则f(2)+f(-2)=;
解:∵对任意x∈R,总有f(1+x)=-f(1-x),
∴当x=0时,有f(1+0)=-f(1-0),
求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。
1、分离变量法
例11. 求函数 的值域。
解: ,因为 ,故y≠2,所以值域为{y|y≠2}。
说明:这是一个分式函数,分子、分母均含有自变量x,可通过等价变形,让变量只出现在分母中,再行求解。
解:
又由于x2-4x+3>0 **
联立*、**两式可解得:
例9. 若函数f(2x)的定义域是[-1,1],求f(log2x)的定义域。
解:由f(2x)的定义域是[-1,1]可知:2-1≤2x≤2,所以f(x)的定义域为[2-1,2],故log2x∈[2-1,2],解得 ,故定义域为 。
三:求函数的值域与最值
(1)
(2)
(3)
(4)
【思路分析】
【题意分析】求函数的值域问题首先必须明确两点:一是值域的概念,即对于定义域 上的函数 ,其值域就是指集合 ;二是函数的定义域,对应关系是确定函数值的依据。
【解题过程】
(1)将 的值域为 。
(2) ,即所求函数的值域为 或用换元法,令 的值域为 。
(3)<方法一> 函数的定义域为R。
例4.求下列函数的解析式:
(1)已知 是二次函数,且 ,求 ;
(2)已知 ,求 , , ;
(3)已知 ,求 ;
(4)已知 ,求 。
【思路分析】
【题意分析】(1)由已知 是二次函数,所以可设 ,设法求出 即可。
(2)若能将 适当变形,用 的式子表示就容易解决了。
(3)设 为一个整体,不妨设为 ,然后用 表示 ,代入原表达式求解。
例3. 求 的定义域。
解:由题意知: ,从而解得:x>-2且x≠±4.故所求定义域为:
{x|x>-2且x≠±4}。
例2.求下列函数的定义域:
(1) ; (2)
【思路分析】
【题意分析】求函数的定义域就是求自变量的取值范围,应考虑使函数解析式有意义,这里需考虑分母不为零,开偶次方被开方数为非负数。
【解题过程】(1)要使函数有意义,则 ,在数轴上标出,即 。故函数的定义域为 .当然也可表示为 。

<方法二>

故所求函数的值域为(-1,1]。
(4)<构造法>
所以函数的值域为[-12,3]。
【题后思考】求函数的值域问题关键是将函数的解析式变形,通过观察或利用熟知的基本函数的值域,逐步推出所求函数的值域,有时还需要结合函数的图象进行分析。
【模拟试题】(答题时间:30分钟)
一. 选择题
1、函数y=f(x)的值域是[-2,2],则函数y=f(x+1)的值域是( )
二. 求函数的解析式
3、求函数解析式的一般方法有:
(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;
(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;
(4) , 同时使得 有意义,用 代替 建立关于 , 的两个方程就行了。
【解题过程】⑴设 ,由 得 ,
由 ,得恒等式 ,得 。
故所求函数的解析式为 。
(2) ,
又 。
(3)设 ,

所以 。
(4)因为 ①
用 代替 得 ②
解①②式得 。
【题后思考】求函数解析式常见的题型有:
(1)解析式类型已知的,如本例⑴,一般用待定系数法。对于二次函数问题要注意一般式 ,顶点式 和标根式 的选择;
2.设函数 则不等式 的解集是( )A BFra bibliotekC D
答案:A
【解析】由已知,函数先增后减再增
当 , 令
解得 。
当 ,
故 ,解得
【考点定位】本试题考查分段函数的单调性问题的运用。以及一元二次不等式的求解。
A. [-1,3] B. [-3,1] C. [-2,2] D. [-1,1]
解∵函数y=f(x)的值域是[-2,2],
∴y=f(x)的最大值为2,最小值为-2
又∵函数y=f(x+1)的图象是由y=f(x)向左平移1个单位而得
∴函数y=f(x+1)最大值是2,最小值是-2
所以函数y=f(x+1)的值域仍是[-2,2]
(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;
(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
2、求分段函数的定义域:对各个区间求并集。
例4. 已知函数由下表给出,求其定义域
X
1
2
3
4
5
6
Y
22
3
14
35
-6
17
解:{1,2,3,4,5,6}。
3、求与复合函数有关的定义域:由外函数f(u)的定义域可以确定内函数g(x)的范围,从而解得x∈I1,又由g(x)定义域可以解得x∈I2.则I1∩I2即为该复合函数的定义域。也可先求出复合函数的表达式后再行求解。
即f(1)=-f(1).∴f(1)=0.
又∵f(x)=(x+a)3,∴f(1)=(1+a)3.
故有(1+a)3=0,解得a=-1.
∴f(x)=(x-1)3.
∴f(2)+f(-2)=(2-1)3+(-2-1)3=13+(-3)3=-26.
9、若函数 的值域为 ,则其定义域为;
解:2/(x-2)≤-1/3 => 1/3≤2/(2-x)
解:a ,由于对称轴为x=2,当x=0或x=4时有最大值y=4,x=2时有最小值y=0
5、函数y=f(x+2)的定义域是[3,4],则函数y=f(x+5)的定义域是( )
A. [0,1] B. [3,4] C. [5,6] D. [6,7]
相关文档
最新文档