勾股定理思维导图题型总结归纳
专题20 勾股定理(解析版)
1
变式:
1)a²=c²- b²
2)b²=c²- a²
适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应
用勾股定理时,必须明了所考察的对象是直角三角形。
勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
【详解】如图,连接 AD,
4
∵AB=AC,∠BAC=120°,D 为 BC 的中点,
∴∠BAD=60°,AD⊥BC,
∴∠B=90°﹣60°=30°,
∵DE⊥AB,
∴∠ADE=90°﹣60°=30°,
设 EA=x,
在 Rt△ADE 中,AD=2EA=2x,
在 Rt△ABD 中,AB=2AD=4x,
∴EB=AB﹣EA=4x﹣x=3x,
所以 BC= 102 -82 =6.
故选:C.
10
4.
(2019·湖北中考真题)在一次海上救援中,两艘专业救助船 A, B 同时收到某事故渔船的求救讯息,已知
此时救助船 B 在 A 的正北方向,事故渔船 P 在救助船 A 的北偏西 30°方向上,在救助船 B 的西南方向上,
且事故渔船 P 与救助船 A 相距 120 海里.
1.
(2017·河北中考模拟)如图,一只蚂蚁沿边长为 a 的正方体表面从点 A 爬到点 B,则它走过的路程最短
为(
)
A. 2 a
B.
(1+ 2 )a
C.3a
D. 5 a
7
【答案】D
【解析】
详解:如图,则 AB=
AP 2 + PB2 = a 2 + 4a 2 = 5 a. 故选 D.
勾股定理 知识归纳与题型突破(十一类题型清单) 解析版—24-25学年八年级数学上册单元(北师大版)
勾股定理 知识归纳与题型突破(十一类题型清单)一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)二、勾股定理的逆定理1.勾股定理的逆定理a b 、c 222a b c +=01 思维导图02 知识速记 如果三角形的三边长,满足,那么这个三角形是直角三角形.要点:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系: 若,则△ABC 是以∠C 为90°的直角三角形; 若时,△ABC 是锐角三角形; 若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.四、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.题型一 用勾股定理解三角形例题1.若一个直角三角形的两条直角边长分别是6和8,则斜边长是( )A .6B .7C .8D .10【答案】D a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+272903 题型归纳2.在直角ABC V 中,90B Ð=°,3AB =,4AC =,则BC 的长为( )A .5B C .5D .53.如图,在Rt ABC △中,90A Ð=°,2BC =,则222AC AB BC ++的值为( )A .8B .2C .4D .【答案】A 【分析】利用勾股定理进行求解即可.【解析】解:∵90A Ð=°,2BC =,∴222228A BC C AB BC BC ++=+=;故选A .【点睛】本题考查勾股定理.熟练掌握直角三角形的两直角边的平方和等于斜边的平方,是解题的关键.4.如图所示,已知ABC V 中,6AB =,9AC =,AD BC ^于D ,M 为AD 上任一点,则22MC MB -等于 .【答案】45【分析】在Rt △ABD 和Rt ADC V 中,分别表示出2BD 和2CD ,在Rt BDM V 和Rt CDM △中,表示出2MB 和2MC ,代入求解即可;【解析】解:∵AD BC ^于D ,∴90ADB ADC Ð=Ð=°,在Rt △ABD 和Rt ADC V 中,222BD AB AD =-,222CD AC AD =-,在Rt BDM V 和Rt CDM △中,222222MB BD MD AB AD MD =+=-+222222MC CD MD AC AD MD =+=-+,()()22222222MC MB AC AD MD AB AD MD \-=-+--+,22AC AB =-,45=.故答案为:45.【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.题型二 勾股定理逆定理 勾股数例题5.下列给出的四组数中,能构成直角三角形三边的一组是( )A .5,12,14B .6,8,9C .7,24,25D .8,13,15【答案】C【分析】根据勾股定理的逆定理逐项验证即可得到答案.【解析】A 、22245121+¹,不能构成直角三角形,故此选项不符合题意;B 、222689+¹,不能构成直角三角形,故此选项不符合题意;C 、22272425+=,能构成直角三角形,故此选项符合题意;D 、22281315+¹,不能构成直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查勾股定理的逆定理,根据勾股定理的逆定理计算三角形两边的平方和是否等于第三边的平方是解决问题的关键.巩固训练6.由下列条件不能判定ABC V 为直角三角形的是( )A .A C BÐ+Ð=ÐB .13a =,14b =,15c =C .()()2b a b a c+-=D .5:::3:2A B C ÐÐÐ=7.在下列四组数中,属于勾股数的是( )A .0.3,0.4,0.5B .3,4,5C .2,8,10D .1【答案】B【分析】利用勾股数的定义进行分析即可.【解析】解:A .0.3,0.4,0.5不是整数,不是勾股数,不符合题意;8.下列各组数中,是勾股数的是( ).A .1,2,3B C D .9,12,15例题9.(1)如图,在ABC V 中,AD BC ^,求证:2222AB AC BD CD -=-;(2)在ABC V 中,8AB =,5AC =,BC 边上的高4AD =,求边BC 的值.10.如图,已知等腰ABC V 的底边25cm BC =,D 是腰AB 上一点,连接CD ,且24cm 7cm CD BD ==,.(1)求证:BDC V 是直角三角形;(2)求AB 的长.11.如图,已知在ABC V 中,CD AB ^于点D ,20AC =,15BC =,9DB =,(1)求DC 、AB 的长;(2)求证:ABC V 是直角三角形.12.已知在Rt ABC V 中,90ACB Ð=°,9AC =,15AB =,5BD =,过点D 作DH AB ^于点H .(1)求CD 的长;(2)求DH 的长.题型四 勾股定理逆定理拓展性质例题13.下列由三条线段a 、b 、c 构成的三角形:①2a mn =,22b m n =-,()220c m n m n =+>>,②21a n =+,2221b n n =++,()2220c n n n =+>,③3a k =,4b k =,()50c k k =>,④2=,其中能构成直角三角形的有( )A .1个B .2个C .3个D .4个14.以下四组代数式作为ABC V 的三边:①345n n n ,,(n 为正整数);②12n n n ++,,(n 为正整数);③22121n n n +-,,(2n ³,n 为正整数);④22222m n mn m n -+,,(m n >,m ,n 为正整数).其中能使ABC V 为直角三角形的有( )A .0组B .1组C .2组D .3组【答案】D【分析】根据勾股定理的逆定理对各选项进行计算判断即可.【解析】解:①中222234255n n n n +==()()(),能构成直角三角形,故符合要求;②中,222221222144n n n n n n n =+++¹++=++()(),不能构成直角三角形,故不符合要求;③中222422212211n n n n n ++-=+=+()()(),能构成直角三角形,故符合要求;④中2222422422222m n mn m m n n m n +=++=+-()()(),能构成直角三角形,故符合要求.∴能使ABC V 为直角三角形的有3组,故选:D .【点睛】本题考查了勾股定理的逆定理,完全平方公式.解题的关键在于正确的运算.15.下列命题①如果a b c 、、为一组勾股数,那么444a b c 、、仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12、25、7,那么此三角形必是直角三角形;④一个等腰直角三角形的三边a b c 、、,(ab c >=),那么222::2:1:1a b c =,其中正确的是( )A .①②B .①③C .①④D .②④题型五 勾股定理与数轴上的实数例题16.如图,在数轴上点A 表示的实数是( )A B C D ∵3,1OC BC ==∴223110OA OB ==+=,17.如图,OA OB =,(1)写出数轴上点A 表示的数;(2)比较点A 表示的数与 1.5-的大小;(3)由勾股定理得:2222=+=+OC OH CH以O为圆心,OC长为半径画弧,交x轴的正半轴于点18.如图,在数轴上以1个单位长度画一个正方形,以原点为圆心,以正方形的对角线长为半径画弧,与正半轴的交点为B,且点B表示的是一个无理数,因此我们得出一个结论.(1)点B表示的数为_________;得出的结论是:_________与数轴上的点是一一对应的.(2)若将图中数轴上标的A ,C ,D 3和p -对应起来,则点A 表示的实数为_________,点C 表示的实数为_________,点D 表示的实数为_________.例题19.如图,ABC V 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD AC ^于点D ,则BD 的长为( )A B 5C 5D .45【答案】C【分析】根据图形和三角形的面积公式求出ABC V 的面积,根据勾股定理求出AC ,根据三角形的面积公式计算即可.【解析】解:如图,ABCV的面积12BC =´由勾股定理得,AC=则1522BD´´=,20.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是( )A.B.C.D.故选A .【点睛】本题考查勾股定理的逆定理,熟知如果三角形的三边长a b c ,,满足222+=a b c ,那么这个三角形就是直角三角形是解题关键.21.如图所示,在44´的正方形网格中,ABC V 的顶点都在格点上,下列结论错误的是( )A .60CBA Ð=°B .5AB =C .90ACB Ð=°D .BC =例题22.如图,图中的三角形为直角三角形,已知正方形A 和正方形B 的面积分别为25和9,则正方形C 的面积为 .【答案】34【分析】根据题意,得出90EDF Ð=°,再根据勾股定理,得出222DE DF EF +=,再结合正方形的面积,得出22234EF DE DF =+=,进而即可得出正方形C 的面积.【解析】解:如图,由题意得90EDF Ð=°,∴222DE DF EF +=,∵四边形都是正方形,∴2A S DE =正边形,2B S DF =正边形,2C S EF =正边形,∵正方形A 、B 的面积分别为25和9,∴225DE =,29DF =,∴22234EF DE DF =+=,∴正方形C 的面积为:34.故答案为:34.【点睛】本题考查了勾股定理的几何应用,熟知勾股定理是解题的关键.巩固训练23.如图,1S 、2S 、3S 分别是以Rt ABC △的三边为直径所画半圆的面积,其中110S p =,26S p =,则3S = .24.如图,五个正方形放在直线MN 上,正方形A 、C 、E 的面积依次为3、5、4,则正方形B 、D 的面积之和为( )A .11B .14C .17D .20【答案】C 【分析】如图:由题意可得90ABC ACE CDE Ð=Ð=Ð=°,2223,5,A C B S AB S DE S AC =====,AC CE =,再根据全等三角形和勾股定理可得538B C A S S S =+=+=,同理可得549D C E S S S =+=+=,最后求正方形B 、D 的面积之和即可.【解析】解:如图:由题意可得:90ABC ACE CDE Ð=Ð=Ð=°,2223,5,A C B S AB S DE S AC =====,AC CE=∴90,90,BAC ACB DCE ACB Ð+Ð=°Ð+Ð=°∴BAC DCE Ð=Ð,∴ABC CDE @V V ,∴DE BC =,∵90ABC Ð=°,∴222AC BC AB =+,∴222AC DE AB =+,即538B C A S S S =+=+=,同理:549D C E S S S =+=+=;∴8917D B S S +=+=.故选C .【点睛】本题主要考查了勾股定理、正方形的性质、全等三角形的判定与性质,发现各正方形之间的面积关系是解答本题的关键.25.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、4、1、3,则最大的正方形E 的面积是( )A .11B .47C .26D .35【答案】D 【分析】如图,根据勾股定理分别求出F 、G 的面积,再根据勾股定理计算出E 的面积即可.【解析】解:如图,由勾股定理得,正方形F的面积=正方形A的面积+正方形B的面积22=+=,3425同理,正方形G的面积=正方形C的面积+正方形D的面积221310=+=,=+=,∴正方形E的面积=正方形F的面积+正方形G的面积251035故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么222a b c.+=26.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外正方形②和D¢,…,依次类推,若正方形①的面积为64,则正方形⑤的面积为()A.2B.4C.8D.16例题27.已知a ,b ,c 是ABC V 中A Ð,B Ð,C Ð的对边,下列说法正确的有( )个①若90C Ð=°,则2a +22b c =;②若90B Ð=°,则222a c b +=;③若90A Ð=°,则2b +22c a =;④总有2a +22b c =.A .1B .2C .3D .428.在Rt ABC △中,斜边2BC =,则222AB AC BC ++的值为( )A .4B .6C .8D .无法计算【答案】C【分析】根据勾股定理可知222BC AB AC =+,进而可知22222A C B C C B A B BC +=++.【解析】解:∵在Rt ABC △中,斜边为BC ,∴222BC AB AC =+,∵2BC =,∴224AB AC =+,∴22222448B AB AC BC BC C +=+=++=,故选C .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.29.如图,ABC V 中,90BAC Ð=°,点A 向上平移后到A ¢,得到A BC ¢V .下面说法错误的是( )A .ABC V 的内角和仍为180°B .BAC BAC ¢Ð<ÐC .222AB AC BC +=D .222A B A C BC ¢¢+<30.如图,在ABC V 中,AB AC >,AH BC ^于H ,M 为AH 上异于A 的一点,比较AB AC -与MB MC -的大小,则AB AC -( )MB MC -.A.大于B.等于C.小于D.大小关系不确定【答案】C【分析】由题意得,AB2=AH2+BH2,AC2=AH2+HC2,则AB2−AC2=BH2−HC2,同理有MB2−MC2=BH2−HC2,则AB2−AC2=MB2−MC2.再根据平方差公式即可求解.【解析】解:∵AH⊥BC,有AB2=AH2+BH2,AC2=AH2+HC2,∴AB2−AC2=BH2−HC2,又∵MH⊥BC,同理有MB2−MC2=BH2−HC2,∴AB2−AC2=MB2−MC2,即(AB+AC)(AB−AC)=(MB+MC)(MB−MC),又∵M点在△ABC内,∵AB+AC>MB+MC,则AB−AC<MB−MC.故选C.【点睛】本题考查了勾股定理,解题的关键是熟知勾股定理及平方差公式的应用.题型九 勾股定理的证明方法例题31.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是()A.B.C.D.【答案】D32.我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称之为“赵爽弦图”.现在勾股定理的证明已经有400多种方法,下面的两个图形就是验证勾股定理的两种方法,在验证著名的勾股定理过程,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.在验证过程中它体现的数学思想是()A.函数思想B.数形结合思想C.分类思想D.方程思想【答案】B【分析】根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.【解析】解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想,故选:B.【点睛】本题考查了勾股定理的证明,掌握根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.33.勾股定理又称毕达哥拉斯定理、商高定理、新娘座椅定理、百牛定理等,是人类早期发现并证明的重要数学定理之一,大约有五百多种证明方法,我国古代数学家赵爽和刘徽也分别利用《赵爽弦图》和《青朱出入图》证明了勾股定理,以下四个图形,哪一个是赵爽弦图()A .B .C .D .34.如图,在四边形ABDE 中,AB DE ∥,AB BD ^,点C 是边BD 上一点,BC DE a ==,CD AB b ==,AC CE c ==.下列结论:①ABC CDE ≌△△;②A C C E ^;③四边形ABDE 的面积是222121b ab a ++;④()2221112222a b c ab +-=´;⑤222+=a b c .其中正确的结论个数是( )A .2B .3C .4D .5例题35.如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,断落的木杆与地面形成45°角,则木杆原来的长度是( )A.8米B.(8+米C.16米D.24米^,一架云梯AB长为25米,顶端A靠在墙AC上,此时云梯底端B与墙角C距离为7 36.如图,AC BC米,云梯滑动后停在DE的位置上,测得AE长为4米,则云梯底端B在水平方向滑动的距离BD为()A.4米B.6米C.8米D.10米37.如图所示是一个圆柱形饮料罐底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度x (罐壁厚度和小圆孔大小忽略不计)范围是( )A .1213x ≤≤B .1215x ££C .512x ££D .513x ££【答案】A 【分析】由题意得当吸管与底面圆垂直时,吸管在罐内部分a 的长度x 为最小,即为12,当吸管与底面圆的一端重合时,吸管在罐内部分a 的长度x 为最大,根据勾股定理可进行求解.【解析】解:由题意得:当吸管与底面圆垂直时,吸管在罐内部分a 的长度x 为最小,即为12,38.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .26【点睛】本题考查平面展开图形最短路线问题以及勾股定理得应用;解题关键在于根据题意画出正确的平面展开图.39.某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米30元,请你帮助计算一下,铺完这个楼道至少需要元.40.在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破,已知点C与公路上的停靠站A的距^,如图,为了安全起见,爆破点C周围离为300米,与公路上另一停靠站B的距离为400米,且CA CB250米范围内不得进入,问在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?请通过计算进行说明.∴在Rt ABC △中,400AB =∵1122AB CD BC AC ×=×,41.某条道路限速80km /h ,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了2s ,小汽车到达B 处,此时测得小汽车与车速检测仪间的距离为50m .(1)求BC 的长;(2)这辆小汽车超速了吗?【答案】(1)40m(2)没有超速.【分析】(1)Rt ABC △中,有斜边AB 的长,有直角边AC 的长,那么根据勾股定理即可求出BC 的长;例题42.如图,有一块直角三角形纸片,两直角边9cm AC =,12cm BC =,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合.(1)求EB 的长;(2)求CD 的长.43.如图,在长方形ABCD 中,将长方形沿EF 折叠,使点C 的对应点与点A 重合,点D 的对应点为点G .(1)求证:AE AF =;(2)若48AB BC ==,,求ABE V 的面积.【答案】(1)见解析(2)ABE V 的面积为6.【分析】(1)根据平行线的性质以及折叠的性质证明AFE AEF Ð=Ð,再根据等角对等边即可证明AE AF =;(2)由折叠的性质得AE CE =,设AE CE x ==,在Rt ABE △中,建立方程,进一步计算即可求解.【解析】(1)证明:∵长方形ABCD 中,∴AD BC ∥,∴Ð=ÐAFE CEF ,由折叠的性质得AEF CEF Ð=Ð,∴AFE AEF Ð=Ð,44.如图,在ABC V 中,9068ACB AC BC Ð=°==,,.(1)如图(1),把ABC V 沿直线DE 折叠,使点A 与点B 重合,求BE 的长;(2)如图(2),把ABC V 沿直线AF 折叠,使点C 落在AB 边上G 点处,请直接写出BF 的长.45.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP D ,形成如下四种情形,设DP x =,ADP D 和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP D 后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?【答案】(1)32.8y =;(2)当5DP =时,点D 恰好落在BC 边上,这时25y =.【分析】(1)根据折叠或者轴对称的性质,找到数量关系,运用方程思想设未知数,结合勾股定理解答;(2)同样根据轴对称的性质, 找到数量关系,运用方程思想设未知数,结合勾股定理解答;【解析】解:(1)由题意可得,DAC D AC ACE¢Ð=Ð=Ð∴AE CE =46.如图,在ABC V 中,90BAC Ð=°,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF Ð=°,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ^,理由见解析∵FAO AFO AOF Ð+Ð+Ð∴90FAO DCO Ð=Ð=°,∵ABC V 是等腰直角三角形,∴12BH CH AH BC ===∴6DH =,由勾股定理得,AD =∴90AMD DNE Ð=°=Ð,同理(2)可知,4AM =,MD ∵90ADM EDN EDN Ð+Ð=°=Ð∴ADM DEN Ð=Ð,∵90AMD DNE Ð=°=Ð,ADM Ð。
勾股定理(10个考点梳理+题型解读+提升训练)(原卷版)24-25学年八年级数学上学期期中考点
勾股定理(10个考点梳理+题型解读+提升训练)【清单01】勾股定理直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为,斜边长为,那么.注意:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:a b ,c 222a b c +=,, .运用:1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.利用勾股定理,作出长为的线段【清单02】勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.【清单03】勾股定理逆定理 222a c b =-222b c a =-()222c a b ab =+-1.定义:如果三角形的三条边长,满足,那么这个三角形是直角三角形.注意:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.2.如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.注意:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.【清单04】勾股数像 15,8,17 这样,能够成为直角三角形三条边长的三个正整数,称为勾股数 。
勾股数满足两个条件:①满足勾股定理 ②三个正整数【清单05】勾股定理应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【考点题型一】一直直角三角形的两边,求第三边长【典例1】已知一直角三角形两直角边的长分别为9,12,则它的斜边长为( )A .15B .16C .17D .25【变式1-1】如图,在△ABC 中,∠C =90°,AC =8,AB =10,则BC 的长为( )a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ¹+222a b c +<222a b c +>cA.6B C.24D.2【变式1-2】如图,一个零件的形状如图所示,已知∠CAB=∠CBD=90°,AC=3cm,AB=4cm,BD=12cm,则CD长为()cm.D.15A.5B.13C.1445【变式1-3】如图,∠C=∠ABD=90∘,AC=4,BC=3,BD=12,则AD的长等于.【考点题型二】等面积法斜边上的高【典例2】如图,在Rt△ABC中,∠ACB=90°,若AC=6,CB=8.(1)求AB的长;(2)求AB边上的高CD是多少?【变式2-1】已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的高长为()A.52B.6C.132D.6013【变式2-2】如图,在△ABC中,∠ACB=90°,CD是高,AB=4,AC=2,则CD的长为.【变式2-3】在△ABC中,∠ACB=90°,AC=12,BC=5,则高CD=.【考点题型三】作无理数的线段【典例3】如图,在数轴上点A表示的数为a,则a的值为()A B.―1C.―1+D.―1―【变式3-1】如图,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,DC长为半径作弧,与数轴正半轴交于点A,则点A表示的是()A B+1C1D【变式3-2】如图,OC=2,BC=1,BC⊥OC于点C,连接OB,以点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A B.C―2D.2―【变式3-3】如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A3B.3―C3D.3―【考点题型四】勾股定理的证明【典例4】用图1所示的四个全等的直角三角形可以拼成图2的大正方形.请根据信息解答下列问题:(1)请用含a,b,c的代数式表示大正方形的面积.方法1:______.方法2:______.(2)根据图2,求出a,b,c之间的数量关系.(3)如果大正方形的边长为10,且a+b=14,求小正方形的边长.【变式4-1】下面四幅图中,能证明勾股定理的有()A.一幅B.两幅C.三幅D.四幅【变式4-2】勾股定理在数学和许多其他领域中都有广泛的应用,勾股定理是一个非常重要的数学定理,它在几何学、三角学、物理学、工程学等多个领域都有重要的应用.关于勾股定理的证明方法到现在为止有500多种,勾股定理常见的一些证明方法是:几何证明、代数证明、向量证明、复数证明、面积证明等.当两个全等的直角三角形按图1或图2摆放时,都可以用“面积法”来证明,以下是利用图1证明勾股定理的完整过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接BD ,过点D 作DF ⊥BC 交BC 延长线于点F ,则DF =EC =b ―a∵S 四边形ADCB =S △ACD +S △ABC =12b 2+12ab 又∵S 四边形ADCB =S △ADB +S △DCB =12c 2+12a (b ―a )∴∴12b 2+12ab =12c 2+12a (b ―a )∴a 2+b 2=c 2请参照上述证明方法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB =90°,求证:a 2+b 2=c 2.【变式4-3】我国是最早了解勾股定理的国家之一,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示“赵爽弦图”(边长为c 的大正方形中放四个全等的直角三角形,两直角边长分别为a ,b ,斜边长为c ).(1)如图1,请用两种不同方法表示图中空白部分面积.方法1:S 阴影=______;方法2:S 阴影=______;根据以上信息,可以得到等式:______;(2)小亮将“弦图”中的4个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;(3)如图3,将图2的2个三角形进行了运动变换,若a=6,b=3,求阴影部分的面积.【考点题型五】直角三角形的判定【典例5】下列长度的三条线段,能构成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.8,12,13【变式5-1】以下列各组数据为三角形三边,能构成直角三角形的是()A.4,8,7B.5,12,14C.2,2,4D.7,24,25【变式5-2】下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A B.1,C.6,7,8D.2,3,4【变式5-3】下列几组数中,不能构成直角三角形的是()A.9,12,15B.15,36,39C.10,24,26D.12,35,36【考点题型六】勾股定理的逆定理的运用【典例6】如图,一块四边形的空地,∠B=90°,AB的长为9m,BC的长为12m,CD的长为8m,AD的长为17m.为了绿化环境,计划在此空地上铺植草坪,若每铺植1m2草坪需要花费50元,则此块空地全部铺植草坪共需花费多少元?【变式6-1】绿都农场有一块菜地如图所示,现测得AB=12m,BC=13m,CD=4m,AD=3m,∠D=90°,求这块菜地的面积.【变式6-2】定义:顶点都在网格点上的多边形叫格点多边形.如图,在正方形网格中,每个小正方形的边长为1,四边形ABCD的每一个顶点都在格点上,(1)求∠ABC的度数;(2)求格点四边形ABCD的面积.【变式6-3】如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.【考点题型七】勾股数的应用【典例7】勾股数,又名毕氏三元数,则下列各组数构成勾股数的是( )A .13,14,512B .1.5,2,2.5C .5,15,20D .9,40,41【变式7-1】下列各组数中,是勾股数的是( )A .13,14,15B .3,4,7C .6,8,10D .12【变式7-2】下列数组是勾股数的是( )A .2,3,4B .0.3,0.4,0.5C .5,12,13D .8,12,15【变式7-3】下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .12【考点题型八】构造直角三角形解决实际问题【典例8-1】如图,一架2.5m 长的梯子斜靠在墙上,此时梯足B 距底端O 为0.7m .(1)求OA 的长度.(2)如果梯子下滑0.4m ,则梯子滑出的距离是否等于0.4m ?请通过计算来说明理由.【典例8-2】小强和小伟都喜欢放风筝.一天放学后他们互相配合又放起了风筝(如图所示),小伟想测量风筝的铅直高度CE ,于是他进行了如下测量:①测得小强牵线的手到风筝的水平距离BD 为15m ;②根据小强手中剩余线的长度计算出风筝线BC (假设BC 是直的线)的长为39m ;③小强牵线的手离地面的距离DE 为1.5m .(1)求此时风筝的铅直高度CE.(2)若小强想使风筝沿CD方向下降16m(不考虑其他因素),则他应该收线多少米?【典例8-3】台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?【变式8-1】一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm,内壁高8cm.若这支铅笔在笔筒外面部分长度是5cm,则这支铅笔的长度是()cm.A.10B.15C.20D.25【变式8-2】如图是台阶的示意图,若每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB的长度是()A.185cm B.195cm C.205cm D.215cm【变式8-3】如图,庭院中有两棵树,小鸟要从一棵高10m的树顶飞到一棵高4m的树顶上,两棵树相距8m,则小鸟至少要飞米.【变式8-4】如图,大风把一棵树刮断,量得AC=4m,BC=3m,则树刮断前的高度为m.【变式8-5】我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是尺【变式8-6】如图,开州大道上A,B两点相距14km,C,D为两商场,DA⊥AB于A,CB⊥AB于B.已知DA=8km,CB=6km.现在要在公路AB上建一个土特产产品收购站E,使得C,D两商场到E站的距离相等,(1)求E站应建在离A点多少km处?(2)若某人从商场D以5km/h的速度匀速步行到收购站E,需要多少小时?【变式8-7】某市夏季经常受台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,当AC⊥BC时,A点到B,C两点的距离分别为500km和300km,以台风中心为圆心周围250km以内为受影响区域.(1)求BC;(2)海港C受台风影响吗?为什么?【典例9】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD 折叠,使点C落在边AB的C′点.(1)求DC′的长度;(2)求△ABD的面积.【变式9-1】如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH ,则线段BE 的长为( )A .53B .4C .52D .5【变式9-2】如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为( )A .3cmB .4cmC .3.5cmD .5cm【变式9-3】如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,求EC 的长.【考点题型十】面展开图-最短路径问题【典例10-1】如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 .【典例10-2】如图,圆柱形杯子容器高为18cm,底面周长为24cm,在杯子内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子外壁,离杯子上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【变式10-1】临汾是帝尧之都,有着尧都之称.尧都华表柱身祥云腾龙,顶蹲冲天吼,底座浮雕长城和黄河壶口瀑布,是中华民族历史悠久、文化灿烂的标志.如图,在底面周长约为6米且带有层层回环不断的云朵石柱上,有一条雕龙从柱底沿立柱表面均匀地盘绕2圈到达柱顶正上方(从点A到点C,B为AC 的中点),每根华表刻有雕龙的部分的柱身高约16米,则雕刻在石柱上的巨龙至少为()A.20米B.25米C.30米D.15米【变式10-24cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9B.+6C.D.12【变式10-3】如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为cm.【变式10-4】如图,圆柱的底面周长是10cm,圆柱高为12cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为.【变式10-5】如图,是一个三级台阶,它的每一级的长、宽,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,则蚂蚁沿着台阶面爬到B点的最短路程是.【变式10-6】如图,学校有一块长方形花圃,有少数人为了走“捷径”,在花圃内走出一条不文明的“路”,其实他们仅仅少走了m,却踩伤了花草.【变式10-7】如图,在一个边长为6cm的正方形纸片ABCD上,放着一根长方体木块,已知该木块的较长边与AD平行,横截面是边长为的正方形,一只蚂蚁从点A爬过木块到达蜂蜜C处需爬行的最短路程是cm.。
完整版)勾股定理知识点与常见题型总结
完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
初中数学:勾股定理全章知识点总结大全及重点题型
初中数学:勾股定理全章知识点总结⼤全及重点题型基础知识点1:勾股定理 直⾓三⾓形两直⾓边a、b的平⽅和等于斜边c的平⽅。
(即:a2+b2=c2)要点诠释:勾股定理反映了直⾓三⾓形三边之间的关系,是直⾓三⾓形的重要性质之⼀,其主要应⽤:(1)已知直⾓三⾓形的两边求第三边(2)已知直⾓三⾓形的⼀边与另两边的关系,求直⾓三⾓形的另两边(3)利⽤勾股定理可以证明线段平⽅关系的问题2:勾股定理的逆定理如果三⾓形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三⾓形是直⾓三⾓形。
要点诠释:勾股定理的逆定理是判定⼀个三⾓形是否是直⾓三⾓形的⼀种重要⽅法,它通过“数转化为形”来确定三⾓形的可能形状,在运⽤这⼀定理时应注意:(1)⾸先确定最⼤边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直⾓的直⾓三⾓形(若c2>a2+b2,则△ABC是以∠C为钝⾓的钝⾓三⾓形;若c2<a2+b2,则△ABC为锐⾓三⾓形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直⾓三⾓形的性质定理,⽽其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直⾓三⾓形有关。
4:互逆命题的概念 如果⼀个命题的题设和结论分别是另⼀个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中⼀个叫做原命题,那么另⼀个叫做它的逆命题。
5:勾股定理的证明 勾股定理的证明⽅法很多,常见的是拼图的⽅法 ⽤拼图的⽅法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变②根据同⼀种图形的⾯积不同的表⽰⽅法,列出等式,推导出勾股定理规律⽅法指导1.勾股定理的证明实际采⽤的是图形⾯积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直⾓三⾓形的三边的数量关系,可以⽤于解决求解直⾓三⾓形边边关系的题⽬。
3.勾股定理在应⽤时⼀定要注意弄清谁是斜边谁直⾓边,这是这个知识在应⽤过程中易犯的主要错误。
勾股定理知识点与题型总结大全
CA BD 勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D. (1)求AB 的长; (2)求CD 的长.类型二:面积问题【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。
(2)求∠ADC 的度数。
【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______。
【练习3】如图字母B 所代表的正方形的面积是( )A. 12 B 。
13 C 。
144 D 。
194类型三:距离最短问题【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?ABCD7cmBD EB16925A BCDL【练习1】如图,一圆柱体的底面周长为20cm ,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.【练习2】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。
他要完成这件事情所走的最短路程是多少?类型四:判断三角形的形状【例题】如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,判断ΔABC 的形状.【练习1】已知△ABC 的三边分别为m 2-n 2,2mn ,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形。
导图系列(3-4):八年级数学(北师大版)各章知识点思维导图集合
第三章 图形的平移与旋转
第四章 因式分解 第五章 分式与分式方程
第六章 平行四边形
任它本身;负数的绝对值是它的相反数;0 的绝对值是 0。(反之,若 5 绝对值
性质 |a|=a,则 a≥0;若|a|=-a,则 a≤0。)
互为相反数的两个数的绝对值相等。
两个负数比较大小,绝对值大的反而小。
如果两个数只有符号不同,那么称其中一个数为另一个的相反数,也称这两个数互
性质 负数。
一般地,形如 的代数式叫做二次根式,a 叫做被开方数。
二次根 一般地,被开方数不含分母,也不含能开得尽方的因数或因式的二次根式叫最简二次根式。
11
式
·
( , ),
(,)
第三章 位置与坐标
序号 1
知识点 确定位置
第三章 位置与坐标
内容 在平面内,确定一个物体的位置一般需要 2 个数据。 在平面内,两条互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条 数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平 的数轴叫做 x 轴或横轴,垂直的数轴叫做 y 轴或纵轴,x 轴和 y 轴统称为坐标轴,它们的 公共原点 O 称为直角坐标系的原点。建立了平面直角坐标系,平面内的点就可以用一组有 序实数对(a,b)来表示了。 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一 象限,其它三部分按逆时针方向依次叫做第二、三、四象限。坐标轴上的点不在任何一个 象限内。
性质 一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算数 定义 一般地,如果一个正数 x 的平方等于 a, ,那么这个正数 x 就叫做 a 的算数平方根。 9
平方根 性质 一个正数的算数平方根是正数;0 的算数平方根是 0;负数没有算数平方根。
数学八年级上册第一章思维导图
数学八年级上册第一章思维导图
勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
同时勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中相似比为1:1的特殊情况)。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此:全等三角形的对应边相等,对应角相等。
以下是思维导图:
全等三角形的判定定理:
⑴边边边:三边对应相等的两个三角形全等。
⑵边角边:两边和它们的夹角对应相等的两个三角形全等。
⑶角边角:两角和它们的夹边对应相等的两个三角形全等。
⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等
1、其中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测相等的距离。
以及相等的角,可以用于工业和军事。
最新人教版八年级下学期数学《勾股定理》知识点归纳
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确
定三角形的可能形状,在运用这一定理时,可用两小边的平方和
2
2
2
a b 与较长边的平方 c 作比较,若它们
相等时,以 a , b , c 为三边的三角形是直角三角形;若
2
a
2
b
2
c ,时,以
a , b , c 为三边的三角形是
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
D C
H
E
G
F
b
a
A
c
B
b a
c
a
c
b
b
c
a
c a
b
A aD
cb
c
E
a
B
bC
方法一: 4S
S正方形 EFGH
S正方形 ABCD,4 1 ab (b a) 2 c2 ,
2
化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正 方形的面积.
b) , S梯形
2S ADE
S ABE
1 2 ab
1 c2 ,化简得证
22
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝
角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形
4. 勾股定理的应用
①已知直角三角形的任意两边长,求第三边
1.勾股定理 :直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为 2. 勾股定理的证明
a , b ,斜边为 c ,那么 a2 b2 c2
人教版八年级下学期《勾股定理》知识点归纳和题型归类
勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b2222. ①②方142⨯四个4S =大正方形面积为222()2S a b a ab b =+=++,所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边=,22b c =,那”来确若它们b ,c 为三a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数)(n 线)求解.8.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =,,是① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用 例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =。
勾股定理知识点归纳和题型归类
勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理 :直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为 222a ,b ,斜边为c ,那么 a b c2 .勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一: 4 SS正方形 EFGHS 正方形 ABCD ,4 1 ab (ba) 2c 2,化简可证.2DCbaAaDHacbcbEGcFcbabcac EcBaAabBbC方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为S 41ab c 2 2ab c 22大正方形面积为 S ( a b)2 a 2 2ab b 2 ,所以 a 2 b 2 c 2方法三:S 梯形1 ( a b) (a b),S 梯形 2S ADES ABE2 1 ab 1 c 2,化简得证 22 23 .勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形, 对于锐角三角形和钝角三角形的三边就不具有这一特征, 因而在应用勾股定理时, 必须明了所考察的对象是直角三角形4 .勾股定理的应用①已知直角三角形的任意两边长,求第三边在 ABC 中, C 90 ,则 ca 2 b 2 , b c 2 a 2 , ac 2 b 2②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 .勾股定理的逆定理如果三角形三边长 a , b , c 满足 a 2 b 2 c 2 ,那么这个三角形是直角三角形,其中c 为 斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形 ”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和 a 2 b 2 与较长边的平方 c 2 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若a 2 b2 c2,时,以 a ,b ,c 为三边的三角形是钝角三角形;若 a 2 b2 c2,时,以 a ,b ,c为三边的三角形是锐角三角形;②定理中 a , b , c 及a2 b 2 c2 只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c 满足 a2 c2 b2,那么以 a , b , c 为三边的三角形是直角三角形,但是 b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6 .勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即 a 2 b 2 c2中, a ,b ,c 为正整数时,称 a , b , c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13 ; 7,24,25 等③用含字母的代数式表示n 组勾股数:丢番图发现的:式子m 2 n 2 ,2mn, m 2 n 2 (m n 的正整数)毕达哥拉斯发现的: 2n 1,2n2 2 ,2n2 2 1( n 1的整数)n n柏拉图发现的: 2 , 2 1,n 2 1( n 1的整数)n n7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9 .勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.题型一:直接考查勾股定理例 1.在ABC中, C 90 .⑴已知 AC 6 , BC 8.求 AB 的长⑵已知 AB 17, AC 15,求BC的长题型二:应用勾股定理建立方程例 2.⑴在ABC 中,ACB 90 , AB 5 cm, BC 3 cm, CD AB 于 D ,CD=⑵已知直角三角形的两直角边长之比为3: 4 ,斜边长为 15 ,则这个三角形的面积为⑶已知直角三角形的周长为30 cm ,斜边长为 13 cm ,则这个三角形的面积为例 3.如图ABC 中,C90,1 2,CD , BD 2.5 ,求AC的长CD1A 2BE例 4.如图 Rt ABC ,C 90 AC 3,BC 4 ,分别以各边为直径作半圆,求阴影部分面积CAB题型三:实际问题中应用勾股定理例 5.如图有两棵树,一棵高 8 cm ,另一棵高 2 cm ,两树相距 8 cm ,一 只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了m 。
勾股定理中考章节复习知识点+经典题型分析总结)
AB Ca b c弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤 ① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(完整版)勾股定理思维导图+题型总结
(一)勾股定理1:勾股定理 如果直角三角形的两条直角边长分别为a 、b ,斜边长为c,那么a 2+b 2=c 2我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.要点诠释:2、勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c,b,a )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 3:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是 ①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGHS S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证cbaHG F EDCBAa bcc baED CBA bacbac cabcab 弦股勾4:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)5、注意:(1)勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)勾股定理2 2 21:勾股定理如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2我国古代学者把直角三角形较短的直角边称为“勾”要点诠释:2、勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:1)已知直角三角形的两边求第三边(在ABC中, C 90 ,则 c a2 b2,b c2 a2,a c2 b2)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题3:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:b方法14S S S4 ab (b a)4S S正方形EFGH S正方形ABCD,222c,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.a四个直角三角形的面积与小正方形面积的和为S 41ab c2222ab c2 2 22 2 2大正方形面积为S (a b) a 2ab b 所以a2 b2 c2S梯形2(a b) (a b),S梯形2S ADE S ABE12 ab12 c较长的直角边称为“股”,斜边称为“弦”4:勾股数B C①能够构成直角三角形的三边长的三个正整数称为勾股数,即 时,称 a,b, c为一组勾股数3,4,5;6,8,10;5,12,13; 7,24,25 ; 8,15,17 ; 9,40,41 等222n 1,2n 2n,2n 2n 1(n为正整数)5、注意:(1)勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
(2)勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的 题目。
3)勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误 (4)推理格式:∵△ ABC 为直角三角形 ∴AC 2+BC 2=AB 2. (或 a 2+b 2=c 2)二)勾股定理的逆定理如果三角形的三边长分别为:a 、b 、c ,且满足 a2+b2=c2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法, 它通过“数转化为形” 来 确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为: c ;(2)验证 c2 与 a2+b2是否具有相等关系,若 c2=a2+b2,则△ ABC 是以∠ C 为直角的直角三角形(若 c2>a2+b2,则△ ABC 是以∠ C 为钝角的钝角三角形;若 c2<a2+b2,则△ ABC 为锐角三角形)。
222(定理中 a ,b ,c 及a 2 b 2 c 2只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,222c 满足 a 2 c 2 b 2,那么以 a ,b ,c 为三边的三角形是直角三角形,但是 b 为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;222a 2b 2c 2中,a ,b ,c 为正整数③用含字母的代数式表示 n组勾股数: 22n 1,2n,n 1( n 2, n 为正整数);②记住常见勾股数可以提高解题速度,如2 2 2m n ,2 mn,m2n(m n, m, n为正整数)联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
六、随堂练习1.在 Rt ABC 中, C 90 , A 、 B 、 C 的对边分别为 a 、b 和c⑴若 a 2,b 4,则 c =;斜边上的高为 . ⑵若b 3,c 4 ,则a =.斜边上的高为 .a3⑶若 b ,且c 2 10 ,则a =,b ________________________________ .斜边上的高为 .b1⑷若 c 2,且a 3 3,则c =,b ________________________________.斜边上的高为 .2.正方形的边长为 3,则此正方形的对角线的长为 3.正方形的对角线的长为 4,则此正方形的边长为 .4.有一个边长为dm 50 的正方形洞口,想用一个圆盖去盖住这个洞口,求圆的直径至少多长5.一旗杆离地面 6m 处折断,旗杆顶部落在离旗杆底部 8m 处,求旗杆折断之前有多高? 6. 如图,一个 3m长的梯子 AB 斜靠在一竖直的墙 AO上,这时为2.5m ,如果梯子顶端 A 沿墙下滑 0.5m ,那么梯子底端 B 也外移 勾股定理典型例题及专项训练 专题一:直接考查勾股定理1.已知等腰三角形腰长是 10,底边长是 16,求这个等腰三角形的面积。
2、已知:如图,∠ B=∠D=90°,∠ A=60°, AB=4, CD=2。
求:四边形 ABCD 的面A积。
AO的距离0.5m 吗?B C3:在 ABC 中, AB=13,AC=15,高 AD=12,则 BC 的长为多少? 4:已知如图,在△ ABC 中,∠ C=60°, 高,求 BC 的长。
5、如图,在 Rt △ABC 中,∠ ACB=90°, BC=a ,CD=h 。
2、如图是 2002年 8 月在北京召开的第 24届国际数学家大会会标中的图案,其中四边形 ABCD 和 EF 都是正方形 . 证:△ ABF ≌△DAECD ⊥AB 于 D ,设 AB=c , AC=b ,12求证:( 1) a1b 21h 2 (2)a bch3)以 a b , h ,ch为三边的三角形是直角三角形练习6. 如图,△ ABC 中, AB=AC ,∠A=45o ,AC 的垂直平分线分别交 AB 、AC 于 D 、E ,若 CD=1,则 BD 等 于()A .1??B . ?C . ??D .7. 已知一直角三角形的斜边长是 2,周长是 2+ 6 ,求这个三角形的面积.8.如图 Rt ABC , C 90 AC 3,BC 4 ,分别以各边为直径作半圆,求阴影部分面积6.如图,△ ABC 中, AB=AC=2,0 BC=32,D 是BC 上一点,且 AD ⊥AC ,求 BD 的长.7. 如图,△ ABC 中,∠ ACB=90°, AC=BC ,P 是△ ABC 内一点,满足 PA=3, 的度数.8. 已知△ ABC 中,∠ ACB=90°, AC=3,BC=4,(1)AD 平分∠ BAC,交 BC 于 D 点。
求 CD 长2)BE 平分∠ ABC,交AC 于E ,求 CE 长如图,直线l 上有三个正方形 a ,b ,c ,若a , 积分别为 5和 11,则 b 的面积为( )A)4B)6C) 16D) 55A 的AB=4 3题二勾股定理的证明的A3、图①是一个边长为(m n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图② 能验证的式子是()2 2 2 2 2A.(m n)(m n) 4mn B.(m n)(m n ) 2mn2 2 2 2 2C.(m n) 2mn m n D.(m n)(m n) m n 图图第 3 题图专题三网格中的勾股定理1、如图1,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()(A)CD、EF、GH (B)AB、EF、GH(C)AB、CD、GH(D)AB、CD、EF2、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形中,边长为无理数的边数是()A.0B.1C.2D.33、(2010 年四川省眉山市)如图,每个小正方形的边长为1,A、B、C 小正方形ABC 是的顶点,则∠ ABC的度数为()A.90°B.60°C.45°D.304、如图,小正方形边长为1,连接小正方形的三个得到,可得△ ABC,则边AC上的高为()3 2 3 5 3 54 5A. 2B. 10C. 5D. 55、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点称为格点,请以图中的格点为顶点画一个边长为3、、的三角形.所画的三角形是直角形吗?说明理由.6、如图,每个小正方形的边长是1,在图中画出面积为2 的三个形状不三角形(要求顶点在交点处,其中至少有一个钝角三角形)三角同的C'专题四实际应用建模测长1、如图(8),水池中离岸边 D 点 1.5 米的 C 处,直立长着一根芦苇,出水部分 BC 的长是 0.5米, 把芦苇拉到岸边,它的顶端 B 恰好落到 D 点,并求水池的深度 AC.2、有一个传感器控制的灯,安装在门上方,离地高 4.5 米的墙上,任何东西只要移至 5 米以内,灯就自动打开,一个身高 1.5 米的学生,要走到离门多远的地方灯刚好打开?3、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市 A 的正南方向 220 千米 B 处有一台风中心,其中心最大风 力为 12级,每远离台风中心 20千米,风力就会减弱一级, 该台风中心现正以 15 千米/时的速度沿 北偏东 30o 方向往 C 移动,且台风中心风力不变, 若城市所受风力达到或走过四级, 则称为受台风 影响.(1)该城市是否会受到这交台风的影响?请说明理由 .(2)若会受到台风影响,那么台风影响该城市持续时间有多少? (3)该城市受到台风影响的最大风力为几级? 专题五梯子问题1、如果梯子的底端离建筑物 9 米,那么 15米长的梯子可以到达建筑物的高度是多少米?2、一架方梯长 25 米,如图,斜靠在一面墙上,梯子底端离墙 7米,( 1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了 4 米,那么梯子的底端在水平方 向滑动了几米?3、如图,梯子 AB 斜靠在墙面上, AC ⊥BC ,AC=BC ,当梯子的顶端 A 沿 AC 方向下滑 x 米时,梯足 B 沿 CB 方向滑动 y 米,则 x 与y 的大小 关系是() A. x y B. x y C. x y D.不能确定专题六最短路线1、如图,学校教学楼旁有一块矩形花铺,有极少数同学为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了( )步路(假设 2 步为 1 米),却踩伤了花草.2、如图,一圆柱体的底面周长为 20 ㎝,高 AB 为 10 ㎝, BC 是上底面的直径。