生物医学金属材料及其应用

合集下载

金属配合物材料的制备及其应用

金属配合物材料的制备及其应用

金属配合物材料的制备及其应用金属配合物材料是材料学中一种重要的材料类型,它主要由金属和配体组成,在化学上具有复杂的结构和性能。

这种材料具有良好的光、电、磁性等性质,并且具有较高的生物相容性,在化学、生物医学、材料等领域应用广泛。

金属配合物材料制备的方法主要有溶液法、气相法和固相法三种。

其中,溶液法是最广泛应用的制备方法。

其基本方法是将金属离子和配体分散在溶液中,然后利用其配位反应生成金属配合物材料。

溶液法具有操作简单、生成的材料具有良好的均匀性和结晶性等特点。

气相法是指将金属原子和配体气体在适当条件下作用形成金属配合物材料。

此种方法具有生成的材料纯度高、质量均一等特点,适用于微电子技术和材料科学领域。

固相法是将金属离子和配体分散于固态体系并通过固态反应生成金属配合物材料。

此种方法适合制备内部结构较为复杂的金属配合物,确保化学反应的纯度、实现产品的高效率生产。

金属配合物材料的应用非常广泛。

以生物医学领域为例,金属配合物材料可以用作医用设备、生物传感器、药物递送系统等方面。

由于其高度的生物相容性和可控性,使其在研究、医药方面有广泛应用空间。

在化学领域,金属配合物材料的重要应用在于催化反应。

其表面能在化学反应中起到关键作用,金属配合物的多种形态和化学性质能形成多种反应模式。

这种材料广泛应用于有机重要化学品制造业,体现了在新型环保化工领域的广泛应用。

总之,金属配合物材料作为化学、生物医学和材料领域的主要研究对象,在制备、应用方面都有不错的前景。

精细化制备、改进功能特性、精准控制性能的需要,使其在新材料领域有重要的发展作用。

浅析生物医学材料的应用

浅析生物医学材料的应用

浅析生物医学材料的应用摘要:生物医学材料是当今社会医疗保健的一种高新技术产业,由于生物医学材料较其他化学材料来说毒副作用比较小,而且生物相容性是非常好的,因此,人们对生物医学材料的使用越来越广泛。

其在医学领域得到广泛应用,主要应用于各种外伤或疾病引起的组织器官破损修复,最为经典的就是假牙假皮移植,骨骼替换和神经修复。

本文将浅析生物医学材料各种分类及其应用。

关键词:医学材料;临床应用;器官修复生物医学材料是一种毒副作用较小,生物相容性比较好的具有特殊性能和特殊功能的一种医用材料,它对人的生命,组织器官是无害的。

它的发展是以提升人类卫生健康水品,疾病治疗,医疗保健为目的一种生物材料。

随着人口老龄化和中青年创伤的增长,人们对生物医学材料及成品的需求逐步增加。

过往陈旧的生物医学材料以及不足以满足人们的治疗需求,新型的生物医学材料如雨后春笋。

例如各类新型的假肢以及可以做到和人类原有的手臂相差无几,包括外形手感及功能。

下文便是对新型医学材料的介绍。

1新型医学材料的概述生物医学材料是与生物系统直接作用,用以诊断、医治或置换生物机体由疾病或外伤引起的组织器官破损以及增强组织细胞功效的材料。

1.1 医学材料的发展背景生物医学材料快速发展的原因主要有四个:人口老龄化加剧、人体组织器官寿命有限、中青年创伤增加、人民生活水平提高及健康意识的增强。

而国家政策有时也推动着产业的发展。

我国是拥有14亿人口的人口大国,人口老龄化及青年创伤高速增加,创伤住院人员已经成为仅次于恶性肿瘤即癌症的第二大住院人员。

生物医学材料存在庞大的潜在市场,特别是在国民经济的发展同时人民生活水平的不断提高,人民对生物医学材料的需求与日俱增。

以生物医学材料包裹药物,可以预测生物医学材料在癌症、白血病和老年痴呆等的治疗拥有着广阔的市场空间。

1.2 国内外发展现状我国与印度由于人口众多具有极大的市场潜力,国内的生物医学材料企业也是拔地而起,如乐普医疗、泰格医药等。

生物医药新材料的制备技术及应用前景

生物医药新材料的制备技术及应用前景

生物医药新材料的制备技术及应用前景随着科技的不断发展和生物医药行业的不断壮大,生物医药新材料的开发和制备逐渐成为了行业的热点。

生物医药新材料的研发和应用,对于推动医药行业的发展,提高人类的医疗水平,具有重要的意义。

本文将从生物医药新材料的制备技术和应用前景两个方面,详细探讨其发展现状和未来发展趋势。

一、生物医药新材料的制备技术现状1、纳米材料技术纳米材料技术是目前生物医药材料研究的前沿领域,其在医疗诊断、生物成像、药物递送等方面具有很大的应用前景。

纳米材料主要由金属、合金、氧化物、石墨烯等材料组成,具有特殊的光学、电学、磁学、热学等性质。

纳米材料在医学上的应用主要包括生物诊断、肿瘤治疗、药物递送、组织工程等多个方面。

2、仿生材料技术仿生材料技术是生物医药材料领域的另一大研究热点。

仿生材料是指能够与人体组织相容、能够模拟自然组织形态及其功能的材料。

目前,仿生材料的研究主要涉及人工心脏瓣膜、人工关节、人工骨、皮肤等。

3、生物可降解材料技术生物可降解材料是近年来生物医药材料领域的新兴研究方向,其特点是能够在人体内自行降解并排出,从而降低了对人体的伤害。

生物可降解材料主要由聚酯、聚酰胺、氨基酸等材料组成,主要应用于输液袋、缝合线、医用绷带等领域。

以上三种材料制备技术是当前生物医药材料领域的主流研究方向,其应用前景广阔,对于推动生物医药产业的发展和提升人类的医疗水平都有着重要的作用。

二、生物医药新材料的应用前景1、生物诊断领域纳米材料的应用在生物诊断领域具有潜在的市场。

利用纳米材料对人体的光学、电学、磁学等性质,可以实现对人体内部的快速、准确、无创的诊断。

例如在纳米荧光探针技术的应用中,利用纳米颗粒能够自发发光的性质,快速、高灵敏的检测出人体过敏源、细菌等有害物质的存在。

2、药物递送领域纳米材料的应用在药物递送领域也受到了广泛关注。

利用纳米材料可以让药物更好地靶向治疗,减少药物的副作用。

例如在纳米粒子药物递送技术的应用中,利用纳米颗粒可以传递药物,并通过良好的特异性与病变组织配合,实现了药物在病变处的局部治疗。

生物材料 第03章 医用金属材料

生物材料 第03章 医用金属材料

➢ 最后就是不锈钢在人体内表现为生物惰 性,表面无生物活性,植入人体后与周 边肌体组织的结合不牢固,易于松动, 有时会影响植入治疗效果。
➢ 1、引言 ➢ 2、医用不锈钢的特点 ➢ 3、医用不锈钢存在的问题和不足 ➢ 4、医用不锈钢的研究与发展
4.1 医用无Ni奥氏体不锈钢 4.2 医用不锈钢的表面改性 4.3 抗菌不锈钢
学性能;
➢ 从近年来新修订的国际标准IS05832- 9 (低N i+ N医用 奥氏体不锈钢, 对应美国标准ASTM F1586 ) 中可见, 利用N 元素来代替不锈钢中的部分Ni元素, 可显著提 高不锈钢的力学性能和耐腐蚀性能;
➢ 对比研究高N 无N i不锈钢和医用Co-Cr-Mo 合金 ( Co62-Cr28-M o6, 余为N i等)的力学性能和生物学性 能表明, 高N 无Ni不锈钢的力学性能与Co-Cr-M o合金 相近, 而其耐点蚀性能和血液相容性明显优于钴铬钼 合金, 表现出更高的点蚀点位、更长的动态凝血初凝 时间(高出约25% )和更佳的抗血小板黏附性能;
金属生物材料浸泡在体液中,而体液 含有蛋白质、有机酸(如乳酸) 、碱金属 和无机盐等。
➢ 钠、钾、钙、氯等离子均为电解质,可使金 属产生腐蚀。
➢ 蛋白质与金属间相互作用, 引起非电化学降解。
➢ 金属的不纯产生局部原电池腐蚀, 或结合处磨 损、应力集中和疲劳性断裂。
临床应用金属生物材料腐蚀问题应重点关注 口腔材料和其他种植体材料。
4.1 医用无Ni奥氏体不锈钢
➢ 在1994年颁布的欧洲议会94/27/EC标准中 , 要求植入 人体内的材料(植入材料、矫形假牙等)中的Ni含量不 应超过0.05%;
➢ 研究开发医用低Ni和无Ni奥氏体不锈钢已经成为国际 上医用不锈钢的一个主要发展趋势。其原理是利用廉 价的N 元素(或N和Mn的共同作用)代替不锈钢中昂贵 的Ni元素来稳定不锈钢的奥氏体组织结构, 从而使不 锈钢继续保持其优异的力学性能、耐腐蚀性能和生物

生物医用材料-第三次课

生物医用材料-第三次课
复旦大学化学学科学位委员会委员 中国生物材料学会理事 中国材料学会生物医学材料分会理事 中国生物医学工程学会生物材料分会委员 中国微米纳米学会理事
丁建东教授,65年生于江苏盐城。88年本科毕业于复旦大 学生命科学院生物物理专业;91年6月和95年1月分别于复 旦大学材料科学系和高分子科学系获得高分子化学与物理 专业硕士和博士学位;98年8月至99年8月于英国剑桥大学 材料系从事博士后研究;2004年8、9月在德国海德堡大学 作为高级访问学者。91年毕业留校,现为复旦大学高分子 科学系教授、博士生导师、生物医用材料课题组长, 教育部 长江特聘教授;复旦大学药学院兼职教授。 2004年起,担任聚合物分子工程教育部重点实验室主任; 2011年11月起,担任新成立的聚合物分子工程国家重点实 验室主任。
已取得学位的同学及其去向 博士
已取得学位的同学及其去向 硕士
评价力学性能最重要的指标: 抗压强度,抗拉强度,屈服强度,弹性模量,疲劳极限和断裂韧性等。
2.6 常用的生物医用金属材料
镁合金
稀土金属
磁性材料
不锈钢
医用金属 材料
贵金属及 钽铌锆
钴基合金
镍钛形状 记忆合金
钛和钛基
合金
6
2.6.1
医用不锈钢
2.1 医用金属材料概述
7
8
9
2.6.2 钴基合2.金1 医用金属材料概述
5,晶间腐蚀:发生在材料内部晶粒边界上的一种腐蚀,可导致材 料力学性能严重下降。一般可通过减少碳,硫,磷等杂质含量等手 段来改善晶间腐蚀倾向; 6,磨蚀:植入器件之间切向反复的相对滑动所造成的表面磨蚀和 腐蚀环境作用所造成的腐蚀。不锈钢的耐磨蚀能力较差,钴基合金 的耐磨蚀能力优良; 7,疲劳腐蚀:材料在腐蚀介质中承受某些应力的循环作用所产生 的腐蚀,表面微裂纹和缺陷可使疲劳磨蚀加剧。因此,提高表面光 洁度可改善这一性能; 8,应力腐蚀:在应力和腐蚀作用共同作用下出现的一种加速腐蚀 的行为。在裂纹尖端处可发生力学和电化学综合,导致裂纹迅速扩 展而造成植入器件断裂失效。钛合金和不锈钢对应力腐蚀敏感,而 钴基合金对应力腐蚀不敏感。

生物医用金属材料的研究及其应用前景

生物医用金属材料的研究及其应用前景

生物医用金属材料的研究及其应用前景随着医疗技术不断发展,生物医用金属材料的应用在各个领域都得到了极大的推广。

金属材料因其高强度、导电性、耐腐蚀性等特性成为了生物医用领域中不可替代的材料。

在人造关节、牙科修复、内部支架等医疗器械中,金属材料的应用有着不可替代的重要作用。

一、生物医用金属材料的分类生物医用金属材料按其在人体内的应用可以分为两类:内部应用金属材料和外部应用金属材料。

内部应用金属材料主要包括人造关节、植入材料、牙科修复等。

此类金属材料主要应用在人体内,因此更需要考虑生物相容性和生物安全性。

一般来说,内部应用金属材料都需要经过严格的生物相容性和生物安全性评估后才能投入使用。

此类金属材料常用的材质有钛合金、铬钼合金、钴铬合金等,这些金属材料的耐磨性和稳定性优异,能够承受人体内部的各种力量,而不会受到破坏。

外部应用金属材料主要包括医疗仪器、手术器械、医用终端设备等。

此类金属材料更多地应用在医疗环境中,具有较高的机械强度、化学稳定性和防腐性。

因此材质一般选择不易生锈的金属,如不锈钢、镍钛合金等。

二、生物医用金属材料的优点生物医用金属材料的优点在于材质的高强度、良好的生物相容性和生物安全性,以及材料的高耐磨性和稳定性。

此外还有材料导电性良好等特点,可用于将电子设备与人体内部进行连接或控制。

在人工关节的应用中,钛合金、铬钼合金和钴铬合金具有非常好的耐磨性和生物相容性,可以承受人体内部的高强度力量,因此得到了广泛的应用。

在牙科修复和植入材料中,金属材料代替了传统的牙齿修复材料,能够更好地承受人体内部的压力和力量。

三、生物医用金属材料的应用前景随着人民生活水平和医学科技的不断提升,人们对于生物医用金属材料的应用需求越来越高。

尤其是在人造关节、牙科修复、植入材料等领域有着广泛的应用前景。

而新型生物医用金属材料的研发也为生物医学领域带来了无尽的可能性,特别是对于金属材料的开发,以及在多项应用领域中的应用,都有着广阔的发展前景。

(仅供参考)生物医用金属材料

(仅供参考)生物医用金属材料

第二章生物医用金属材料◆第一节概述◆第二节生物医用金属材料的特性与生物相容性◆第三节常用的医用金属材料◆第四节医用金属材料研究进展第一节概述生物医用金属材料用于整形外科,牙科等领域。

由它制作的医疗器件植入人体,具有治疗,修复,替代人体组织或器官的功能,是生物医用材料的重要组成部分,其在医用材料中占45%,而高分子材料也占45%。

生物医用金属材料是人类最早利用的生物医用材料之一,最重要的应用有:骨折内固定板、螺钉、人工关节和牙根种植体等。

这种材料在人体内生理环境条件下长期停留并发挥其功能,其首要条件是材料必须具有相对稳定的化学性能,从而获得适当的生物相容性。

迄今为止,除医用贵金属、医用钛、钽、铌、锆等单质金属外,其他生物医用金属金属材料都是合金,其中应用较多的是:不锈钢、钴基合金、钛合金、镍钛形状记忆合金和磁性合金等。

第二节生物医用金属材料的特性与生物相容性生物医用金属材料具有优良的力学性能、易加工性和可靠性,但是金属材料很难与生物组织产生亲和,一般不具有生物活性,它们通常以相对稳定的化学性能,获得一定的生物相容性,植入生物组织后,总是以异物的形式被生物组织所包裹,使之与正常的组织隔绝。

组织反应一般根据植入物周围所形成的包膜厚度及细胞浸润数来评价。

作为生物医用金属材料,首先必须满足两个条件:1.无毒性;2.耐生理腐蚀性。

一、金属材料的毒性生物医用金属材料植入人体后,一般希望能在体内永久或半永久地发挥生理功能,所谓半永久对于金属人工关节来说至少在15年以上,在这样一个相当长的时间内,金属表面会有离子或原子因腐蚀或磨损进入周围组织内,因此,材料是否对生物组织有毒就成为选择材料的必要条件。

当然,合金化(某些有毒的金属单质与其他金属元素形成合金后),可减少甚至消除毒性。

因此合金的研制对开发新型生物医用材料具有重要意义。

另外,采用表面保护层和提高光洁度来提高抗腐蚀能力。

金属的毒性可以通过组织或细胞培养、急性和慢性毒性试验、溶血实验等来检测。

常用的生物医学材料

常用的生物医学材料
利用酶的生物信息传递功能与具有刺激响应的材料组合可形成酶传感器, 同样可形成免疫传感器、细胞传感器等生物传感器。
生 物 传 感 器
生物传感器利用生物功能性物质的分子识别功能,有选 择的检测反应物质并把各种变化转换成可测信号。高分 子刺激响应材料多制成膜,膜孔的闭张状态可由环境因 素所控制,或是高分子链的构型、构象,理化特性会对 刺激因素发生变化
常用的生物医学材料
本节介绍几种常用的生物医学金属材料、 无机生物医学材料、高分子生物医学材料,以 及最近受到人们普遍关注的、有望制造出具有 高生理功能的人工器官的杂化生物医学材料。
本节介绍几种常用的生物医学金属材料、无机 生物医学材料、高分子生物医学材料,以及最近受到 人们普遍关注的、有望制造出具有高生理功能的人工 器官的杂化生物医学材料。
一、生物医学金属材料
金属材料是生物医学 材料中应用最早的。由金 属具有较高的强度和韧性, 适用于修复或换人体的硬 组织,早在一百多年前人 们就已用贵金属镶牙。随 着抗腐蚀性强的不锈钢、 弹性模量程骨组织接近铜 铁合金,以及记忆合金材 料、复合材料等新型生物 医学金属材料的不断出现, 其应用范围也在扩大。
3.与细胞的杂化
人工材料与细胞的杂化最早用于人工血管的伪内膜法。杂化 细胞材料还可用于生物传感器,还可制造生物人工器官。
人工血管
人工仿真耳
人工髋关节
END
常用的抗凝措施是:材料表面的肝素化、亲水化、负电荷化、 化学惰性化和生物活性化:也有采取假内膜或培育一层内皮细胞的 技术措施的。对高分子材料进行分子设计改性也望可取得较好的血 液相容性。
2.药用高分子材料
高分子化合物主要的三个方面 (1)作为控制释放药物的载体。 (2)作为药物使用。 (3)作为药物制剂的辅助材料。 特别是采用智能高分子材料,可使药物释放体系 (DDS)智能化。此体系的特点是药物是否需要可由药剂 本身判断,它可感知疾病引起的化学物质及物理量变化的 信号,药剂能对信号响应并自主地控制药物的释放。

生物医用材料的研究及其应用

生物医用材料的研究及其应用

生物医用材料的研究及其应用生物医用材料指的是经过认证的材料,在生物医学领域中,在患者身体内使用,用于替代或者修复生物组织或者器官。

目前,生物医用材料的研究和应用已成为医学领域的热门话题。

生物医用材料可以作为辅助手段,有效地延长生命,提高患者的生活质量。

随着科技的发展,生物医用材料已经涉及到许多领域,例如生物医学工程、生命化学、生理学、表面化学以及材料科学等等。

这些领域的研究为生物医用材料的发展提供了无限的可能性。

目前主要的生物医用材料有金属材料、塑料材料、生物陶瓷和软组织替代材料等。

在医疗领域,生物医用材料可以用于多种用途。

一些有机材料可以被用来代替受损或者失去的人体组织。

例如:医生们常使用聚合物材料来替代受损或者生长缓慢的骨组织,而生物陶瓷则可用于制作人工髋关节和人工牙齿等。

另外,生物医用材料也可以修复或者替代心脏瓣膜、血管和大脑组织等重要器官。

生物医用材料的应用范围非常广泛,包括人类医疗保健、牙科、兽医、农业和工业等领域。

钛制人工髋关节和心瓣膜目前应用最多,具有良好的耐用性,而聚乙烯和聚丙烯等塑料材料则可以被用来制作接近无伤口的手术器械。

生物医用材料的研究一般包括生物材料的设计、合成、表征和性能评估等方面。

当前的研究重点在于开发新型生物医用材料,这些材料既能够优化生物组织的再生,又能够满足生理和物理特性的要求。

生物医用材料的开发和设计离不开大量的实验室实践和动物实验,其实践过程也具有一定的争议性。

例如动物实验引起了一些组织学家和动物保护主义者的反对,但也有很多的人认为这些实验具有对人类健康做出重要贡献的潜力。

针对传统的实验方法,越来越多的研究开始采用先进的生命模拟软件和数字模拟技术来实现快速的材料设计和优化生物医用材料。

总之,生物医用材料是现代医疗领域中不可或缺的成分。

研究和应用生物医用材料也有利于改善健康状况和生活质量。

生物医用材料研究的发展已经为医学界的各个领域提供了很多机会,未来预计会有更多的新型材料被开发出来,这些材料能够更好地适应不同的医疗需求。

生物材料的种类及其在医学中的应用

生物材料的种类及其在医学中的应用

生物材料的种类及其在医学中的应用随着计算机技术和各种新材料的发展,人类的医疗水平也在不断提升。

其中,生物材料的应用越来越广泛,其中包括人造骨骼、组织工程材料和生物医用材料等。

本文将探讨生物材料的种类及其在医学中的应用。

一、生物陶瓷材料生物陶瓷材料广泛应用于人体中,因其为人体提供了合适的表面、生物相容性和生长环境。

其适用于人造骨骼、牙科修复和人工关节。

生物陶瓷的种类包括氧化铝、钛酸锆、磷酸钙和羟基磷灰石等。

生物陶瓷具有良好的生物活性,可促进新骨组织生长。

此外,它们的耐磨性和化学稳定性也很高,使得它们能够承受复杂的力学负荷和各种环境的化学反应。

举例来说,氧化铝作为生物陶瓷,可用于人造髋关节和牙科修复。

由于其硬度高,可以承受较大的负荷。

与此同时,其表面组织活性可促进新骨的生长,从而使得新骨组织和陶瓷之间形成良好的结合。

二、生物高分子材料生物高分子材料常用于组织工程、药物传递和医疗用途。

主要组成成分是蛋白质、多糖和脂质。

此外,还包括纤维蛋白、胶原蛋白和明胶等材料。

生物高分子材料的应用范围广泛,涉及心血管、神经、肌肉和皮肤等多个方面。

生物高分子材料具有天然和人工两种来源。

例如,明胶材料通常从动物骨骼、鱼类皮肤、海绵和软体动物中提取。

组织工程领域是生物高分子材料最广泛应用领域之一。

药物传递方面,生物高分子材料广泛用于缓解药物释放,并提高其生物利用度。

在生产过程中,还可通过改变材料的物化属性,调控药物生物可用性。

三、金属和合金生物医用金属材料主要是钛和其合金,应用于人造关节、体内矫形器和牙科修复。

冷轧钛和其合金、不锈钢和镍钛合金是常用的金属材料。

钛和其合金具有优异的抗腐蚀性、生物相容性和生物与力学稳定性。

与其他金属材料相比,其比重更轻、更容易成形和可加工性强,能够回收再利用。

钛及其合金在人造关节中广泛应用,广泛为医生、患者和康复人员所接受。

例如,人工切膝关节及人造髋关节等医疗设备,均采用钛及其合金材料。

四、生物降解材料生物降解材料可被人体代谢掉,因此具有甚至是最安全的医疗设备。

钛合金材料在生物医学方面的应用

钛合金材料在生物医学方面的应用

钛合金材料在生物医学方面的应用信息43常晨2140502056钛合金材料在生物医学方面的应用信息43 常晨2140502056内容摘要:生物医用钛合金材料已经成为全世界外科植入材料以及各种医疗器械产品生产所需的主要原材料。

本文简略介绍了生物医用钛合金材料的发展历史,以及生物医用钛合金材料及制品的研发、生产及其在生物医学工程领域的具体应用现状,分析了现在生物医用钛合金材料及制品在研发、生产、应用等方面的问题,并就此提出大体发展方向。

关键字:钛合金材料生物医用材料生物相容性性质及应用正文:一、发展历史金属材料是最早用于临床医学的生物医用材料,金属材料用于人体修复已有数百年的历史,早在18 世纪后期,Fe、Au、Ag、Pt 等金属就已经用于人体断骨固定。

与高分子材料、陶瓷材料等其他材料相比,金属材料作为医用材料具有强度高、韧性良好及加工性能好等特点,目前用于外科植入物和矫形器械的金属材料主要包括不锈钢、钴基合金和钛合金三大系列,它们占整个生物材料产品市场份额的40% 左右。

然而在人体环境内,不锈钢和钴基合金会溶出Ni、Cr 和Co 等元素,对人体产生毒副作用。

另外,不锈钢及钴基合金的弹性模量与人体骨骼相差略大,容易对骨骼产生较大伤害最终导致植入后松动或断裂。

钛合金由于其优良的耐腐蚀性与良好的生物相容性已广泛应用于人体硬组织的缺损、创伤和疾病等修复、矫形及替代等治疗。

20 世纪中叶以来,以钛合金为主的医用金属材料开始在人体硬组织的外科植入及人体软组织的介入治疗方面显示出独特而神奇的疗效,而钛合金人工关节、牙种植体、血管内支架和心脏瓣膜等具有典型代表性的医疗器械产品的问世,对医学的发展具有划时代的意义和革命性贡献,使得临床治疗从初级的简单“修复、矫形”治疗上升到更高层次的组织与器官的“替代式”治疗,极大改善和提高了人们的生活质量,克服了以往重大疾病只能单纯依靠药物治疗的不足。

二、分类及特点生物医用钛合金材料是专指用于生物医学工程的一类功能结构材料,主要用于外科植入物和矫形器械等产品的生产和制造。

金属医用材料分类与应用有哪些?

金属医用材料分类与应用有哪些?

金属医用材料分类与应用有哪些?金属医用材料分类与应用有哪些?金属医用材料是人类最早利用的医用材料之一,其应用可以追溯到公元前400~300年,腓尼基人将金属丝用于修复牙缺失。

随后,经历了漫长岁月的发展,直至19世纪后期,人类成功利用贵金属银对患者的膝盖骨进行缝合(1880年)。

人类利用镀镍钢螺钉进行骨折治疗(1896年)后,才开始了对金属医用材料的系统研究。

20世纪30年代,随着钴铬合金、不锈钢和钛及合金的相继开发成功并在齿科和骨科中得到广泛的应用,逐步奠定了金属医用材料在生物医用材料中的重要地位。

70年代,Ni-Ti形状记忆合金在临床医学中的成功应用以及金属表面生物医用涂层材料的发展,使生物医用金属材料得到了极大的发展。

定义及应用领域医用金属材料也被称为外科植入金属材料,主要用于诊断、治疗,以及替换人体中的组织或增进其功能。

近20年来,虽然金属医用材料相对于高分子材料、复合材料以及杂化和衍生材料等生物医用材料的发展缓慢,但其具有高的强度、良好的韧性及抗弯曲疲劳强度、优异的加工性能等许多其它几类医用材料不可替代的优良性能,是临床应用中最广泛的承力植入材料。

尤其随着金属3D打印技术的发展,金属医用材料得到了更广泛的应用,最重要的应用有:骨折内固定板、螺钉、人工关节和牙根种植体等。

常用金属医用材料临床应用的医用金属材料主要有不锈钢、钴合金、钛合金、形状记忆合金、贵金属以及纯金属钽、铌、锆等。

1、不锈钢医用不锈钢(Stainless Steel as Biomedical Material)为铁基耐蚀合金,是最早开发的生物医用合金之一,其特点是易加工、价格低廉,耐蚀性和屈服强度可以通过冷加工提高,避免疲劳断裂。

不锈钢按显微组织可分为:奥氏体不锈钢、铁素体不锈钢、马氏体不锈钢、沉淀硬化型不锈钢等,被用以制作医疗器械:刀、剪、止血钳(图1)、针头,同时被用以制作人工关节、骨折内固定器、牙齿矫形、人工心脏瓣膜等器件。

生物医用钛合金材料及其应用

生物医用钛合金材料及其应用
生物医用钛合金材料及其应用
魏芬绒,王海,金旭丹,杨晓康,崔文俊
(西安赛特思迈钛业有限公司,陕西 西安 710299)
摘 要 :随着生物技术的蓬勃发展和重大突破,生物医用钛合金的需求量快速增长。然而,已被广泛应用的 TC4 及
TC4ELI 等医用钛合金中由于 V 和 Al 元素存在的致病性,因此新型医用钛合金的研发在我国具有重大的现实意义和广
Abstract: With the rapid development and breakthrough of biotechnology, the demand for biomedical titanium alloy has increased rapidly. However, due to the pathogenicity of V and Al elements in medical titanium alloys, such as TC4 and TC4ELI, which are widely used, the development of new medical titanium alloys has great practical significance and broad market prospects in China. In this paper, the classification, basic properties and application basis of biomedical titanium alloys are briefly introduced. The development trend of biomedical titanium alloys is pointed out. The basic processing and preparation methods and performance evaluation methods of new titanium alloys are reviewed. Keywords: medical titanium alloy;development;research progress;processing and preparation

生物医学材料的制备及其应用

生物医学材料的制备及其应用

生物医学材料的制备及其应用生物医学材料已成为现代医学发展的重要领域之一,它广泛应用于医疗器械、组织修复及再生医学等领域。

本文将介绍生物医学材料的制备及其应用,从材料学角度探讨其未来发展方向。

1、生物医学材料的制备生物医学材料包括人工器官、人工骨、人工血管、人工皮肤等,其制备需要先进的技术和材料。

传统的材料如金属、陶瓷等已不能满足现代医学的需求,因此,研究人员开始尝试利用生物材料、生物活性物质等新材料来制备生物医学材料。

生物材料主要分为天然和人工两种类型。

天然的生物材料包括动物骨骼、胶原蛋白、天然橡胶等,而人工的生物材料则有聚合物、复合材料等等。

生物活性物质则包括生物降解材料、生物活性分子等。

材料的形态有多种,在制备过程中,需要针对不同的应用需求进行选择,并采用适合的加工工艺。

常见的生物医学材料加工工艺有:(1)自组装法通过间接或直接方式将生物分子封装进纳米粒子或聚合物聚集体中,形成生物医学材料。

通常可用于制备具有生物学特性的人工基质或药物控释系统。

(2)3D打印使用计算机辅助设计软件建立三维模型,并从底层到顶层不断添加材料,制备三维生物医学材料。

3D打印技术可制备复杂的人工器官和骨科材料。

(3)电化学沉积法将金属离子或有机物转化为可形成生物医学材料的固体结构。

电化学沉积法可用于制备人工血管、人工骨等生物医学材料。

(4)聚合物复合将两种或两种以上的聚合物结合起来,制备新的复合材料。

聚合物复合技术是一种简单且具有广泛应用前景的制备方法。

2、生物医学材料的应用在生物医学领域,生物医学材料的应用涵盖了医疗器械、组织修复、再生医学等领域,具有重要的临床意义和应用前景。

(1)医疗器械生物医学材料在制造医疗器械方面有着重要的地位。

例如,人工心脏瓣膜、人工骨头、人工皮肤等都是由生物医学材料制造而成。

这些器械的性能稳定,结构复杂,可以大大提高临床治疗效果。

(2)组织修复生物医学材料在组织修复中的应用也非常重要。

例如,通过生物医学材料对骨骼、肌肉、神经等组织进行修复和重建,可帮助患者恢复身体功能,提高生活质量。

生物医用金属材料

生物医用金属材料

化学周期表中的大部分金属不符合生
物材料的要求,仅有小部分或经处理过的 可用于临床。目前在临床使用的医用金属
材料主要有不锈钢、钴基合金和钛基合金
三大类,另外还有记忆合金、贵金属以及
纯金属钽、铌和锆等。
3.2 常见医用金属材料临床应用
3.2.1 不锈钢
(1) 人工关节和骨折内固定器械。如人工全髋关节、半 髋关节、膝关节、监管杰、肘关节、腕关节及指关节。各 种规格的皮质骨和松质骨加压螺钉、脊椎钉、骨牵引钢丝、 哈氏棒、鲁氏棒、人工椎体和颅骨等,这些植入件可替代
由于环境中化学成分的浓度分布不均匀引起的腐蚀,属 闭塞电池腐蚀,多发生在界面部位,如接骨板和骨螺钉,不
锈钢植入器件更为常见。
(5)晶间腐蚀
发生在材料内部晶粒边界上的一种腐蚀,可导致材料力 学性能严重下降。一般可通过减少碳、硫、磷等杂质含量等 手段来改善晶间腐蚀倾向。
(6)磨蚀
植入器件之间切向反复的相对滑动所造成的表面磨损和 磨蚀环境作用所造成的腐蚀。不锈钢的耐磨蚀能力较差,钴 基合金的耐磨蚀能力优良。
通常具有较高的弹性模量,一般高出人体骨一个数量
级,即使模量较低的钛合金也高出人体骨4-5倍
1.2.3 金属材料的毒性 若在材料中需引入有毒金属元素来提高其他性能, 首先应考虑采用合金化来减小或消除毒性,并提高其耐 蚀性能;其次采用表面保护层和提高光洁度等方法来提 高抗蚀性能。金属的毒性主要作用于细胞,可抑制酶的 活动,阻止酶通过细胞膜的扩散和破坏溶酶体,一般可 通过组织或细胞培养、急性和慢性毒性试验、溶血试验 等来检测。
椎侧弯症矫形器械、人工颈椎椎间关节、加压骑
缝针、人工关节、髌骨整复器、颅骨板、颅骨铆
钉、接骨板、髓内钉、髓内鞘、接骨超弹丝、关 节接头等。在口腔科中用作齿列矫正用唇弓丝、 齿冠、托环、颌骨固定等。

生物医用材料系列4--生物医学金属材料ppt课件

生物医用材料系列4--生物医学金属材料ppt课件

.
34
金属的毒性主要作用于细胞,可抑制酶的活动, 阻止酶通过细胞膜扩散和破坏溶酶体。
利用测定乳酸脱氢酶(LDH)和6~磷酸葡萄糖脱氢 酶(G~6~PD)活性法检测植入金属对鼠类吞噬细胞的 影响,可以表明;
✓ 有毒金属如钴镍和钴铬合金能损伤细胞,释放 LDH, 降低G~6~PD的活性,
✓ 但钛、铬、钼则能为吞噬细胞所耐受。
.
23
.
24
.
25
.
26
.
27
提高金属的抗蚀性能措施:
主要依靠其表面保护层和光洁度。 表面保护层借助钝化来实现。铬有最佳的钝化性 能,故合金中含铬量高越易钝化。 金属表面抛光越细,表面活化中心出现越晚,耐 蚀性也随之提高。 除金属材料必须具有良好的钝化性能、合适的成 分与结构外,技术人员必须有正确的操作技术。
– 静力下股骨头负荷压力从头凸面呈放射状向内 传递,应力增高,股骨近端内侧承受的后应力 较大。如股骨头负荷为45.36kg 时,股骨近端内 侧骨皮质应力高达8.27Mpa. 由强大肌力牵拉, 实际应力比理论值还要大三倍。
.
41
人工股骨头每年还要经受3.65106次交变载荷( 每日一万步计),故材料必须具有高抗疲劳和耐磨损 性能。
+++ 100
0
±
钨W 183.5 1.25
+++ 100
0
-
Te
3
1.28
0
127.6

锰Mn 054.94 0.52
100 稍抑制 18
+

铁Fe 55.85 0.55 0.00 -
100 抑制
32
++

生物医用金属材料

生物医用金属材料

生物医用金属材料
生物医用金属材料是一种在医学领域中被广泛应用的材料,它具有良好的生物
相容性和机械性能,被广泛应用于人体植入物、医疗器械和医疗设备等方面。

生物医用金属材料主要包括钛合金、不锈钢和镍钛合金等,它们在医疗领域中扮演着重要的角色。

首先,钛合金是目前应用最广泛的生物医用金属材料之一。

它具有良好的生物
相容性和抗腐蚀性能,可以用于制作人工关节、牙科种植体、骨板和骨螺钉等植入物。

钛合金的机械性能优异,具有良好的强度和韧性,能够满足人体内长期受力的要求。

因此,在骨科和牙科领域,钛合金得到了广泛的应用。

其次,不锈钢也是一种常用的生物医用金属材料。

不锈钢具有良好的机械性能
和耐腐蚀性能,可以用于制作心脏起搏器、支架、手术器械等医疗器械。

不锈钢制成的医疗器械表面光滑,易于清洁和消毒,能够有效预防感染和减少并发症的发生。

因此,不锈钢在医疗器械领域中得到了广泛的应用。

此外,镍钛合金是一种具有记忆效应的生物医用金属材料。

镍钛合金可以根据
温度和应力发生形状记忆和超弹性效应,可以用于制作血管支架、牙齿矫正器等医疗器械。

镍钛合金具有良好的生物相容性和耐腐蚀性能,能够在人体内长期稳定地发挥作用。

因此,在心血管和牙科领域,镍钛合金得到了广泛的应用。

总的来说,生物医用金属材料在医学领域中发挥着重要的作用,它们具有良好
的生物相容性和机械性能,能够满足医疗器械和植入物的要求。

随着医学技术的不断发展,生物医用金属材料的应用范围将会进一步扩大,为人类健康事业做出更大的贡献。

金属纳米材料的生物化学制备及在生物医学领域的应用

金属纳米材料的生物化学制备及在生物医学领域的应用

金属纳米材料的生物化学制备及在生物医学领域的应用摘要:在纳米结构和纳米材料的制备上,最需要关注的点就是要克服巨大的表面能,防止因 Ostwald ripening 或团聚作用导致所制备的金属纳米材料在尺寸上逐渐变大,结构稳定性差。

本文侧重选择拥有独特结构并能保持生理活性的生物材料,作为金属纳米材料制备过程中的还原剂、封端剂,甚至作为模板框架来更加绿色环保地避免上述问题的发生。

本文主要分析金属纳米材料的生物化学制备及在生物医学领域的应用。

关键词:金属纳米材料,生物化学制备,医学应用引言2000 多年前,人们就已经开始无意识地使用纳米材料。

古埃及人曾在不经意间发现了一种纳米尺度的染料,并用来漂染头发,其色牢度非常优良;科学家们还发现现存于大英博物馆的古罗马莱克格斯杯的玻璃中融入了纳米尺寸的金银颗粒,能够随着光照变化改变颜色;我国考古学家在文物挖掘中发现古代铜镜千百年后依然完好无损就是因为表面涂有一层纳米尺度的氧化锡保护膜;以及流传至今未褪墨的书画也是因为使用的墨汁中存在着纳米尺寸的碳。

1.金属纳米材料的一般制备方法纳米颗粒(Nano Particles),是指在三维空间的某一维度尺寸处在 1 nm 到 100 nm 之间的微小颗粒。

NPs 的电子结构在某些晶面上的费米能级刚好处在体能带结构沿该晶向的禁带之中,使得 NPs 存在小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应等材料特性。

除此之外 NPs 还在光学、电学、物理学、化学、生物学上有多种显著特性。

近年来,由于其独特的物理化学性质——高表面积、良好的电导率、低毒性、不错的稳定性和生物相容性,引起了科研工作者们的兴趣。

金溶胶是金纳米颗粒(Au NPs)在水溶液中存在的一种很普遍形式,其历史可以追溯到两千多年前。

虽然合成胶体金的方法五花八门,但是由Turkevich 等人早期开发的柠檬酸还原 HAuCl4 的合成方法到目前仍是制备金纳米颗粒最基础的方法,颇受大众青睐。

生物医学工程中的生物材料资料

生物医学工程中的生物材料资料

生物医学工程中的生物材料资料生物医学工程是将工程学的原理和方法应用于生物医学领域的综合性学科。

在生物医学工程的研究和实践中,生物材料起着至关重要的作用。

本文将讨论生物医学工程中常用的生物材料及其应用。

一、金属材料金属材料是最常见的生物材料之一,因其具有良好的机械性能和生物相容性而广泛应用于医学领域。

常见的金属材料包括不锈钢、钛合金和铂合金等。

这些金属材料常用于制作人工关节、牙科修复材料等,其高强度和耐腐蚀性能能够满足长期应力和环境要求。

二、聚合物材料聚合物材料是生物医学工程中应用最广泛的生物材料之一。

聚合物材料具有良好的生物相容性,可以通过调整其化学结构和物理性能来满足不同的应用需求。

例如,聚乳酸(PLA)和聚乙烯醇(PVA)常用于制作生物可降解的缝合线和支架材料。

三、生物陶瓷材料生物陶瓷材料具有优异的生物相容性和生物活性,广泛应用于骨修复和牙科领域。

氧化铝陶瓷和钙磷陶瓷是最常见的生物陶瓷材料。

氧化铝陶瓷常用于制作人工关节和牙科修复材料,而钙磷陶瓷则用于骨缺损修复和人工骨替代材料。

四、复合材料复合材料是由两种或以上材料组成的材料体系,具有优异的物理性能和生物相容性。

生物医学工程中常用的复合材料包括纳米复合材料和纤维增强复合材料。

纳米复合材料具有较大的比表面积和改善的力学性能,可应用于药物控释和组织工程等领域。

纤维增强复合材料则常用于骨缺损修复和人工韧带等领域。

五、生物透明材料生物透明材料是一类具有良好透明性和生物相容性的材料,广泛应用于眼科和皮肤修复等领域。

聚甲基丙烯酸甲酯(PMMA)是最常用的生物透明材料之一,常用于制作人工晶体和角膜修复材料。

六、生物活性材料生物活性材料具有促进组织再生和修复的特性,常用于骨缺损修复和组织工程等领域。

羟基磷灰石(HA)和骨蛋白等生物活性材料能够与周围组织发生化学反应,促进骨细胞的生长和骨再生。

综上所述,生物材料在生物医学工程中扮演着重要的角色。

金属材料、聚合物材料、生物陶瓷材料、复合材料、生物透明材料和生物活性材料等不同类型的生物材料为我们提供了多种选择,用于制作医学器械、仿生材料和组织修复等应用。

生物材料的种类与医学应用

生物材料的种类与医学应用

生物材料的种类与医学应用生物材料是指能够与生物系统相互作用的材料,广泛应用于医学领域。

本文将介绍生物材料的种类以及它们在医学中的应用。

一、金属类生物材料金属类生物材料具有优良的机械性能和生物相容性,常被用于骨科和牙科领域。

例如,钛合金在人工关节和牙种植中被广泛应用。

它具有较高的强度和耐腐蚀性,且与骨组织结合良好。

二、陶瓷类生物材料陶瓷类生物材料通常由氧化铝等无机材料制成,具有较高的硬度和抗磨损性。

在骨科领域,氧化铝陶瓷常被用作人工关节表面的涂层,以减少摩擦和磨损。

三、聚合物类生物材料聚合物类生物材料是指由合成高分子材料制成的,在医学中有广泛应用。

例如,聚乳酸和聚己内酯等生物可降解聚合物常被用于制造缝合线和软组织修复支架。

这些材料可在体内逐渐分解,避免了二次手术。

四、复合生物材料复合生物材料是指由两种或更多种生物材料组合而成的材料。

它们可以充分发挥各自材料的优点,具有更好的性能和功能。

举例来说,生物陶瓷和聚合物可组成复合支架,用于骨缺损修复。

在医学应用中,生物材料发挥着重要的作用:1. 骨修复与替代生物材料在骨科领域的应用得到了广泛关注。

骨修复与替代材料,如钛合金和生物陶瓷,可用于修复骨折或缺损,恢复骨骼功能。

此外,生物可降解聚合物支架可促进骨组织的再生,重建受损骨骼。

2. 人工关节人工关节是治疗严重关节炎和关节损伤的重要手段。

钛合金和陶瓷等金属、陶瓷类生物材料被广泛用于人工关节的制造,提供了良好的机械性能和生物相容性。

3. 医学器械生物材料也用于医学器械的制造。

例如,聚氨酯和硅胶等生物材料可用于制造体外循环器械和人工心脏瓣膜。

这些材料具有生物相容性和耐久性,可以提高医疗器械的效能和可靠性。

4. 组织工程组织工程是一种利用生物材料和细胞培养构建人体组织的技术。

聚合物和支架材料被广泛用于体外培养细胞和生物组织。

这种技术可用于组织再生和器官替代。

综上所述,生物材料的种类繁多,从金属到聚合物,再到复合材料,它们广泛应用于医学领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档