牛吃草问题--基础原理与解答
牛吃草问题的详细解法
牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
牛吃草的五种题型问题
牛吃草的五种题型问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】牛吃草的五种题型问题牛吃草问题属于应用题模块,是经典的奥数题型之一,也是考试中经常会涉及到的考点。
下边是牛吃草的五大经典类型,大家可以来学习一下。
“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。
难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。
“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量×天数同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.题型1、一块地的“牛吃草问题”1、牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天2、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天题型2、牛羊一起吃草的“牛吃草问题”1、一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天2、一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽题型3、“牛”吃草问题的变例1、早晨6点,某火车进口处已有945名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口2、一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管。
牛吃草问题经典例题及答案解释
牛吃草问题经典例题及答案解释
牛吃草问题是生物学中一个常见的问题,它揭示了耳聪目明的人类对世界自然规律的模糊和勘误,同时也表明了人类对细节的追求。
牛吃草问题也被称为比喻问题,它是一个言简意赅的问题,可以从许多角度来解答,下面介绍了牛吃草问题的例题及答案解释。
1.为什么牛吃草?
牛吃草是由于牛体内的限制。
牛的消化系统不能消化纤维素,牛的牙齿也不适合咀嚼有机食物,但又能将细胞壁碎裂,将营养物质消化。
此外,牛草也具有抗氧化、抗炎、抗衰老的功效,因此牛会偏好草类的营养,以达到营养平衡,使牛更健康。
2.为什么牛不吃草叶?
牛不能食用叶子,是因为它们对叶子中的细胞壁构成不太敏感,叶子中种类多样的细胞壁非常硬,难以碎裂,也就意味着牛不能将叶子中的营养物质消化。
此外,叶子中大量的维生素C和大量的茴香不易消化,也影响了牛对叶子的表现。
3.为什么牛更喜欢吃新鲜的草?
新鲜的草比干旱的草有更多的营养,对牛而言,新鲜的草能提供更多的维生素、矿物质和水分。
此外,新鲜的草还具有抗氧化、抗炎、抗微生物等功效,可以提高牛的免疫能力,使牛更健康。
4.为什么牛不会吃蓝草?
蓝草含有大量的毒素,如有机毒素和重金属,如铅、铜、镉等,它们可以严重破坏牛的消化系统。
此外,蓝草的叶片中含有各种抗生
素,如木纳和异氟烷,可能会严重损伤牛的健康。
以上就是关于牛吃草问题的经典例题及答案解释,从这里可以看出牛吃草的脆弱性与精妙,牛吃草这一简单的行为,深刻地揭示了自然规律的复杂性,也提醒我们对自然的尊重和保护。
牛吃草问题例题详解(含练习和答案)
牛吃草问题例题详解(含练习和答案)牛吃草问题一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就变得更加复杂了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。
总草量可以分为牧场上原有的草和新生长出来的草两部分。
牧场上原有的草是不变的,新长出的草虽然在变化,但因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。
下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。
设1头牛一天吃的草为1份。
那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。
前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。
200-150=50(份),20—10=10(天)。
说明牧场10天长草50份,1天长草5份。
也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。
由此得出,牧场上原有草(10—5)×20=100(份)或(15—5)×10=100(份)。
现在已经知道原有草100份,每天新长出草5份。
当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。
因此,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。
2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。
经典牛吃草问题基本知识-5星题(含解析)全国通用版
应用题-经典应用题-牛吃草问题基本知识-5星题课程目标知识提要牛吃草问题基本知识•概述牛吃草问题:又称为消长问题,是英国伟大的科学家牛顿在他的<普遍算术>一书中提出的一个数学问题,所以也称为“牛顿问题”,俗称“牛吃草问题”.解决该问题要抓住两个关键量:草的生长速度和草原的原草量•公式:设定1头牛1天吃草量为“1”;(1)草的生长速度=(对应牛的头数×吃的较多的天数-对应牛的头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=牛的头数×吃的天数-草的生长速度×吃的天数(3)吃的天数=原有草量÷(牛的头数-草的生长速度)(4)牛的头数=原有草量÷吃的天数+草的生长速度。
•牛吃草的变型“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.精选例题牛吃草问题基本知识1. 一个大型的污水池存有一定量的污水,并有污水不断流入,若安排4台污水处理设备,36天可将池中的污水处理完;若安排5台污水处理设备,27天可将池中的污水处理完;若安排7台污水处理设备,天可将池中的污水处理完.【答案】18【分析】牛吃草问题变形.不妨设一台污水处理设备一天处理一份污水,每天新流入的污水:(4×36−5×27)÷(36−27)=1(份).原有的污水量:4×36−1×36=108(份).分牛法:1台污水处理设备处理每天新流入的污水,剩下6台设备处理原有污水108÷(7−1)=18(天).2. 解放军战士在洪水不断冲毁大坝的过程中要修好大坝.若10人需45分钟,20人需20分钟,则14人修好大坝需分钟.【答案】30【分析】设每个人1分钟修好1份.10×45=450(份),20×20=400(份),每分钟新冲毁:(450−400)÷(45−20)=2(份),原先冲毁:450−2×45=360(份),360÷(14−2)=30(分钟).3. 小方用一个有洞的杯子从水缸里往三个同样的容积的空桶中舀水.第一个桶距水缸有1米,小方用3次恰好把桶装满;第二个桶距水缸有2米,小方用4次恰好把桶装满.第三个桶距水缸有3米,那么小方要多少次才能把它装满?(假设小方走路的速度不变,水从杯中流出的速度也不变)【答案】6【分析】小方装第二个桶比第一个桶多用了一杯水,同时多走了2×4−1×3=5(米)路,所以从杯中流出的速度是1×5=0.2(杯/米),于是1桶水原有水量等于3−3×0.2=2.4(杯)水,所以小方要2.4÷(1−3×0.2)=6(次)才能把第三个桶装满.4. 如下图所示,一块正方形草地被分为完全相同的四块以及中间的阴影部分.已知草一开始是均匀分布,且以恒定的速度均匀生长.但如果某块地上的草被吃光,就不再生长(因为草根也被吃掉了).老农先带着一群牛在1号草地上吃草,两天后把1号草地上的草全部吃完(这期间其他草地的草正常生长).之后他让一半牛在2号草地上吃草,另一半在3号草地上吃草,结果又过了6天,这两个草地上的草也全部吃完.最后,老农把3的牛放在阴影草地上吃草,5而剩下的牛放在4号草地上,最后发现两块草地上的草同时吃完.如果一开始就让这群牛在整块草地上吃草,那么吃完这些草需要多少天?【答案】110【分析】设牛的头数为[2,5]=10头,设一头牛一天吃一份草,所以1,2,3,4号草地的生长速度为(5×6−10×2)÷6=5 3 ,原有草量为2×10−53×2=503,阴影分配牛的头数是4的1.5倍,所以阴影草地的成长速度和原有草量都是4号的1.5倍,所以整块草地的生长速度为5 3×4+53×1.5=556,原有草量为50 3×4+503×1.5=2753,一开始就让这群牛在整块草地上吃草,那么吃完这些草需要275 3÷(10−556)=110(天).方法二:假设1至4号草地每块面积为a,生长速度为v,1号草地2天吃完,草总量为a+ 2v;2号和3号草地,接着6天吃完,草总量为2a+16v;6天吃完的草总量应为2天吃完草总量的3倍,即:3(a+2v)=2a+16v,可得a=10v,牛群每天吃草6v;又35的牛放在阴影部分的草地中吃草,另外25的牛放在4号草地吃草,它们同时把草场上的草吃完,说明阴影部分为4号草地的1.5倍;相当于整个草地面积为5.5a,即55v,每天长草5.5v,于是,草可吃55v6v−5.5v=110(天).5. 有一牧场,草均匀生长,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草?【答案】40头【分析】设1头牛1天的吃草量为“1”,那么每天生长的草量为:(17×30−19×24)÷(30−24)=9,原有草量为:(17−9)×30=240.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完,如果不卖掉这4头牛,那么原有草量需增加4×2=8才能恰好供这些牛吃8天,所以这些牛的头数为:(240+8)÷8+9=40(头).6. 一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量,现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【答案】12天【分析】根据题意可得:15天马和牛吃草量=原有草量+15天新生长草量⋯⋯①20天马和羊吃草量=原有草量+20天新长的草量⋯⋯②30天牛和羊(等于马)吃草量=原有草量+30天新生长草量⋯⋯③由①×2−③可得:30天牛吃草量=原有草量,所以:牛每天吃草量=原有草量÷30;由③可知,30天羊吃草量=30天新生长草量,所以:羊每天吃草量=每天新生长草量;设马每天吃的草为3份,将上述结果带入②得:原有草量=20×3=60(份),所以:牛每天吃草量=60÷30=2(份).这样如果同时放牧牛、羊、马,可以让羊去吃新生长的草,牛和马吃原有的草,可以吃:60÷(2+3)=12(天).7. 早晨6点,某火车进口处已有一些名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口?【答案】11【分析】设1个检票口1分钟放进1个单位的旅客.(1)1分钟新来多少个单位的旅客:(4×15−8×7)÷(15−7)=12(个);(2)检票口开放时已有多少个单位的旅客在等候:4×15−12×15=5212(个);(3)5分时间内检票口共需放进多少个单位的旅客:5212+(12×5=55(个);(4)设立几个检票口:55÷5=11(个).8. 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?【答案】54分钟.【分析】先计算1个水龙头每分钟放出水量.2小时半比1小时半多60分钟,多流入水4×60=240(立方米).时间都用分钟作单位,1个水龙头每分钟放水量是240÷(5×150−8×90)=8(立方米),8个水龙头1个半小时放出的水量是8×8×90,其中90分钟内流入水量是4×90,因此原来水池中存有水8×8×90−4×90=5400(立方米).打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要5400÷(8×13−4)=54(分钟).所以打开13个龙头,放空水池要54分钟.本题实际上是牛吃草问题的变形,水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.9. 小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米,多少分钟能追上.【答案】45【分析】本题是“牛吃草”和行程问题中的追及问题的结合.小明在3−1=2(小时)内走了15×3−35×1=10(千米),那么小明的速度为10÷2=5(千米/时),追及距离为(15−5)×3=30(千米).汽车去追的话需要:30÷(45−5)=34(小时)=45(分钟).10. 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有几级台阶.【答案】60。
牛吃草问题解题技巧讲解
牛吃草问题解题技巧讲解牛吃草问题是一种常见的数学问题,它涉及到物理、数学、经济学等多个领域,具有广泛的应用和重要的意义。
下面,我将为您讲解牛吃草问题的解题技巧。
一、牛吃草问题的基本特征牛吃草问题的基本特征如下:1. 有一个固定的牧场,面积足够大,可以容纳一定数量的牛。
2. 牧场中的草是不断生长的,每天生长速度相同。
3. 牛每天吃掉的草量与牛的数量成反比,即每头牛每天吃掉的草量是一定的。
4. 牛的数量发生变化,草的生长速度也会发生变化。
二、牛吃草问题的解题步骤1. 列出牛吃草问题的基本方程:草场每天的草量增加量 = 每头牛每天的吃草量×牛的数量草场的总草量 = 草场每天的草量增加量 + 每头牛每天的吃草量×牛的数量2. 确定变量和未知数:变量:牛的数量 n;未知数:草场每天的草量增加量 x;草场的总草量 y。
3. 分析问题,画出草场增长图:根据题目中给出的信息,画出草场增长图,确定变量和未知数。
4. 求解方程,解决问题:根据草场增长图和基本方程,解出方程,得到牛的数量 n 和草场每天的草量增加量 x。
5. 重复检查,确定答案:在解决问题的过程中,要不断重复检查求解的结果,确保答案正确无误。
三、牛吃草问题的变形和扩展牛吃草问题有多种变形和扩展,下面列举几种常见的情况:1. 多牧场牛吃草问题:在牛吃草问题中,一个牧场同时可供多头牛吃草,此时需要分别列出每头牛每天吃掉的草量和草场每天的草量增加量,然后根据草场增长图和基本方程求解。
2. 周期牛吃草问题:在牛吃草问题中,草的生长速度和牛的数量成周期变化,此时需要根据周期变化的特点,列出相应的方程和图形,然后求解。
3. 风险投资问题:在牛吃草问题中,牛的数量和草场每天的草量增加量不是固定的,而是受到风险投资的影响,此时需要根据实际情况,列出相应的方程和图形,然后求解。
以上就是我对牛吃草问题解题技巧的讲解,希望对您有所帮助。
牛吃草问题例题 答案.doc
第十五讲牛吃草问题【知识点归纳】:英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:草的每天生长量不变;每头牛每天的食草量不变;草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值新生的草量=每天生长量X天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1” ;⑵草的生长速度=(对应牛的头数X较多天数一对应牛的头数X较少天数)+ (较多天数-较少天数);(3)原来的草量=对应牛的头数X吃的天数-草的生长速度X吃的天数;⑷吃的天数=原来的草量+ (牛的头数-草的生长速度);(5)牛的头数=原来的草量+吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草” 问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.【典型例题】:类型一、一块地的“牛吃草问题”【例1】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【解析】设1头牛1周的吃草量为T ,草的生长速度为(23x9-27x6) + (9-6) = 15 ,原有草量为(27-15)x6 = 72 ,可供 72 + 18 + 15 = 19 (头)牛吃 18 周练习一、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【解析】设1头牛1天的吃草量为"1",那么25-10 = 15天生长的草量为12x25-24x10 = 60 ,所以每天生长的草量为60 + 15 = 4;原有草量为:(24-4)x10 = 200.20天里,草场共提供草200 + 4x20 = 280 ,可以让280 + 20 = 14头牛吃20天.【例2】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【解析】设1头牛1天的吃草量为“1”,那么每天自然减少的草量为:(20x5-15x6)+(6-5)= 10, 原有草量为:(20 + 10)x5 = 150; 10天吃完需要牛的头数是:150 + 10-10 = 5 (头). 练习二、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
牛吃草问题练习及答案解析
牛吃草问题历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。
在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。
主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。
基本公式:解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。
)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。
)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。
小学奥数-牛吃草专题完整版
牛吃草知识精讲英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草"问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草"问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草"问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲板块一、一块地的“牛吃草问题”【例 1】一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。
仓库里原有的存货若用1辆汽车运则需要多少天运完?【例 2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】(2007年湖北省“创新杯”)牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.【巩固】一水库原有存水量一定,河水每天均匀入库。
牛吃草问题原理
牛吃草问题原理
牛吃草问题是一个典型的生态学问题,探讨了食物链中不同物种之间的关系。
牛吃草问题的原理主要是以食物链为基础。
在一个典型的食物链中,植物(如草)是生产者,它们通过光合作用将太阳能转化为化学能,并生产出有机物质。
牛则是消费者,它们以食草动物为食,通过消化食物中的有机物质获取能量和营养。
当牛吃掉草时,草的能量和营养就会转移到牛身上。
牛吃草的原理还涉及到能量的转移和损失。
根据能量在食物链中转移的规律,能量在每个级别上都会有一定程度的损失。
这是因为每个级别上的生物只能吸收到前一级别生物所消化吸收的一部分能量,而另一部分则会以热能的形式散失掉。
因此,能量越往上级别转移,损失越大。
牛吃草问题还可以涉及到食物网的概念。
食物网是一种更为复杂的食物关系网络,其中不同物种之间存在多个食物链的交错。
在食物网中,牛可能不仅仅以草为食,还可能以其他植物或者其他动物为食。
这样,牛的食物来源更广泛,食物链也更加复杂。
总结来说,牛吃草问题的原理主要涉及到食物链、能量转移和食物网等概念。
牛作为食草动物,通过吃草获取能量和营养,也是一个生态系统中重要的环节。
牛吃草的五种题型问题
牛吃草的五种题型问题牛吃草问题属于应用题模块,是经典的奥数题型之一,也是考试中常常会波及到的考点。
下面是牛吃草的五大经典种类,大家能够来学习一下。
“牛吃草”问题主要波及三个量:草的数目、牛的头数、时间。
难点在于跟着时间的增添,草也在按不变的速度平均生长,因此草的总量不定。
“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依照:① 草的每日生长量不变;② 每头牛每日的食草量不变;③草的总量 =草场原有的草量+重生的草量,此中草场原有的草量是一个固定值④ 重生的草量=每日生长量×天数同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定 1 头牛 1 天吃草量为“ 1”;⑵草的生长速度=( 对应牛的头数×许多天数-对应牛的头数×较少天数) ÷( 许多天数-较少天数 ) ;⑶本来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数;⑷吃的天数=本来的草量÷( 牛的头数-草的生长速度) ;⑸牛的头数=本来的草量÷吃的天数+草的生长速度.“牛吃草”问题有好多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的实质和解题思路,才能以不变应万变,轻松解决此类问题.题型 1、一块地的“牛吃草问题”1、牧场上长满牧草,每日牧草都匀速生长.这片牧场可供10 头牛吃 20 天,可供15 头牛吃 10 天.供 25 头牛可吃几日?2、因为天气渐渐变冷,牧场上的草每日以平均的速度减少.经计算,牧场上的草可供20头牛吃 5 天,或可供 16 头牛吃 6 天.那么,可供 11 头牛吃几日?题型 2、牛羊一同吃草的“牛吃草问题”1、一块匀速生长的草地,可供 16 头牛吃 20 天或许供吃草量等于 5 只羊一天的吃草量,那么这块草地可供100 只羊吃 12 天.假如一头牛一天10 头牛和 75 只羊一同吃多少天?2、一片匀速生长的牧草,假如让马和牛去吃,15 天将草吃尽;假如让马和羊去吃,20 天将草吃尽;假如让牛和羊去吃, 30 天将草吃尽.已知牛和羊每日的吃草量的和等于马每日的吃草量.此刻让马、牛、羊一同去吃草,几日能够将这片牧草吃尽?题型 3、“牛”吃草问题的变例1、清晨 6 点,某火车入口处已有入口处准备进站.这样,假如建立口, 7 分钟能够放完游客.现要求945 名游客等待检票进站,此时,每分钟还有若干人前来4 个检票口, 15 分钟能够放完游客,假如建立8 个检票5 分钟放完,需建立几个检票口?2、一个蓄水池装有 9 根水管,此中 1 根为进水管,其他 8 根为同样的出水管。
牛吃草问题经典例题及答案解释
牛吃草问题经典例题及答案解释牛吃草问题是一个使用概率论的经典问题,其实它的本质是一个典型的有条件概率问题。
首先,我们来看一下牛吃草问题的过程:在一个草地,有n头牛,其中m头是活牛,n-m头是没有被活牛吃过的死牛,他们现在分别看着草地,现在要求你计算出至少有多少活牛可以看到至少一头死牛。
要解决这个问题,首先要分析事件的关联条件,设m为活牛数,n为死牛数,p为活牛看到死牛的概率,q为活牛看到另外一头活牛的概率,那么我们可以把牛吃草问题的事件表示如下:活牛看到死牛的概率:P(A)=m/n活牛看到另外一头活牛的概率:P(B)=q(m-1)/n那么我们计算活牛看到至少一头死牛的概率:P(A∪B)=P(A)+P(B)-P(AB)=m/n+q(m-1)/n-qm/n=1-q这里,我们可以把P(A∪B)看做是1减去活牛看到另外一头活牛的概率,也就是说,若要求活牛看到至少一头死牛的概率达到1,m 的取值必须使qm/n=1,也就是说,要达到这一概率,m的取值必须大于等于n/q。
有了上述结论,我们可以得出牛吃草问题的结论:在一个草地中,有n头死牛,至少要有m头活牛,使得活牛能够看到至少一头死牛,此时m的取值必须大于等于n/q。
牛吃草问题是一个很实用的问题,它可以帮助我们分析任何一个有条件概率事件。
例如,在医学诊断中,一项检测能够显示出病人患病的概率,此时我们可以用牛吃草问题的方法来判断病人的病情:若检测概率低于预定的阈值,那么就可以认为病人没有患病。
同样的,牛吃草问题在检验和实验中也有着广泛的应用。
例如,在药品检测中,为了确定某种药品有良好的疗效,我们需要测试一大批人群,若药品实验得到良好的效果,那么我们可以用牛吃草问题来判断该药物是否确实有效。
事实上,牛吃草问题在现实生活中也有着广泛的应用,如在抽签中,我们可以计算出抽中某一签的概率;在比赛中,我们可以计算出胜利方的概率;在社会关系中,我们可以计算出两个人之间影响的概率等等。
牛吃草问题含例题答案讲解
小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度;例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天;问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少;已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天;照此计算,可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼;已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上;问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒;问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=级自动扶梯级数= 3×100-100×=150级1. 有一片牧场,操每天都在匀速生长每天的增长量相等,如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛假设1头1天吃1个单位246=144218=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2,有一片草地,草每天生长的速度相同;这片草地可供5头牛吃40天,或6供头牛吃30天;如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天假设1头1天吃1个单位540=200;630=180200-180=20每天长的草:20/40-30=2原有草:200-240=120430=120 ,302=60 60/4=15天3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人假设1亿人头1天吃1个单位11090=9900;90210=1890018900-9900=90009000/210-90=754,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队22010=400400-100=300300/20=15100+154=160160/410=41因为草量=原有草量+新长出的草量,而且草量是均匀增长的;所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度较多天数时的时间;同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度较少天数时的时间;两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了;2牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草;所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量;当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了;牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的;典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天;由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化;解决牛吃草问题常用到四个基本公式,分别是︰1 设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度;这四个公式是解决消长问题的基础;由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量;牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的;正是由于这个不变量,才能够导出上面的四个基本公式;牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草;由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天;解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题;这类问题的基本数量关系是:1.牛的头数×吃草较多的天数-牛头数×吃草较少的天数÷吃的较多的天数-吃的较少的天数=草地每天新长草的量;2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草;解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些;“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐华图名师姚璐例1有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天根据核心公式代入200-150/20-10=5 1020-520=100 100/25-5=5天璐例2有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天,根据核心公式代入20×10-15×10=5 10×20-5×20=100 100÷4+5=30头华图名师姚璐例3如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛华图名师姚璐答案D华图名师姚璐解析设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,24天内吃尽40公亩牧场的草,需要Z头牛根据核心公式:,代入,因此,选择D华图名师姚璐注释这里面牧场的面积发生变化,所以每天长出的草量不再是常量;下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用;华图名师姚璐例4有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用1 6分钟排完;问如果计划用10分钟将水排完,需要多少台抽水机广东2006上台台台台华图名师姚璐答案B华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机有恒等式:解,得,代入恒等式华图名师姚璐例5有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时北京社招2006华图名师姚璐答案C华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时有恒等式:解,得,代入恒等式华图名师姚璐例6林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光假定野果生长的速度不变浙江2007周周周周华图名师姚璐答案C华图名师姚璐解析设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完有恒等式:解,得,代入恒等式华图名师姚璐例7物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款;某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了浙江2006小时小时小时小时华图名师姚璐答案D华图名师姚璐解析设共需X小时就无人排队了;例题:1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要1 0分钟就把所有乘客OK了求增加人数的速度还有原来的人数设一个检票口一分钟一个人1个检票口30分钟30个人2个检票口10分钟20个人30-20÷30-10=个人原有1×30-30×=15人或2×10-10×=15人2、有三块草地,面积分别是5,15,24亩;草地上的草一样厚,而且长得一样快;第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天这是一道牛吃草问题,是比较复杂的牛吃草问题;把每头牛每天吃的草看作1份;因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=份所以,每亩原有草量60-30×=12份第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛所以,一共需要+=42头牛来吃;两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:1030/5=60;每亩45天的总草量为:2845/15=84那么每亩每天的新生长草量为84-60/45-30=每亩原有草量为30=12,那么24亩原有草量为1224=288,24亩80天新长草量为2480=3072,2 4亩80天共有草量3072+288=3360,所有3360/80=42头解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量28×45-30×30/45-30=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24头24亩需牛:180/80+2424/15=42头。
牛吃草问题全面练习题答案
牛吃草问题全面练习题答案题目一:牛吃草问题的背景和定义牛吃草问题是一个典型的数学逻辑问题,常常作为逻辑推理和分析能力的练习题。
问题的背景是有一只牛和一块1x1米的草地,牛每天可以吃草地上的一块草,并且可以选择朝东、南、西、北四个方向前进一步。
假设牛每天都会保持朝北的方向,问牛吃到草地上所有的草需要多少天。
解答一:让我们从简单的情况开始分析,假设草地是一个2x2米的正方形。
第一天,牛在初始位置吃掉一块草,并向北前进一步;第二天,牛在北方吃掉一块草,并向东前进一步;第三天,牛在东方吃掉一块草,并向南前进一步;第四天,牛在南方吃掉一块草,并向西前进一步;第五天,牛在西方吃掉一块草,此时草地上已经没有剩下的草了。
可以看出,对于一个2x2米的草地,牛吃完所有的草需要五天。
接下来,我们考虑一个3x3米的草地。
第一天,牛在初始位置吃掉一块草,并向北前进一步;第二天,牛在北方吃掉一块草,并向东前进一步;第三天,牛在东方吃掉一块草,并向南前进一步;第四天,牛在南方吃掉一块草,并向西前进一步;第五天,牛在西方吃掉一块草,并向北前进一步;第六天,牛在北方吃掉一块草,并向东前进一步;第七天,牛在东方吃掉一块草,并向南前进一步;第八天,牛在南方吃掉一块草,并向西前进一步;第九天,牛在西方吃掉一块草,并向北前进一步;第十天,牛在北方吃掉一块草,此时草地上已经没有剩下的草了。
可以看出,对于一个3x3米的草地,牛吃完所有的草需要十天。
由以上分析可知,对于一个N x N米的草地,牛吃完所有的草需要2N - 1天。
解答完毕。
题目二:牛吃草问题的拓展策略与思考除了上述简单情况的分析,我们还可以探讨牛吃草问题的更一般情况。
假设有一个M x N米的草地,牛每天可以选择前进的方向,并吃掉当前位置的草。
那么牛吃完所有的草需要多少天呢?解答二:我们可以把这个问题抽象为一个数学模型。
首先,我们观察到任意一个M x N米的草地,其中的每一块草地都可以用一个坐标来表示,比如(1,1)表示第一行第一列的位置,(M,N)表示最后一行最后一列的位置。
牛吃草问题专题(例题+练习+作业)
牛吃草问题专题(例题+练习+作业)牛吃草问题,又称为消长问题或XXX牧场。
该问题最初由17世纪英国伟大的科学家XXX(1642-1727)提出。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
解决牛吃草问题常用到五个基本公式:1.设定一头牛一天吃草量为“1”;2.草的生长速度=草量差/时间差;3.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;4.吃的天数=原有草量/(牛头数-草的生长速度);5.牛头数=原有草量/吃的天数+草的生长速度。
这五个公式是解决牛吃草问题的基础。
首先一般假设每头牛每天吃草量不变,设为“1”,解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
例1:一块牧场长满了草,每天均匀生长。
这块牧场的草可供10头牛吃40天,供15头牛吃20天。
问:这片牧草可供25头牛吃多少天?练:1.一块牧场长满了青草,每天还在匀速生长。
这块牧场的草可供10头牛吃40天,供15头牛吃20天。
可供25头牛吃多少天?2.一个牧场长满青草,牛在吃草而草又在不断生长。
已知牛27头,6天把草吃尽,同样一片牧场,23头牛9天把草吃尽。
如果有牛21头,几天能把草吃尽?3.牧场上长满了青草,而且每天还在匀速生长。
这片牧场上的草可供9头牛吃20天,可供15头牛吃10天。
如果要供18头牛吃,可吃几天?例2:由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天。
那么可供21头牛吃几天?练:1.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?2.一片牧草,每天生长的速度相同。
现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。
行测常见数学推理(牛吃草+浓度+排列组合+时钟问题)
1牛吃草问题概念及公式牛吃草问题又称为消长问题︰1) 设定一头牛一天吃草量为“1”1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 3)吃的天数=原有草量÷(牛头数-草的生长速度);4)牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。
“牛吃草”问题分析【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天根据核心公式代入(200-150)/(20-10)=5 10*20-5*20=100 100/(25-5)=5(天)例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【解析】设该牧场每天长草量恰可供X头牛吃一天,根据核心公式代入(20×10-15×10)=5 10×20-5×20=100 100÷4+5=30(头)【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【解析】设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,24天内吃尽40公亩牧场的草,需要Z头牛根据核心公式:,代入,因此,选择D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
牛吃草问题的公式原理
牛吃草问题的公式原理牛吃草问题是一个经典的动态规划问题,它可以用来计算在给定约束条件下,牛在一定时间内吃掉所有草的最小花费。
问题的基本假设是,牛在每个时间单位内可以选择吃一撮或不吃草。
问题的公式原理如下:
假设有 n 袋草(编号为 1 到 n),每袋草有一个对应的消耗值c[i],表示吃掉这袋草所需花费的能量。
牛在每个时间单位内可以选择吃或不吃一袋草。
定义一个动态规划数组 dp,其中 dp[i] 表示只考虑前 i 袋草时的最小花费。
牛可以选择吃掉第 i 袋草,则当前花费为 c[i],加上前 i-1 袋草的最小花费 dp[i-1];或者选择不吃掉第 i 袋草,则当前花费为 0,加上前 i-1 袋草的最小花费 dp[i-1]。
因此,状态转移方程可以表示为:
```
dp[i] = min(dp[i-1] + c[i], dp[i-1])
```
其中,dp[i-1] + c[i] 表示吃掉第 i 袋草的花费,dp[i-1] 表
示不吃掉第 i 袋草的花费。
最终,动态规划数组 dp 的最后一个元素 dp[n] 即为牛吃掉所有草的最小花费。
通过动态规划的思想,我们可以有效地解决牛吃草问题,并获得最优解。
使用上述公式原理,可以编写相应的算法来解决这个问题。