无穷小量与无穷大量之间关系的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无穷小量与无穷大量之间关系的应用
【摘要】结合教学中的体会,从无穷小量与无穷大量之间的相互关系入手,进一步认识无穷小量与无穷大量.学会利用二者之间的关系,解决一些实际问题,达到提高教学质量的目的.
【关键词】无穷大量;无穷小量
【基金项目】中国矿业大学2012年青年教师校级教学改革资助项目(2001245).
一、前言
不论是在《高等数学》还是在《数学分析》中,都把无穷小量与无穷大量当作重点内容介绍,这是因为此部分内容为后续课程的学习提供了基础,例如用等价无穷小替换求极限、判定级数的收敛性等.从教材的编排上看,《高等数学》和《数学分析》中都是先讲无穷小量,后讲无穷大量.但是对无穷的概念的认识过程看,人类是先认识无穷大,后认识无穷小.所以在文献[1]中,作者按照人们认识无穷的进程,提出了自己的观点,认为先认识清楚无穷大,再认识无穷小.教材中这样安排,主要都是考虑教学的目的.
相对于无穷小与无穷大的比较,一般的教材中都讲无穷小的比较,在求极限时可以用等价无穷小代替等.在文献[2]
中,作者给出了无穷大的比较.在求极限的过程中,同样可以用等价无穷大相互之间替换求函数的极限.在文献[3]中,作者阐述了无穷小的哲学问题,指出了人们对无穷小认识的一些错误,提出了正确的观点,证明了认识无穷小的过程是符合实践――认识――再实践――再认识的自然辩证法.
从教科书和一些文献中,我们能很清楚地认识无穷大量和无穷小量及其性质,也能解决一些实际问题.但我们不能把二者割裂开来独立地去认识.现有的教材中只轻描淡写地说无穷大量和无穷小量符合倒数关系,先讲无穷小量,无穷大量的所有结论利用二者之间的倒数关系可以得到.这就使得学生产生一种误解,认为认识了无穷小量,就等于认识了无穷大量,而不会利用二者之间的关系灵活解决实际问题.本论文正是从解决上述问题出发,利用无穷大量和无穷小量之间的关系进一步认识二者,从而能更好地解决在实际应用中的一些问题.目的是改正教学过程中出现的错误和打消学生的疑惑,提高教学质量,这也符合人们认识自然的实践、认识、再实践、再认识的自然辩证法.